llvm-project/mlir/lib/Dialect/SparseTensor/Transforms/Sparsification.cpp

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

1462 lines
60 KiB
C++
Raw Normal View History

//===- Sparsification.cpp - Implementation of sparsification --------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements lowering sparse tensor types to actual sparse code.
//
// The concept of letting a compiler generate sparse code automatically was
// pioneered for dense linear algebra code in Fortran by [Bik96] in MT1 and
// formalized to tensor algebra by [Kjolstad17,20] for the Sparse Tensor
// Algebra Compiler (TACO). The implementation in this file closely follows
// the "sparse iteration theory" that forms the foundation of TACO. A rewriting
// rule is applied to each tensor expression in linalg (MLIR's tensor index
// notation) where the sparsity of tensors is indicated with annotation using
// a per-dimension specification of sparse/dense storage together with a
// specification of the order on the dimensions. Subsequently, a topologically
// sorted iteration graph, reflecting the required order on indices with respect
// to the dimensions of each tensor, is constructed to ensure that all tensors
// are visited in natural index order. Next, iteration lattices are constructed
// for the tensor expression for every index in topological order. Each
// iteration lattice point consists of a conjunction of tensor indices together
// with a tensor (sub)expression that needs to be evaluated for that
// conjunction. Within the lattice, iteration points are ordered according to
// the way indices are exhausted. As such these iteration lattices drive actual
// sparse code generation, which consists of a tedious but relatively
// straightforward one-to-one mapping from iteration lattices to combinations
// of for-loops, while-loops, and if-statements.
//
// [Bik96] Aart J.C. Bik. Compiler Support for Sparse Matrix Computations.
// PhD thesis, Leiden University, May 1996 (aartbik.com/sparse.php).
// [Kjolstad17] Fredrik Berg Kjolstad, Shoaib Ashraf Kamil, Stephen Chou,
// David Lugato, and Saman Amarasinghe. The Tensor Algebra Compiler.
// Proceedings of the ACM on Programming Languages, October 2017.
// [Kjolstad20] Fredrik Berg Kjolstad. Sparse Tensor Algebra Compilation.
// PhD thesis, MIT, February, 2020 (tensor-compiler.org).
//
// Implementation detail: We use llvm::SmallVector for vectors with
// variable lengths and std::vector for vectors with fixed lengths.
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/Linalg/IR/LinalgOps.h"
#include "mlir/Dialect/Linalg/Utils/Utils.h"
#include "mlir/Dialect/SCF/SCF.h"
#include "mlir/Dialect/SparseTensor/IR/SparseTensor.h"
#include "mlir/Dialect/SparseTensor/Transforms/Passes.h"
#include "mlir/Dialect/StandardOps/IR/Ops.h"
#include "mlir/Dialect/Vector/VectorOps.h"
#include "mlir/IR/Matchers.h"
#include "mlir/IR/TensorEncoding.h"
#include "llvm/ADT/SmallBitVector.h"
using namespace mlir;
using namespace mlir::sparse_tensor;
namespace {
enum class Kind { kTensor, kInvariant, kMulF, kMulI, kAddF, kAddI };
enum class Dim { kSparse, kDense, kSingle, kUndef };
/// Tensor expression. Represents a MLIR expression in tensor index notation.
/// For tensors, e0 denotes the tensor index. For invariants, the IR value is
/// stored directly. For binary operations, e0 and e1 denote the index of the
/// children tensor expressions.
struct TensorExp {
TensorExp(Kind k, unsigned x, unsigned y, Value v)
: kind(k), e0(x), e1(y), val(v) {
assert((kind == Kind::kTensor && e0 != -1u && e1 == -1u && !val) ||
(kind == Kind::kInvariant && e0 == -1u && e1 == -1u && val) ||
(kind >= Kind::kMulF && e0 != -1u && e1 != -1u && !val));
}
Kind kind;
/// Indices of children expression(s).
unsigned e0;
unsigned e1;
/// Direct link to IR for an invariant. During code generation,
/// field is used to cache "hoisted" loop invariant tensor loads.
