llvm-project/compiler-rt/lib/msan/tests/msan_test.cc

3664 lines
95 KiB
C++
Raw Normal View History

//===-- msan_test.cc ------------------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file is a part of MemorySanitizer.
//
// MemorySanitizer unit tests.
//===----------------------------------------------------------------------===//
#ifndef MSAN_EXTERNAL_TEST_CONFIG
#include "msan_test_config.h"
#endif // MSAN_EXTERNAL_TEST_CONFIG
#include "sanitizer/msan_interface.h"
#include "msandr_test_so.h"
#include <inttypes.h>
#include <stdlib.h>
#include <stdarg.h>
#include <stdio.h>
#include <wchar.h>
#include <math.h>
#include <malloc.h>
#include <arpa/inet.h>
#include <dlfcn.h>
#include <grp.h>
#include <unistd.h>
#include <link.h>
#include <limits.h>
#include <sys/time.h>
#include <poll.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <sys/resource.h>
#include <sys/ioctl.h>
#include <sys/statvfs.h>
#include <sys/sysinfo.h>
#include <sys/utsname.h>
#include <sys/mman.h>
#include <sys/vfs.h>
#include <dirent.h>
#include <pwd.h>
#include <sys/socket.h>
#include <netdb.h>
#include <wordexp.h>
#include <mntent.h>
#include <netinet/ether.h>
#include <sys/ipc.h>
#include <sys/shm.h>
#if defined(__i386__) || defined(__x86_64__)
# include <emmintrin.h>
# define MSAN_HAS_M128 1
#else
# define MSAN_HAS_M128 0
#endif
static const int kPageSize = 4096;
typedef unsigned char U1;
typedef unsigned short U2; // NOLINT
typedef unsigned int U4;
typedef unsigned long long U8; // NOLINT
typedef signed char S1;
typedef signed short S2; // NOLINT
typedef signed int S4;
typedef signed long long S8; // NOLINT
#define NOINLINE __attribute__((noinline))
#define INLINE __attribute__((always_inline))
static bool TrackingOrigins() {
S8 x;
__msan_set_origin(&x, sizeof(x), 0x1234);
U4 origin = __msan_get_origin(&x);
__msan_set_origin(&x, sizeof(x), 0);
return origin == 0x1234;
}
#define EXPECT_UMR(action) \
do { \
__msan_set_expect_umr(1); \
action; \
__msan_set_expect_umr(0); \
} while (0)
#define EXPECT_UMR_O(action, origin) \
do { \
__msan_set_expect_umr(1); \
action; \
__msan_set_expect_umr(0); \
if (TrackingOrigins()) \
EXPECT_EQ(origin, __msan_get_umr_origin()); \
} while (0)
#define EXPECT_UMR_S(action, stack_origin) \
do { \
__msan_set_expect_umr(1); \
action; \
__msan_set_expect_umr(0); \
U4 id = __msan_get_umr_origin(); \
const char *str = __msan_get_origin_descr_if_stack(id); \
if (!str || strcmp(str, stack_origin)) { \
fprintf(stderr, "EXPECT_POISONED_S: id=%u %s, %s", \
id, stack_origin, str); \
EXPECT_EQ(1, 0); \
} \
} while (0)
#define EXPECT_POISONED(x) ExpectPoisoned(x)
template<typename T>
void ExpectPoisoned(const T& t) {
EXPECT_NE(-1, __msan_test_shadow((void*)&t, sizeof(t)));
}
#define EXPECT_POISONED_O(x, origin) \
ExpectPoisonedWithOrigin(x, origin)
template<typename T>
void ExpectPoisonedWithOrigin(const T& t, unsigned origin) {
EXPECT_NE(-1, __msan_test_shadow((void*)&t, sizeof(t)));
if (TrackingOrigins())
EXPECT_EQ(origin, __msan_get_origin((void*)&t));
}
#define EXPECT_POISONED_S(x, stack_origin) \
ExpectPoisonedWithStackOrigin(x, stack_origin)
template<typename T>
void ExpectPoisonedWithStackOrigin(const T& t, const char *stack_origin) {
EXPECT_NE(-1, __msan_test_shadow((void*)&t, sizeof(t)));
U4 id = __msan_get_origin((void*)&t);
const char *str = __msan_get_origin_descr_if_stack(id);
if (!str || strcmp(str, stack_origin)) {
fprintf(stderr, "EXPECT_POISONED_S: id=%u %s, %s",
id, stack_origin, str);
EXPECT_EQ(1, 0);
}
}
#define EXPECT_NOT_POISONED(x) ExpectNotPoisoned(x)
template<typename T>
void ExpectNotPoisoned(const T& t) {
EXPECT_EQ(-1, __msan_test_shadow((void*)&t, sizeof(t)));
}
static U8 poisoned_array[100];
template<class T>
T *GetPoisoned(int i = 0, T val = 0) {
T *res = (T*)&poisoned_array[i];
*res = val;
__msan_poison(&poisoned_array[i], sizeof(T));
return res;
}
template<class T>
T *GetPoisonedO(int i, U4 origin, T val = 0) {
T *res = (T*)&poisoned_array[i];
*res = val;
__msan_poison(&poisoned_array[i], sizeof(T));
__msan_set_origin(&poisoned_array[i], sizeof(T), origin);
return res;
}
// This function returns its parameter but in such a way that compiler
// can not prove it.
template<class T>
NOINLINE
static T Ident(T t) {
volatile T ret = t;
return ret;
}
template<class T> NOINLINE T ReturnPoisoned() { return *GetPoisoned<T>(); }
static volatile int g_one = 1;
static volatile int g_zero = 0;
static volatile int g_0 = 0;
static volatile int g_1 = 1;
S4 a_s4[100];
S8 a_s8[100];
// Check that malloc poisons memory.
// A lot of tests below depend on this.
TEST(MemorySanitizerSanity, PoisonInMalloc) {
int *x = (int*)malloc(sizeof(int));
EXPECT_POISONED(*x);
free(x);
}
TEST(MemorySanitizer, NegativeTest1) {
S4 *x = GetPoisoned<S4>();
if (g_one)
*x = 0;
EXPECT_NOT_POISONED(*x);
}
TEST(MemorySanitizer, PositiveTest1) {
// Load to store.
EXPECT_POISONED(*GetPoisoned<S1>());
EXPECT_POISONED(*GetPoisoned<S2>());
EXPECT_POISONED(*GetPoisoned<S4>());
EXPECT_POISONED(*GetPoisoned<S8>());
// S->S conversions.
EXPECT_POISONED(*GetPoisoned<S1>());
EXPECT_POISONED(*GetPoisoned<S1>());
EXPECT_POISONED(*GetPoisoned<S1>());
EXPECT_POISONED(*GetPoisoned<S2>());
EXPECT_POISONED(*GetPoisoned<S2>());
EXPECT_POISONED(*GetPoisoned<S2>());
EXPECT_POISONED(*GetPoisoned<S4>());
EXPECT_POISONED(*GetPoisoned<S4>());
EXPECT_POISONED(*GetPoisoned<S4>());
EXPECT_POISONED(*GetPoisoned<S8>());
EXPECT_POISONED(*GetPoisoned<S8>());
EXPECT_POISONED(*GetPoisoned<S8>());
// ZExt
EXPECT_POISONED(*GetPoisoned<U1>());
EXPECT_POISONED(*GetPoisoned<U1>());
EXPECT_POISONED(*GetPoisoned<U1>());
EXPECT_POISONED(*GetPoisoned<U2>());
EXPECT_POISONED(*GetPoisoned<U2>());
EXPECT_POISONED(*GetPoisoned<U4>());
// Unary ops.
EXPECT_POISONED(- *GetPoisoned<S4>());
EXPECT_UMR(a_s4[g_zero] = 100 / *GetPoisoned<S4>(0, 1));
a_s4[g_zero] = 1 - *GetPoisoned<S4>();
a_s4[g_zero] = 1 + *GetPoisoned<S4>();
}
TEST(MemorySanitizer, Phi1) {
S4 c;
if (g_one) {
c = *GetPoisoned<S4>();
} else {
break_optimization(0);
c = 0;
}
EXPECT_POISONED(c);
}
TEST(MemorySanitizer, Phi2) {
S4 i = *GetPoisoned<S4>();
S4 n = g_one;
EXPECT_UMR(for (; i < g_one; i++););
EXPECT_POISONED(i);
}
NOINLINE void Arg1ExpectUMR(S4 a1) { EXPECT_POISONED(a1); }
NOINLINE void Arg2ExpectUMR(S4 a1, S4 a2) { EXPECT_POISONED(a2); }
NOINLINE void Arg3ExpectUMR(S1 a1, S4 a2, S8 a3) { EXPECT_POISONED(a3); }
TEST(MemorySanitizer, ArgTest) {
Arg1ExpectUMR(*GetPoisoned<S4>());
Arg2ExpectUMR(0, *GetPoisoned<S4>());
Arg3ExpectUMR(0, 1, *GetPoisoned<S8>());
}
TEST(MemorySanitizer, CallAndRet) {
if (!__msan_has_dynamic_component()) return;
ReturnPoisoned<S1>();
ReturnPoisoned<S2>();
ReturnPoisoned<S4>();
ReturnPoisoned<S8>();
EXPECT_POISONED(ReturnPoisoned<S1>());
EXPECT_POISONED(ReturnPoisoned<S2>());
EXPECT_POISONED(ReturnPoisoned<S4>());
EXPECT_POISONED(ReturnPoisoned<S8>());
}
// malloc() in the following test may be optimized to produce a compile-time
// undef value. Check that we trap on the volatile assignment anyway.
TEST(MemorySanitizer, DISABLED_MallocNoIdent) {
S4 *x = (int*)malloc(sizeof(S4));
EXPECT_POISONED(*x);
free(x);
}
TEST(MemorySanitizer, Malloc) {
S4 *x = (int*)Ident(malloc(sizeof(S4)));
EXPECT_POISONED(*x);
free(x);
}
TEST(MemorySanitizer, Realloc) {
S4 *x = (int*)Ident(realloc(0, sizeof(S4)));
EXPECT_POISONED(x[0]);
x[0] = 1;
x = (int*)Ident(realloc(x, 2 * sizeof(S4)));
EXPECT_NOT_POISONED(x[0]); // Ok, was inited before.
EXPECT_POISONED(x[1]);
x = (int*)Ident(realloc(x, 3 * sizeof(S4)));
EXPECT_NOT_POISONED(x[0]); // Ok, was inited before.
EXPECT_POISONED(x[2]);
EXPECT_POISONED(x[1]);
x[2] = 1; // Init this here. Check that after realloc it is poisoned again.
x = (int*)Ident(realloc(x, 2 * sizeof(S4)));
EXPECT_NOT_POISONED(x[0]); // Ok, was inited before.
EXPECT_POISONED(x[1]);
x = (int*)Ident(realloc(x, 3 * sizeof(S4)));
EXPECT_POISONED(x[1]);
EXPECT_POISONED(x[2]);
free(x);
}
TEST(MemorySanitizer, Calloc) {
S4 *x = (int*)Ident(calloc(1, sizeof(S4)));
EXPECT_NOT_POISONED(*x); // Should not be poisoned.
// EXPECT_EQ(0, *x);
free(x);
}
TEST(MemorySanitizer, AndOr) {
U4 *p = GetPoisoned<U4>();
// We poison two bytes in the midle of a 4-byte word to make the test
// correct regardless of endianness.
((U1*)p)[1] = 0;
((U1*)p)[2] = 0xff;
EXPECT_NOT_POISONED(*p & 0x00ffff00);
EXPECT_NOT_POISONED(*p & 0x00ff0000);
EXPECT_NOT_POISONED(*p & 0x0000ff00);
EXPECT_POISONED(*p & 0xff000000);
EXPECT_POISONED(*p & 0x000000ff);
EXPECT_POISONED(*p & 0x0000ffff);
EXPECT_POISONED(*p & 0xffff0000);
EXPECT_NOT_POISONED(*p | 0xff0000ff);
EXPECT_NOT_POISONED(*p | 0xff00ffff);
EXPECT_NOT_POISONED(*p | 0xffff00ff);
EXPECT_POISONED(*p | 0xff000000);
EXPECT_POISONED(*p | 0x000000ff);
EXPECT_POISONED(*p | 0x0000ffff);
EXPECT_POISONED(*p | 0xffff0000);
EXPECT_POISONED(*GetPoisoned<bool>() & *GetPoisoned<bool>());
}
template<class T>
static bool applyNot(T value, T shadow) {
__msan_partial_poison(&value, &shadow, sizeof(T));
return !value;
}
TEST(MemorySanitizer, Not) {
EXPECT_NOT_POISONED(applyNot<U4>(0x0, 0x0));
EXPECT_NOT_POISONED(applyNot<U4>(0xFFFFFFFF, 0x0));
EXPECT_POISONED(applyNot<U4>(0xFFFFFFFF, 0xFFFFFFFF));
EXPECT_NOT_POISONED(applyNot<U4>(0xFF000000, 0x0FFFFFFF));
EXPECT_NOT_POISONED(applyNot<U4>(0xFF000000, 0x00FFFFFF));
EXPECT_NOT_POISONED(applyNot<U4>(0xFF000000, 0x0000FFFF));
EXPECT_NOT_POISONED(applyNot<U4>(0xFF000000, 0x00000000));
EXPECT_POISONED(applyNot<U4>(0xFF000000, 0xFF000000));
EXPECT_NOT_POISONED(applyNot<U4>(0xFF800000, 0xFF000000));
EXPECT_POISONED(applyNot<U4>(0x00008000, 0x00008000));
EXPECT_NOT_POISONED(applyNot<U1>(0x0, 0x0));
EXPECT_NOT_POISONED(applyNot<U1>(0xFF, 0xFE));
EXPECT_NOT_POISONED(applyNot<U1>(0xFF, 0x0));
EXPECT_POISONED(applyNot<U1>(0xFF, 0xFF));
EXPECT_POISONED(applyNot<void*>((void*)0xFFFFFF, (void*)(-1)));
EXPECT_NOT_POISONED(applyNot<void*>((void*)0xFFFFFF, (void*)(-2)));
}
TEST(MemorySanitizer, Shift) {
U4 *up = GetPoisoned<U4>();
((U1*)up)[0] = 0;
((U1*)up)[3] = 0xff;
EXPECT_NOT_POISONED(*up >> 30);
EXPECT_NOT_POISONED(*up >> 24);
EXPECT_POISONED(*up >> 23);
EXPECT_POISONED(*up >> 10);
EXPECT_NOT_POISONED(*up << 30);
EXPECT_NOT_POISONED(*up << 24);
EXPECT_POISONED(*up << 23);
EXPECT_POISONED(*up << 10);
S4 *sp = (S4*)up;
EXPECT_NOT_POISONED(*sp >> 30);
EXPECT_NOT_POISONED(*sp >> 24);
EXPECT_POISONED(*sp >> 23);
EXPECT_POISONED(*sp >> 10);
sp = GetPoisoned<S4>();
((S1*)sp)[1] = 0;
((S1*)sp)[2] = 0;
EXPECT_POISONED(*sp >> 31);
EXPECT_POISONED(100 >> *GetPoisoned<S4>());
EXPECT_POISONED(100U >> *GetPoisoned<S4>());
}
NOINLINE static int GetPoisonedZero() {
int *zero = new int;
*zero = 0;
__msan_poison(zero, sizeof(*zero));
int res = *zero;
delete zero;
return res;
}
TEST(MemorySanitizer, LoadFromDirtyAddress) {
int *a = new int;
*a = 0;
EXPECT_UMR(break_optimization((void*)(U8)a[GetPoisonedZero()]));
delete a;
}
TEST(MemorySanitizer, StoreToDirtyAddress) {
int *a = new int;
EXPECT_UMR(a[GetPoisonedZero()] = 0);
break_optimization(a);
delete a;
}
NOINLINE void StackTestFunc() {
S4 p4;
S4 ok4 = 1;
S2 p2;
S2 ok2 = 1;
S1 p1;
S1 ok1 = 1;
break_optimization(&p4);
break_optimization(&ok4);
break_optimization(&p2);
break_optimization(&ok2);
break_optimization(&p1);
break_optimization(&ok1);
EXPECT_POISONED(p4);
EXPECT_POISONED(p2);
EXPECT_POISONED(p1);
EXPECT_NOT_POISONED(ok1);
EXPECT_NOT_POISONED(ok2);
EXPECT_NOT_POISONED(ok4);
}
TEST(MemorySanitizer, StackTest) {
StackTestFunc();
}
NOINLINE void StackStressFunc() {
int foo[10000];
break_optimization(foo);
}
TEST(MemorySanitizer, DISABLED_StackStressTest) {
for (int i = 0; i < 1000000; i++)
StackStressFunc();
}
template<class T>
void TestFloatingPoint() {
static volatile T v;
static T g[100];
break_optimization(&g);
T *x = GetPoisoned<T>();
T *y = GetPoisoned<T>(1);
EXPECT_POISONED(*x);
EXPECT_POISONED((long long)*x);
EXPECT_POISONED((int)*x);
g[0] = *x;
g[1] = *x + *y;
g[2] = *x - *y;
g[3] = *x * *y;
}
TEST(MemorySanitizer, FloatingPointTest) {
TestFloatingPoint<float>();
TestFloatingPoint<double>();
}
TEST(MemorySanitizer, DynMem) {
S4 x = 0;
S4 *y = GetPoisoned<S4>();
memcpy(y, &x, g_one * sizeof(S4));
EXPECT_NOT_POISONED(*y);
}
static char *DynRetTestStr;
TEST(MemorySanitizer, DynRet) {
if (!__msan_has_dynamic_component()) return;
ReturnPoisoned<S8>();
EXPECT_NOT_POISONED(clearenv());
}
TEST(MemorySanitizer, DynRet1) {
if (!__msan_has_dynamic_component()) return;
ReturnPoisoned<S8>();
}
struct LargeStruct {
S4 x[10];
};
NOINLINE
LargeStruct LargeRetTest() {
LargeStruct res;
res.x[0] = *GetPoisoned<S4>();
res.x[1] = *GetPoisoned<S4>();
res.x[2] = *GetPoisoned<S4>();
res.x[3] = *GetPoisoned<S4>();
res.x[4] = *GetPoisoned<S4>();
res.x[5] = *GetPoisoned<S4>();
res.x[6] = *GetPoisoned<S4>();
res.x[7] = *GetPoisoned<S4>();
res.x[8] = *GetPoisoned<S4>();
res.x[9] = *GetPoisoned<S4>();
return res;
}
TEST(MemorySanitizer, strcmp) {
char s1[10];
char s2[10];
strncpy(s1, "foo", 10);
s2[0] = 'f';
s2[1] = 'n';
EXPECT_GT(strcmp(s1, s2), 0);
s2[1] = 'o';
int res;
EXPECT_UMR(res = strcmp(s1, s2));
EXPECT_NOT_POISONED(res);
EXPECT_EQ(strncmp(s1, s2, 1), 0);
}
TEST(MemorySanitizer, LargeRet) {
LargeStruct a = LargeRetTest();
EXPECT_POISONED(a.x[0]);
EXPECT_POISONED(a.x[9]);
}
TEST(MemorySanitizer, strerror) {
char *buf = strerror(EINVAL);
EXPECT_NOT_POISONED(strlen(buf));
buf = strerror(123456);
EXPECT_NOT_POISONED(strlen(buf));
}
TEST(MemorySanitizer, strerror_r) {
errno = 0;
char buf[1000];
char *res = strerror_r(EINVAL, buf, sizeof(buf));
ASSERT_EQ(0, errno);
if (!res) res = buf; // POSIX version success.
