llvm-project/llvm/lib/Target/X86/X86Subtarget.cpp

433 lines
14 KiB
C++
Raw Normal View History

2010-12-05 07:57:24 +08:00
//===-- X86Subtarget.cpp - X86 Subtarget Information ----------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the X86 specific subclass of TargetSubtargetInfo.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "subtarget"
#include "X86Subtarget.h"
#include "X86InstrInfo.h"
#include "llvm/GlobalValue.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Support/Host.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetOptions.h"
#define GET_SUBTARGETINFO_TARGET_DESC
#define GET_SUBTARGETINFO_CTOR
#include "X86GenSubtargetInfo.inc"
using namespace llvm;
#if defined(_MSC_VER)
#include <intrin.h>
#endif
/// ClassifyBlockAddressReference - Classify a blockaddress reference for the
/// current subtarget according to how we should reference it in a non-pcrel
/// context.
unsigned char X86Subtarget::
ClassifyBlockAddressReference() const {
if (isPICStyleGOT()) // 32-bit ELF targets.
return X86II::MO_GOTOFF;
2012-08-02 02:39:17 +08:00
if (isPICStyleStubPIC()) // Darwin/32 in PIC mode.
return X86II::MO_PIC_BASE_OFFSET;
2012-08-02 02:39:17 +08:00
// Direct static reference to label.
return X86II::MO_NO_FLAG;
}
/// ClassifyGlobalReference - Classify a global variable reference for the
/// current subtarget according to how we should reference it in a non-pcrel
/// context.
unsigned char X86Subtarget::
ClassifyGlobalReference(const GlobalValue *GV, const TargetMachine &TM) const {
// DLLImport only exists on windows, it is implemented as a load from a
// DLLIMPORT stub.
if (GV->hasDLLImportLinkage())
return X86II::MO_DLLIMPORT;
// Determine whether this is a reference to a definition or a declaration.
// Materializable GVs (in JIT lazy compilation mode) do not require an extra
// load from stub.
bool isDecl = GV->hasAvailableExternallyLinkage();
if (GV->isDeclaration() && !GV->isMaterializable())
isDecl = true;
// X86-64 in PIC mode.
if (isPICStyleRIPRel()) {
// Large model never uses stubs.
if (TM.getCodeModel() == CodeModel::Large)
return X86II::MO_NO_FLAG;
2012-08-02 02:39:17 +08:00
2009-07-11 05:01:59 +08:00
if (isTargetDarwin()) {
// If symbol visibility is hidden, the extra load is not needed if
// target is x86-64 or the symbol is definitely defined in the current
// translation unit.
if (GV->hasDefaultVisibility() &&
(isDecl || GV->isWeakForLinker()))
2009-07-11 05:01:59 +08:00
return X86II::MO_GOTPCREL;
} else if (!isTargetWin64()) {
2009-07-11 05:01:59 +08:00
assert(isTargetELF() && "Unknown rip-relative target");
2009-07-11 05:01:59 +08:00
// Extra load is needed for all externally visible.
if (!GV->hasLocalLinkage() && GV->hasDefaultVisibility())
return X86II::MO_GOTPCREL;
}
return X86II::MO_NO_FLAG;
}
2012-08-02 02:39:17 +08:00
if (isPICStyleGOT()) { // 32-bit ELF targets.
// Extra load is needed for all externally visible.
if (GV->hasLocalLinkage() || GV->hasHiddenVisibility())
return X86II::MO_GOTOFF;
return X86II::MO_GOT;
}
2012-08-02 02:39:17 +08:00
if (isPICStyleStubPIC()) { // Darwin/32 in PIC mode.
// Determine whether we have a stub reference and/or whether the reference
// is relative to the PIC base or not.
2012-08-02 02:39:17 +08:00
// If this is a strong reference to a definition, it is definitely not
// through a stub.
if (!isDecl && !GV->isWeakForLinker())
return X86II::MO_PIC_BASE_OFFSET;
// Unless we have a symbol with hidden visibility, we have to go through a
// normal $non_lazy_ptr stub because this symbol might be resolved late.
if (!GV->hasHiddenVisibility()) // Non-hidden $non_lazy_ptr reference.
return X86II::MO_DARWIN_NONLAZY_PIC_BASE;
2012-08-02 02:39:17 +08:00
// If symbol visibility is hidden, we have a stub for common symbol
// references and external declarations.
if (isDecl || GV->hasCommonLinkage()) {
// Hidden $non_lazy_ptr reference.
return X86II::MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE;
}
2012-08-02 02:39:17 +08:00
// Otherwise, no stub.
return X86II::MO_PIC_BASE_OFFSET;
}
2012-08-02 02:39:17 +08:00
if (isPICStyleStubNoDynamic()) { // Darwin/32 in -mdynamic-no-pic mode.