Value val;
};
/// Lattice point. Each lattice point consists of a conjunction of tensor
/// loop indices (encoded in a bitvector) and the index of the corresponding
/// tensor expression.
struct LatPoint {
LatPoint(unsigned n, unsigned e, unsigned b) : bits(n, false), exp(e) {
bits.set(b);
}
LatPoint(const llvm::BitVector &b, unsigned e) : bits(b), exp(e) {}
/// Conjunction of tensor loop indices as bitvector. This represents
/// all indices involved in the tensor expression
llvm::BitVector bits;
/// Simplified conjunction of tensor loop indices as bitvector. This
/// represents a simplified condition under which this tensor expression
/// must execute. Pre-computed during codegen to avoid repeated eval.
llvm::BitVector simple;
/// Index of the tensor expresssion.
unsigned exp;
};
/// A class to handle all iteration lattice operations. This class abstracts
/// away from some implementation details of storing iteration lattices and
/// tensor expressions. This allows for fine-tuning performance characteristics
/// independently from the basic algorithm if bottlenecks are identified.
class Merger {
public:
/// Constructs a merger for the given number of tensors and loops. The
/// user supplies the number of tensors involved in the kernel, with the
/// last tensor in this set denoting the output tensor. The merger adds an
/// additional synthetic tensor at the end of this set to represent all
/// invariant expressions in the kernel.
Merger(unsigned t, unsigned l)
: outTensor(t - 1), numTensors(t + 1), numLoops(l),
dims(t + 1, std::vector<Dim>(l, Dim::kUndef)) {}
/// Adds a tensor expression. Returns its index.
unsigned addExp(Kind k, unsigned e0, unsigned e1 = -1u, Value v = Value()) {
unsigned e = tensorExps.size();
tensorExps.push_back(TensorExp(k, e0, e1, v));
return e;
}
unsigned addExp(Kind k, Value v) { return addExp(k, -1u, -1u, v); }
/// Adds an iteration lattice point. Returns its index.
unsigned addLat(unsigned t, unsigned i, unsigned e) {
assert(t < numTensors && i < numLoops);
unsigned p = latPoints.size();
latPoints.push_back(LatPoint(numLoops * numTensors, e, numTensors * i + t));
return p;
}
/// Adds a new, initially empty, set. Returns its index.
unsigned addSet() {
unsigned s = latSets.size();
latSets.emplace_back(SmallVector<unsigned, 16>());
return s;
}
/// Computes a single conjunction of two lattice points by taking the "union"
/// of loop indices (effectively constructing a larger "intersection" of those
/// indices) with a newly constructed tensor (sub)expression of given kind.
/// Returns the index of the new lattice point.
unsigned conjLatPoint(Kind kind, unsigned p0, unsigned p1) {
unsigned p = latPoints.size();
llvm::BitVector nb = llvm::BitVector(latPoints[p0].bits);
nb |= latPoints[p1].bits;
unsigned e = addExp(kind, latPoints[p0].exp, latPoints[p1].exp);
latPoints.push_back(LatPoint(nb, e));
return p;
}
/// Conjunctive merge of two lattice sets L0 and L1 is conjunction of
/// cartesian product. Returns the index of the new set.
unsigned takeConj(Kind kind, unsigned s0, unsigned s1) {
unsigned s = addSet();
for (unsigned p0 : latSets[s0])
for (unsigned p1 : latSets[s1])
latSets[s].push_back(conjLatPoint(kind, p0, p1));
return s;
}
/// Disjunctive merge of two lattice sets L0 and L1 is (L0 /\_op L1, L0, L1).
/// Returns the index of the new set.
unsigned takeDisj(Kind kind, unsigned s0, unsigned s1) {
unsigned s = takeConj(kind, s0, s1);
for (unsigned p : latSets[s0])
latSets[s].push_back(p);
for (unsigned p : latSets[s1])
latSets[s].push_back(p);
return s;
}
/// Optimizes the iteration lattice points in the given set. This
/// method should be called right before code generation to avoid
/// generating redundant loops and conditions.
unsigned optimizeSet(unsigned s0) {
unsigned s = addSet();
assert(latSets[s0].size() != 0);
unsigned p0 = latSets[s0][0];
for (unsigned p1 : latSets[s0]) {
bool add = true;
if (p0 != p1) {
// Is this a straightforward copy?
unsigned e = latPoints[p1].exp;
if (exp(e).kind == Kind::kTensor && exp(e).e0 == outTensor)
continue;
// Conjunction already covered?