EXPECT_NOT_POISONED(strlen(res));
}
TEST(MemorySanitizer, fread) {
char *x = new char[32];
FILE *f = fopen("/proc/self/stat", "r");
ASSERT_TRUE(f != NULL);
fread(x, 1, 32, f);
EXPECT_NOT_POISONED(x[0]);
EXPECT_NOT_POISONED(x[16]);
EXPECT_NOT_POISONED(x[31]);
fclose(f);
delete x;
}
TEST(MemorySanitizer, read) {
char *x = new char[32];
int fd = open("/proc/self/stat", O_RDONLY);
ASSERT_GT(fd, 0);
int sz = read(fd, x, 32);
ASSERT_EQ(sz, 32);
EXPECT_NOT_POISONED(x[0]);
EXPECT_NOT_POISONED(x[16]);
EXPECT_NOT_POISONED(x[31]);
close(fd);
delete x;
}
TEST(MemorySanitizer, pread) {
char *x = new char[32];
int fd = open("/proc/self/stat", O_RDONLY);
ASSERT_GT(fd, 0);
int sz = pread(fd, x, 32, 0);
ASSERT_EQ(sz, 32);
EXPECT_NOT_POISONED(x[0]);
EXPECT_NOT_POISONED(x[16]);
EXPECT_NOT_POISONED(x[31]);
close(fd);
delete x;
}
TEST(MemorySanitizer, readv) {
char buf[2011];
struct iovec iov[2];
iov[0].iov_base = buf + 1;
iov[0].iov_len = 5;
iov[1].iov_base = buf + 10;
iov[1].iov_len = 2000;
int fd = open("/proc/self/stat", O_RDONLY);
ASSERT_GT(fd, 0);
int sz = readv(fd, iov, 2);
ASSERT_LT(sz, 5 + 2000);
ASSERT_GT(sz, iov[0].iov_len);
EXPECT_POISONED(buf[0]);
EXPECT_NOT_POISONED(buf[1]);
EXPECT_NOT_POISONED(buf[5]);
EXPECT_POISONED(buf[6]);
EXPECT_POISONED(buf[9]);
EXPECT_NOT_POISONED(buf[10]);
EXPECT_NOT_POISONED(buf[10 + (sz - 1) - 5]);
EXPECT_POISONED(buf[11 + (sz - 1) - 5]);
close(fd);
}
TEST(MemorySanitizer, preadv) {
char buf[2011];
struct iovec iov[2];
iov[0].iov_base = buf + 1;
iov[0].iov_len = 5;
iov[1].iov_base = buf + 10;
iov[1].iov_len = 2000;
int fd = open("/proc/self/stat", O_RDONLY);
ASSERT_GT(fd, 0);
int sz = preadv(fd, iov, 2, 3);
ASSERT_LT(sz, 5 + 2000);
ASSERT_GT(sz, iov[0].iov_len);
EXPECT_POISONED(buf[0]);
EXPECT_NOT_POISONED(buf[1]);
EXPECT_NOT_POISONED(buf[5]);
EXPECT_POISONED(buf[6]);
EXPECT_POISONED(buf[9]);
EXPECT_NOT_POISONED(buf[10]);
EXPECT_NOT_POISONED(buf[10 + (sz - 1) - 5]);
EXPECT_POISONED(buf[11 + (sz - 1) - 5]);
close(fd);
}
// FIXME: fails now.
TEST(MemorySanitizer, DISABLED_ioctl) {
struct winsize ws;
EXPECT_EQ(ioctl(2, TIOCGWINSZ, &ws), 0);
EXPECT_NOT_POISONED(ws.ws_col);
}
TEST(MemorySanitizer, readlink) {
char *x = new char[1000];
readlink("/proc/self/exe", x, 1000);
EXPECT_NOT_POISONED(x[0]);
delete [] x;
}
TEST(MemorySanitizer, stat) {
struct stat* st = new struct stat;
int res = stat("/proc/self/stat", st);
ASSERT_EQ(0, res);
EXPECT_NOT_POISONED(st->st_dev);
EXPECT_NOT_POISONED(st->st_mode);
EXPECT_NOT_POISONED(st->st_size);
}
TEST(MemorySanitizer, fstatat) {
struct stat* st = new struct stat;
int dirfd = open("/proc/self", O_RDONLY);
ASSERT_GT(dirfd, 0);
int res = fstatat(dirfd, "stat", st, 0);
ASSERT_EQ(0, res);
EXPECT_NOT_POISONED(st->st_dev);
EXPECT_NOT_POISONED(st->st_mode);
EXPECT_NOT_POISONED(st->st_size);
close(dirfd);
}
TEST(MemorySanitizer, statfs) {
struct statfs st;
int res = statfs("/", &st);
ASSERT_EQ(0, res);
EXPECT_NOT_POISONED(st.f_type);
EXPECT_NOT_POISONED(st.f_bfree);
EXPECT_NOT_POISONED(st.f_namelen);
}
TEST(MemorySanitizer, statvfs) {
struct statvfs st;
int res = statvfs("/", &st);
ASSERT_EQ(0, res);
EXPECT_NOT_POISONED(st.f_bsize);
EXPECT_NOT_POISONED(st.f_blocks);
EXPECT_NOT_POISONED(st.f_bfree);
EXPECT_NOT_POISONED(st.f_namemax);
}
TEST(MemorySanitizer, fstatvfs) {
struct statvfs st;
int fd = open("/", O_RDONLY | O_DIRECTORY);
int res = fstatvfs(fd, &st);
ASSERT_EQ(0, res);
EXPECT_NOT_POISONED(st.f_bsize);
EXPECT_NOT_POISONED(st.f_blocks);
EXPECT_NOT_POISONED(st.f_bfree);
EXPECT_NOT_POISONED(st.f_namemax);
close(fd);
}
TEST(MemorySanitizer, pipe) {
int* pipefd = new int[2];
int res = pipe(pipefd);
ASSERT_EQ(0, res);
EXPECT_NOT_POISONED(pipefd[0]);
EXPECT_NOT_POISONED(pipefd[1]);
close(pipefd[0]);
close(pipefd[1]);
}
TEST(MemorySanitizer, pipe2) {
int* pipefd = new int[2];
int res = pipe2(pipefd, O_NONBLOCK);
ASSERT_EQ(0, res);
EXPECT_NOT_POISONED(pipefd[0]);
EXPECT_NOT_POISONED(pipefd[1]);
close(pipefd[0]);
close(pipefd[1]);
}
TEST(MemorySanitizer, socketpair) {
int sv[2];
int res = socketpair(AF_UNIX, SOCK_STREAM, 0, sv);
ASSERT_EQ(0, res);
EXPECT_NOT_POISONED(sv[0]);
EXPECT_NOT_POISONED(sv[1]);
close(sv[0]);
close(sv[1]);
}
TEST(MemorySanitizer, poll) {
int* pipefd = new int[2];
int res = pipe(pipefd);
ASSERT_EQ(0, res);
char data = 42;
res = write(pipefd[1], &data, 1);
ASSERT_EQ(1, res);
pollfd fds[2];
fds[0].fd = pipefd[0];
fds[0].events = POLLIN;
fds[1].fd = pipefd[1];
fds[1].events = POLLIN;
res = poll(fds, 2, 500);
ASSERT_EQ(1, res);
EXPECT_NOT_POISONED(fds[0].revents);
EXPECT_NOT_POISONED(fds[1].revents);
close(pipefd[0]);
close(pipefd[1]);
}
TEST(MemorySanitizer, ppoll) {
int* pipefd = new int[2];
int res = pipe(pipefd);
ASSERT_EQ(0, res);
char data = 42;
res = write(pipefd[1], &data, 1);
ASSERT_EQ(1, res);
pollfd fds[2];
fds[0].fd = pipefd[0];
fds[0].events = POLLIN;
fds[1].fd = pipefd[1];
fds[1].events = POLLIN;
sigset_t ss;
sigemptyset(&ss);
res = ppoll(fds, 2, NULL, &ss);
ASSERT_EQ(1, res);
EXPECT_NOT_POISONED(fds[0].revents);
EXPECT_NOT_POISONED(fds[1].revents);
close(pipefd[0]);
close(pipefd[1]);
}
TEST(MemorySanitizer, poll_positive) {
int* pipefd = new int[2];
int res = pipe(pipefd);
ASSERT_EQ(0, res);
pollfd fds[2];
fds[0].fd = pipefd[0];
fds[0].events = POLLIN;
// fds[1].fd uninitialized
fds[1].events = POLLIN;
EXPECT_UMR(poll(fds, 2, 0));
close(pipefd[0]);
close(pipefd[1]);
}
TEST(MemorySanitizer, bind_getsockname) {
int sock = socket(AF_UNIX, SOCK_STREAM, 0);
struct sockaddr_in sai;
memset(&sai, 0, sizeof(sai));
sai.sin_family = AF_UNIX;
int res = bind(sock, (struct sockaddr *)&sai, sizeof(sai));
ASSERT_EQ(0, res);
char buf[200];
socklen_t addrlen;
EXPECT_UMR(getsockname(sock, (struct sockaddr *)&buf, &addrlen));
addrlen = sizeof(buf);
res = getsockname(sock, (struct sockaddr *)&buf, &addrlen);
EXPECT_NOT_POISONED(addrlen);
EXPECT_NOT_POISONED(buf[0]);
EXPECT_NOT_POISONED(buf[addrlen - 1]);
EXPECT_POISONED(buf[addrlen]);
close(sock);
}
TEST(MemorySanitizer, accept) {
int listen_socket = socket(AF_INET, SOCK_STREAM, 0);
ASSERT_LT(0, listen_socket);
struct sockaddr_in sai;
memset(&sai, 0, sizeof(sai));
sai.sin_family = AF_INET;
sai.sin_port = 0;
sai.sin_addr.s_addr = htonl(INADDR_LOOPBACK);
int res = bind(listen_socket, (struct sockaddr *)&sai, sizeof(sai));
ASSERT_EQ(0, res);
res = listen(listen_socket, 1);
ASSERT_EQ(0, res);
socklen_t sz = sizeof(sai);
res = getsockname(listen_socket, (struct sockaddr *)&sai, &sz);
ASSERT_EQ(0, res);
ASSERT_EQ(sizeof(sai), sz);
int connect_socket = socket(AF_INET, SOCK_STREAM, 0);
ASSERT_LT(0, connect_socket);
res = fcntl(connect_socket, F_SETFL, O_NONBLOCK);
ASSERT_EQ(0, res);
res = connect(connect_socket, (struct sockaddr *)&sai, sizeof(sai));
ASSERT_EQ(-1, res);
ASSERT_EQ(EINPROGRESS, errno);
__msan_poison(&sai, sizeof(sai));
int new_sock = accept(listen_socket, (struct sockaddr *)&sai, &sz);
ASSERT_LT(0, new_sock);
ASSERT_EQ(sizeof(sai), sz);
EXPECT_NOT_POISONED(sai);
__msan_poison(&sai, sizeof(sai));
res = getpeername(new_sock, (struct sockaddr *)&sai, &sz);
ASSERT_EQ(0, res);
ASSERT_EQ(sizeof(sai), sz);
EXPECT_NOT_POISONED(sai);
close(new_sock);
close(connect_socket);
close(listen_socket);
}
TEST(MemorySanitizer, getaddrinfo) {
struct addrinfo *ai;
struct addrinfo hints;
memset(&hints, 0, sizeof(hints));
hints.ai_family = AF_INET;
int res = getaddrinfo("localhost", NULL, &hints, &ai);
ASSERT_EQ(0, res);
EXPECT_NOT_POISONED(*ai);
ASSERT_EQ(sizeof(sockaddr_in), ai->ai_addrlen);
EXPECT_NOT_POISONED(*(sockaddr_in*)ai->ai_addr);
}
TEST(MemorySanitizer, getnameinfo) {
struct sockaddr_in sai;
memset(&sai, 0, sizeof(sai));
sai.sin_family = AF_INET;
sai.sin_port = 80;
sai.sin_addr.s_addr = htonl(INADDR_LOOPBACK);
char host[500];
char serv[500];
int res = getnameinfo((struct sockaddr *)&sai, sizeof(sai), host,
sizeof(host), serv, sizeof(serv), 0);
ASSERT_EQ(0, res);
EXPECT_NOT_POISONED(host[0]);
EXPECT_POISONED(host[sizeof(host) - 1]);
ASSERT_NE(0, strlen(host));
EXPECT_NOT_POISONED(serv[0]);
EXPECT_POISONED(serv[sizeof(serv) - 1]);
ASSERT_NE(0, strlen(serv));
}
#define EXPECT_HOSTENT_NOT_POISONED(he) \
do { \
EXPECT_NOT_POISONED(*(he)); \
ASSERT_NE((void *) 0, (he)->h_name); \
ASSERT_NE((void *) 0, (he)->h_aliases); \
ASSERT_NE((void *) 0, (he)->h_addr_list); \
EXPECT_NOT_POISONED(strlen((he)->h_name)); \
char **p = (he)->h_aliases; \
while (*p) { \
EXPECT_NOT_POISONED(strlen(*p)); \
++p; \
} \
char **q = (he)->h_addr_list; \
while (*q) { \
EXPECT_NOT_POISONED(*q[0]); \
++q; \
} \
EXPECT_NOT_POISONED(*q); \
} while (0)
TEST(MemorySanitizer, gethostent) {
struct hostent *he = gethostent();
ASSERT_NE((void *)NULL, he);
EXPECT_HOSTENT_NOT_POISONED(he);
}
#ifndef MSAN_TEST_DISABLE_GETHOSTBYNAME
TEST(MemorySanitizer, gethostbyname) {
struct hostent *he = gethostbyname("localhost");
ASSERT_NE((void *)NULL, he);
EXPECT_HOSTENT_NOT_POISONED(he);
}
#endif // MSAN_TEST_DISABLE_GETHOSTBYNAME
TEST(MemorySanitizer, recvmsg) {
int server_socket = socket(AF_INET, SOCK_DGRAM, 0);
ASSERT_LT(0, server_socket);
struct sockaddr_in sai;
memset(&sai, 0, sizeof(sai));
sai.sin_family = AF_INET;
sai.sin_port = 0;
sai.sin_addr.s_addr = htonl(INADDR_LOOPBACK);
int res = bind(server_socket, (struct sockaddr *)&sai, sizeof(sai));
ASSERT_EQ(0, res);
socklen_t sz = sizeof(sai);
res = getsockname(server_socket, (struct sockaddr *)&sai, &sz);
ASSERT_EQ(0, res);
ASSERT_EQ(sizeof(sai), sz);
int client_socket = socket(AF_INET, SOCK_DGRAM, 0);
ASSERT_LT(0, client_socket);
struct sockaddr_in client_sai;
memset(&client_sai, 0, sizeof(client_sai));
client_sai.sin_family = AF_INET;
client_sai.sin_port = 0;
client_sai.sin_addr.s_addr = htonl(INADDR_LOOPBACK);
res = bind(client_socket, (struct sockaddr *)&client_sai, sizeof(client_sai));
ASSERT_EQ(0, res);
sz = sizeof(client_sai);
res = getsockname(client_socket, (struct sockaddr *)&client_sai, &sz);
ASSERT_EQ(0, res);
ASSERT_EQ(sizeof(client_sai), sz);
const char *s = "message text";
struct iovec iov;
iov.iov_base = (void *)s;
iov.iov_len = strlen(s) + 1;
struct msghdr msg;
memset(&msg, 0, sizeof(msg));
msg.msg_name = &sai;
msg.msg_namelen = sizeof(sai);
msg.msg_iov = &iov;
msg.msg_iovlen = 1;
