llvm-project/clang/lib/Sema/SemaExceptionSpec.cpp

1107 lines
41 KiB
C++
Raw Normal View History

//===--- SemaExceptionSpec.cpp - C++ Exception Specifications ---*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file provides Sema routines for C++ exception specification testing.
//
//===----------------------------------------------------------------------===//
#include "clang/Sema/SemaInternal.h"
#include "clang/AST/CXXInheritance.h"
#include "clang/AST/Expr.h"
#include "clang/AST/ExprCXX.h"
#include "clang/AST/TypeLoc.h"
#include "clang/Basic/Diagnostic.h"
#include "clang/Basic/SourceManager.h"
#include "clang/Lex/Preprocessor.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallString.h"
namespace clang {
static const FunctionProtoType *GetUnderlyingFunction(QualType T)
{
if (const PointerType *PtrTy = T->getAs<PointerType>())
T = PtrTy->getPointeeType();
else if (const ReferenceType *RefTy = T->getAs<ReferenceType>())
T = RefTy->getPointeeType();
else if (const MemberPointerType *MPTy = T->getAs<MemberPointerType>())
T = MPTy->getPointeeType();
return T->getAs<FunctionProtoType>();
}
/// CheckSpecifiedExceptionType - Check if the given type is valid in an
/// exception specification. Incomplete types, or pointers to incomplete types
/// other than void are not allowed.
///
/// \param[in,out] T The exception type. This will be decayed to a pointer type
/// when the input is an array or a function type.
bool Sema::CheckSpecifiedExceptionType(QualType &T, const SourceRange &Range) {
// C++11 [except.spec]p2:
// A type cv T, "array of T", or "function returning T" denoted
// in an exception-specification is adjusted to type T, "pointer to T", or
// "pointer to function returning T", respectively.
//
// We also apply this rule in C++98.
if (T->isArrayType())
T = Context.getArrayDecayedType(T);
else if (T->isFunctionType())
T = Context.getPointerType(T);
int Kind = 0;
QualType PointeeT = T;
if (const PointerType *PT = T->getAs<PointerType>()) {
PointeeT = PT->getPointeeType();
Kind = 1;
// cv void* is explicitly permitted, despite being a pointer to an
// incomplete type.
if (PointeeT->isVoidType())
return false;
} else if (const ReferenceType *RT = T->getAs<ReferenceType>()) {
PointeeT = RT->getPointeeType();
Kind = 2;
if (RT->isRValueReferenceType()) {
// C++11 [except.spec]p2:
// A type denoted in an exception-specification shall not denote [...]
// an rvalue reference type.
Diag(Range.getBegin(), diag::err_rref_in_exception_spec)
<< T << Range;
return true;
}
}
// C++11 [except.spec]p2:
// A type denoted in an exception-specification shall not denote an
// incomplete type other than a class currently being defined [...].
// A type denoted in an exception-specification shall not denote a
// pointer or reference to an incomplete type, other than (cv) void* or a
// pointer or reference to a class currently being defined.
if (!(PointeeT->isRecordType() &&
PointeeT->getAs<RecordType>()->isBeingDefined()) &&
RequireCompleteType(Range.getBegin(), PointeeT,
diag::err_incomplete_in_exception_spec, Kind, Range))
return true;
return false;
}
/// CheckDistantExceptionSpec - Check if the given type is a pointer or pointer
/// to member to a function with an exception specification. This means that
/// it is invalid to add another level of indirection.
bool Sema::CheckDistantExceptionSpec(QualType T) {
if (const PointerType *PT = T->getAs<PointerType>())
T = PT->getPointeeType();
else if (const MemberPointerType *PT = T->getAs<MemberPointerType>())
T = PT->getPointeeType();
else
return false;
const FunctionProtoType *FnT = T->getAs<FunctionProtoType>();
if (!FnT)
return false;
return FnT->hasExceptionSpec();
}
const FunctionProtoType *
Sema::ResolveExceptionSpec(SourceLocation Loc, const FunctionProtoType *FPT) {
Final piece of core issue 1330: delay computing the exception specification of a defaulted special member function until the exception specification is needed (using the same criteria used for the delayed instantiation of exception specifications for function temploids). EST_Delayed is now EST_Unevaluated (using 1330's terminology), and, like EST_Uninstantiated, carries a pointer to the FunctionDecl which will be used to resolve the exception specification. This is enabled for all C++ modes: it's a little faster in the case where the exception specification isn't used, allows our C++11-in-C++98 extensions to work, and is still correct for C++98, since in that mode the computation of the exception specification can't fail. The diagnostics here aren't great (in particular, we should include implicit evaluation of exception specifications for defaulted special members in the template instantiation backtraces), but they're not much worse than before. Our approach to the problem of cycles between in-class initializers and the exception specification for a defaulted default constructor is modified a little by this change -- we now reject any odr-use of a defaulted default constructor if that constructor uses an in-class initializer and the use is in an in-class initialzer which is declared lexically earlier. This is a closer approximation to the current draft solution in core issue 1351, but isn't an exact match (but the current draft wording isn't reasonable, so that's to be expected). llvm-svn: 160847
2012-07-27 12:22:15 +08:00
if (!isUnresolvedExceptionSpec(FPT->getExceptionSpecType()))
return FPT;
FunctionDecl *SourceDecl = FPT->getExceptionSpecDecl();
const FunctionProtoType *SourceFPT =
SourceDecl->getType()->castAs<FunctionProtoType>();
Final piece of core issue 1330: delay computing the exception specification of a defaulted special member function until the exception specification is needed (using the same criteria used for the delayed instantiation of exception specifications for function temploids). EST_Delayed is now EST_Unevaluated (using 1330's terminology), and, like EST_Uninstantiated, carries a pointer to the FunctionDecl which will be used to resolve the exception specification. This is enabled for all C++ modes: it's a little faster in the case where the exception specification isn't used, allows our C++11-in-C++98 extensions to work, and is still correct for C++98, since in that mode the computation of the exception specification can't fail. The diagnostics here aren't great (in particular, we should include implicit evaluation of exception specifications for defaulted special members in the template instantiation backtraces), but they're not much worse than before. Our approach to the problem of cycles between in-class initializers and the exception specification for a defaulted default constructor is modified a little by this change -- we now reject any odr-use of a defaulted default constructor if that constructor uses an in-class initializer and the use is in an in-class initialzer which is declared lexically earlier. This is a closer approximation to the current draft solution in core issue 1351, but isn't an exact match (but the current draft wording isn't reasonable, so that's to be expected). llvm-svn: 160847
2012-07-27 12:22:15 +08:00
// If the exception specification has already been resolved, just return it.