// Determine whether we have a stub reference.
2012-08-02 02:39:17 +08:00
// If this is a strong reference to a definition, it is definitely not
// through a stub.
if (!isDecl && !GV->isWeakForLinker())
return X86II::MO_NO_FLAG;
2012-08-02 02:39:17 +08:00
// Unless we have a symbol with hidden visibility, we have to go through a
// normal $non_lazy_ptr stub because this symbol might be resolved late.
if (!GV->hasHiddenVisibility()) // Non-hidden $non_lazy_ptr reference.
return X86II::MO_DARWIN_NONLAZY;
// Otherwise, no stub.
return X86II::MO_NO_FLAG;
}
2012-08-02 02:39:17 +08:00
// Direct static reference to global.
return X86II::MO_NO_FLAG;
}
/// getBZeroEntry - This function returns the name of a function which has an
/// interface like the non-standard bzero function, if such a function exists on
/// the current subtarget and it is considered prefereable over memset with zero
/// passed as the second argument. Otherwise it returns null.
const char *X86Subtarget::getBZeroEntry() const {
// Darwin 10 has a __bzero entry point for this purpose.
if (getTargetTriple().isMacOSX() &&
!getTargetTriple().isMacOSXVersionLT(10, 6))
return "__bzero";
return 0;
}
/// IsLegalToCallImmediateAddr - Return true if the subtarget allows calls
/// to immediate address.
bool X86Subtarget::IsLegalToCallImmediateAddr(const TargetMachine &TM) const {
if (In64BitMode)
return false;
return isTargetELF() || TM.getRelocationModel() == Reloc::Static;
}
/// getSpecialAddressLatency - For targets where it is beneficial to
/// backschedule instructions that compute addresses, return a value
/// indicating the number of scheduling cycles of backscheduling that
/// should be attempted.
unsigned X86Subtarget::getSpecialAddressLatency() const {
// For x86 out-of-order targets, back-schedule address computations so
// that loads and stores aren't blocked.
// This value was chosen arbitrarily.
return 200;
}
void X86Subtarget::AutoDetectSubtargetFeatures() {
2006-01-28 03:30:30 +08:00
unsigned EAX = 0, EBX = 0, ECX = 0, EDX = 0;
unsigned MaxLevel;
union {
unsigned u[3];
char c[12];
} text;
if (X86_MC::GetCpuIDAndInfo(0, &MaxLevel, text.u+0, text.u+2, text.u+1) ||
MaxLevel < 1)
return;
X86_MC::GetCpuIDAndInfo(0x1, &EAX, &EBX, &ECX, &EDX);
if ((EDX >> 15) & 1) { HasCMov = true; ToggleFeature(X86::FeatureCMOV); }
if ((EDX >> 23) & 1) { X86SSELevel = MMX; ToggleFeature(X86::FeatureMMX); }
if ((EDX >> 25) & 1) { X86SSELevel = SSE1; ToggleFeature(X86::FeatureSSE1); }
if ((EDX >> 26) & 1) { X86SSELevel = SSE2; ToggleFeature(X86::FeatureSSE2); }
if (ECX & 0x1) { X86SSELevel = SSE3; ToggleFeature(X86::FeatureSSE3); }
if ((ECX >> 9) & 1) { X86SSELevel = SSSE3; ToggleFeature(X86::FeatureSSSE3);}
if ((ECX >> 19) & 1) { X86SSELevel = SSE41; ToggleFeature(X86::FeatureSSE41);}
if ((ECX >> 20) & 1) { X86SSELevel = SSE42; ToggleFeature(X86::FeatureSSE42);}
if ((ECX >> 28) & 1) { X86SSELevel = AVX; ToggleFeature(X86::FeatureAVX); }
bool IsIntel = memcmp(text.c, "GenuineIntel", 12) == 0;
bool IsAMD = !IsIntel && memcmp(text.c, "AuthenticAMD", 12) == 0;
if ((ECX >> 1) & 0x1) {
HasPCLMUL = true;
ToggleFeature(X86::FeaturePCLMUL);
}
if ((ECX >> 12) & 0x1) {
HasFMA = true;
ToggleFeature(X86::FeatureFMA);
}
if (IsIntel && ((ECX >> 22) & 0x1)) {
HasMOVBE = true;
ToggleFeature(X86::FeatureMOVBE);
}
if ((ECX >> 23) & 0x1) {
HasPOPCNT = true;
ToggleFeature(X86::FeaturePOPCNT);
}
if ((ECX >> 25) & 0x1) {
HasAES = true;
ToggleFeature(X86::FeatureAES);
}
if ((ECX >> 29) & 0x1) {
HasF16C = true;
ToggleFeature(X86::FeatureF16C);
}
if (IsIntel && ((ECX >> 30) & 0x1)) {
HasRDRAND = true;
ToggleFeature(X86::FeatureRDRAND);
}
if ((ECX >> 13) & 0x1) {
HasCmpxchg16b = true;
ToggleFeature(X86::FeatureCMPXCHG16B);
}
if (IsIntel || IsAMD) {
// Determine if bit test memory instructions are slow.