res = sendmsg(client_socket, &msg, 0);
ASSERT_LT(0, res);
char buf[1000];
struct iovec recv_iov;
recv_iov.iov_base = (void *)&buf;
recv_iov.iov_len = sizeof(buf);
struct sockaddr_in recv_sai;
struct msghdr recv_msg;
memset(&recv_msg, 0, sizeof(recv_msg));
recv_msg.msg_name = &recv_sai;
recv_msg.msg_namelen = sizeof(recv_sai);
recv_msg.msg_iov = &recv_iov;
recv_msg.msg_iovlen = 1;
res = recvmsg(server_socket, &recv_msg, 0);
ASSERT_LT(0, res);
ASSERT_EQ(sizeof(recv_sai), recv_msg.msg_namelen);
EXPECT_NOT_POISONED(*(struct sockaddr_in *)recv_msg.msg_name);
EXPECT_STREQ(s, buf);
close(server_socket);
close(client_socket);
}
TEST(MemorySanitizer, gethostbyname2) {
struct hostent *he = gethostbyname2("localhost", AF_INET);
ASSERT_NE((void *)NULL, he);
EXPECT_HOSTENT_NOT_POISONED(he);
}
TEST(MemorySanitizer, gethostbyaddr) {
in_addr_t addr = inet_addr("127.0.0.1");
EXPECT_NOT_POISONED(addr);
struct hostent *he = gethostbyaddr(&addr, sizeof(addr), AF_INET);
ASSERT_NE((void *)NULL, he);
EXPECT_HOSTENT_NOT_POISONED(he);
}
TEST(MemorySanitizer, gethostent_r) {
char buf[2000];
struct hostent he;
struct hostent *result;
int err;
int res = gethostent_r(&he, buf, sizeof(buf), &result, &err);
ASSERT_EQ(0, res);
EXPECT_NOT_POISONED(result);
ASSERT_NE((void *)NULL, result);
EXPECT_HOSTENT_NOT_POISONED(result);
EXPECT_NOT_POISONED(err);
}
TEST(MemorySanitizer, gethostbyname_r) {
char buf[2000];
struct hostent he;
struct hostent *result;
int err;
int res = gethostbyname_r("localhost", &he, buf, sizeof(buf), &result, &err);
ASSERT_EQ(0, res);
EXPECT_NOT_POISONED(result);
ASSERT_NE((void *)NULL, result);
EXPECT_HOSTENT_NOT_POISONED(result);
EXPECT_NOT_POISONED(err);
}
TEST(MemorySanitizer, gethostbyname_r_bad_host_name) {
char buf[2000];
struct hostent he;
struct hostent *result;
int err;
int res = gethostbyname_r("bad-host-name", &he, buf, sizeof(buf), &result, &err);
ASSERT_EQ((struct hostent *)0, result);
EXPECT_NOT_POISONED(err);
}
TEST(MemorySanitizer, gethostbyname_r_erange) {
char buf[5];
struct hostent he;
struct hostent *result;
int err;
int res = gethostbyname_r("localhost", &he, buf, sizeof(buf), &result, &err);
ASSERT_EQ(ERANGE, res);
EXPECT_NOT_POISONED(err);
}
TEST(MemorySanitizer, gethostbyname2_r) {
char buf[2000];
struct hostent he;
struct hostent *result;
int err;
int res = gethostbyname2_r("localhost", AF_INET, &he, buf, sizeof(buf),
&result, &err);
ASSERT_EQ(0, res);
EXPECT_NOT_POISONED(result);
ASSERT_NE((void *)NULL, result);
EXPECT_HOSTENT_NOT_POISONED(result);
EXPECT_NOT_POISONED(err);
}
TEST(MemorySanitizer, gethostbyaddr_r) {
char buf[2000];
struct hostent he;
struct hostent *result;
int err;
in_addr_t addr = inet_addr("127.0.0.1");
EXPECT_NOT_POISONED(addr);
int res = gethostbyaddr_r(&addr, sizeof(addr), AF_INET, &he, buf, sizeof(buf),
&result, &err);
ASSERT_EQ(0, res);
EXPECT_NOT_POISONED(result);
ASSERT_NE((void *)NULL, result);
EXPECT_HOSTENT_NOT_POISONED(result);
EXPECT_NOT_POISONED(err);
}
TEST(MemorySanitizer, getsockopt) {
int sock = socket(AF_UNIX, SOCK_STREAM, 0);
struct linger l[2];
socklen_t sz = sizeof(l[0]);
int res = getsockopt(sock, SOL_SOCKET, SO_LINGER, &l[0], &sz);
ASSERT_EQ(0, res);
ASSERT_EQ(sizeof(l[0]), sz);
EXPECT_NOT_POISONED(l[0]);
EXPECT_POISONED(*(char *)(l + 1));
}
TEST(MemorySanitizer, getcwd) {
char path[PATH_MAX + 1];
char* res = getcwd(path, sizeof(path));
ASSERT_TRUE(res != NULL);
EXPECT_NOT_POISONED(path[0]);
}
TEST(MemorySanitizer, getcwd_gnu) {
char* res = getcwd(NULL, 0);
ASSERT_TRUE(res != NULL);
EXPECT_NOT_POISONED(res[0]);
free(res);
}
TEST(MemorySanitizer, get_current_dir_name) {
char* res = get_current_dir_name();
ASSERT_TRUE(res != NULL);
EXPECT_NOT_POISONED(res[0]);
free(res);
}
TEST(MemorySanitizer, shmctl) {
int id = shmget(IPC_PRIVATE, 4096, 0644 | IPC_CREAT);
ASSERT_GT(id, -1);
struct shmid_ds ds;
int res = shmctl(id, IPC_STAT, &ds);
ASSERT_GT(res, -1);
EXPECT_NOT_POISONED(ds);
struct shminfo si;
res = shmctl(id, IPC_INFO, (struct shmid_ds *)&si);
ASSERT_GT(res, -1);
EXPECT_NOT_POISONED(si);
struct shm_info s_i;
res = shmctl(id, SHM_INFO, (struct shmid_ds *)&s_i);
ASSERT_GT(res, -1);
EXPECT_NOT_POISONED(s_i);
res = shmctl(id, IPC_RMID, 0);
ASSERT_GT(res, -1);
}
TEST(MemorySanitizer, shmat) {
void *p = mmap(NULL, 4096, PROT_READ | PROT_WRITE,
MAP_PRIVATE | MAP_ANONYMOUS, 0, 0);
ASSERT_NE(MAP_FAILED, p);
((char *)p)[10] = *GetPoisoned<U1>();
((char *)p)[4095] = *GetPoisoned<U1>();
int res = munmap(p, 4096);
ASSERT_EQ(0, res);
int id = shmget(IPC_PRIVATE, 4096, 0644 | IPC_CREAT);
ASSERT_GT(id, -1);
void *q = shmat(id, p, 0);
ASSERT_EQ(p, q);
EXPECT_NOT_POISONED(((char *)q)[0]);
EXPECT_NOT_POISONED(((char *)q)[10]);
EXPECT_NOT_POISONED(((char *)q)[4095]);
res = shmdt(q);
ASSERT_EQ(0, res);
res = shmctl(id, IPC_RMID, 0);
ASSERT_GT(res, -1);
}
TEST(MemorySanitizer, random_r) {
int32_t x;
char z[64];
memset(z, 0, sizeof(z));
struct random_data buf;
memset(&buf, 0, sizeof(buf));
int res = initstate_r(0, z, sizeof(z), &buf);
ASSERT_EQ(0, res);
res = random_r(&buf, &x);
ASSERT_EQ(0, res);
EXPECT_NOT_POISONED(x);
}
TEST(MemorySanitizer, confstr) {
char buf[3];
size_t res = confstr(_CS_PATH, buf, sizeof(buf));
ASSERT_GT(res, sizeof(buf));
EXPECT_NOT_POISONED(buf[0]);
EXPECT_NOT_POISONED(buf[sizeof(buf) - 1]);
char buf2[1000];
res = confstr(_CS_PATH, buf2, sizeof(buf2));
ASSERT_LT(res, sizeof(buf2));
EXPECT_NOT_POISONED(buf2[0]);
EXPECT_NOT_POISONED(buf2[res - 1]);
EXPECT_POISONED(buf2[res]);
ASSERT_EQ(res, strlen(buf2) + 1);
}
TEST(MemorySanitizer, readdir) {
DIR *dir = opendir(".");
struct dirent *d = readdir(dir);
ASSERT_TRUE(d != NULL);
EXPECT_NOT_POISONED(d->d_name[0]);
closedir(dir);
}
TEST(MemorySanitizer, readdir_r) {
DIR *dir = opendir(".");
struct dirent d;
struct dirent *pd;
int res = readdir_r(dir, &d, &pd);
ASSERT_EQ(0, res);
EXPECT_NOT_POISONED(pd);
EXPECT_NOT_POISONED(d.d_name[0]);
closedir(dir);
}
TEST(MemorySanitizer, realpath) {
const char* relpath = ".";
char path[PATH_MAX + 1];
char* res = realpath(relpath, path);
ASSERT_TRUE(res != NULL);
EXPECT_NOT_POISONED(path[0]);
}
TEST(MemorySanitizer, realpath_null) {
const char* relpath = ".";
char* res = realpath(relpath, NULL);
printf("%d, %s\n", errno, strerror(errno));
ASSERT_TRUE(res != NULL);
EXPECT_NOT_POISONED(res[0]);
free(res);
}
TEST(MemorySanitizer, canonicalize_file_name) {
const char* relpath = ".";
char* res = canonicalize_file_name(relpath);
ASSERT_TRUE(res != NULL);
EXPECT_NOT_POISONED(res[0]);
free(res);
}
extern char **environ;
TEST(MemorySanitizer, setenv) {
setenv("AAA", "BBB", 1);
for (char **envp = environ; *envp; ++envp) {
EXPECT_NOT_POISONED(*envp);
EXPECT_NOT_POISONED(*envp[0]);
}
}
TEST(MemorySanitizer, putenv) {
char s[] = "AAA=BBB";
putenv(s);
for (char **envp = environ; *envp; ++envp) {
EXPECT_NOT_POISONED(*envp);
EXPECT_NOT_POISONED(*envp[0]);
}
}
TEST(MemorySanitizer, memcpy) {
char* x = new char[2];
char* y = new char[2];
x[0] = 1;
x[1] = *GetPoisoned<char>();
memcpy(y, x, 2);
EXPECT_NOT_POISONED(y[0]);
EXPECT_POISONED(y[1]);
}
void TestUnalignedMemcpy(int left, int right, bool src_is_aligned) {
const int sz = 20;
char *dst = (char *)malloc(sz);
U4 origin = __msan_get_origin(dst);
char *src = (char *)malloc(sz);
memset(src, 0, sz);
memcpy(dst + left, src_is_aligned ? src + left : src, sz - left - right);
for (int i = 0; i < left; ++i)
EXPECT_POISONED_O(dst[i], origin);
for (int i = 0; i < right; ++i)
EXPECT_POISONED_O(dst[sz - i - 1], origin);
EXPECT_NOT_POISONED(dst[left]);
EXPECT_NOT_POISONED(dst[sz - right - 1]);
free(dst);
free(src);
}
TEST(MemorySanitizer, memcpy_unaligned) {
for (int i = 0; i < 10; ++i) {
for (int j = 0; j < 10; ++j) {
TestUnalignedMemcpy(i, j, true);
TestUnalignedMemcpy(i, j, false);
}
}
}
TEST(MemorySanitizer, memmove) {
char* x = new char[2];
char* y = new char[2];
x[0] = 1;
x[1] = *GetPoisoned<char>();
memmove(y, x, 2);
EXPECT_NOT_POISONED(y[0]);
EXPECT_POISONED(y[1]);
}
TEST(MemorySanitizer, memccpy_nomatch) {
char* x = new char[5];
char* y = new char[5];
strcpy(x, "abc");
memccpy(y, x, 'd', 4);
EXPECT_NOT_POISONED(y[0]);
EXPECT_NOT_POISONED(y[1]);
EXPECT_NOT_POISONED(y[2]);
EXPECT_NOT_POISONED(y[3]);
EXPECT_POISONED(y[4]);
delete[] x;
delete[] y;
}
TEST(MemorySanitizer, memccpy_match) {
char* x = new char[5];
char* y = new char[5];
strcpy(x, "abc");
memccpy(y, x, 'b', 4);
EXPECT_NOT_POISONED(y[0]);
EXPECT_NOT_POISONED(y[1]);
EXPECT_POISONED(y[2]);
EXPECT_POISONED(y[3]);
EXPECT_POISONED(y[4]);
delete[] x;
delete[] y;
}
TEST(MemorySanitizer, memccpy_nomatch_positive) {
char* x = new char[5];
char* y = new char[5];
strcpy(x, "abc");
EXPECT_UMR(memccpy(y, x, 'd', 5));
delete[] x;
delete[] y;
}
TEST(MemorySanitizer, memccpy_match_positive) {
char* x = new char[5];
char* y = new char[5];
x[0] = 'a';
x[2] = 'b';
EXPECT_UMR(memccpy(y, x, 'b', 5));
delete[] x;
delete[] y;
}
TEST(MemorySanitizer, bcopy) {
char* x = new char[2];
char* y = new char[2];
x[0] = 1;
x[1] = *GetPoisoned<char>();
bcopy(x, y, 2);
EXPECT_NOT_POISONED(y[0]);
EXPECT_POISONED(y[1]);
}
TEST(MemorySanitizer, strdup) {
char buf[4] = "abc";
__msan_poison(buf + 2, sizeof(*buf));
char *x = strdup(buf);
EXPECT_NOT_POISONED(x[0]);
EXPECT_NOT_POISONED(x[1]);
EXPECT_POISONED(x[2]);
EXPECT_NOT_POISONED(x[3]);
free(x);
}
TEST(MemorySanitizer, strndup) {
char buf[4] = "abc";
__msan_poison(buf + 2, sizeof(*buf));
char *x = strndup(buf, 3);
EXPECT_NOT_POISONED(x[0]);
EXPECT_NOT_POISONED(x[1]);
EXPECT_POISONED(x[2]);
EXPECT_NOT_POISONED(x[3]);
free(x);
}
TEST(MemorySanitizer, strndup_short) {
char buf[4] = "abc";
__msan_poison(buf + 1, sizeof(*buf));
__msan_poison(buf + 2, sizeof(*buf));
char *x = strndup(buf, 2);
EXPECT_NOT_POISONED(x[0]);
EXPECT_POISONED(x[1]);
EXPECT_NOT_POISONED(x[2]);
free(x);
}
template<class T, int size>
void TestOverlapMemmove() {
T *x = new T[size];
ASSERT_GE(size, 3);
x[2] = 0;
memmove(x, x + 1, (size - 1) * sizeof(T));
EXPECT_NOT_POISONED(x[1]);
if (!__msan_has_dynamic_component()) {
// FIXME: under DR we will lose this information
// because accesses in memmove will unpoisin the shadow.
// We need to use our own memove implementation instead of libc's.