for (unsigned p2 : latSets[s]) {
assert(!latGT(p1, p2)); // Lj => Li would be bad
if (onlyDenseDiff(p2, p1)) {
add = false;
break;
}
}
assert(!add || latGT(p0, p1));
}
if (add)
latSets[s].push_back(p1);
}
for (unsigned p : latSets[s])
latPoints[p].simple = simplifyCond(s, p);
return s;
}
/// Simplifies the conditions in a conjunction of a given lattice point
/// within the given set using just two basic rules:
/// (1) multiple dense conditions are reduced to single dense, and
/// (2) a *singleton* sparse/dense is reduced to sparse/random access.
llvm::BitVector simplifyCond(unsigned s, unsigned p0) {
// First determine if this lattice point is a *singleton*, i.e.,
// the last point in a lattice, no other is less than this one.
bool isSingleton = true;
for (unsigned p1 : latSets[s]) {
if (p0 != p1 && latGT(p0, p1)) {
isSingleton = false;
break;
}
}
// Now apply the two basic rules.
llvm::BitVector simple = latPoints[p0].bits;
bool reset = isSingleton && hasAnyDimOf(simple, Dim::kSparse);
for (unsigned b = 0, be = simple.size(); b < be; b++) {
if (simple[b] && !isDim(b, Dim::kSparse)) {
if (reset)
simple.reset(b);
reset = true;
}
}
return simple;
}
/// Returns true if Li > Lj.
bool latGT(unsigned i, unsigned j) const {
const llvm::BitVector &bitsi = latPoints[i].bits;
const llvm::BitVector &bitsj = latPoints[j].bits;
assert(bitsi.size() == bitsj.size());
if (bitsi.count() > bitsj.count()) {
for (unsigned b = 0, be = bitsj.size(); b < be; b++)
if (bitsj[b] && !bitsi[b])
return false;
return true;
}
return false;
}
/// Returns true if Li and Lj only differ in dense.
bool onlyDenseDiff(unsigned i, unsigned j) {
llvm::BitVector tmp = latPoints[j].bits;
tmp ^= latPoints[i].bits;
return !hasAnyDimOf(tmp, Dim::kSparse);
}
/// Bit translation.
unsigned tensor(unsigned b) const { return b % numTensors; }
unsigned index(unsigned b) const { return b / numTensors; }
/// Returns true if bit corresponds to queried dim.
bool isDim(unsigned b, Dim d) const { return isDim(tensor(b), index(b), d); }
/// Returns true if bit corresponds to index of output tensor.
bool isOutTensor(unsigned b, unsigned i) const {
return tensor(b) == outTensor && index(b) == i;
}
/// Returns true if tensor access at given index has queried dim.
bool isDim(unsigned t, unsigned i, Dim d) const {
assert(t < numTensors && i < numLoops);
return dims[t][i] == d;
}
/// Returns true if any set bit corresponds to queried dim.
bool hasAnyDimOf(const llvm::BitVector &bits, Dim d) const {
for (unsigned b = 0, be = bits.size(); b < be; b++)
if (bits[b] && isDim(b, d))
return true;
return false;
}
/// Setter
void setDim(unsigned t, unsigned i, Dim d) { dims[t][i] = d; }
/// Getters.
TensorExp &exp(unsigned e) { return tensorExps[e]; }
LatPoint &lat(unsigned l) { return latPoints[l]; }
SmallVector<unsigned, 16> &set(unsigned s) { return latSets[s]; }
private:
const unsigned outTensor;
const unsigned numTensors;
const unsigned numLoops;
std::vector<std::vector<Dim>> dims;
llvm::SmallVector<TensorExp, 32> tensorExps;
llvm::SmallVector<LatPoint, 16> latPoints;
llvm::SmallVector<SmallVector<unsigned, 16>, 8> latSets;
};
// Code generation.
struct CodeGen {
CodeGen(SparsificationOptions o, unsigned numTensors, unsigned numLoops)
: options(o), loops(numLoops), sizes(numLoops), buffers(numTensors),
pointers(numTensors, std::vector<Value>(numLoops)),
indices(numTensors, std::vector<Value>(numLoops)),
highs(numTensors, std::vector<Value>(numLoops)),
pidxs(numTensors, std::vector<Value>(numLoops)),
idxs(numTensors, std::vector<Value>(numLoops)), redExp(-1u), redVal(),
curVecLength(1), curVecMask() {}
/// Sparsification options.