if (!isUnresolvedExceptionSpec(SourceFPT->getExceptionSpecType()))
return SourceFPT;
Final piece of core issue 1330: delay computing the exception specification of a defaulted special member function until the exception specification is needed (using the same criteria used for the delayed instantiation of exception specifications for function temploids). EST_Delayed is now EST_Unevaluated (using 1330's terminology), and, like EST_Uninstantiated, carries a pointer to the FunctionDecl which will be used to resolve the exception specification. This is enabled for all C++ modes: it's a little faster in the case where the exception specification isn't used, allows our C++11-in-C++98 extensions to work, and is still correct for C++98, since in that mode the computation of the exception specification can't fail. The diagnostics here aren't great (in particular, we should include implicit evaluation of exception specifications for defaulted special members in the template instantiation backtraces), but they're not much worse than before. Our approach to the problem of cycles between in-class initializers and the exception specification for a defaulted default constructor is modified a little by this change -- we now reject any odr-use of a defaulted default constructor if that constructor uses an in-class initializer and the use is in an in-class initialzer which is declared lexically earlier. This is a closer approximation to the current draft solution in core issue 1351, but isn't an exact match (but the current draft wording isn't reasonable, so that's to be expected). llvm-svn: 160847
2012-07-27 12:22:15 +08:00
// Compute or instantiate the exception specification now.
if (SourceFPT->getExceptionSpecType() == EST_Unevaluated)
Final piece of core issue 1330: delay computing the exception specification of a defaulted special member function until the exception specification is needed (using the same criteria used for the delayed instantiation of exception specifications for function temploids). EST_Delayed is now EST_Unevaluated (using 1330's terminology), and, like EST_Uninstantiated, carries a pointer to the FunctionDecl which will be used to resolve the exception specification. This is enabled for all C++ modes: it's a little faster in the case where the exception specification isn't used, allows our C++11-in-C++98 extensions to work, and is still correct for C++98, since in that mode the computation of the exception specification can't fail. The diagnostics here aren't great (in particular, we should include implicit evaluation of exception specifications for defaulted special members in the template instantiation backtraces), but they're not much worse than before. Our approach to the problem of cycles between in-class initializers and the exception specification for a defaulted default constructor is modified a little by this change -- we now reject any odr-use of a defaulted default constructor if that constructor uses an in-class initializer and the use is in an in-class initialzer which is declared lexically earlier. This is a closer approximation to the current draft solution in core issue 1351, but isn't an exact match (but the current draft wording isn't reasonable, so that's to be expected). llvm-svn: 160847
2012-07-27 12:22:15 +08:00
EvaluateImplicitExceptionSpec(Loc, cast<CXXMethodDecl>(SourceDecl));
else
InstantiateExceptionSpec(Loc, SourceDecl);
return SourceDecl->getType()->castAs<FunctionProtoType>();
}
/// Determine whether a function has an implicitly-generated exception
/// specification.
static bool hasImplicitExceptionSpec(FunctionDecl *Decl) {
if (!isa<CXXDestructorDecl>(Decl) &&
Decl->getDeclName().getCXXOverloadedOperator() != OO_Delete &&
Decl->getDeclName().getCXXOverloadedOperator() != OO_Array_Delete)
return false;
// If the user didn't declare the function, its exception specification must
// be implicit.
if (!Decl->getTypeSourceInfo())
return true;
const FunctionProtoType *Ty =
Decl->getTypeSourceInfo()->getType()->getAs<FunctionProtoType>();
return !Ty->hasExceptionSpec();
}
bool Sema::CheckEquivalentExceptionSpec(FunctionDecl *Old, FunctionDecl *New) {
OverloadedOperatorKind OO = New->getDeclName().getCXXOverloadedOperator();
bool IsOperatorNew = OO == OO_New || OO == OO_Array_New;
bool MissingExceptionSpecification = false;
bool MissingEmptyExceptionSpecification = false;
unsigned DiagID = diag::err_mismatched_exception_spec;
if (getLangOpts().MicrosoftExt)
DiagID = diag::warn_mismatched_exception_spec;
// Check the types as written: they must match before any exception
// specification adjustment is applied.
if (!CheckEquivalentExceptionSpec(
PDiag(DiagID), PDiag(diag::note_previous_declaration),
Old->getType()->getAs<FunctionProtoType>(), Old->getLocation(),
New->getType()->getAs<FunctionProtoType>(), New->getLocation(),
&MissingExceptionSpecification, &MissingEmptyExceptionSpecification,
/*AllowNoexceptAllMatchWithNoSpec=*/true, IsOperatorNew)) {
// C++11 [except.spec]p4 [DR1492]:
// If a declaration of a function has an implicit
// exception-specification, other declarations of the function shall
// not specify an exception-specification.
if (getLangOpts().CPlusPlus11 &&
hasImplicitExceptionSpec(Old) != hasImplicitExceptionSpec(New)) {
Diag(New->getLocation(), diag::ext_implicit_exception_spec_mismatch)
<< hasImplicitExceptionSpec(Old);
if (!Old->getLocation().isInvalid())
Diag(Old->getLocation(), diag::note_previous_declaration);
}
return false;
}
// The failure was something other than an missing exception
// specification; return an error.
if (!MissingExceptionSpecification)
return true;
const FunctionProtoType *NewProto =
New->getType()->castAs<FunctionProtoType>();
// The new function declaration is only missing an empty exception
// specification "throw()". If the throw() specification came from a
// function in a system header that has C linkage, just add an empty
// exception specification to the "new" declaration. This is an
// egregious workaround for glibc, which adds throw() specifications
// to many libc functions as an optimization. Unfortunately, that
// optimization isn't permitted by the C++ standard, so we're forced
// to work around it here.