EXPECT_POISONED(x[0]);
EXPECT_POISONED(x[2]);
}
delete [] x;
}
TEST(MemorySanitizer, overlap_memmove) {
TestOverlapMemmove<U1, 10>();
TestOverlapMemmove<U1, 1000>();
TestOverlapMemmove<U8, 4>();
TestOverlapMemmove<U8, 1000>();
}
TEST(MemorySanitizer, strcpy) { // NOLINT
char* x = new char[3];
char* y = new char[3];
x[0] = 'a';
x[1] = *GetPoisoned<char>(1, 1);
x[2] = 0;
strcpy(y, x); // NOLINT
EXPECT_NOT_POISONED(y[0]);
EXPECT_POISONED(y[1]);
EXPECT_NOT_POISONED(y[2]);
}
TEST(MemorySanitizer, strncpy) { // NOLINT
char* x = new char[3];
char* y = new char[3];
x[0] = 'a';
x[1] = *GetPoisoned<char>(1, 1);
x[2] = 0;
strncpy(y, x, 2); // NOLINT
EXPECT_NOT_POISONED(y[0]);
EXPECT_POISONED(y[1]);
EXPECT_POISONED(y[2]);
}
TEST(MemorySanitizer, stpcpy) { // NOLINT
char* x = new char[3];
char* y = new char[3];
x[0] = 'a';
x[1] = *GetPoisoned<char>(1, 1);
x[2] = 0;
char *res = stpcpy(y, x); // NOLINT
ASSERT_EQ(res, y + 2);
EXPECT_NOT_POISONED(y[0]);
EXPECT_POISONED(y[1]);
EXPECT_NOT_POISONED(y[2]);
}
TEST(MemorySanitizer, strcat) { // NOLINT
char a[10];
char b[] = "def";
strcpy(a, "abc");
__msan_poison(b + 1, 1);
strcat(a, b);
EXPECT_NOT_POISONED(a[3]);
EXPECT_POISONED(a[4]);
EXPECT_NOT_POISONED(a[5]);
EXPECT_NOT_POISONED(a[6]);
EXPECT_POISONED(a[7]);
}
TEST(MemorySanitizer, strncat) { // NOLINT
char a[10];
char b[] = "def";
strcpy(a, "abc");
__msan_poison(b + 1, 1);
strncat(a, b, 5);
EXPECT_NOT_POISONED(a[3]);
EXPECT_POISONED(a[4]);
EXPECT_NOT_POISONED(a[5]);
EXPECT_NOT_POISONED(a[6]);
EXPECT_POISONED(a[7]);
}
TEST(MemorySanitizer, strncat_overflow) { // NOLINT
char a[10];
char b[] = "def";
strcpy(a, "abc");
__msan_poison(b + 1, 1);
strncat(a, b, 2);
EXPECT_NOT_POISONED(a[3]);
EXPECT_POISONED(a[4]);
EXPECT_NOT_POISONED(a[5]);
EXPECT_POISONED(a[6]);
EXPECT_POISONED(a[7]);
}
#define TEST_STRTO_INT(func_name) \
TEST(MemorySanitizer, func_name) { \
char *e; \
EXPECT_EQ(1, func_name("1", &e, 10)); \
EXPECT_NOT_POISONED((S8)e); \
}
#define TEST_STRTO_FLOAT(func_name) \
TEST(MemorySanitizer, func_name) { \
char *e; \
EXPECT_NE(0, func_name("1.5", &e)); \
EXPECT_NOT_POISONED((S8)e); \
}
#define TEST_STRTO_FLOAT_LOC(func_name) \
TEST(MemorySanitizer, func_name) { \
locale_t loc = newlocale(LC_NUMERIC_MASK, "C", (locale_t)0); \
char *e; \
EXPECT_NE(0, func_name("1.5", &e, loc)); \
EXPECT_NOT_POISONED((S8)e); \
freelocale(loc); \
}
#define TEST_STRTO_INT_LOC(func_name) \
TEST(MemorySanitizer, func_name) { \
locale_t loc = newlocale(LC_NUMERIC_MASK, "C", (locale_t)0); \
char *e; \
ASSERT_EQ(1, func_name("1", &e, 10, loc)); \
EXPECT_NOT_POISONED((S8)e); \
freelocale(loc); \
}
TEST_STRTO_INT(strtol)
TEST_STRTO_INT(strtoll)
TEST_STRTO_INT(strtoul)
TEST_STRTO_INT(strtoull)
TEST_STRTO_FLOAT(strtof)
TEST_STRTO_FLOAT(strtod)
TEST_STRTO_FLOAT(strtold)
TEST_STRTO_FLOAT_LOC(strtof_l)
TEST_STRTO_FLOAT_LOC(strtod_l)
TEST_STRTO_FLOAT_LOC(strtold_l)
TEST_STRTO_INT_LOC(strtol_l)
TEST_STRTO_INT_LOC(strtoll_l)
TEST_STRTO_INT_LOC(strtoul_l)
TEST_STRTO_INT_LOC(strtoull_l)
// https://code.google.com/p/memory-sanitizer/issues/detail?id=36
TEST(MemorySanitizer, DISABLED_strtoimax) {
char *e;
ASSERT_EQ(1, strtoimax("1", &e, 10));
EXPECT_NOT_POISONED((S8) e);
}
// https://code.google.com/p/memory-sanitizer/issues/detail?id=36
TEST(MemorySanitizer, DISABLED_strtoumax) {
char *e;
ASSERT_EQ(1, strtoumax("1", &e, 10));
EXPECT_NOT_POISONED((S8) e);
}
#ifdef __GLIBC__
extern "C" float __strtof_l(const char *nptr, char **endptr, locale_t loc);
TEST_STRTO_FLOAT_LOC(__strtof_l)
extern "C" double __strtod_l(const char *nptr, char **endptr, locale_t loc);
TEST_STRTO_FLOAT_LOC(__strtod_l)
extern "C" long double __strtold_l(const char *nptr, char **endptr,
locale_t loc);
TEST_STRTO_FLOAT_LOC(__strtold_l)
#endif // __GLIBC__
TEST(MemorySanitizer, modf) {
double x, y;
x = modf(2.1, &y);
EXPECT_NOT_POISONED(y);
}
TEST(MemorySanitizer, modff) {
float x, y;
x = modff(2.1, &y);
EXPECT_NOT_POISONED(y);
}
TEST(MemorySanitizer, modfl) {
long double x, y;
x = modfl(2.1, &y);
EXPECT_NOT_POISONED(y);
}
TEST(MemorySanitizer, sincos) {
double s, c;
sincos(0.2, &s, &c);
EXPECT_NOT_POISONED(s);
EXPECT_NOT_POISONED(c);
}
TEST(MemorySanitizer, sincosf) {
float s, c;
sincosf(0.2, &s, &c);
EXPECT_NOT_POISONED(s);
EXPECT_NOT_POISONED(c);
}
TEST(MemorySanitizer, sincosl) {
long double s, c;
sincosl(0.2, &s, &c);
EXPECT_NOT_POISONED(s);
EXPECT_NOT_POISONED(c);
}
TEST(MemorySanitizer, remquo) {
int quo;
double res = remquo(29.0, 3.0, &quo);
ASSERT_NE(0.0, res);
EXPECT_NOT_POISONED(quo);
}
TEST(MemorySanitizer, remquof) {
int quo;
float res = remquof(29.0, 3.0, &quo);
ASSERT_NE(0.0, res);
EXPECT_NOT_POISONED(quo);
}
TEST(MemorySanitizer, remquol) {
int quo;
long double res = remquof(29.0, 3.0, &quo);
ASSERT_NE(0.0, res);
EXPECT_NOT_POISONED(quo);
}
TEST(MemorySanitizer, lgamma) {
double res = lgamma(1.1);
ASSERT_NE(0.0, res);
EXPECT_NOT_POISONED(signgam);
}
TEST(MemorySanitizer, lgammaf) {
float res = lgammaf(1.1);
ASSERT_NE(0.0, res);
EXPECT_NOT_POISONED(signgam);
}
TEST(MemorySanitizer, lgammal) {
long double res = lgammal(1.1);
ASSERT_NE(0.0, res);
EXPECT_NOT_POISONED(signgam);
}
TEST(MemorySanitizer, lgamma_r) {
int sgn;
double res = lgamma_r(1.1, &sgn);
ASSERT_NE(0.0, res);
EXPECT_NOT_POISONED(sgn);
}
TEST(MemorySanitizer, lgammaf_r) {
int sgn;
float res = lgammaf_r(1.1, &sgn);
ASSERT_NE(0.0, res);
EXPECT_NOT_POISONED(sgn);
}
TEST(MemorySanitizer, lgammal_r) {
int sgn;
long double res = lgammal_r(1.1, &sgn);
ASSERT_NE(0.0, res);
EXPECT_NOT_POISONED(sgn);
}
TEST(MemorySanitizer, drand48_r) {
struct drand48_data buf;
srand48_r(0, &buf);
double d;
drand48_r(&buf, &d);
EXPECT_NOT_POISONED(d);
}
TEST(MemorySanitizer, lrand48_r) {
struct drand48_data buf;
srand48_r(0, &buf);
long d;
lrand48_r(&buf, &d);
EXPECT_NOT_POISONED(d);
}
TEST(MemorySanitizer, sprintf) { // NOLINT
char buff[10];
break_optimization(buff);
EXPECT_POISONED(buff[0]);
int res = sprintf(buff, "%d", 1234567); // NOLINT
ASSERT_EQ(res, 7);
ASSERT_EQ(buff[0], '1');
ASSERT_EQ(buff[1], '2');
ASSERT_EQ(buff[2], '3');
ASSERT_EQ(buff[6], '7');
ASSERT_EQ(buff[7], 0);
EXPECT_POISONED(buff[8]);
}
TEST(MemorySanitizer, snprintf) {
char buff[10];
break_optimization(buff);
EXPECT_POISONED(buff[0]);
int res = snprintf(buff, sizeof(buff), "%d", 1234567);
ASSERT_EQ(res, 7);
ASSERT_EQ(buff[0], '1');
ASSERT_EQ(buff[1], '2');
ASSERT_EQ(buff[2], '3');
ASSERT_EQ(buff[6], '7');
ASSERT_EQ(buff[7], 0);
EXPECT_POISONED(buff[8]);
}
TEST(MemorySanitizer, swprintf) {
wchar_t buff[10];
ASSERT_EQ(sizeof(wchar_t), 4);
break_optimization(buff);
EXPECT_POISONED(buff[0]);
int res = swprintf(buff, 9, L"%d", 1234567);
ASSERT_EQ(res, 7);
ASSERT_EQ(buff[0], '1');
ASSERT_EQ(buff[1], '2');
ASSERT_EQ(buff[2], '3');
ASSERT_EQ(buff[6], '7');
ASSERT_EQ(buff[7], 0);
EXPECT_POISONED(buff[8]);
}
TEST(MemorySanitizer, asprintf) { // NOLINT
char *pbuf;
EXPECT_POISONED(pbuf);
int res = asprintf(&pbuf, "%d", 1234567); // NOLINT
ASSERT_EQ(res, 7);
EXPECT_NOT_POISONED(pbuf);
ASSERT_EQ(pbuf[0], '1');
ASSERT_EQ(pbuf[1], '2');
ASSERT_EQ(pbuf[2], '3');
ASSERT_EQ(pbuf[6], '7');
ASSERT_EQ(pbuf[7], 0);
free(pbuf);
}
TEST(MemorySanitizer, mbstowcs) {
const char *x = "abc";
wchar_t buff[10];
int res = mbstowcs(buff, x, 2);
EXPECT_EQ(2, res);
EXPECT_EQ(L'a', buff[0]);
EXPECT_EQ(L'b', buff[1]);
EXPECT_POISONED(buff[2]);
res = mbstowcs(buff, x, 10);
EXPECT_EQ(3, res);
EXPECT_NOT_POISONED(buff[3]);
}
TEST(MemorySanitizer, wcstombs) {
const wchar_t *x = L"abc";
char buff[10];
int res = wcstombs(buff, x, 4);
EXPECT_EQ(res, 3);
EXPECT_EQ(buff[0], 'a');
EXPECT_EQ(buff[1], 'b');
EXPECT_EQ(buff[2], 'c');
}
TEST(MemorySanitizer, wcsrtombs) {
const wchar_t *x = L"abc";
const wchar_t *p = x;
char buff[10];
mbstate_t mbs;
memset(&mbs, 0, sizeof(mbs));
int res = wcsrtombs(buff, &p, 4, &mbs);
EXPECT_EQ(res, 3);
EXPECT_EQ(buff[0], 'a');
EXPECT_EQ(buff[1], 'b');
EXPECT_EQ(buff[2], 'c');
EXPECT_EQ(buff[3], '\0');
EXPECT_POISONED(buff[4]);
}
TEST(MemorySanitizer, wcsnrtombs) {
const wchar_t *x = L"abc";
const wchar_t *p = x;
char buff[10];
mbstate_t mbs;
memset(&mbs, 0, sizeof(mbs));
int res = wcsnrtombs(buff, &p, 2, 4, &mbs);
EXPECT_EQ(res, 2);
EXPECT_EQ(buff[0], 'a');
EXPECT_EQ(buff[1], 'b');
EXPECT_POISONED(buff[2]);
}
TEST(MemorySanitizer, mbtowc) {
const char *x = "abc";
wchar_t wx;
int res = mbtowc(&wx, x, 3);
EXPECT_GT(res, 0);
EXPECT_NOT_POISONED(wx);
}
TEST(MemorySanitizer, mbrtowc) {
const char *x = "abc";
wchar_t wx;
mbstate_t mbs;
memset(&mbs, 0, sizeof(mbs));
int res = mbrtowc(&wx, x, 3, &mbs);
EXPECT_GT(res, 0);
EXPECT_NOT_POISONED(wx);
}
TEST(MemorySanitizer, gettimeofday) {
struct timeval tv;
struct timezone tz;
break_optimization(&tv);
break_optimization(&tz);
ASSERT_EQ(sizeof(tv), 16);
ASSERT_EQ(sizeof(tz), 8);
EXPECT_POISONED(tv.tv_sec);
EXPECT_POISONED(tv.tv_usec);
EXPECT_POISONED(tz.tz_minuteswest);
EXPECT_POISONED(tz.tz_dsttime);
ASSERT_EQ(0, gettimeofday(&tv, &tz));
EXPECT_NOT_POISONED(tv.tv_sec);
EXPECT_NOT_POISONED(tv.tv_usec);
EXPECT_NOT_POISONED(tz.tz_minuteswest);
EXPECT_NOT_POISONED(tz.tz_dsttime);
}
TEST(MemorySanitizer, clock_gettime) {
struct timespec tp;
EXPECT_POISONED(tp.tv_sec);
EXPECT_POISONED(tp.tv_nsec);
ASSERT_EQ(0, clock_gettime(CLOCK_REALTIME, &tp));
EXPECT_NOT_POISONED(tp.tv_sec);
EXPECT_NOT_POISONED(tp.tv_nsec);
}
TEST(MemorySanitizer, clock_getres) {
struct timespec tp;
EXPECT_POISONED(tp.tv_sec);
EXPECT_POISONED(tp.tv_nsec);
ASSERT_EQ(0, clock_getres(CLOCK_REALTIME, 0));
EXPECT_POISONED(tp.tv_sec);
EXPECT_POISONED(tp.tv_nsec);
ASSERT_EQ(0, clock_getres(CLOCK_REALTIME, &tp));
EXPECT_NOT_POISONED(tp.tv_sec);
EXPECT_NOT_POISONED(tp.tv_nsec);
}
TEST(MemorySanitizer, getitimer) {
struct itimerval it1, it2;
int res;
EXPECT_POISONED(it1.it_interval.tv_sec);
EXPECT_POISONED(it1.it_interval.tv_usec);
EXPECT_POISONED(it1.it_value.tv_sec);
EXPECT_POISONED(it1.it_value.tv_usec);
res = getitimer(ITIMER_VIRTUAL, &it1);
ASSERT_EQ(0, res);
EXPECT_NOT_POISONED(it1.it_interval.tv_sec);
EXPECT_NOT_POISONED(it1.it_interval.tv_usec);
EXPECT_NOT_POISONED(it1.it_value.tv_sec);
EXPECT_NOT_POISONED(it1.it_value.tv_usec);
it1.it_interval.tv_sec = it1.it_value.tv_sec = 10000;
it1.it_interval.tv_usec = it1.it_value.tv_usec = 0;
res = setitimer(ITIMER_VIRTUAL, &it1, &it2);
ASSERT_EQ(0, res);
EXPECT_NOT_POISONED(it2.it_interval.tv_sec);
EXPECT_NOT_POISONED(it2.it_interval.tv_usec);
EXPECT_NOT_POISONED(it2.it_value.tv_sec);
EXPECT_NOT_POISONED(it2.it_value.tv_usec);
// Check that old_value can be 0, and disable the timer.
memset(&it1, 0, sizeof(it1));
res = setitimer(ITIMER_VIRTUAL, &it1, 0);
ASSERT_EQ(0, res);
}
TEST(MemorySanitizer, setitimer_null) {
setitimer(ITIMER_VIRTUAL, 0, 0);
// Not testing the return value, since it the behaviour seems to differ
// between libc implementations and POSIX.
// Should never crash, though.