SparsificationOptions options;
/// Universal dense indices and upper bounds (by index). The loops array
/// is updated with the value of the universal dense index in the current
/// loop. The sizes array is set once with the inferred dimension sizes.
std::vector<Value> loops;
std::vector<Value> sizes;
/// Buffers for storing dense and sparse numerical values (by tensor).
/// This array is set once during bufferization of all tensors.
std::vector<Value> buffers;
/// Sparse storage schemes (1-D): pointers and indices (by tensor and index).
/// This array is set once during bufferization of all sparse tensors.
std::vector<std::vector<Value>> pointers;
std::vector<std::vector<Value>> indices;
/// Sparse iteration information (by tensor and index). These arrays
/// are updated to remain current within the current loop.
std::vector<std::vector<Value>> highs;
std::vector<std::vector<Value>> pidxs;
std::vector<std::vector<Value>> idxs;
/// Current reduction, updated during code generation. When indices of a
/// reduction are exhausted, all inner loops can "scalarize" the reduction.
// TODO: currently only done for (a chain of) innermost for-loops, where it
// is most effective; we could generalize to more outer and while-loops.
unsigned redExp;
Value redVal;
// Current vector length and mask.
unsigned curVecLength;
Value curVecMask;
};
} // namespace
// Helper method to apply dimension ordering permutation.
static unsigned perm(SparseTensorEncodingAttr &enc, unsigned d) {
if (enc) {
auto order = enc.getDimOrdering();
if (order) {
assert(order.isPermutation());
return order.getDimPosition(d);
}
}
return d;
}
// Helper method to translate dim level type to internal representation.
static Dim toDim(SparseTensorEncodingAttr &enc, unsigned d) {
if (enc) {
SparseTensorEncodingAttr::DimLevelType tp = enc.getDimLevelType()[d];
if (tp == SparseTensorEncodingAttr::DimLevelType::Compressed)
return Dim::kSparse;
if (tp == SparseTensorEncodingAttr::DimLevelType::Singleton)
return Dim::kSingle;
}
return Dim::kDense;
}
/// Helper method to inspect sparse encodings in the tensor types.
/// Fills the per-dimension sparsity information for all tensors.
static bool findSparseAnnotations(Merger &merger, linalg::GenericOp op) {
bool annotated = false;
OpOperand *lhs = op.getOutputOperand(0);
for (OpOperand *t : op.getInputAndOutputOperands()) {
auto map = op.getTiedIndexingMap(t);
if (!map.isProjectedPermutation())
return false;
auto enc = getSparseTensorEncoding(t->get().getType());
if (enc)
annotated = true;
assert(map.getNumResults() == op.getRank(t));
for (unsigned d = 0, rank = map.getNumResults(); d < rank; d++) {
unsigned idx = map.getDimPosition(perm(enc, d));
Dim dim = toDim(enc, d);
merger.setDim(t->getOperandNumber(), idx, toDim(enc, d));
// Accept only all-dense annotated "sparse" output.
// TODO: support truly sparse outputs too
if (t == lhs && dim != Dim::kDense)
return false;
}
}
return annotated;
}
/// A DFS helper to compute a topological sort. Note that recursion is
/// bounded by the number of implicit loops, which is always small.
/// Returns false when a cycle is detected.
static bool topSortDFS(unsigned i, std::vector<unsigned> &visit,
std::vector<unsigned> &topSort,
std::vector<std::vector<bool>> &adjM) {
if (visit[i] != 0)
return visit[i] != 1; // 1 denotes cycle!
visit[i] = 1;
for (unsigned j = 0, e = visit.size(); j < e; j++)
if (adjM[i][j])
if (!topSortDFS(j, visit, topSort, adjM))
return false;
visit[i] = 2;
topSort.push_back(i);
return true;
}
/// Computes a topologically sorted iteration graph for the linalg operation.