if (MissingEmptyExceptionSpecification && NewProto &&
(Old->getLocation().isInvalid() ||
Context.getSourceManager().isInSystemHeader(Old->getLocation())) &&
Old->isExternC()) {
FunctionProtoType::ExtProtoInfo EPI = NewProto->getExtProtoInfo();
EPI.ExceptionSpecType = EST_DynamicNone;
QualType NewType = Context.getFunctionType(NewProto->getResultType(),
NewProto->getArgTypes(), EPI);
New->setType(NewType);
return false;
}
const FunctionProtoType *OldProto =
Old->getType()->castAs<FunctionProtoType>();
FunctionProtoType::ExtProtoInfo EPI = NewProto->getExtProtoInfo();
EPI.ExceptionSpecType = OldProto->getExceptionSpecType();
if (EPI.ExceptionSpecType == EST_Dynamic) {
EPI.NumExceptions = OldProto->getNumExceptions();
EPI.Exceptions = OldProto->exception_begin();
} else if (EPI.ExceptionSpecType == EST_ComputedNoexcept) {
// FIXME: We can't just take the expression from the old prototype. It
// likely contains references to the old prototype's parameters.
}
// Update the type of the function with the appropriate exception
// specification.
QualType NewType = Context.getFunctionType(NewProto->getResultType(),
NewProto->getArgTypes(), EPI);
New->setType(NewType);
// Warn about the lack of exception specification.
SmallString<128> ExceptionSpecString;
llvm::raw_svector_ostream OS(ExceptionSpecString);
switch (OldProto->getExceptionSpecType()) {
case EST_DynamicNone:
OS << "throw()";
break;
case EST_Dynamic: {
OS << "throw(";
bool OnFirstException = true;
for (FunctionProtoType::exception_iterator E = OldProto->exception_begin(),
EEnd = OldProto->exception_end();
E != EEnd;
++E) {
if (OnFirstException)
OnFirstException = false;
else
OS << ", ";
OS << E->getAsString(getPrintingPolicy());
}
OS << ")";
break;
}
case EST_BasicNoexcept:
OS << "noexcept";
break;
case EST_ComputedNoexcept:
OS << "noexcept(";
OldProto->getNoexceptExpr()->printPretty(OS, 0, getPrintingPolicy());
OS << ")";
break;
default:
llvm_unreachable("This spec type is compatible with none.");
}
OS.flush();
SourceLocation FixItLoc;
if (TypeSourceInfo *TSInfo = New->getTypeSourceInfo()) {
TypeLoc TL = TSInfo->getTypeLoc().IgnoreParens();
if (FunctionTypeLoc FTLoc = TL.getAs<FunctionTypeLoc>())
FixItLoc = PP.getLocForEndOfToken(FTLoc.getLocalRangeEnd());
}
if (FixItLoc.isInvalid())
Diag(New->getLocation(), diag::warn_missing_exception_specification)
<< New << OS.str();
else {
// FIXME: This will get more complicated with C++0x
// late-specified return types.
Diag(New->getLocation(), diag::warn_missing_exception_specification)
<< New << OS.str()
<< FixItHint::CreateInsertion(FixItLoc, " " + OS.str().str());
}
if (!Old->getLocation().isInvalid())
Diag(Old->getLocation(), diag::note_previous_declaration);
return false;
}
/// CheckEquivalentExceptionSpec - Check if the two types have equivalent
/// exception specifications. Exception specifications are equivalent if
/// they allow exactly the same set of exception types. It does not matter how
/// that is achieved. See C++ [except.spec]p2.
bool Sema::CheckEquivalentExceptionSpec(
const FunctionProtoType *Old, SourceLocation OldLoc,
const FunctionProtoType *New, SourceLocation NewLoc) {
unsigned DiagID = diag::err_mismatched_exception_spec;
if (getLangOpts().MicrosoftExt)
DiagID = diag::warn_mismatched_exception_spec;
return CheckEquivalentExceptionSpec(PDiag(DiagID),
PDiag(diag::note_previous_declaration),
Old, OldLoc, New, NewLoc);
}
/// CheckEquivalentExceptionSpec - Check if the two types have compatible
/// exception specifications. See C++ [except.spec]p3.
///
/// \return \c false if the exception specifications match, \c true if there is
/// a problem. If \c true is returned, either a diagnostic has already been
/// produced or \c *MissingExceptionSpecification is set to \c true.
bool Sema::CheckEquivalentExceptionSpec(const PartialDiagnostic &DiagID,
const PartialDiagnostic & NoteID,
const FunctionProtoType *Old,
SourceLocation OldLoc,
const FunctionProtoType *New,
SourceLocation NewLoc,
bool *MissingExceptionSpecification,
bool*MissingEmptyExceptionSpecification,
bool AllowNoexceptAllMatchWithNoSpec,
bool IsOperatorNew) {
// Just completely ignore this under -fno-exceptions.
if (!getLangOpts().CXXExceptions)
return false;
if (MissingExceptionSpecification)
*MissingExceptionSpecification = false;
if (MissingEmptyExceptionSpecification)
*MissingEmptyExceptionSpecification = false;
Old = ResolveExceptionSpec(NewLoc, Old);
if (!Old)
return false;
New = ResolveExceptionSpec(NewLoc, New);
if (!New)
return false;
// C++0x [except.spec]p3: Two exception-specifications are compatible if:
// - both are non-throwing, regardless of their form,
// - both have the form noexcept(constant-expression) and the constant-
// expressions are equivalent,
// - both are dynamic-exception-specifications that have the same set of
// adjusted types.
//
// C++0x [except.spec]p12: An exception-specifcation is non-throwing if it is
// of the form throw(), noexcept, or noexcept(constant-expression) where the
// constant-expression yields true.
//
// C++0x [except.spec]p4: If any declaration of a function has an exception-
// specifier that is not a noexcept-specification allowing all exceptions,
// all declarations [...] of that function shall have a compatible
// exception-specification.
//
// That last point basically means that noexcept(false) matches no spec.
// It's considered when AllowNoexceptAllMatchWithNoSpec is true.