unsigned Family = 0;
unsigned Model = 0;
X86_MC::DetectFamilyModel(EAX, Family, Model);
if (IsAMD || (Family == 6 && Model >= 13)) {
IsBTMemSlow = true;
ToggleFeature(X86::FeatureSlowBTMem);
}
// If it's Nehalem, unaligned memory access is fast.
// FIXME: Nehalem is family 6. Also include Westmere and later processors?
if (Family == 15 && Model == 26) {
IsUAMemFast = true;
ToggleFeature(X86::FeatureFastUAMem);
}
// Set processor type. Currently only Atom is detected.
if (Family == 6 &&
(Model == 28 || Model == 38 || Model == 39
|| Model == 53 || Model == 54)) {
X86ProcFamily = IntelAtom;
UseLeaForSP = true;
ToggleFeature(X86::FeatureLeaForSP);
}
unsigned MaxExtLevel;
X86_MC::GetCpuIDAndInfo(0x80000000, &MaxExtLevel, &EBX, &ECX, &EDX);
if (MaxExtLevel >= 0x80000001) {
X86_MC::GetCpuIDAndInfo(0x80000001, &EAX, &EBX, &ECX, &EDX);
if ((EDX >> 29) & 0x1) {
HasX86_64 = true;
ToggleFeature(X86::Feature64Bit);
}
if ((ECX >> 5) & 0x1) {
HasLZCNT = true;
ToggleFeature(X86::FeatureLZCNT);
}
if (IsAMD) {
if ((ECX >> 6) & 0x1) {
HasSSE4A = true;
ToggleFeature(X86::FeatureSSE4A);
}
if ((ECX >> 11) & 0x1) {
HasXOP = true;
ToggleFeature(X86::FeatureXOP);
}
if ((ECX >> 16) & 0x1) {
HasFMA4 = true;
ToggleFeature(X86::FeatureFMA4);
}
}
}
}
if (MaxLevel >= 7) {
if (!X86_MC::GetCpuIDAndInfoEx(0x7, 0x0, &EAX, &EBX, &ECX, &EDX)) {
if (IsIntel && (EBX & 0x1)) {
HasFSGSBase = true;
ToggleFeature(X86::FeatureFSGSBase);
}
if ((EBX >> 3) & 0x1) {
HasBMI = true;
ToggleFeature(X86::FeatureBMI);
}
if (IsIntel && ((EBX >> 5) & 0x1)) {
X86SSELevel = AVX2;
ToggleFeature(X86::FeatureAVX2);
}
if (IsIntel && ((EBX >> 8) & 0x1)) {
HasBMI2 = true;
ToggleFeature(X86::FeatureBMI2);
}
}
}
}
X86Subtarget::X86Subtarget(const std::string &TT, const std::string &CPU,
2012-08-02 02:39:17 +08:00
const std::string &FS,
unsigned StackAlignOverride, bool is64Bit)
: X86GenSubtargetInfo(TT, CPU, FS)
, X86ProcFamily(Others)
, PICStyle(PICStyles::None)
, X86SSELevel(NoMMXSSE)
, X863DNowLevel(NoThreeDNow)
, HasCMov(false)
, HasX86_64(false)
2010-12-05 07:57:24 +08:00
, HasPOPCNT(false)
, HasSSE4A(false)
, HasAES(false)
, HasPCLMUL(false)
, HasFMA(false)
, HasFMA4(false)
2011-12-02 23:14:37 +08:00
, HasXOP(false)
, HasMOVBE(false)
, HasRDRAND(false)
, HasF16C(false)
, HasFSGSBase(false)
, HasLZCNT(false)
, HasBMI(false)
, HasBMI2(false)
, IsBTMemSlow(false)
, IsUAMemFast(false)
, HasVectorUAMem(false)
, HasCmpxchg16b(false)
, UseLeaForSP(false)
, PostRAScheduler(false)
, stackAlignment(4)
// FIXME: this is a known good value for Yonah. How about others?