/// Ensures all tensors are visited in natural index order. This is essential
/// for sparse storage formats since these only support access along fixed
/// dimensions. Even for dense storage formats, however, the natural index
/// order yields innermost unit-stride access with better spatial locality.
static bool computeIterationGraph(Merger &merger, linalg::GenericOp op,
std::vector<unsigned> &topSort,
bool sparseOnly) {
// Set up an n x n from/to adjacency matrix of the iteration graph
// for the implicit loop indices i_0 .. i_n-1.
unsigned n = op.getNumLoops();
std::vector<std::vector<bool>> adjM(n, std::vector<bool>(n, false));
// Iterate over the indexing maps of every tensor in the tensor expression.
for (OpOperand *t : op.getInputAndOutputOperands()) {
auto map = op.getTiedIndexingMap(t);
auto enc = getSparseTensorEncoding(t->get().getType());
assert(map.getNumDims() == n);
// Skip dense tensor constraints when sparse only is requested.
if (sparseOnly && !enc)
continue;
// Each tensor expression and optional dimension ordering (row-major
// by default) puts an ordering constraint on the loop indices. For
// example, the tensor expresion A_ijk forces the ordering i < j < k
// on the loop indices if no explicit dimension ordering is given.
for (unsigned d = 1, rank = map.getNumResults(); d < rank; d++) {
unsigned f = map.getDimPosition(perm(enc, d - 1));
unsigned t = map.getDimPosition(perm(enc, d));
adjM[f][t] = true;
}
}
// Topologically sort the iteration graph to determine loop order.
// Report failure for a cyclic iteration graph.
topSort.clear();
topSort.reserve(n);
std::vector<unsigned> visit(n, 0);
for (unsigned i = 0; i < n; i++)
if (visit[i] == 0)
if (!topSortDFS(i, visit, topSort, adjM))
return false; // cycle!
std::reverse(std::begin(topSort), std::end(topSort));
return true;
}
/// Traverses the SSA tree (possibly a DAG) to build a tensor expression.
/// This simplifies constructing (sub)expressions during iteration lattice
/// building (compared to using the SSA representation everywhere).
static Optional<unsigned> buildTensorExp(Merger &merger, linalg::GenericOp op,
Value val) {
if (auto arg = val.dyn_cast<BlockArgument>()) {
unsigned argN = arg.getArgNumber();
// Any argument of the generic op that is not marked as a scalar
// argument is considered a tensor, indexed by the implicit loop
// bounds. This includes rank-0 tensor arguments.
if (arg.getOwner()->getParentOp() == op) {
OpOperand *t = op.getInputAndOutputOperands()[argN];
if (!op.isScalar(t))
return merger.addExp(Kind::kTensor, argN);
val = t->get(); // get scalar value
}
// Any other argument (marked as scalar argument for the generic op
// or belonging to an enveloping op) is considered invariant.
return merger.addExp(Kind::kInvariant, val);
}
Operation *def = val.getDefiningOp();
if (def->getBlock() != &op.region().front()) {
// Something defined outside is invariant.
return merger.addExp(Kind::kInvariant, val);
} else if (def->getNumOperands() == 2) {
// Construct binary operations if subexpressions could be built.
auto x = buildTensorExp(merger, op, def->getOperand(0));
auto y = buildTensorExp(merger, op, def->getOperand(1));
if (x.hasValue() && y.hasValue()) {
unsigned e0 = x.getValue();
unsigned e1 = y.getValue();
if (isa<MulFOp>(def))
return merger.addExp(Kind::kMulF, e0, e1);
if (isa<MulIOp>(def))
return merger.addExp(Kind::kMulI, e0, e1);
if (isa<AddFOp>(def))
return merger.addExp(Kind::kAddF, e0, e1);
if (isa<AddIOp>(def))
return merger.addExp(Kind::kAddI, e0, e1);
}
}
// Cannot build (yet).
return None;
}
/// Builds the iteration lattices in a bottom-up traversal given the remaining
/// tensor (sub)expression and the next loop index in the iteration graph.
static unsigned buildLattices(Merger &merger, linalg::GenericOp op,
unsigned exp, unsigned idx) {
Kind kind = merger.exp(exp).kind;
if (kind == Kind::kTensor || kind == Kind::kInvariant) {
// Either the index is really used in the tensor expression, or it is
// set to the undefined index in that dimension. An invariant expression
// is set to a synthetic tensor with undefined indices only.