ExceptionSpecificationType OldEST = Old->getExceptionSpecType();
ExceptionSpecificationType NewEST = New->getExceptionSpecType();
Final piece of core issue 1330: delay computing the exception specification of a defaulted special member function until the exception specification is needed (using the same criteria used for the delayed instantiation of exception specifications for function temploids). EST_Delayed is now EST_Unevaluated (using 1330's terminology), and, like EST_Uninstantiated, carries a pointer to the FunctionDecl which will be used to resolve the exception specification. This is enabled for all C++ modes: it's a little faster in the case where the exception specification isn't used, allows our C++11-in-C++98 extensions to work, and is still correct for C++98, since in that mode the computation of the exception specification can't fail. The diagnostics here aren't great (in particular, we should include implicit evaluation of exception specifications for defaulted special members in the template instantiation backtraces), but they're not much worse than before. Our approach to the problem of cycles between in-class initializers and the exception specification for a defaulted default constructor is modified a little by this change -- we now reject any odr-use of a defaulted default constructor if that constructor uses an in-class initializer and the use is in an in-class initialzer which is declared lexically earlier. This is a closer approximation to the current draft solution in core issue 1351, but isn't an exact match (but the current draft wording isn't reasonable, so that's to be expected). llvm-svn: 160847
2012-07-27 12:22:15 +08:00
assert(!isUnresolvedExceptionSpec(OldEST) &&
!isUnresolvedExceptionSpec(NewEST) &&
"Shouldn't see unknown exception specifications here");
// Shortcut the case where both have no spec.
if (OldEST == EST_None && NewEST == EST_None)
return false;
FunctionProtoType::NoexceptResult OldNR = Old->getNoexceptSpec(Context);
FunctionProtoType::NoexceptResult NewNR = New->getNoexceptSpec(Context);
if (OldNR == FunctionProtoType::NR_BadNoexcept ||
NewNR == FunctionProtoType::NR_BadNoexcept)
return false;
// Dependent noexcept specifiers are compatible with each other, but nothing
// else.
// One noexcept is compatible with another if the argument is the same
if (OldNR == NewNR &&
OldNR != FunctionProtoType::NR_NoNoexcept &&
NewNR != FunctionProtoType::NR_NoNoexcept)
return false;
if (OldNR != NewNR &&
OldNR != FunctionProtoType::NR_NoNoexcept &&
NewNR != FunctionProtoType::NR_NoNoexcept) {
Diag(NewLoc, DiagID);
if (NoteID.getDiagID() != 0)
Diag(OldLoc, NoteID);
return true;
}
// The MS extension throw(...) is compatible with itself.
if (OldEST == EST_MSAny && NewEST == EST_MSAny)
return false;
// It's also compatible with no spec.
if ((OldEST == EST_None && NewEST == EST_MSAny) ||
(OldEST == EST_MSAny && NewEST == EST_None))
return false;
// It's also compatible with noexcept(false).
if (OldEST == EST_MSAny && NewNR == FunctionProtoType::NR_Throw)
return false;
if (NewEST == EST_MSAny && OldNR == FunctionProtoType::NR_Throw)
return false;
// As described above, noexcept(false) matches no spec only for functions.
if (AllowNoexceptAllMatchWithNoSpec) {
if (OldEST == EST_None && NewNR == FunctionProtoType::NR_Throw)
return false;
if (NewEST == EST_None && OldNR == FunctionProtoType::NR_Throw)
return false;
}
// Any non-throwing specifications are compatible.
bool OldNonThrowing = OldNR == FunctionProtoType::NR_Nothrow ||
OldEST == EST_DynamicNone;
bool NewNonThrowing = NewNR == FunctionProtoType::NR_Nothrow ||
NewEST == EST_DynamicNone;
if (OldNonThrowing && NewNonThrowing)
return false;
// As a special compatibility feature, under C++0x we accept no spec and
// throw(std::bad_alloc) as equivalent for operator new and operator new[].
// This is because the implicit declaration changed, but old code would break.
if (getLangOpts().CPlusPlus11 && IsOperatorNew) {
const FunctionProtoType *WithExceptions = 0;
if (OldEST == EST_None && NewEST == EST_Dynamic)
WithExceptions = New;
else if (OldEST == EST_Dynamic && NewEST == EST_None)
WithExceptions = Old;
if (WithExceptions && WithExceptions->getNumExceptions() == 1) {
// One has no spec, the other throw(something). If that something is
// std::bad_alloc, all conditions are met.
QualType Exception = *WithExceptions->exception_begin();
if (CXXRecordDecl *ExRecord = Exception->getAsCXXRecordDecl()) {
IdentifierInfo* Name = ExRecord->getIdentifier();
if (Name && Name->getName() == "bad_alloc") {
// It's called bad_alloc, but is it in std?
DeclContext* DC = ExRecord->getDeclContext();
DC = DC->getEnclosingNamespaceContext();
if (NamespaceDecl* NS = dyn_cast<NamespaceDecl>(DC)) {
IdentifierInfo* NSName = NS->getIdentifier();
DC = DC->getParent();
if (NSName && NSName->getName() == "std" &&
DC->getEnclosingNamespaceContext()->isTranslationUnit()) {
return false;
}
}
}
}
}
}
// At this point, the only remaining valid case is two matching dynamic
// specifications. We return here unless both specifications are dynamic.
if (OldEST != EST_Dynamic || NewEST != EST_Dynamic) {
if (MissingExceptionSpecification && Old->hasExceptionSpec() &&
!New->hasExceptionSpec()) {
// The old type has an exception specification of some sort, but
// the new type does not.
*MissingExceptionSpecification = true;
if (MissingEmptyExceptionSpecification && OldNonThrowing) {
// The old type has a throw() or noexcept(true) exception specification
// and the new type has no exception specification, and the caller asked
// to handle this itself.