}
TEST(MemorySanitizer, time) {
time_t t;
EXPECT_POISONED(t);
time_t t2 = time(&t);
ASSERT_NE(t2, (time_t)-1);
EXPECT_NOT_POISONED(t);
}
TEST(MemorySanitizer, strptime) {
struct tm time;
char *p = strptime("11/1/2013-05:39", "%m/%d/%Y-%H:%M", &time);
ASSERT_TRUE(p != NULL);
EXPECT_NOT_POISONED(time.tm_sec);
EXPECT_NOT_POISONED(time.tm_hour);
EXPECT_NOT_POISONED(time.tm_year);
}
TEST(MemorySanitizer, localtime) {
time_t t = 123;
struct tm *time = localtime(&t);
ASSERT_TRUE(time != NULL);
EXPECT_NOT_POISONED(time->tm_sec);
EXPECT_NOT_POISONED(time->tm_hour);
EXPECT_NOT_POISONED(time->tm_year);
EXPECT_NOT_POISONED(time->tm_isdst);
EXPECT_NE(0, strlen(time->tm_zone));
}
TEST(MemorySanitizer, localtime_r) {
time_t t = 123;
struct tm time;
struct tm *res = localtime_r(&t, &time);
ASSERT_TRUE(res != NULL);
EXPECT_NOT_POISONED(time.tm_sec);
EXPECT_NOT_POISONED(time.tm_hour);
EXPECT_NOT_POISONED(time.tm_year);
EXPECT_NOT_POISONED(time.tm_isdst);
EXPECT_NE(0, strlen(time.tm_zone));
}
TEST(MemorySanitizer, getmntent) {
FILE *fp = setmntent("/etc/fstab", "r");
struct mntent *mnt = getmntent(fp);
ASSERT_TRUE(mnt != NULL);
ASSERT_NE(0, strlen(mnt->mnt_fsname));
ASSERT_NE(0, strlen(mnt->mnt_dir));
ASSERT_NE(0, strlen(mnt->mnt_type));
ASSERT_NE(0, strlen(mnt->mnt_opts));
EXPECT_NOT_POISONED(mnt->mnt_freq);
EXPECT_NOT_POISONED(mnt->mnt_passno);
fclose(fp);
}
TEST(MemorySanitizer, getmntent_r) {
FILE *fp = setmntent("/etc/fstab", "r");
struct mntent mntbuf;
char buf[1000];
struct mntent *mnt = getmntent_r(fp, &mntbuf, buf, sizeof(buf));
ASSERT_TRUE(mnt != NULL);
ASSERT_NE(0, strlen(mnt->mnt_fsname));
ASSERT_NE(0, strlen(mnt->mnt_dir));
ASSERT_NE(0, strlen(mnt->mnt_type));
ASSERT_NE(0, strlen(mnt->mnt_opts));
EXPECT_NOT_POISONED(mnt->mnt_freq);
EXPECT_NOT_POISONED(mnt->mnt_passno);
fclose(fp);
}
TEST(MemorySanitizer, ether) {
const char *asc = "11:22:33:44:55:66";
struct ether_addr *paddr = ether_aton(asc);
EXPECT_NOT_POISONED(*paddr);
struct ether_addr addr;
paddr = ether_aton_r(asc, &addr);
ASSERT_EQ(paddr, &addr);
EXPECT_NOT_POISONED(addr);
char *s = ether_ntoa(&addr);
ASSERT_NE(0, strlen(s));
char buf[100];
s = ether_ntoa_r(&addr, buf);
ASSERT_EQ(s, buf);
ASSERT_NE(0, strlen(buf));
}
TEST(MemorySanitizer, mmap) {
const int size = 4096;
void *p1, *p2;
p1 = mmap(0, size, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANON, -1, 0);
__msan_poison(p1, size);
munmap(p1, size);
for (int i = 0; i < 1000; i++) {
p2 = mmap(0, size, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANON, -1, 0);
if (p2 == p1)
break;
else
munmap(p2, size);
}
if (p1 == p2) {
EXPECT_NOT_POISONED(*(char*)p2);
munmap(p2, size);
}
}
// FIXME: enable and add ecvt.
// FIXME: check why msandr does nt handle fcvt.
TEST(MemorySanitizer, fcvt) {
int a, b;
break_optimization(&a);
break_optimization(&b);
EXPECT_POISONED(a);
EXPECT_POISONED(b);
char *str = fcvt(12345.6789, 10, &a, &b);
EXPECT_NOT_POISONED(a);
EXPECT_NOT_POISONED(b);
}
TEST(MemorySanitizer, frexp) {
int x;
x = *GetPoisoned<int>();
double r = frexp(1.1, &x);
EXPECT_NOT_POISONED(r);
EXPECT_NOT_POISONED(x);
x = *GetPoisoned<int>();
float rf = frexpf(1.1, &x);
EXPECT_NOT_POISONED(rf);
EXPECT_NOT_POISONED(x);
x = *GetPoisoned<int>();
double rl = frexpl(1.1, &x);
EXPECT_NOT_POISONED(rl);
EXPECT_NOT_POISONED(x);
}
namespace {
static int cnt;
void SigactionHandler(int signo, siginfo_t* si, void* uc) {
ASSERT_EQ(signo, SIGPROF);
ASSERT_TRUE(si != NULL);
EXPECT_NOT_POISONED(si->si_errno);
EXPECT_NOT_POISONED(si->si_pid);
#if __linux__
# if defined(__x86_64__)
EXPECT_NOT_POISONED(((ucontext_t*)uc)->uc_mcontext.gregs[REG_RIP]);
# elif defined(__i386__)
EXPECT_NOT_POISONED(((ucontext_t*)uc)->uc_mcontext.gregs[REG_EIP]);
# endif
#endif
++cnt;
}
TEST(MemorySanitizer, sigaction) {
struct sigaction act = {};
struct sigaction oldact = {};
struct sigaction origact = {};
sigaction(SIGPROF, 0, &origact);
act.sa_flags |= SA_SIGINFO;
act.sa_sigaction = &SigactionHandler;
sigaction(SIGPROF, &act, 0);
kill(getpid(), SIGPROF);
act.sa_flags &= ~SA_SIGINFO;
act.sa_handler = SIG_DFL;
sigaction(SIGPROF, &act, 0);
act.sa_flags &= ~SA_SIGINFO;
act.sa_handler = SIG_IGN;
sigaction(SIGPROF, &act, &oldact);
EXPECT_FALSE(oldact.sa_flags & SA_SIGINFO);
EXPECT_EQ(SIG_DFL, oldact.sa_handler);
kill(getpid(), SIGPROF);
act.sa_flags |= SA_SIGINFO;
act.sa_sigaction = &SigactionHandler;
sigaction(SIGPROF, &act, &oldact);
EXPECT_FALSE(oldact.sa_flags & SA_SIGINFO);
EXPECT_EQ(SIG_IGN, oldact.sa_handler);
kill(getpid(), SIGPROF);
act.sa_flags &= ~SA_SIGINFO;
act.sa_handler = SIG_DFL;
sigaction(SIGPROF, &act, &oldact);
EXPECT_TRUE(oldact.sa_flags & SA_SIGINFO);
EXPECT_EQ(&SigactionHandler, oldact.sa_sigaction);
EXPECT_EQ(2, cnt);
sigaction(SIGPROF, &origact, 0);
}
} // namespace
TEST(MemorySanitizer, sigemptyset) {
sigset_t s;
EXPECT_POISONED(s);
int res = sigemptyset(&s);
ASSERT_EQ(0, res);
EXPECT_NOT_POISONED(s);
}
TEST(MemorySanitizer, sigfillset) {
sigset_t s;
EXPECT_POISONED(s);
int res = sigfillset(&s);
ASSERT_EQ(0, res);
EXPECT_NOT_POISONED(s);
}
TEST(MemorySanitizer, sigpending) {
sigset_t s;
EXPECT_POISONED(s);
int res = sigpending(&s);
ASSERT_EQ(0, res);
EXPECT_NOT_POISONED(s);
}
TEST(MemorySanitizer, sigprocmask) {
sigset_t s;
EXPECT_POISONED(s);
int res = sigprocmask(SIG_BLOCK, 0, &s);
ASSERT_EQ(0, res);
EXPECT_NOT_POISONED(s);
}
struct StructWithDtor {
~StructWithDtor();
};
NOINLINE StructWithDtor::~StructWithDtor() {
break_optimization(0);
}
TEST(MemorySanitizer, Invoke) {
StructWithDtor s; // Will cause the calls to become invokes.
EXPECT_NOT_POISONED(0);
EXPECT_POISONED(*GetPoisoned<int>());
EXPECT_NOT_POISONED(0);
EXPECT_POISONED(*GetPoisoned<int>());
EXPECT_POISONED(ReturnPoisoned<S4>());
}
TEST(MemorySanitizer, ptrtoint) {
// Test that shadow is propagated through pointer-to-integer conversion.
void* p = (void*)0xABCD;
__msan_poison(((char*)&p) + 1, sizeof(p));
EXPECT_NOT_POISONED((((uintptr_t)p) & 0xFF) == 0);
void* q = (void*)0xABCD;
__msan_poison(&q, sizeof(q) - 1);
EXPECT_POISONED((((uintptr_t)q) & 0xFF) == 0);
}
static void vaargsfn2(int guard, ...) {
va_list vl;
va_start(vl, guard);
EXPECT_NOT_POISONED(va_arg(vl, int));
EXPECT_NOT_POISONED(va_arg(vl, int));
EXPECT_NOT_POISONED(va_arg(vl, int));
EXPECT_POISONED(va_arg(vl, double));
va_end(vl);
}
static void vaargsfn(int guard, ...) {
va_list vl;
va_start(vl, guard);
EXPECT_NOT_POISONED(va_arg(vl, int));
EXPECT_POISONED(va_arg(vl, int));
// The following call will overwrite __msan_param_tls.
// Checks after it test that arg shadow was somehow saved across the call.
vaargsfn2(1, 2, 3, 4, *GetPoisoned<double>());
EXPECT_NOT_POISONED(va_arg(vl, int));
EXPECT_POISONED(va_arg(vl, int));
va_end(vl);
}
TEST(MemorySanitizer, VAArgTest) {
int* x = GetPoisoned<int>();
int* y = GetPoisoned<int>(4);
vaargsfn(1, 13, *x, 42, *y);
}
static void vaargsfn_many(int guard, ...) {
va_list vl;
va_start(vl, guard);
EXPECT_NOT_POISONED(va_arg(vl, int));
EXPECT_POISONED(va_arg(vl, int));
EXPECT_NOT_POISONED(va_arg(vl, int));
EXPECT_NOT_POISONED(va_arg(vl, int));
EXPECT_NOT_POISONED(va_arg(vl, int));
EXPECT_NOT_POISONED(va_arg(vl, int));
EXPECT_NOT_POISONED(va_arg(vl, int));
EXPECT_NOT_POISONED(va_arg(vl, int));
EXPECT_NOT_POISONED(va_arg(vl, int));
EXPECT_POISONED(va_arg(vl, int));
va_end(vl);
}
TEST(MemorySanitizer, VAArgManyTest) {
int* x = GetPoisoned<int>();
int* y = GetPoisoned<int>(4);
vaargsfn_many(1, 2, *x, 3, 4, 5, 6, 7, 8, 9, *y);
}
static void vaargsfn_pass2(va_list vl) {
EXPECT_NOT_POISONED(va_arg(vl, int));
EXPECT_NOT_POISONED(va_arg(vl, int));
EXPECT_POISONED(va_arg(vl, int));
}
static void vaargsfn_pass(int guard, ...) {
va_list vl;
va_start(vl, guard);
EXPECT_POISONED(va_arg(vl, int));
vaargsfn_pass2(vl);
va_end(vl);
}
TEST(MemorySanitizer, VAArgPass) {
int* x = GetPoisoned<int>();
int* y = GetPoisoned<int>(4);
vaargsfn_pass(1, *x, 2, 3, *y);
}
static void vaargsfn_copy2(va_list vl) {
EXPECT_NOT_POISONED(va_arg(vl, int));
EXPECT_POISONED(va_arg(vl, int));
}
static void vaargsfn_copy(int guard, ...) {
va_list vl;
va_start(vl, guard);
EXPECT_NOT_POISONED(va_arg(vl, int));
EXPECT_POISONED(va_arg(vl, int));
va_list vl2;
va_copy(vl2, vl);
vaargsfn_copy2(vl2);
EXPECT_NOT_POISONED(va_arg(vl, int));
EXPECT_POISONED(va_arg(vl, int));
va_end(vl);
}
TEST(MemorySanitizer, VAArgCopy) {
int* x = GetPoisoned<int>();
int* y = GetPoisoned<int>(4);
vaargsfn_copy(1, 2, *x, 3, *y);
}
static void vaargsfn_ptr(int guard, ...) {
va_list vl;
va_start(vl, guard);
EXPECT_NOT_POISONED(va_arg(vl, int*));
EXPECT_POISONED(va_arg(vl, int*));
EXPECT_NOT_POISONED(va_arg(vl, int*));
EXPECT_POISONED(va_arg(vl, double*));
va_end(vl);
}
TEST(MemorySanitizer, VAArgPtr) {
int** x = GetPoisoned<int*>();
double** y = GetPoisoned<double*>(8);
int z;
vaargsfn_ptr(1, &z, *x, &z, *y);
}
static void vaargsfn_overflow(int guard, ...) {
va_list vl;
va_start(vl, guard);
EXPECT_NOT_POISONED(va_arg(vl, int));
EXPECT_NOT_POISONED(va_arg(vl, int));
EXPECT_POISONED(va_arg(vl, int));
EXPECT_NOT_POISONED(va_arg(vl, int));
EXPECT_NOT_POISONED(va_arg(vl, int));
EXPECT_NOT_POISONED(va_arg(vl, int));
EXPECT_NOT_POISONED(va_arg(vl, double));
EXPECT_NOT_POISONED(va_arg(vl, double));
EXPECT_NOT_POISONED(va_arg(vl, double));
EXPECT_POISONED(va_arg(vl, double));
EXPECT_NOT_POISONED(va_arg(vl, double));
EXPECT_POISONED(va_arg(vl, int*));
EXPECT_NOT_POISONED(va_arg(vl, double));
EXPECT_NOT_POISONED(va_arg(vl, double));
EXPECT_POISONED(va_arg(vl, int));
EXPECT_POISONED(va_arg(vl, double));
EXPECT_POISONED(va_arg(vl, int*));
EXPECT_NOT_POISONED(va_arg(vl, int));
EXPECT_NOT_POISONED(va_arg(vl, double));
EXPECT_NOT_POISONED(va_arg(vl, int*));
EXPECT_POISONED(va_arg(vl, int));
EXPECT_POISONED(va_arg(vl, double));
EXPECT_POISONED(va_arg(vl, int*));
va_end(vl);
}
TEST(MemorySanitizer, VAArgOverflow) {
int* x = GetPoisoned<int>();
double* y = GetPoisoned<double>(8);
int** p = GetPoisoned<int*>(16);
int z;
vaargsfn_overflow(1,
1, 2, *x, 4, 5, 6,
1.1, 2.2, 3.3, *y, 5.5, *p, 7.7, 8.8,
// the following args will overflow for sure
*x, *y, *p,
7, 9.9, &z,
*x, *y, *p);
}
static void vaargsfn_tlsoverwrite2(int guard, ...) {
va_list vl;
va_start(vl, guard);
for (int i = 0; i < 20; ++i)
EXPECT_NOT_POISONED(va_arg(vl, int));
va_end(vl);
}
static void vaargsfn_tlsoverwrite(int guard, ...) {
// This call will overwrite TLS contents unless it's backed up somewhere.
vaargsfn_tlsoverwrite2(2,
42, 42, 42, 42, 42,
42, 42, 42, 42, 42,
42, 42, 42, 42, 42,
42, 42, 42, 42, 42); // 20x
va_list vl;
va_start(vl, guard);
for (int i = 0; i < 20; ++i)
EXPECT_POISONED(va_arg(vl, int));
va_end(vl);
}
TEST(MemorySanitizer, VAArgTLSOverwrite) {
int* x = GetPoisoned<int>();
vaargsfn_tlsoverwrite(1,
*x, *x, *x, *x, *x,
*x, *x, *x, *x, *x,
*x, *x, *x, *x, *x,
*x, *x, *x, *x, *x); // 20x
}
struct StructByVal {
int a, b, c, d, e, f;
};
NOINLINE void StructByValTestFunc(struct StructByVal s) {
EXPECT_NOT_POISONED(s.a);
EXPECT_POISONED(s.b);
EXPECT_NOT_POISONED(s.c);
EXPECT_POISONED(s.d);
EXPECT_NOT_POISONED(s.e);
EXPECT_POISONED(s.f);
}
NOINLINE void StructByValTestFunc1(struct StructByVal s) {
StructByValTestFunc(s);
}
NOINLINE void StructByValTestFunc2(int z, struct StructByVal s) {
StructByValTestFunc(s);
}
TEST(MemorySanitizer, StructByVal) {
// Large aggregates are passed as "byval" pointer argument in LLVM.
struct StructByVal s;
s.a = 1;
s.b = *GetPoisoned<int>();
s.c = 2;
s.d = *GetPoisoned<int>();
s.e = 3;
s.f = *GetPoisoned<int>();
StructByValTestFunc(s);
StructByValTestFunc1(s);
StructByValTestFunc2(0, s);
}
#if MSAN_HAS_M128
NOINLINE __m128i m128Eq(__m128i *a, __m128i *b) { return _mm_cmpeq_epi16(*a, *b); }
NOINLINE __m128i m128Lt(__m128i *a, __m128i *b) { return _mm_cmplt_epi16(*a, *b); }
TEST(MemorySanitizer, m128) {
__m128i a = _mm_set1_epi16(0x1234);
__m128i b = _mm_set1_epi16(0x7890);
EXPECT_NOT_POISONED(m128Eq(&a, &b));
EXPECT_NOT_POISONED(m128Lt(&a, &b));
}
// FIXME: add more tests for __m128i.