unsigned s = merger.addSet();
unsigned t = kind == Kind::kTensor ? merger.exp(exp).e0
: op.getNumInputsAndOutputs();
merger.set(s).push_back(merger.addLat(t, idx, exp));
return s;
}
unsigned s0 = buildLattices(merger, op, merger.exp(exp).e0, idx);
unsigned s1 = buildLattices(merger, op, merger.exp(exp).e1, idx);
switch (kind) {
case Kind::kTensor:
case Kind::kInvariant:
llvm_unreachable("handled above");
case Kind::kMulF:
case Kind::kMulI:
return merger.takeConj(kind, s0, s1);
case Kind::kAddF:
case Kind::kAddI:
return merger.takeDisj(kind, s0, s1);
}
2021-01-19 13:59:15 +08:00
llvm_unreachable("unexpected expression kind");
}
/// Maps sparse integer option to actual integral storage type.
static Type genIntType(PatternRewriter &rewriter, unsigned width) {
if (width == 0)
return rewriter.getIndexType();
return rewriter.getIntegerType(width);
}
/// Detects in-place annotation on tensor argument.
static bool getInPlace(Value val) {
if (auto arg = val.dyn_cast<BlockArgument>())
if (auto funcOp = dyn_cast<FuncOp>(arg.getOwner()->getParentOp()))
if (auto attr = funcOp.getArgAttrOfType<BoolAttr>(
arg.getArgNumber(), linalg::LinalgDialect::kInplaceableAttrName))
return attr.getValue();
return false;
}
/// Generates buffer for the output tensor.
static Value genOutputBuffer(CodeGen &codegen, PatternRewriter &rewriter,
linalg::GenericOp op, MemRefType denseTp,
ArrayRef<Value> args) {
Location loc = op.getLoc();
Value tensor = op.getOutputOperand(0)->get();
// The output tensor simply could materialize from the buffer that will
// be generated for the tensor present in the outs() clause. This has
// the major advantage that the sparse kernel only updates the nonzero
// positions for the output tensor.
if (getInPlace(tensor))
return rewriter.create<memref::BufferCastOp>(loc, denseTp, tensor);
// By default, a new buffer is allocated which is initialized to the
// tensor defined in the outs() clause. This is always correct but
// introduces a dense initialization component that may negatively
// impact the running complexity of the sparse kernel.
Value init = rewriter.create<memref::BufferCastOp>(loc, denseTp, tensor);
Value alloc = rewriter.create<memref::AllocOp>(loc, denseTp, args);
rewriter.create<linalg::CopyOp>(loc, init, alloc);
return alloc;
}
/// Local bufferization of all dense and sparse data structures.
/// This code enables testing the first prototype sparse compiler.
// TODO: replace this with a proliferated bufferization strategy
static bool genBuffers(Merger &merger, CodeGen &codegen,
PatternRewriter &rewriter, linalg::GenericOp op) {
Location loc = op.getLoc();
assert(op.getNumInputsAndOutputs() == op.getNumInputs() + 1);
// For every tensor, find lower and upper bound on dimensions, set the
// same bounds on loop indices, and obtain dense or sparse buffer(s).
SmallVector<Value, 4> args;
for (OpOperand *t : op.getInputAndOutputOperands()) {
unsigned tensor = t->getOperandNumber();
auto shape = op.getShape(t);
auto map = op.getTiedIndexingMap(t);
auto enc = getSparseTensorEncoding(t->get().getType());
// Scan all dimensions of current tensor.
args.clear();
for (unsigned d = 0, rank = map.getNumResults(); d < rank; d++) {
unsigned idx = map.getDimPosition(perm(enc, d));
// Handle sparse storage schemes.
if (merger.isDim(tensor, idx, Dim::kSparse)) {
auto dynShape = {ShapedType::kDynamicSize};
auto ptrTp = MemRefType::get(
dynShape, genIntType(rewriter, enc.getPointerBitWidth()));
auto indTp = MemRefType::get(
dynShape, genIntType(rewriter, enc.getIndexBitWidth()));
Value dim = rewriter.create<ConstantIndexOp>(loc, d);
// Generate sparse primitives to obtains pointer and indices.
codegen.pointers[tensor][idx] =
rewriter.create<ToPointersOp>(loc, ptrTp, t->get(), dim);
codegen.indices[tensor][idx] =
rewriter.create<ToIndicesOp>(loc, indTp, t->get(), dim);
}
// Find lower and upper bound in current dimension.