*MissingEmptyExceptionSpecification = true;
}
return true;
}
Diag(NewLoc, DiagID);
if (NoteID.getDiagID() != 0)
Diag(OldLoc, NoteID);
return true;
}
assert(OldEST == EST_Dynamic && NewEST == EST_Dynamic &&
"Exception compatibility logic error: non-dynamic spec slipped through.");
bool Success = true;
// Both have a dynamic exception spec. Collect the first set, then compare
// to the second.
llvm::SmallPtrSet<CanQualType, 8> OldTypes, NewTypes;
for (FunctionProtoType::exception_iterator I = Old->exception_begin(),
E = Old->exception_end(); I != E; ++I)
OldTypes.insert(Context.getCanonicalType(*I).getUnqualifiedType());
for (FunctionProtoType::exception_iterator I = New->exception_begin(),
E = New->exception_end(); I != E && Success; ++I) {
CanQualType TypePtr = Context.getCanonicalType(*I).getUnqualifiedType();
if(OldTypes.count(TypePtr))
NewTypes.insert(TypePtr);
else
Success = false;
}
Success = Success && OldTypes.size() == NewTypes.size();
if (Success) {
return false;
}
Diag(NewLoc, DiagID);
if (NoteID.getDiagID() != 0)
Diag(OldLoc, NoteID);
return true;
}
/// CheckExceptionSpecSubset - Check whether the second function type's
/// exception specification is a subset (or equivalent) of the first function
/// type. This is used by override and pointer assignment checks.
bool Sema::CheckExceptionSpecSubset(
const PartialDiagnostic &DiagID, const PartialDiagnostic & NoteID,
const FunctionProtoType *Superset, SourceLocation SuperLoc,
const FunctionProtoType *Subset, SourceLocation SubLoc) {
// Just auto-succeed under -fno-exceptions.
if (!getLangOpts().CXXExceptions)
return false;
// FIXME: As usual, we could be more specific in our error messages, but
// that better waits until we've got types with source locations.
if (!SubLoc.isValid())
SubLoc = SuperLoc;
// Resolve the exception specifications, if needed.
Superset = ResolveExceptionSpec(SuperLoc, Superset);
if (!Superset)
return false;
Subset = ResolveExceptionSpec(SubLoc, Subset);
if (!Subset)
return false;
ExceptionSpecificationType SuperEST = Superset->getExceptionSpecType();
// If superset contains everything, we're done.
if (SuperEST == EST_None || SuperEST == EST_MSAny)
return CheckParamExceptionSpec(NoteID, Superset, SuperLoc, Subset, SubLoc);
// If there are dependent noexcept specs, assume everything is fine. Unlike
// with the equivalency check, this is safe in this case, because we don't
// want to merge declarations. Checks after instantiation will catch any
// omissions we make here.
// We also shortcut checking if a noexcept expression was bad.
FunctionProtoType::NoexceptResult SuperNR =Superset->getNoexceptSpec(Context);
if (SuperNR == FunctionProtoType::NR_BadNoexcept ||
SuperNR == FunctionProtoType::NR_Dependent)
return false;
// Another case of the superset containing everything.
if (SuperNR == FunctionProtoType::NR_Throw)
return CheckParamExceptionSpec(NoteID, Superset, SuperLoc, Subset, SubLoc);
ExceptionSpecificationType SubEST = Subset->getExceptionSpecType();
Final piece of core issue 1330: delay computing the exception specification of a defaulted special member function until the exception specification is needed (using the same criteria used for the delayed instantiation of exception specifications for function temploids). EST_Delayed is now EST_Unevaluated (using 1330's terminology), and, like EST_Uninstantiated, carries a pointer to the FunctionDecl which will be used to resolve the exception specification. This is enabled for all C++ modes: it's a little faster in the case where the exception specification isn't used, allows our C++11-in-C++98 extensions to work, and is still correct for C++98, since in that mode the computation of the exception specification can't fail. The diagnostics here aren't great (in particular, we should include implicit evaluation of exception specifications for defaulted special members in the template instantiation backtraces), but they're not much worse than before. Our approach to the problem of cycles between in-class initializers and the exception specification for a defaulted default constructor is modified a little by this change -- we now reject any odr-use of a defaulted default constructor if that constructor uses an in-class initializer and the use is in an in-class initialzer which is declared lexically earlier. This is a closer approximation to the current draft solution in core issue 1351, but isn't an exact match (but the current draft wording isn't reasonable, so that's to be expected). llvm-svn: 160847
2012-07-27 12:22:15 +08:00
assert(!isUnresolvedExceptionSpec(SuperEST) &&
!isUnresolvedExceptionSpec(SubEST) &&
"Shouldn't see unknown exception specifications here");
// It does not. If the subset contains everything, we've failed.
if (SubEST == EST_None || SubEST == EST_MSAny) {
Diag(SubLoc, DiagID);
if (NoteID.getDiagID() != 0)
Diag(SuperLoc, NoteID);
return true;
}
FunctionProtoType::NoexceptResult SubNR = Subset->getNoexceptSpec(Context);
if (SubNR == FunctionProtoType::NR_BadNoexcept ||
SubNR == FunctionProtoType::NR_Dependent)
return false;
// Another case of the subset containing everything.
if (SubNR == FunctionProtoType::NR_Throw) {
Diag(SubLoc, DiagID);
if (NoteID.getDiagID() != 0)
Diag(SuperLoc, NoteID);
return true;
}
// If the subset contains nothing, we're done.
if (SubEST == EST_DynamicNone || SubNR == FunctionProtoType::NR_Nothrow)
return CheckParamExceptionSpec(NoteID, Superset, SuperLoc, Subset, SubLoc);
// Otherwise, if the superset contains nothing, we've failed.
if (SuperEST == EST_DynamicNone || SuperNR == FunctionProtoType::NR_Nothrow) {
Diag(SubLoc, DiagID);
if (NoteID.getDiagID() != 0)
Diag(SuperLoc, NoteID);
return true;
}
assert(SuperEST == EST_Dynamic && SubEST == EST_Dynamic &&
"Exception spec subset: non-dynamic case slipped through.");
// Neither contains everything or nothing. Do a proper comparison.
for (FunctionProtoType::exception_iterator SubI = Subset->exception_begin(),
SubE = Subset->exception_end(); SubI != SubE; ++SubI) {
// Take one type from the subset.