#endif // MSAN_HAS_M128
// We should not complain when copying this poisoned hole.
struct StructWithHole {
U4 a;
// 4-byte hole.
U8 b;
};
NOINLINE StructWithHole ReturnStructWithHole() {
StructWithHole res;
__msan_poison(&res, sizeof(res));
res.a = 1;
res.b = 2;
return res;
}
TEST(MemorySanitizer, StructWithHole) {
StructWithHole a = ReturnStructWithHole();
break_optimization(&a);
}
template <class T>
NOINLINE T ReturnStruct() {
T res;
__msan_poison(&res, sizeof(res));
res.a = 1;
return res;
}
template <class T>
NOINLINE void TestReturnStruct() {
T s1 = ReturnStruct<T>();
EXPECT_NOT_POISONED(s1.a);
EXPECT_POISONED(s1.b);
}
struct SSS1 {
int a, b, c;
};
struct SSS2 {
int b, a, c;
};
struct SSS3 {
int b, c, a;
};
struct SSS4 {
int c, b, a;
};
struct SSS5 {
int a;
float b;
};
struct SSS6 {
int a;
double b;
};
struct SSS7 {
S8 b;
int a;
};
struct SSS8 {
S2 b;
S8 a;
};
TEST(MemorySanitizer, IntStruct3) {
TestReturnStruct<SSS1>();
TestReturnStruct<SSS2>();
TestReturnStruct<SSS3>();
TestReturnStruct<SSS4>();
TestReturnStruct<SSS5>();
TestReturnStruct<SSS6>();
TestReturnStruct<SSS7>();
TestReturnStruct<SSS8>();
}
struct LongStruct {
U1 a1, b1;
U2 a2, b2;
U4 a4, b4;
U8 a8, b8;
};
NOINLINE LongStruct ReturnLongStruct1() {
LongStruct res;
__msan_poison(&res, sizeof(res));
res.a1 = res.a2 = res.a4 = res.a8 = 111;
// leaves b1, .., b8 poisoned.
return res;
}
NOINLINE LongStruct ReturnLongStruct2() {
LongStruct res;
__msan_poison(&res, sizeof(res));
res.b1 = res.b2 = res.b4 = res.b8 = 111;
// leaves a1, .., a8 poisoned.
return res;
}
TEST(MemorySanitizer, LongStruct) {
LongStruct s1 = ReturnLongStruct1();
__msan_print_shadow(&s1, sizeof(s1));
EXPECT_NOT_POISONED(s1.a1);
EXPECT_NOT_POISONED(s1.a2);
EXPECT_NOT_POISONED(s1.a4);
EXPECT_NOT_POISONED(s1.a8);
EXPECT_POISONED(s1.b1);
EXPECT_POISONED(s1.b2);
EXPECT_POISONED(s1.b4);
EXPECT_POISONED(s1.b8);
LongStruct s2 = ReturnLongStruct2();
__msan_print_shadow(&s2, sizeof(s2));
EXPECT_NOT_POISONED(s2.b1);
EXPECT_NOT_POISONED(s2.b2);
EXPECT_NOT_POISONED(s2.b4);
EXPECT_NOT_POISONED(s2.b8);
EXPECT_POISONED(s2.a1);
EXPECT_POISONED(s2.a2);
EXPECT_POISONED(s2.a4);
EXPECT_POISONED(s2.a8);
}
TEST(MemorySanitizer, getrlimit) {
struct rlimit limit;
__msan_poison(&limit, sizeof(limit));
int result = getrlimit(RLIMIT_DATA, &limit);
ASSERT_EQ(result, 0);
EXPECT_NOT_POISONED(limit.rlim_cur);
EXPECT_NOT_POISONED(limit.rlim_max);
}
TEST(MemorySanitizer, getrusage) {
struct rusage usage;
__msan_poison(&usage, sizeof(usage));
int result = getrusage(RUSAGE_SELF, &usage);
ASSERT_EQ(result, 0);
EXPECT_NOT_POISONED(usage.ru_utime.tv_sec);
EXPECT_NOT_POISONED(usage.ru_utime.tv_usec);
EXPECT_NOT_POISONED(usage.ru_stime.tv_sec);
EXPECT_NOT_POISONED(usage.ru_stime.tv_usec);
EXPECT_NOT_POISONED(usage.ru_maxrss);
EXPECT_NOT_POISONED(usage.ru_minflt);
EXPECT_NOT_POISONED(usage.ru_majflt);
EXPECT_NOT_POISONED(usage.ru_inblock);
EXPECT_NOT_POISONED(usage.ru_oublock);
EXPECT_NOT_POISONED(usage.ru_nvcsw);
EXPECT_NOT_POISONED(usage.ru_nivcsw);
}
#ifdef __GLIBC__
extern char *program_invocation_name;
#else // __GLIBC__
# error "TODO: port this"
#endif
static void dladdr_testfn() {}
TEST(MemorySanitizer, dladdr) {
Dl_info info;
__msan_poison(&info, sizeof(info));
int result = dladdr((const void*)dladdr_testfn, &info);
ASSERT_NE(result, 0);
EXPECT_NOT_POISONED((unsigned long)info.dli_fname);
if (info.dli_fname)
EXPECT_NOT_POISONED(strlen(info.dli_fname));
EXPECT_NOT_POISONED((unsigned long)info.dli_fbase);
EXPECT_NOT_POISONED((unsigned long)info.dli_sname);
if (info.dli_sname)
EXPECT_NOT_POISONED(strlen(info.dli_sname));
EXPECT_NOT_POISONED((unsigned long)info.dli_saddr);
}
#ifndef MSAN_TEST_DISABLE_DLOPEN
static int dl_phdr_callback(struct dl_phdr_info *info, size_t size, void *data) {
(*(int *)data)++;
EXPECT_NOT_POISONED(info->dlpi_addr);
EXPECT_NOT_POISONED(strlen(info->dlpi_name));
EXPECT_NOT_POISONED(info->dlpi_phnum);
for (int i = 0; i < info->dlpi_phnum; ++i)
EXPECT_NOT_POISONED(info->dlpi_phdr[i]);
return 0;
}
// Compute the path to our loadable DSO. We assume it's in the same
// directory. Only use string routines that we intercept so far to do this.
static int PathToLoadable(char *buf, size_t sz) {
const char *basename = "libmsan_loadable.x86_64.so";
char *argv0 = program_invocation_name;
char *last_slash = strrchr(argv0, '/');
assert(last_slash);
int res =
snprintf(buf, sz, "%.*s/%s", int(last_slash - argv0), argv0, basename);
return res < sz ? 0 : res;
}
TEST(MemorySanitizer, dl_iterate_phdr) {
char path[4096];
int res = PathToLoadable(path, sizeof(path));
ASSERT_EQ(0, res);
// Having at least one dlopen'ed library in the process makes this more
// entertaining.
void *lib = dlopen(path, RTLD_LAZY);
ASSERT_NE((void*)0, lib);
int count = 0;
int result = dl_iterate_phdr(dl_phdr_callback, &count);
ASSERT_GT(count, 0);
dlclose(lib);
}
TEST(MemorySanitizer, dlopen) {
char path[4096];
int res = PathToLoadable(path, sizeof(path));
ASSERT_EQ(0, res);
// We need to clear shadow for globals when doing dlopen. In order to test
// this, we have to poison the shadow for the DSO before we load it. In
// general this is difficult, but the loader tends to reload things in the
// same place, so we open, close, and then reopen. The global should always
// start out clean after dlopen.
for (int i = 0; i < 2; i++) {
void *lib = dlopen(path, RTLD_LAZY);
if (lib == NULL) {
printf("dlerror: %s\n", dlerror());
ASSERT_TRUE(lib != NULL);
}
void **(*get_dso_global)() = (void **(*)())dlsym(lib, "get_dso_global");
ASSERT_TRUE(get_dso_global != NULL);
void **dso_global = get_dso_global();
EXPECT_NOT_POISONED(*dso_global);
__msan_poison(dso_global, sizeof(*dso_global));
EXPECT_POISONED(*dso_global);
dlclose(lib);
}
}
// Regression test for a crash in dlopen() interceptor.
TEST(MemorySanitizer, dlopenFailed) {
const char *path = "/libmsan_loadable_does_not_exist.x86_64.so";
void *lib = dlopen(path, RTLD_LAZY);
ASSERT_TRUE(lib == NULL);
}
#endif // MSAN_TEST_DISABLE_DLOPEN
TEST(MemorySanitizer, sched_getaffinity) {
cpu_set_t mask;
int res = sched_getaffinity(getpid(), sizeof(mask), &mask);
ASSERT_EQ(0, res);
EXPECT_NOT_POISONED(mask);
}
TEST(MemorySanitizer, scanf) {
const char *input = "42 hello";
int* d = new int;
char* s = new char[7];
int res = sscanf(input, "%d %5s", d, s);
printf("res %d\n", res);
ASSERT_EQ(res, 2);
EXPECT_NOT_POISONED(*d);
EXPECT_NOT_POISONED(s[0]);
EXPECT_NOT_POISONED(s[1]);
EXPECT_NOT_POISONED(s[2]);
EXPECT_NOT_POISONED(s[3]);
EXPECT_NOT_POISONED(s[4]);
EXPECT_NOT_POISONED(s[5]);
EXPECT_POISONED(s[6]);
delete s;
delete d;
}
static void *SimpleThread_threadfn(void* data) {
return new int;
}
TEST(MemorySanitizer, SimpleThread) {
pthread_t t;
void *p;
int res = pthread_create(&t, NULL, SimpleThread_threadfn, NULL);
ASSERT_EQ(0, res);
EXPECT_NOT_POISONED(t);
res = pthread_join(t, &p);
ASSERT_EQ(0, res);
EXPECT_NOT_POISONED(p);
delete (int*)p;
}
static void *SmallStackThread_threadfn(void* data) {
return 0;
}
TEST(MemorySanitizer, SmallStackThread) {
pthread_attr_t attr;
pthread_t t;
void *p;
int res;
res = pthread_attr_init(&attr);
ASSERT_EQ(0, res);
res = pthread_attr_setstacksize(&attr, 64 * 1024);
ASSERT_EQ(0, res);
res = pthread_create(&t, &attr, SmallStackThread_threadfn, NULL);
ASSERT_EQ(0, res);
res = pthread_join(t, &p);
ASSERT_EQ(0, res);
res = pthread_attr_destroy(&attr);
ASSERT_EQ(0, res);
}
TEST(MemorySanitizer, PreAllocatedStackThread) {
pthread_attr_t attr;
pthread_t t;
int res;
res = pthread_attr_init(&attr);
ASSERT_EQ(0, res);
void *stack;
const size_t kStackSize = 64 * 1024;
res = posix_memalign(&stack, 4096, kStackSize);
ASSERT_EQ(0, res);
res = pthread_attr_setstack(&attr, stack, kStackSize);
ASSERT_EQ(0, res);
// A small self-allocated stack can not be extended by the tool.
// In this case pthread_create is expected to fail.
res = pthread_create(&t, &attr, SmallStackThread_threadfn, NULL);
EXPECT_NE(0, res);
res = pthread_attr_destroy(&attr);
ASSERT_EQ(0, res);
}
TEST(MemorySanitizer, pthread_attr_get) {
pthread_attr_t attr;
int res;
res = pthread_attr_init(&attr);
ASSERT_EQ(0, res);
{
int v;
res = pthread_attr_getdetachstate(&attr, &v);
ASSERT_EQ(0, res);
EXPECT_NOT_POISONED(v);
}
{
size_t v;
res = pthread_attr_getguardsize(&attr, &v);
ASSERT_EQ(0, res);
EXPECT_NOT_POISONED(v);
}
{
struct sched_param v;
res = pthread_attr_getschedparam(&attr, &v);
ASSERT_EQ(0, res);
EXPECT_NOT_POISONED(v);
}
{
int v;
res = pthread_attr_getschedpolicy(&attr, &v);
ASSERT_EQ(0, res);
EXPECT_NOT_POISONED(v);
}
{
int v;
res = pthread_attr_getinheritsched(&attr, &v);
ASSERT_EQ(0, res);
EXPECT_NOT_POISONED(v);
}
{
int v;
res = pthread_attr_getscope(&attr, &v);
ASSERT_EQ(0, res);
EXPECT_NOT_POISONED(v);
}
{
size_t v;
res = pthread_attr_getstacksize(&attr, &v);
ASSERT_EQ(0, res);
EXPECT_NOT_POISONED(v);
}
{
void *v;
size_t w;
res = pthread_attr_getstack(&attr, &v, &w);
ASSERT_EQ(0, res);
EXPECT_NOT_POISONED(v);
EXPECT_NOT_POISONED(w);
}
{
cpu_set_t v;
res = pthread_attr_getaffinity_np(&attr, sizeof(v), &v);
ASSERT_EQ(0, res);
EXPECT_NOT_POISONED(v);
}
res = pthread_attr_destroy(&attr);
ASSERT_EQ(0, res);
}
TEST(MemorySanitizer, pthread_getschedparam) {
int policy;
struct sched_param param;
int res = pthread_getschedparam(pthread_self(), &policy, &param);
ASSERT_EQ(0, res);
EXPECT_NOT_POISONED(policy);
EXPECT_NOT_POISONED(param.sched_priority);
}
TEST(MemorySanitizer, pthread_key_create) {
pthread_key_t key;
int res = pthread_key_create(&key, NULL);
ASSERT_EQ(0, res);
EXPECT_NOT_POISONED(key);
res = pthread_key_delete(key);
ASSERT_EQ(0, res);
}
namespace {
struct SignalCondArg {
pthread_cond_t* cond;
pthread_mutex_t* mu;
bool broadcast;
};
void *SignalCond(void *param) {
SignalCondArg *arg = reinterpret_cast<SignalCondArg *>(param);
pthread_mutex_lock(arg->mu);
if (arg->broadcast)
pthread_cond_broadcast(arg->cond);
else
pthread_cond_signal(arg->cond);
pthread_mutex_unlock(arg->mu);
return 0;
}
} // namespace
TEST(MemorySanitizer, pthread_cond_wait) {
pthread_cond_t cond;
pthread_mutex_t mu;
SignalCondArg args = {&cond, &mu, false};
pthread_cond_init(&cond, 0);
pthread_mutex_init(&mu, 0);
pthread_mutex_lock(&mu);
// signal
pthread_t thr;
pthread_create(&thr, 0, SignalCond, &args);
int res = pthread_cond_wait(&cond, &mu);
ASSERT_EQ(0, res);
pthread_join(thr, 0);
// broadcast
args.broadcast = true;
pthread_create(&thr, 0, SignalCond, &args);
res = pthread_cond_wait(&cond, &mu);
ASSERT_EQ(0, res);
pthread_join(thr, 0);
pthread_mutex_unlock(&mu);
pthread_mutex_destroy(&mu);
pthread_cond_destroy(&cond);
}
TEST(MemorySanitizer, tmpnam) {
char s[L_tmpnam];
char *res = tmpnam(s);
ASSERT_EQ(s, res);
EXPECT_NOT_POISONED(strlen(res));
}
TEST(MemorySanitizer, tempnam) {
char *res = tempnam(NULL, "zzz");
EXPECT_NOT_POISONED(strlen(res));
free(res);
}
TEST(MemorySanitizer, posix_memalign) {
void *p;
EXPECT_POISONED(p);
int res = posix_memalign(&p, 4096, 13);
ASSERT_EQ(0, res);
EXPECT_NOT_POISONED(p);
EXPECT_EQ(0U, (uintptr_t)p % 4096);
free(p);
}
TEST(MemorySanitizer, memalign) {
void *p = memalign(4096, 13);
EXPECT_EQ(0U, (uintptr_t)p % kPageSize);
free(p);
}
TEST(MemorySanitizer, valloc) {
void *a = valloc(100);
EXPECT_EQ(0U, (uintptr_t)a % kPageSize);
free(a);
}
TEST(MemorySanitizer, pvalloc) {
void *p = pvalloc(kPageSize + 100);
EXPECT_EQ(0U, (uintptr_t)p % kPageSize);
EXPECT_EQ(2 * kPageSize, __msan_get_allocated_size(p));
free(p);
p = pvalloc(0); // pvalloc(0) should allocate at least one page.