, MaxInlineSizeThreshold(128)
, TargetTriple(TT)
2011-10-18 13:29:23 +08:00
, In64BitMode(is64Bit) {
// Determine default and user specified characteristics
std::string CPUName = CPU;
if (!FS.empty() || !CPU.empty()) {
if (CPUName.empty()) {
#if defined(i386) || defined(__i386__) || defined(__x86__) || defined(_M_IX86)\
|| defined(__x86_64__) || defined(_M_AMD64) || defined (_M_X64)
CPUName = sys::getHostCPUName();
#else
CPUName = "generic";
#endif
}
// Make sure 64-bit features are available in 64-bit mode. (But make sure
// SSE2 can be turned off explicitly.)
std::string FullFS = FS;
if (In64BitMode) {
if (!FullFS.empty())
FullFS = "+64bit,+sse2," + FullFS;
else
FullFS = "+64bit,+sse2";
}
// If feature string is not empty, parse features string.
ParseSubtargetFeatures(CPUName, FullFS);
} else {
if (CPUName.empty()) {
#if defined (__x86_64__) || defined(__i386__)
CPUName = sys::getHostCPUName();
#else
CPUName = "generic";
#endif
}
// Otherwise, use CPUID to auto-detect feature set.
AutoDetectSubtargetFeatures();
// Make sure 64-bit features are available in 64-bit mode.
if (In64BitMode) {
HasX86_64 = true; ToggleFeature(X86::Feature64Bit);
HasCMov = true; ToggleFeature(X86::FeatureCMOV);
if (X86SSELevel < SSE2) {
X86SSELevel = SSE2;
ToggleFeature(X86::FeatureSSE1);
ToggleFeature(X86::FeatureSSE2);
}
}
}
if (X86ProcFamily == IntelAtom)
PostRAScheduler = true;
InstrItins = getInstrItineraryForCPU(CPUName);
// It's important to keep the MCSubtargetInfo feature bits in sync with
// target data structure which is shared with MC code emitter, etc.
if (In64BitMode)
ToggleFeature(X86::Mode64Bit);
DEBUG(dbgs() << "Subtarget features: SSELevel " << X86SSELevel
<< ", 3DNowLevel " << X863DNowLevel
<< ", 64bit " << HasX86_64 << "\n");
assert((!In64BitMode || HasX86_64) &&
"64-bit code requested on a subtarget that doesn't support it!");
// Stack alignment is 16 bytes on Darwin, FreeBSD, Linux and Solaris (both
// 32 and 64 bit) and for all 64-bit targets.
if (StackAlignOverride)
stackAlignment = StackAlignOverride;
else if (isTargetDarwin() || isTargetFreeBSD() || isTargetLinux() ||
isTargetSolaris() || In64BitMode)
stackAlignment = 16;
}
bool X86Subtarget::enablePostRAScheduler(
CodeGenOpt::Level OptLevel,
TargetSubtargetInfo::AntiDepBreakMode& Mode,
RegClassVector& CriticalPathRCs) const {
This patch fixes a problem which arose when using the Post-RA scheduler on X86 Atom. Some of our tests failed because the tail merging part of the BranchFolding pass was creating new basic blocks which did not contain live-in information. When the anti-dependency code in the Post-RA scheduler ran, it would sometimes rename the register containing the function return value because the fact that the return value was live-in to the subsequent block had been lost. To fix this, it is necessary to run the RegisterScavenging code in the BranchFolding pass. This patch makes sure that the register scavenging code is invoked in the X86 subtarget only when post-RA scheduling is being done. Post RA scheduling in the X86 subtarget is only done for Atom. This patch adds a new function to the TargetRegisterClass to control whether or not live-ins should be preserved during branch folding. This is necessary in order for the anti-dependency optimizations done during the PostRASchedulerList pass to work properly when doing Post-RA scheduling for the X86 in general and for the Intel Atom in particular. The patch adds and invokes the new function trackLivenessAfterRegAlloc() instead of using the existing requiresRegisterScavenging(). It changes BranchFolding.cpp to call trackLivenessAfterRegAlloc() instead of requiresRegisterScavenging(). It changes the all the targets that implemented requiresRegisterScavenging() to also implement trackLivenessAfterRegAlloc(). It adds an assertion in the Post RA scheduler to make sure that post RA liveness information is available when it is needed. It changes the X86 break-anti-dependencies test to use –mcpu=atom, in order to avoid running into the added assertion. Finally, this patch restores the use of anti-dependency checking (which was turned off temporarily for the 3.1 release) for Intel Atom in the Post RA scheduler. Patch by Andy Zhang! Thanks to Jakob and Anton for their reviews. llvm-svn: 155395
2012-04-24 05:39:35 +08:00
Mode = TargetSubtargetInfo::ANTIDEP_CRITICAL;
CriticalPathRCs.clear();
return PostRAScheduler && OptLevel >= CodeGenOpt::Default;
}