QualType CanonicalSubT = Context.getCanonicalType(*SubI);
// Unwrap pointers and references so that we can do checks within a class
// hierarchy. Don't unwrap member pointers; they don't have hierarchy
// conversions on the pointee.
bool SubIsPointer = false;
if (const ReferenceType *RefTy = CanonicalSubT->getAs<ReferenceType>())
CanonicalSubT = RefTy->getPointeeType();
if (const PointerType *PtrTy = CanonicalSubT->getAs<PointerType>()) {
CanonicalSubT = PtrTy->getPointeeType();
SubIsPointer = true;
}
bool SubIsClass = CanonicalSubT->isRecordType();
CanonicalSubT = CanonicalSubT.getLocalUnqualifiedType();
CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
/*DetectVirtual=*/false);
bool Contained = false;
// Make sure it's in the superset.
for (FunctionProtoType::exception_iterator SuperI =
Superset->exception_begin(), SuperE = Superset->exception_end();
SuperI != SuperE; ++SuperI) {
QualType CanonicalSuperT = Context.getCanonicalType(*SuperI);
// SubT must be SuperT or derived from it, or pointer or reference to
// such types.
if (const ReferenceType *RefTy = CanonicalSuperT->getAs<ReferenceType>())
CanonicalSuperT = RefTy->getPointeeType();
if (SubIsPointer) {
if (const PointerType *PtrTy = CanonicalSuperT->getAs<PointerType>())
CanonicalSuperT = PtrTy->getPointeeType();
else {
continue;
}
}
CanonicalSuperT = CanonicalSuperT.getLocalUnqualifiedType();
// If the types are the same, move on to the next type in the subset.
if (CanonicalSubT == CanonicalSuperT) {
Contained = true;
break;
}
// Otherwise we need to check the inheritance.
if (!SubIsClass || !CanonicalSuperT->isRecordType())
continue;
Paths.clear();
if (!IsDerivedFrom(CanonicalSubT, CanonicalSuperT, Paths))
continue;
if (Paths.isAmbiguous(Context.getCanonicalType(CanonicalSuperT)))
continue;
// Do this check from a context without privileges.
switch (CheckBaseClassAccess(SourceLocation(),
CanonicalSuperT, CanonicalSubT,
Paths.front(),
/*Diagnostic*/ 0,
/*ForceCheck*/ true,
/*ForceUnprivileged*/ true)) {
case AR_accessible: break;
case AR_inaccessible: continue;
case AR_dependent:
llvm_unreachable("access check dependent for unprivileged context");
case AR_delayed:
llvm_unreachable("access check delayed in non-declaration");
}
Contained = true;
break;
}
if (!Contained) {
Diag(SubLoc, DiagID);
if (NoteID.getDiagID() != 0)
Diag(SuperLoc, NoteID);
return true;
}
}
// We've run half the gauntlet.
return CheckParamExceptionSpec(NoteID, Superset, SuperLoc, Subset, SubLoc);
}
static bool CheckSpecForTypesEquivalent(Sema &S,
const PartialDiagnostic &DiagID, const PartialDiagnostic & NoteID,
QualType Target, SourceLocation TargetLoc,
QualType Source, SourceLocation SourceLoc)
{
const FunctionProtoType *TFunc = GetUnderlyingFunction(Target);
if (!TFunc)
return false;
const FunctionProtoType *SFunc = GetUnderlyingFunction(Source);
if (!SFunc)
return false;
return S.CheckEquivalentExceptionSpec(DiagID, NoteID, TFunc, TargetLoc,
SFunc, SourceLoc);
}
/// CheckParamExceptionSpec - Check if the parameter and return types of the
/// two functions have equivalent exception specs. This is part of the
/// assignment and override compatibility check. We do not check the parameters
/// of parameter function pointers recursively, as no sane programmer would
/// even be able to write such a function type.
bool Sema::CheckParamExceptionSpec(const PartialDiagnostic & NoteID,
const FunctionProtoType *Target, SourceLocation TargetLoc,
const FunctionProtoType *Source, SourceLocation SourceLoc)
{
if (CheckSpecForTypesEquivalent(*this,
PDiag(diag::err_deep_exception_specs_differ) << 0,
PDiag(),
Target->getResultType(), TargetLoc,
Source->getResultType(), SourceLoc))
return true;
// We shouldn't even be testing this unless the arguments are otherwise
// compatible.
assert(Target->getNumArgs() == Source->getNumArgs() &&
"Functions have different argument counts.");
for (unsigned i = 0, E = Target->getNumArgs(); i != E; ++i) {
if (CheckSpecForTypesEquivalent(*this,
PDiag(diag::err_deep_exception_specs_differ) << 1,
PDiag(),
Target->getArgType(i), TargetLoc,
Source->getArgType(i), SourceLoc))
return true;
}
return false;
}
bool Sema::CheckExceptionSpecCompatibility(Expr *From, QualType ToType)
{
// First we check for applicability.
// Target type must be a function, function pointer or function reference.
const FunctionProtoType *ToFunc = GetUnderlyingFunction(ToType);
if (!ToFunc)
return false;
// SourceType must be a function or function pointer.
const FunctionProtoType *FromFunc = GetUnderlyingFunction(From->getType());
if (!FromFunc)
return false;
// Now we've got the correct types on both sides, check their compatibility.
// This means that the source of the conversion can only throw a subset of
// the exceptions of the target, and any exception specs on arguments or
// return types must be equivalent.
return CheckExceptionSpecSubset(PDiag(diag::err_incompatible_exception_specs),
PDiag(), ToFunc,
From->getSourceRange().getBegin(),
FromFunc, SourceLocation());
}
bool Sema::CheckOverridingFunctionExceptionSpec(const CXXMethodDecl *New,
const CXXMethodDecl *Old) {
if (getLangOpts().CPlusPlus11 && isa<CXXDestructorDecl>(New)) {
// Don't check uninstantiated template destructors at all. We can only
// synthesize correct specs after the template is instantiated.
if (New->getParent()->isDependentType())
return false;
if (New->getParent()->isBeingDefined()) {
// The destructor might be updated once the definition is finished. So
// remember it and check later.