EXPECT_EQ(0U, (uintptr_t)p % kPageSize);
EXPECT_EQ(kPageSize, __msan_get_allocated_size(p));
free(p);
}
TEST(MemorySanitizer, inet_pton) {
const char *s = "1:0:0:0:0:0:0:8";
unsigned char buf[sizeof(struct in6_addr)];
int res = inet_pton(AF_INET6, s, buf);
ASSERT_EQ(1, res);
EXPECT_NOT_POISONED(buf[0]);
EXPECT_NOT_POISONED(buf[sizeof(struct in6_addr) - 1]);
char s_out[INET6_ADDRSTRLEN];
EXPECT_POISONED(s_out[3]);
const char *q = inet_ntop(AF_INET6, buf, s_out, INET6_ADDRSTRLEN);
ASSERT_NE((void*)0, q);
EXPECT_NOT_POISONED(s_out[3]);
}
TEST(MemorySanitizer, inet_aton) {
const char *s = "127.0.0.1";
struct in_addr in[2];
int res = inet_aton(s, in);
ASSERT_NE(0, res);
EXPECT_NOT_POISONED(in[0]);
EXPECT_POISONED(*(char *)(in + 1));
}
TEST(MemorySanitizer, uname) {
struct utsname u;
int res = uname(&u);
ASSERT_EQ(0, res);
EXPECT_NOT_POISONED(strlen(u.sysname));
EXPECT_NOT_POISONED(strlen(u.nodename));
EXPECT_NOT_POISONED(strlen(u.release));
EXPECT_NOT_POISONED(strlen(u.version));
EXPECT_NOT_POISONED(strlen(u.machine));
}
TEST(MemorySanitizer, gethostname) {
char buf[100];
int res = gethostname(buf, 100);
ASSERT_EQ(0, res);
EXPECT_NOT_POISONED(strlen(buf));
}
TEST(MemorySanitizer, sysinfo) {
struct sysinfo info;
int res = sysinfo(&info);
ASSERT_EQ(0, res);
EXPECT_NOT_POISONED(info);
}
TEST(MemorySanitizer, getpwuid) {
struct passwd *p = getpwuid(0); // root
ASSERT_TRUE(p != NULL);
EXPECT_NOT_POISONED(p->pw_name);
ASSERT_TRUE(p->pw_name != NULL);
EXPECT_NOT_POISONED(p->pw_name[0]);
EXPECT_NOT_POISONED(p->pw_uid);
ASSERT_EQ(p->pw_uid, 0);
}
TEST(MemorySanitizer, getpwnam_r) {
struct passwd pwd;
struct passwd *pwdres;
char buf[10000];
int res = getpwnam_r("root", &pwd, buf, sizeof(buf), &pwdres);
ASSERT_EQ(0, res);
EXPECT_NOT_POISONED(pwd.pw_name);
ASSERT_TRUE(pwd.pw_name != NULL);
EXPECT_NOT_POISONED(pwd.pw_name[0]);
EXPECT_NOT_POISONED(pwd.pw_uid);
ASSERT_EQ(pwd.pw_uid, 0);
}
TEST(MemorySanitizer, getpwnam_r_positive) {
struct passwd pwd;
struct passwd *pwdres;
char s[5];
strncpy(s, "abcd", 5);
__msan_poison(s, 5);
char buf[10000];
int res;
EXPECT_UMR(res = getpwnam_r(s, &pwd, buf, sizeof(buf), &pwdres));
}
TEST(MemorySanitizer, getgrnam_r) {
struct group grp;
struct group *grpres;
char buf[10000];
int res = getgrnam_r("root", &grp, buf, sizeof(buf), &grpres);
ASSERT_EQ(0, res);
EXPECT_NOT_POISONED(grp.gr_name);
ASSERT_TRUE(grp.gr_name != NULL);
EXPECT_NOT_POISONED(grp.gr_name[0]);
EXPECT_NOT_POISONED(grp.gr_gid);
}
TEST(MemorySanitizer, getgroups) {
int n = getgroups(0, 0);
gid_t *gids = new gid_t[n];
int res = getgroups(n, gids);
ASSERT_EQ(n, res);
for (int i = 0; i < n; ++i)
EXPECT_NOT_POISONED(gids[i]);
}
TEST(MemorySanitizer, wordexp) {
wordexp_t w;
int res = wordexp("a b c", &w, 0);
ASSERT_EQ(0, res);
ASSERT_EQ(3, w.we_wordc);
ASSERT_STREQ("a", w.we_wordv[0]);
ASSERT_STREQ("b", w.we_wordv[1]);
ASSERT_STREQ("c", w.we_wordv[2]);
}
template<class T>
static bool applySlt(T value, T shadow) {
__msan_partial_poison(&value, &shadow, sizeof(T));
volatile bool zzz = true;
// This "|| zzz" trick somehow makes LLVM emit "icmp slt" instead of
// a shift-and-trunc to get at the highest bit.
volatile bool v = value < 0 || zzz;
return v;
}
TEST(MemorySanitizer, SignedCompareWithZero) {
EXPECT_NOT_POISONED(applySlt<S4>(0xF, 0xF));
EXPECT_NOT_POISONED(applySlt<S4>(0xF, 0xFF));
EXPECT_NOT_POISONED(applySlt<S4>(0xF, 0xFFFFFF));
EXPECT_NOT_POISONED(applySlt<S4>(0xF, 0x7FFFFFF));
EXPECT_UMR(applySlt<S4>(0xF, 0x80FFFFFF));
EXPECT_UMR(applySlt<S4>(0xF, 0xFFFFFFFF));
}
template <class T, class S>
static T poisoned(T Va, S Sa) {
char SIZE_CHECK1[(ssize_t)sizeof(T) - (ssize_t)sizeof(S)];
char SIZE_CHECK2[(ssize_t)sizeof(S) - (ssize_t)sizeof(T)];
T a;
a = Va;
__msan_partial_poison(&a, &Sa, sizeof(T));
return a;
}
TEST(MemorySanitizer, ICmpRelational) {
EXPECT_NOT_POISONED(poisoned(0, 0) < poisoned(0, 0));
EXPECT_NOT_POISONED(poisoned(0U, 0) < poisoned(0U, 0));
EXPECT_NOT_POISONED(poisoned(0LL, 0LLU) < poisoned(0LL, 0LLU));
EXPECT_NOT_POISONED(poisoned(0LLU, 0LLU) < poisoned(0LLU, 0LLU));
EXPECT_POISONED(poisoned(0xFF, 0xFF) < poisoned(0xFF, 0xFF));
EXPECT_POISONED(poisoned(0xFFFFFFFFU, 0xFFFFFFFFU) <
poisoned(0xFFFFFFFFU, 0xFFFFFFFFU));
EXPECT_POISONED(poisoned(-1, 0xFFFFFFFFU) <
poisoned(-1, 0xFFFFFFFFU));
EXPECT_NOT_POISONED(poisoned(0, 0) <= poisoned(0, 0));
EXPECT_NOT_POISONED(poisoned(0U, 0) <= poisoned(0U, 0));
EXPECT_NOT_POISONED(poisoned(0LL, 0LLU) <= poisoned(0LL, 0LLU));
EXPECT_NOT_POISONED(poisoned(0LLU, 0LLU) <= poisoned(0LLU, 0LLU));
EXPECT_POISONED(poisoned(0xFF, 0xFF) <= poisoned(0xFF, 0xFF));
EXPECT_POISONED(poisoned(0xFFFFFFFFU, 0xFFFFFFFFU) <=
poisoned(0xFFFFFFFFU, 0xFFFFFFFFU));
EXPECT_POISONED(poisoned(-1, 0xFFFFFFFFU) <=
poisoned(-1, 0xFFFFFFFFU));
EXPECT_NOT_POISONED(poisoned(0, 0) > poisoned(0, 0));
EXPECT_NOT_POISONED(poisoned(0U, 0) > poisoned(0U, 0));
EXPECT_NOT_POISONED(poisoned(0LL, 0LLU) > poisoned(0LL, 0LLU));
EXPECT_NOT_POISONED(poisoned(0LLU, 0LLU) > poisoned(0LLU, 0LLU));
EXPECT_POISONED(poisoned(0xFF, 0xFF) > poisoned(0xFF, 0xFF));
EXPECT_POISONED(poisoned(0xFFFFFFFFU, 0xFFFFFFFFU) >
poisoned(0xFFFFFFFFU, 0xFFFFFFFFU));
EXPECT_POISONED(poisoned(-1, 0xFFFFFFFFU) >
poisoned(-1, 0xFFFFFFFFU));
EXPECT_NOT_POISONED(poisoned(0, 0) >= poisoned(0, 0));
EXPECT_NOT_POISONED(poisoned(0U, 0) >= poisoned(0U, 0));
EXPECT_NOT_POISONED(poisoned(0LL, 0LLU) >= poisoned(0LL, 0LLU));
EXPECT_NOT_POISONED(poisoned(0LLU, 0LLU) >= poisoned(0LLU, 0LLU));
EXPECT_POISONED(poisoned(0xFF, 0xFF) >= poisoned(0xFF, 0xFF));
EXPECT_POISONED(poisoned(0xFFFFFFFFU, 0xFFFFFFFFU) >=
poisoned(0xFFFFFFFFU, 0xFFFFFFFFU));
EXPECT_POISONED(poisoned(-1, 0xFFFFFFFFU) >=
poisoned(-1, 0xFFFFFFFFU));
EXPECT_POISONED(poisoned(6, 0xF) > poisoned(7, 0));
EXPECT_POISONED(poisoned(0xF, 0xF) > poisoned(7, 0));
EXPECT_NOT_POISONED(poisoned(-1, 0x80000000U) >= poisoned(-1, 0U));
}
#if MSAN_HAS_M128
TEST(MemorySanitizer, ICmpVectorRelational) {
EXPECT_NOT_POISONED(
_mm_cmplt_epi16(poisoned(_mm_set1_epi16(0), _mm_set1_epi16(0)),
poisoned(_mm_set1_epi16(0), _mm_set1_epi16(0))));
EXPECT_NOT_POISONED(
_mm_cmplt_epi16(poisoned(_mm_set1_epi32(0), _mm_set1_epi32(0)),
poisoned(_mm_set1_epi32(0), _mm_set1_epi32(0))));
EXPECT_POISONED(
_mm_cmplt_epi16(poisoned(_mm_set1_epi16(0), _mm_set1_epi16(0xFFFF)),
poisoned(_mm_set1_epi16(0), _mm_set1_epi16(0xFFFF))));
EXPECT_POISONED(_mm_cmpgt_epi16(poisoned(_mm_set1_epi16(6), _mm_set1_epi16(0xF)),
poisoned(_mm_set1_epi16(7), _mm_set1_epi16(0))));
}
#endif
// Volatile bitfield store is implemented as load-mask-store
// Test that we don't warn on the store of (uninitialized) padding.
struct VolatileBitfieldStruct {
volatile unsigned x : 1;
unsigned y : 1;
};
TEST(MemorySanitizer, VolatileBitfield) {
VolatileBitfieldStruct *S = new VolatileBitfieldStruct;
S->x = 1;
EXPECT_NOT_POISONED((unsigned)S->x);
EXPECT_POISONED((unsigned)S->y);
}
TEST(MemorySanitizer, UnalignedLoad) {
char x[32];
U4 origin = __LINE__;
__msan_set_origin(&x, sizeof(x), origin);
memset(x + 8, 0, 16);
EXPECT_POISONED_O(__sanitizer_unaligned_load16(x+6), origin);
EXPECT_POISONED_O(__sanitizer_unaligned_load16(x+7), origin);
EXPECT_NOT_POISONED(__sanitizer_unaligned_load16(x+8));
EXPECT_NOT_POISONED(__sanitizer_unaligned_load16(x+9));
EXPECT_NOT_POISONED(__sanitizer_unaligned_load16(x+22));
EXPECT_POISONED_O(__sanitizer_unaligned_load16(x+23), origin);
EXPECT_POISONED_O(__sanitizer_unaligned_load16(x+24), origin);
EXPECT_POISONED_O(__sanitizer_unaligned_load32(x+4), origin);
EXPECT_POISONED_O(__sanitizer_unaligned_load32(x+7), origin);
EXPECT_NOT_POISONED(__sanitizer_unaligned_load32(x+8));
EXPECT_NOT_POISONED(__sanitizer_unaligned_load32(x+9));
EXPECT_NOT_POISONED(__sanitizer_unaligned_load32(x+20));
EXPECT_POISONED_O(__sanitizer_unaligned_load32(x+21), origin);
EXPECT_POISONED_O(__sanitizer_unaligned_load32(x+24), origin);
EXPECT_POISONED_O(__sanitizer_unaligned_load64(x), origin);
EXPECT_POISONED_O(__sanitizer_unaligned_load64(x+1), origin);
EXPECT_POISONED_O(__sanitizer_unaligned_load64(x+7), origin);
EXPECT_NOT_POISONED(__sanitizer_unaligned_load64(x+8));
EXPECT_NOT_POISONED(__sanitizer_unaligned_load64(x+9));
EXPECT_NOT_POISONED(__sanitizer_unaligned_load64(x+16));
EXPECT_POISONED_O(__sanitizer_unaligned_load64(x+17), origin);
EXPECT_POISONED_O(__sanitizer_unaligned_load64(x+21), origin);
EXPECT_POISONED_O(__sanitizer_unaligned_load64(x+24), origin);
}
TEST(MemorySanitizer, UnalignedStore16) {
char x[5];
U2 y2 = 0;
U4 origin = __LINE__;
__msan_poison(&y2, 1);
__msan_set_origin(&y2, 1, origin);
__sanitizer_unaligned_store16(x + 1, y2);
EXPECT_POISONED_O(x[0], origin);
EXPECT_POISONED_O(x[1], origin);
EXPECT_NOT_POISONED(x[2]);
EXPECT_POISONED_O(x[3], origin);
EXPECT_POISONED_O(x[4], origin);
}
TEST(MemorySanitizer, UnalignedStore32) {
char x[8];
U4 y4 = 0;
U4 origin = __LINE__;
__msan_poison(&y4, 2);
__msan_set_origin(&y4, 2, origin);
__sanitizer_unaligned_store32(x+3, y4);
EXPECT_POISONED_O(x[0], origin);
EXPECT_POISONED_O(x[1], origin);
EXPECT_POISONED_O(x[2], origin);
EXPECT_POISONED_O(x[3], origin);
EXPECT_POISONED_O(x[4], origin);
EXPECT_NOT_POISONED(x[5]);
EXPECT_NOT_POISONED(x[6]);
EXPECT_POISONED_O(x[7], origin);
}
TEST(MemorySanitizer, UnalignedStore64) {
char x[16];
U8 y8 = 0;
U4 origin = __LINE__;
__msan_poison(&y8, 3);
__msan_poison(((char *)&y8) + sizeof(y8) - 2, 1);
__msan_set_origin(&y8, 8, origin);
__sanitizer_unaligned_store64(x+3, y8);
EXPECT_POISONED_O(x[0], origin);
EXPECT_POISONED_O(x[1], origin);
EXPECT_POISONED_O(x[2], origin);
EXPECT_POISONED_O(x[3], origin);
EXPECT_POISONED_O(x[4], origin);
EXPECT_POISONED_O(x[5], origin);
EXPECT_NOT_POISONED(x[6]);
EXPECT_NOT_POISONED(x[7]);
EXPECT_NOT_POISONED(x[8]);
EXPECT_POISONED_O(x[9], origin);
EXPECT_NOT_POISONED(x[10]);
EXPECT_POISONED_O(x[11], origin);
}
TEST(MemorySanitizerDr, StoreInDSOTest) {
if (!__msan_has_dynamic_component()) return;
char* s = new char[10];
dso_memfill(s, 9);
EXPECT_NOT_POISONED(s[5]);
EXPECT_POISONED(s[9]);
}
int return_poisoned_int() {
return ReturnPoisoned<U8>();
}
TEST(MemorySanitizerDr, ReturnFromDSOTest) {
if (!__msan_has_dynamic_component()) return;
EXPECT_NOT_POISONED(dso_callfn(return_poisoned_int));
}
NOINLINE int TrashParamTLS(long long x, long long y, long long z) { //NOLINT
EXPECT_POISONED(x);
EXPECT_POISONED(y);
EXPECT_POISONED(z);
return 0;
}
static int CheckParamTLS(long long x, long long y, long long z) { //NOLINT
EXPECT_NOT_POISONED(x);
EXPECT_NOT_POISONED(y);
EXPECT_NOT_POISONED(z);
return 0;
}
TEST(MemorySanitizerDr, CallFromDSOTest) {
if (!__msan_has_dynamic_component()) return;
S8* x = GetPoisoned<S8>();
S8* y = GetPoisoned<S8>();
S8* z = GetPoisoned<S8>();
EXPECT_NOT_POISONED(TrashParamTLS(*x, *y, *z));
EXPECT_NOT_POISONED(dso_callfn1(CheckParamTLS));
}
static void StackStoreInDSOFn(int* x, int* y) {
EXPECT_NOT_POISONED(*x);
EXPECT_NOT_POISONED(*y);
}
TEST(MemorySanitizerDr, StackStoreInDSOTest) {
if (!__msan_has_dynamic_component()) return;
dso_stack_store(StackStoreInDSOFn, 1);
}
TEST(MemorySanitizerOrigins, SetGet) {
EXPECT_EQ(TrackingOrigins(), __msan_get_track_origins());
if (!TrackingOrigins()) return;
int x;
__msan_set_origin(&x, sizeof(x), 1234);
EXPECT_EQ(1234, __msan_get_origin(&x));
__msan_set_origin(&x, sizeof(x), 5678);
EXPECT_EQ(5678, __msan_get_origin(&x));
__msan_set_origin(&x, sizeof(x), 0);
EXPECT_EQ(0, __msan_get_origin(&x));
}
namespace {
struct S {
U4 dummy;
U2 a;
U2 b;
};
// http://code.google.com/p/memory-sanitizer/issues/detail?id=6
TEST(MemorySanitizerOrigins, DISABLED_InitializedStoreDoesNotChangeOrigin) {
if (!TrackingOrigins()) return;
S s;
U4 origin = rand(); // NOLINT
s.a = *GetPoisonedO<U2>(0, origin);
EXPECT_EQ(origin, __msan_get_origin(&s.a));
EXPECT_EQ(origin, __msan_get_origin(&s.b));
s.b = 42;
EXPECT_EQ(origin, __msan_get_origin(&s.a));
EXPECT_EQ(origin, __msan_get_origin(&s.b));
}
} // namespace
template<class T, class BinaryOp>
INLINE
void BinaryOpOriginTest(BinaryOp op) {
U4 ox = rand(); //NOLINT
U4 oy = rand(); //NOLINT
T *x = GetPoisonedO<T>(0, ox, 0);
T *y = GetPoisonedO<T>(1, oy, 0);
T *z = GetPoisonedO<T>(2, 0, 0);
*z = op(*x, *y);
U4 origin = __msan_get_origin(z);
EXPECT_POISONED_O(*z, origin);
EXPECT_EQ(true, origin == ox || origin == oy);
// y is poisoned, x is not.