Value up;
if (shape[d] == MemRefType::kDynamicSize) {
up = rewriter.create<memref::DimOp>(loc, t->get(), d);
args.push_back(up);
} else {
up = rewriter.create<ConstantIndexOp>(loc, shape[d]);
}
codegen.sizes[idx] = codegen.highs[tensor][idx] = up;
}
// Perform the required bufferization. Dense inputs materialize
// from the input tensors. Dense outputs need special handling.
// Sparse inputs use sparse primitives to obtain the values.
// We also accept in-place all-dense annotated "sparse" outputs.
Type elementType = getElementTypeOrSelf(t->get().getType());
if (!enc) {
// Non-annotated dense tensors.
auto denseTp = MemRefType::get(shape, elementType);
if (tensor < op.getNumInputs())
codegen.buffers[tensor] =
rewriter.create<memref::BufferCastOp>(loc, denseTp, t->get());
else
codegen.buffers[tensor] =
genOutputBuffer(codegen, rewriter, op, denseTp, args);
} else {
// Annotated sparse tensors.
if (tensor == op.getNumInputs() && !getInPlace(t->get()))
return false; // reject output if not in-place
auto dynShape = {ShapedType::kDynamicSize};
auto sparseTp = MemRefType::get(dynShape, elementType);
codegen.buffers[tensor] =
rewriter.create<ToValuesOp>(loc, sparseTp, t->get());
}
}
return true;
}
/// Constructs vector type.
static VectorType vectorType(CodeGen &codegen, Type etp) {
return VectorType::get(codegen.curVecLength, etp);
}
/// Constructs vector type from pointer.
static VectorType vectorType(CodeGen &codegen, Value ptr) {
return vectorType(codegen, ptr.getType().cast<MemRefType>().getElementType());
}
/// Constructs vector iteration mask.
static Value genVectorMask(CodeGen &codegen, PatternRewriter &rewriter,
Value iv, Value lo, Value hi, Value step) {
Location loc = iv.getLoc();
VectorType mtp = vectorType(codegen, rewriter.getIntegerType(1));
// Special case if the vector length evenly divides the trip count (for
// example, "for i = 0, 128, 16"). A constant all-true mask is generated
// so that all subsequent masked memory operations are immediately folded
// into unconditional memory operations.
IntegerAttr loInt, hiInt, stepInt;
if (matchPattern(lo, m_Constant(&loInt)) &&
matchPattern(hi, m_Constant(&hiInt)) &&
matchPattern(step, m_Constant(&stepInt))) {
if (((hiInt.getInt() - loInt.getInt()) % stepInt.getInt()) == 0)
return rewriter.create<vector::BroadcastOp>(
loc, mtp, rewriter.create<ConstantIntOp>(loc, 1, 1));
}
// Otherwise, generate a vector mask that avoids overrunning the upperbound
// during vector execution. Here we rely on subsequent loop optimizations to
// avoid executing the mask in all iterations, for example, by splitting the
// loop into an unconditional vector loop and a scalar cleanup loop.
Value end = rewriter.create<SubIOp>(loc, hi, iv);
return rewriter.create<vector::CreateMaskOp>(loc, mtp, end);
}
/// Generates a vectorized load lhs = a[ind[lo:hi]] or lhs = a[lo:hi].
static Value genVectorLoad(CodeGen &codegen, PatternRewriter &rewriter,
Value ptr, ArrayRef<Value> args) {
Location loc = ptr.getLoc();
VectorType vtp = vectorType(codegen, ptr);
Value pass = rewriter.create<ConstantOp>(loc, vtp, rewriter.getZeroAttr(vtp));
if (args.back().getType().isa<VectorType>()) {
SmallVector<Value, 4> scalarArgs(args.begin(), args.end());
Value indexVec = args.back();
scalarArgs.back() = rewriter.create<ConstantIndexOp>(loc, 0);
return rewriter.create<vector::GatherOp>(
loc, vtp, ptr, scalarArgs, indexVec, codegen.curVecMask, pass);
}
return rewriter.create<vector::MaskedLoadOp>(loc, vtp, ptr, args,
codegen.curVecMask, pass);
}
/// Generates a vectorized store a[ind[lo:hi]] = rhs or a[lo:hi] = rhs.