DelayedDestructorExceptionSpecChecks.push_back(std::make_pair(
cast<CXXDestructorDecl>(New), cast<CXXDestructorDecl>(Old)));
return false;
}
}
unsigned DiagID = diag::err_override_exception_spec;
if (getLangOpts().MicrosoftExt)
DiagID = diag::warn_override_exception_spec;
return CheckExceptionSpecSubset(PDiag(DiagID),
PDiag(diag::note_overridden_virtual_function),
Old->getType()->getAs<FunctionProtoType>(),
Old->getLocation(),
New->getType()->getAs<FunctionProtoType>(),
New->getLocation());
}
static CanThrowResult canSubExprsThrow(Sema &S, const Expr *CE) {
Expr *E = const_cast<Expr*>(CE);
CanThrowResult R = CT_Cannot;
for (Expr::child_range I = E->children(); I && R != CT_Can; ++I)
R = mergeCanThrow(R, S.canThrow(cast<Expr>(*I)));
return R;
}
static CanThrowResult canCalleeThrow(Sema &S, const Expr *E, const Decl *D) {
assert(D && "Expected decl");
// See if we can get a function type from the decl somehow.
const ValueDecl *VD = dyn_cast<ValueDecl>(D);
if (!VD) // If we have no clue what we're calling, assume the worst.
return CT_Can;
// As an extension, we assume that __attribute__((nothrow)) functions don't
// throw.
if (isa<FunctionDecl>(D) && D->hasAttr<NoThrowAttr>())
return CT_Cannot;
QualType T = VD->getType();
const FunctionProtoType *FT;
if ((FT = T->getAs<FunctionProtoType>())) {
} else if (const PointerType *PT = T->getAs<PointerType>())
FT = PT->getPointeeType()->getAs<FunctionProtoType>();
else if (const ReferenceType *RT = T->getAs<ReferenceType>())
FT = RT->getPointeeType()->getAs<FunctionProtoType>();
else if (const MemberPointerType *MT = T->getAs<MemberPointerType>())
FT = MT->getPointeeType()->getAs<FunctionProtoType>();
else if (const BlockPointerType *BT = T->getAs<BlockPointerType>())
FT = BT->getPointeeType()->getAs<FunctionProtoType>();
if (!FT)
return CT_Can;
FT = S.ResolveExceptionSpec(E->getLocStart(), FT);
if (!FT)
return CT_Can;
return FT->isNothrow(S.Context) ? CT_Cannot : CT_Can;
}
static CanThrowResult canDynamicCastThrow(const CXXDynamicCastExpr *DC) {
if (DC->isTypeDependent())
return CT_Dependent;
if (!DC->getTypeAsWritten()->isReferenceType())
return CT_Cannot;
if (DC->getSubExpr()->isTypeDependent())
return CT_Dependent;
return DC->getCastKind() == clang::CK_Dynamic? CT_Can : CT_Cannot;
}
static CanThrowResult canTypeidThrow(Sema &S, const CXXTypeidExpr *DC) {
if (DC->isTypeOperand())
return CT_Cannot;
Expr *Op = DC->getExprOperand();
if (Op->isTypeDependent())
return CT_Dependent;
const RecordType *RT = Op->getType()->getAs<RecordType>();
if (!RT)
return CT_Cannot;
if (!cast<CXXRecordDecl>(RT->getDecl())->isPolymorphic())
return CT_Cannot;
if (Op->Classify(S.Context).isPRValue())
return CT_Cannot;
return CT_Can;
}
CanThrowResult Sema::canThrow(const Expr *E) {
// C++ [expr.unary.noexcept]p3:
// [Can throw] if in a potentially-evaluated context the expression would
// contain:
switch (E->getStmtClass()) {
case Expr::CXXThrowExprClass:
// - a potentially evaluated throw-expression
return CT_Can;
case Expr::CXXDynamicCastExprClass: {
// - a potentially evaluated dynamic_cast expression dynamic_cast<T>(v),
// where T is a reference type, that requires a run-time check
CanThrowResult CT = canDynamicCastThrow(cast<CXXDynamicCastExpr>(E));
if (CT == CT_Can)
return CT;
return mergeCanThrow(CT, canSubExprsThrow(*this, E));
}
case Expr::CXXTypeidExprClass:
// - a potentially evaluated typeid expression applied to a glvalue
// expression whose type is a polymorphic class type
return canTypeidThrow(*this, cast<CXXTypeidExpr>(E));
// - a potentially evaluated call to a function, member function, function
// pointer, or member function pointer that does not have a non-throwing
// exception-specification
case Expr::CallExprClass:
case Expr::CXXMemberCallExprClass:
case Expr::CXXOperatorCallExprClass:
case Expr::UserDefinedLiteralClass: {
const CallExpr *CE = cast<CallExpr>(E);
CanThrowResult CT;
if (E->isTypeDependent())
CT = CT_Dependent;
else if (isa<CXXPseudoDestructorExpr>(CE->getCallee()->IgnoreParens()))
CT = CT_Cannot;
else if (CE->getCalleeDecl())
CT = canCalleeThrow(*this, E, CE->getCalleeDecl());
else
CT = CT_Can;
if (CT == CT_Can)
return CT;
return mergeCanThrow(CT, canSubExprsThrow(*this, E));
}
case Expr::CXXConstructExprClass:
case Expr::CXXTemporaryObjectExprClass: {
CanThrowResult CT = canCalleeThrow(*this, E,
cast<CXXConstructExpr>(E)->getConstructor());
if (CT == CT_Can)
return CT;
return mergeCanThrow(CT, canSubExprsThrow(*this, E));
}
case Expr::LambdaExprClass: {
const LambdaExpr *Lambda = cast<LambdaExpr>(E);
CanThrowResult CT = CT_Cannot;
for (LambdaExpr::capture_init_iterator Cap = Lambda->capture_init_begin(),
CapEnd = Lambda->capture_init_end();
Cap != CapEnd; ++Cap)
CT = mergeCanThrow(CT, canThrow(*Cap));
return CT;
}
case Expr::CXXNewExprClass: {
CanThrowResult CT;
if (E->isTypeDependent())
CT = CT_Dependent;
else
CT = canCalleeThrow(*this, E, cast<CXXNewExpr>(E)->getOperatorNew());
if (CT == CT_Can)
return CT;
return mergeCanThrow(CT, canSubExprsThrow(*this, E));
}
case Expr::CXXDeleteExprClass: {
CanThrowResult CT;
QualType DTy = cast<CXXDeleteExpr>(E)->getDestroyedType();
if (DTy.isNull() || DTy->isDependentType()) {
CT = CT_Dependent;
} else {
CT = canCalleeThrow(*this, E,
cast<CXXDeleteExpr>(E)->getOperatorDelete());
if (const RecordType *RT = DTy->getAs<RecordType>()) {
const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
const CXXDestructorDecl *DD = RD->getDestructor();
if (DD)
CT = mergeCanThrow(CT, canCalleeThrow(*this, E, DD));
}
if (CT == CT_Can)
return CT;
}
return mergeCanThrow(CT, canSubExprsThrow(*this, E));
}
case Expr::CXXBindTemporaryExprClass: {
// The bound temporary has to be destroyed again, which might throw.