*x = 10101;
*y = *GetPoisonedO<T>(1, oy);
break_optimization(x);
__msan_set_origin(z, sizeof(*z), 0);
*z = op(*x, *y);
EXPECT_POISONED_O(*z, oy);
EXPECT_EQ(__msan_get_origin(z), oy);
// x is poisoned, y is not.
*x = *GetPoisonedO<T>(0, ox);
*y = 10101010;
break_optimization(y);
__msan_set_origin(z, sizeof(*z), 0);
*z = op(*x, *y);
EXPECT_POISONED_O(*z, ox);
EXPECT_EQ(__msan_get_origin(z), ox);
}
template<class T> INLINE T XOR(const T &a, const T&b) { return a ^ b; }
template<class T> INLINE T ADD(const T &a, const T&b) { return a + b; }
template<class T> INLINE T SUB(const T &a, const T&b) { return a - b; }
template<class T> INLINE T MUL(const T &a, const T&b) { return a * b; }
template<class T> INLINE T AND(const T &a, const T&b) { return a & b; }
template<class T> INLINE T OR (const T &a, const T&b) { return a | b; }
TEST(MemorySanitizerOrigins, BinaryOp) {
if (!TrackingOrigins()) return;
BinaryOpOriginTest<S8>(XOR<S8>);
BinaryOpOriginTest<U8>(ADD<U8>);
BinaryOpOriginTest<S4>(SUB<S4>);
BinaryOpOriginTest<S4>(MUL<S4>);
BinaryOpOriginTest<U4>(OR<U4>);
BinaryOpOriginTest<U4>(AND<U4>);
BinaryOpOriginTest<double>(ADD<U4>);
BinaryOpOriginTest<float>(ADD<S4>);
BinaryOpOriginTest<double>(ADD<double>);
BinaryOpOriginTest<float>(ADD<double>);
}
TEST(MemorySanitizerOrigins, Unary) {
if (!TrackingOrigins()) return;
EXPECT_POISONED_O(*GetPoisonedO<S8>(0, __LINE__), __LINE__);
EXPECT_POISONED_O(*GetPoisonedO<S8>(0, __LINE__), __LINE__);
EXPECT_POISONED_O(*GetPoisonedO<S8>(0, __LINE__), __LINE__);
EXPECT_POISONED_O(*GetPoisonedO<S8>(0, __LINE__), __LINE__);
EXPECT_POISONED_O(*GetPoisonedO<S4>(0, __LINE__), __LINE__);
EXPECT_POISONED_O(*GetPoisonedO<S4>(0, __LINE__), __LINE__);
EXPECT_POISONED_O(*GetPoisonedO<S4>(0, __LINE__), __LINE__);
EXPECT_POISONED_O(*GetPoisonedO<S4>(0, __LINE__), __LINE__);
EXPECT_POISONED_O(*GetPoisonedO<U4>(0, __LINE__), __LINE__);
EXPECT_POISONED_O(*GetPoisonedO<U4>(0, __LINE__), __LINE__);
EXPECT_POISONED_O(*GetPoisonedO<U4>(0, __LINE__), __LINE__);
EXPECT_POISONED_O(*GetPoisonedO<U4>(0, __LINE__), __LINE__);
EXPECT_POISONED_O(*GetPoisonedO<S4>(0, __LINE__), __LINE__);
EXPECT_POISONED_O(*GetPoisonedO<S4>(0, __LINE__), __LINE__);
EXPECT_POISONED_O(*GetPoisonedO<S4>(0, __LINE__), __LINE__);
EXPECT_POISONED_O(*GetPoisonedO<S4>(0, __LINE__), __LINE__);
EXPECT_POISONED_O((void*)*GetPoisonedO<S8>(0, __LINE__), __LINE__);
EXPECT_POISONED_O((U8)*GetPoisonedO<void*>(0, __LINE__), __LINE__);
}
TEST(MemorySanitizerOrigins, EQ) {
if (!TrackingOrigins()) return;
EXPECT_POISONED_O(*GetPoisonedO<S4>(0, __LINE__) <= 11, __LINE__);
EXPECT_POISONED_O(*GetPoisonedO<S4>(0, __LINE__) == 11, __LINE__);
EXPECT_POISONED_O(*GetPoisonedO<float>(0, __LINE__) == 1.1, __LINE__);
}
TEST(MemorySanitizerOrigins, DIV) {
if (!TrackingOrigins()) return;
EXPECT_POISONED_O(*GetPoisonedO<U8>(0, __LINE__) / 100, __LINE__);
unsigned o = __LINE__;
EXPECT_UMR_O(volatile unsigned y = 100 / *GetPoisonedO<S4>(0, o, 1), o);
}
TEST(MemorySanitizerOrigins, SHIFT) {
if (!TrackingOrigins()) return;
EXPECT_POISONED_O(*GetPoisonedO<U8>(0, __LINE__) >> 10, __LINE__);
EXPECT_POISONED_O(*GetPoisonedO<S8>(0, __LINE__) >> 10, __LINE__);
EXPECT_POISONED_O(*GetPoisonedO<S8>(0, __LINE__) << 10, __LINE__);
EXPECT_POISONED_O(10U << *GetPoisonedO<U8>(0, __LINE__), __LINE__);
EXPECT_POISONED_O(-10 >> *GetPoisonedO<S8>(0, __LINE__), __LINE__);
EXPECT_POISONED_O(-10 << *GetPoisonedO<S8>(0, __LINE__), __LINE__);
}
template<class T, int N>
void MemCpyTest() {
int ox = __LINE__;
T *x = new T[N];
T *y = new T[N];
T *z = new T[N];
T *q = new T[N];
__msan_poison(x, N * sizeof(T));
__msan_set_origin(x, N * sizeof(T), ox);
__msan_set_origin(y, N * sizeof(T), 777777);
__msan_set_origin(z, N * sizeof(T), 888888);
EXPECT_NOT_POISONED(x);
memcpy(y, x, N * sizeof(T));
EXPECT_POISONED_O(y[0], ox);
EXPECT_POISONED_O(y[N/2], ox);
EXPECT_POISONED_O(y[N-1], ox);
EXPECT_NOT_POISONED(x);
void *res = mempcpy(q, x, N * sizeof(T));
ASSERT_EQ(q + N, res);
EXPECT_POISONED_O(q[0], ox);
EXPECT_POISONED_O(q[N/2], ox);
EXPECT_POISONED_O(q[N-1], ox);
EXPECT_NOT_POISONED(x);
memmove(z, x, N * sizeof(T));
EXPECT_POISONED_O(z[0], ox);
EXPECT_POISONED_O(z[N/2], ox);
EXPECT_POISONED_O(z[N-1], ox);
}
TEST(MemorySanitizerOrigins, LargeMemCpy) {
if (!TrackingOrigins()) return;
MemCpyTest<U1, 10000>();
MemCpyTest<U8, 10000>();
}
TEST(MemorySanitizerOrigins, SmallMemCpy) {
if (!TrackingOrigins()) return;
MemCpyTest<U8, 1>();
MemCpyTest<U8, 2>();
MemCpyTest<U8, 3>();
}
TEST(MemorySanitizerOrigins, Select) {
if (!TrackingOrigins()) return;
EXPECT_NOT_POISONED(g_one ? 1 : *GetPoisonedO<S4>(0, __LINE__));
EXPECT_POISONED_O(*GetPoisonedO<S4>(0, __LINE__), __LINE__);
S4 x;
break_optimization(&x);
x = g_1 ? *GetPoisonedO<S4>(0, __LINE__) : 0;
EXPECT_POISONED_O(g_1 ? *GetPoisonedO<S4>(0, __LINE__) : 1, __LINE__);
EXPECT_POISONED_O(g_0 ? 1 : *GetPoisonedO<S4>(0, __LINE__), __LINE__);
}
extern "C"
NOINLINE char AllocaTO() {
int ar[100];
break_optimization(ar);
return ar[10];
// fprintf(stderr, "Descr: %s\n",
// __msan_get_origin_descr_if_stack(__msan_get_origin_tls()));
}
TEST(MemorySanitizerOrigins, Alloca) {
if (!TrackingOrigins()) return;
EXPECT_POISONED_S(AllocaTO(), "ar@AllocaTO");
EXPECT_POISONED_S(AllocaTO(), "ar@AllocaTO");
EXPECT_POISONED_S(AllocaTO(), "ar@AllocaTO");
EXPECT_POISONED_S(AllocaTO(), "ar@AllocaTO");
}
// FIXME: replace with a lit-like test.
TEST(MemorySanitizerOrigins, DISABLED_AllocaDeath) {
if (!TrackingOrigins()) return;
EXPECT_DEATH(AllocaTO(), "ORIGIN: stack allocation: ar@AllocaTO");
}
NOINLINE int RetvalOriginTest(U4 origin) {
int *a = new int;
break_optimization(a);
__msan_set_origin(a, sizeof(*a), origin);
int res = *a;
delete a;
return res;
}
TEST(MemorySanitizerOrigins, Retval) {
if (!TrackingOrigins()) return;
EXPECT_POISONED_O(RetvalOriginTest(__LINE__), __LINE__);
}
NOINLINE void ParamOriginTest(int param, U4 origin) {
EXPECT_POISONED_O(param, origin);
}
TEST(MemorySanitizerOrigins, Param) {
if (!TrackingOrigins()) return;
int *a = new int;
U4 origin = __LINE__;
break_optimization(a);
__msan_set_origin(a, sizeof(*a), origin);
ParamOriginTest(*a, origin);
delete a;
}
TEST(MemorySanitizerOrigins, Invoke) {
if (!TrackingOrigins()) return;
StructWithDtor s; // Will cause the calls to become invokes.
EXPECT_POISONED_O(RetvalOriginTest(__LINE__), __LINE__);
}
TEST(MemorySanitizerOrigins, strlen) {
S8 alignment;
break_optimization(&alignment);
char x[4] = {'a', 'b', 0, 0};
__msan_poison(&x[2], 1);
U4 origin = __LINE__;
__msan_set_origin(x, sizeof(x), origin);
EXPECT_UMR_O(volatile unsigned y = strlen(x), origin);
}
TEST(MemorySanitizerOrigins, wcslen) {
wchar_t w[3] = {'a', 'b', 0};
U4 origin = __LINE__;
__msan_set_origin(w, sizeof(w), origin);
__msan_poison(&w[2], sizeof(wchar_t));
EXPECT_UMR_O(volatile unsigned y = wcslen(w), origin);
}
#if MSAN_HAS_M128
TEST(MemorySanitizerOrigins, StoreIntrinsic) {
__m128 x, y;
U4 origin = __LINE__;
__msan_set_origin(&x, sizeof(x), origin);
__msan_poison(&x, sizeof(x));
__builtin_ia32_storeups((float*)&y, x);
EXPECT_POISONED_O(y, origin);
}
#endif
NOINLINE void RecursiveMalloc(int depth) {
static int count;
count++;
if ((count % (1024 * 1024)) == 0)
printf("RecursiveMalloc: %d\n", count);
int *x1 = new int;
int *x2 = new int;
break_optimization(x1);
break_optimization(x2);
if (depth > 0) {
RecursiveMalloc(depth-1);
RecursiveMalloc(depth-1);
}
delete x1;
delete x2;
}
TEST(MemorySanitizer, Select) {
int x;
int volatile* p = &x;
int z = *p ? 1 : 0;
EXPECT_POISONED(z);
}
TEST(MemorySanitizerStress, DISABLED_MallocStackTrace) {
RecursiveMalloc(22);
}
TEST(MemorySanitizerAllocator, get_estimated_allocated_size) {
size_t sizes[] = {0, 20, 5000, 1<<20};
for (size_t i = 0; i < sizeof(sizes) / sizeof(*sizes); ++i) {
size_t alloc_size = __msan_get_estimated_allocated_size(sizes[i]);
EXPECT_EQ(alloc_size, sizes[i]);
}
}
TEST(MemorySanitizerAllocator, get_allocated_size_and_ownership) {
char *array = reinterpret_cast<char*>(malloc(100));
int *int_ptr = new int;
EXPECT_TRUE(__msan_get_ownership(array));
EXPECT_EQ(100, __msan_get_allocated_size(array));
EXPECT_TRUE(__msan_get_ownership(int_ptr));
EXPECT_EQ(sizeof(*int_ptr), __msan_get_allocated_size(int_ptr));
void *wild_addr = reinterpret_cast<void*>(0x1);
EXPECT_FALSE(__msan_get_ownership(wild_addr));
EXPECT_EQ(0, __msan_get_allocated_size(wild_addr));
EXPECT_FALSE(__msan_get_ownership(array + 50));
EXPECT_EQ(0, __msan_get_allocated_size(array + 50));
// NULL is a valid argument for GetAllocatedSize but is not owned.
EXPECT_FALSE(__msan_get_ownership(NULL));
EXPECT_EQ(0, __msan_get_allocated_size(NULL));
free(array);
EXPECT_FALSE(__msan_get_ownership(array));
EXPECT_EQ(0, __msan_get_allocated_size(array));
delete int_ptr;
}
TEST(MemorySanitizer, MlockTest) {
EXPECT_EQ(0, mlockall(MCL_CURRENT));
EXPECT_EQ(0, mlock((void*)0x12345, 0x5678));
EXPECT_EQ(0, munlockall());
EXPECT_EQ(0, munlock((void*)0x987, 0x654));
}
// Test that LargeAllocator unpoisons memory before releasing it to the OS.
TEST(MemorySanitizer, LargeAllocatorUnpoisonsOnFree) {
void *p = malloc(1024 * 1024);
free(p);
typedef void *(*mmap_fn)(void *, size_t, int, int, int, off_t);
mmap_fn real_mmap = (mmap_fn)dlsym(RTLD_NEXT, "mmap");
// Allocate the page that was released to the OS in free() with the real mmap,
// bypassing the interceptor.
char *q = (char *)real_mmap(p, 4096, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, 0, 0);
ASSERT_NE((char *)0, q);
ASSERT_TRUE(q <= p);
ASSERT_TRUE(q + 4096 > p);
EXPECT_NOT_POISONED(q[0]);
EXPECT_NOT_POISONED(q[10]);
EXPECT_NOT_POISONED(q[100]);
munmap(q, 4096);
}