CanThrowResult CT = canCalleeThrow(*this, E,
cast<CXXBindTemporaryExpr>(E)->getTemporary()->getDestructor());
if (CT == CT_Can)
return CT;
return mergeCanThrow(CT, canSubExprsThrow(*this, E));
}
// ObjC message sends are like function calls, but never have exception
// specs.
case Expr::ObjCMessageExprClass:
case Expr::ObjCPropertyRefExprClass:
case Expr::ObjCSubscriptRefExprClass:
return CT_Can;
// All the ObjC literals that are implemented as calls are
// potentially throwing unless we decide to close off that
// possibility.
case Expr::ObjCArrayLiteralClass:
case Expr::ObjCDictionaryLiteralClass:
case Expr::ObjCBoxedExprClass:
return CT_Can;
// Many other things have subexpressions, so we have to test those.
// Some are simple:
case Expr::ConditionalOperatorClass:
case Expr::CompoundLiteralExprClass:
case Expr::CXXConstCastExprClass:
case Expr::CXXReinterpretCastExprClass:
case Expr::CXXStdInitializerListExprClass:
case Expr::DesignatedInitExprClass:
case Expr::ExprWithCleanupsClass:
case Expr::ExtVectorElementExprClass:
case Expr::InitListExprClass:
case Expr::MemberExprClass:
case Expr::ObjCIsaExprClass:
case Expr::ObjCIvarRefExprClass:
case Expr::ParenExprClass:
case Expr::ParenListExprClass:
case Expr::ShuffleVectorExprClass:
case Expr::ConvertVectorExprClass:
case Expr::VAArgExprClass:
return canSubExprsThrow(*this, E);
// Some might be dependent for other reasons.
case Expr::ArraySubscriptExprClass:
case Expr::BinaryOperatorClass:
case Expr::CompoundAssignOperatorClass:
case Expr::CStyleCastExprClass:
case Expr::CXXStaticCastExprClass:
case Expr::CXXFunctionalCastExprClass:
case Expr::ImplicitCastExprClass:
case Expr::MaterializeTemporaryExprClass:
case Expr::UnaryOperatorClass: {
CanThrowResult CT = E->isTypeDependent() ? CT_Dependent : CT_Cannot;
return mergeCanThrow(CT, canSubExprsThrow(*this, E));
}
// FIXME: We should handle StmtExpr, but that opens a MASSIVE can of worms.
case Expr::StmtExprClass:
return CT_Can;
case Expr::CXXDefaultArgExprClass:
return canThrow(cast<CXXDefaultArgExpr>(E)->getExpr());
case Expr::CXXDefaultInitExprClass:
return canThrow(cast<CXXDefaultInitExpr>(E)->getExpr());
case Expr::ChooseExprClass:
if (E->isTypeDependent() || E->isValueDependent())
return CT_Dependent;
return canThrow(cast<ChooseExpr>(E)->getChosenSubExpr());
case Expr::GenericSelectionExprClass:
if (cast<GenericSelectionExpr>(E)->isResultDependent())
return CT_Dependent;
return canThrow(cast<GenericSelectionExpr>(E)->getResultExpr());
// Some expressions are always dependent.
case Expr::CXXDependentScopeMemberExprClass:
case Expr::CXXUnresolvedConstructExprClass:
case Expr::DependentScopeDeclRefExprClass:
return CT_Dependent;
case Expr::AsTypeExprClass:
case Expr::BinaryConditionalOperatorClass:
case Expr::BlockExprClass:
case Expr::CUDAKernelCallExprClass:
case Expr::DeclRefExprClass:
case Expr::ObjCBridgedCastExprClass:
case Expr::ObjCIndirectCopyRestoreExprClass:
case Expr::ObjCProtocolExprClass:
case Expr::ObjCSelectorExprClass:
case Expr::OffsetOfExprClass:
case Expr::PackExpansionExprClass:
case Expr::PseudoObjectExprClass:
case Expr::SubstNonTypeTemplateParmExprClass:
case Expr::SubstNonTypeTemplateParmPackExprClass:
case Expr::FunctionParmPackExprClass:
case Expr::UnaryExprOrTypeTraitExprClass:
case Expr::UnresolvedLookupExprClass:
case Expr::UnresolvedMemberExprClass:
// FIXME: Can any of the above throw? If so, when?
return CT_Cannot;
case Expr::AddrLabelExprClass:
case Expr::ArrayTypeTraitExprClass:
case Expr::AtomicExprClass:
case Expr::TypeTraitExprClass:
case Expr::CXXBoolLiteralExprClass:
case Expr::CXXNoexceptExprClass:
case Expr::CXXNullPtrLiteralExprClass:
case Expr::CXXPseudoDestructorExprClass:
case Expr::CXXScalarValueInitExprClass:
case Expr::CXXThisExprClass:
case Expr::CXXUuidofExprClass:
case Expr::CharacterLiteralClass:
case Expr::ExpressionTraitExprClass:
case Expr::FloatingLiteralClass:
case Expr::GNUNullExprClass:
case Expr::ImaginaryLiteralClass:
case Expr::ImplicitValueInitExprClass:
case Expr::IntegerLiteralClass:
case Expr::ObjCEncodeExprClass:
case Expr::ObjCStringLiteralClass:
case Expr::ObjCBoolLiteralExprClass:
case Expr::OpaqueValueExprClass:
case Expr::PredefinedExprClass:
case Expr::SizeOfPackExprClass:
case Expr::StringLiteralClass:
// These expressions can never throw.
return CT_Cannot;
case Expr::MSPropertyRefExprClass:
llvm_unreachable("Invalid class for expression");
#define STMT(CLASS, PARENT) case Expr::CLASS##Class:
#define STMT_RANGE(Base, First, Last)
#define LAST_STMT_RANGE(BASE, FIRST, LAST)
#define EXPR(CLASS, PARENT)
#define ABSTRACT_STMT(STMT)
#include "clang/AST/StmtNodes.inc"
case Expr::NoStmtClass:
llvm_unreachable("Invalid class for expression");
}
llvm_unreachable("Bogus StmtClass");
}
} // end namespace clang