static void genVectorStore(CodeGen &codegen, PatternRewriter &rewriter,
Value rhs, Value ptr, ArrayRef<Value> args) {
Location loc = ptr.getLoc();
if (args.back().getType().isa<VectorType>()) {
SmallVector<Value, 4> scalarArgs(args.begin(), args.end());
Value indexVec = args.back();
scalarArgs.back() = rewriter.create<ConstantIndexOp>(loc, 0);
rewriter.create<vector::ScatterOp>(loc, ptr, scalarArgs, indexVec,
codegen.curVecMask, rhs);
return;
}
rewriter.create<vector::MaskedStoreOp>(loc, ptr, args, codegen.curVecMask,
rhs);
}
/// Generates a vectorized invariant. Here we rely on subsequent loop
/// optimizations to hoist the invariant broadcast out of the vector loop.
static Value genVectorInvariantValue(CodeGen &codegen,
PatternRewriter &rewriter, Value val) {
VectorType vtp = vectorType(codegen, val.getType());
return rewriter.create<vector::BroadcastOp>(val.getLoc(), vtp, val);
}
/// Generates a load on a dense or sparse tensor.
static Value genTensorLoad(Merger &merger, CodeGen &codegen,
PatternRewriter &rewriter, linalg::GenericOp op,
unsigned exp) {
// Test if the load was hoisted to a higher loop nest.
Value val = merger.exp(exp).val;
if (val) {
if (codegen.curVecLength > 1 && !val.getType().isa<VectorType>())
return genVectorInvariantValue(codegen, rewriter, val);
return val;
}
// Actual load.
SmallVector<Value, 4> args;
OpOperand *t = op.getInputAndOutputOperands()[merger.exp(exp).e0];
unsigned tensor = t->getOperandNumber();
auto map = op.getTiedIndexingMap(t);
auto enc = getSparseTensorEncoding(t->get().getType());
unsigned rank = map.getNumResults();
if (enc) {
unsigned idx = map.getDimPosition(perm(enc, rank - 1));
assert(codegen.pidxs[tensor][idx] != nullptr);
args.push_back(codegen.pidxs[tensor][idx]); // position index
} else {
for (unsigned d = 0; d < rank; d++) {
unsigned idx = map.getDimPosition(d);
args.push_back(codegen.loops[idx]); // universal dense index
}
}
Location loc = op.getLoc();
Value ptr = codegen.buffers[tensor];
if (codegen.curVecLength > 1)
return genVectorLoad(codegen, rewriter, ptr, args);
return rewriter.create<memref::LoadOp>(loc, ptr, args);
}
/// Generates a store on a dense or sparse tensor.
static void genTensorStore(Merger &merger, CodeGen &codegen,
PatternRewriter &rewriter, linalg::GenericOp op,
OpOperand *t, Value rhs) {
Location loc = op.getLoc();
// Test if this is a scalarized reduction.
OpOperand *lhs = op.getOutputOperand(0);
if (lhs == t && codegen.redVal) {
if (codegen.curVecLength > 1)
rhs = rewriter.create<SelectOp>(loc, codegen.curVecMask, rhs,
codegen.redVal);
codegen.redVal = rhs;
return;
}
// Actual store.
SmallVector<Value, 4> args;
unsigned tensor = t->getOperandNumber();
auto map = op.getTiedIndexingMap(t);
auto enc = getSparseTensorEncoding(t->get().getType());
unsigned rank = map.getNumResults();
if (enc) {
unsigned idx = map.getDimPosition(perm(enc, rank - 1));
assert(codegen.pidxs[tensor][idx] != nullptr);
args.push_back(codegen.pidxs[tensor][idx]); // position index
} else {
for (unsigned d = 0; d < rank; d++) {
unsigned idx = map.getDimPosition(d);
args.push_back(codegen.loops[idx]); // universal dense index
}
}
Value ptr = codegen.buffers[tensor];
if (codegen.curVecLength > 1)
genVectorStore(codegen, rewriter, rhs, ptr, args);
else
rewriter.create<memref::StoreOp>(loc, rhs, ptr, args);
}
/// Generates a pointer/index load from the sparse storage scheme. Narrower
/// data types need to be zero extended before casting the value into the
/// index type used for looping and indexing.
static Value genLoad(CodeGen &codegen, PatternRewriter &rewriter, Location loc,
Value ptr, Value s) {
// See https://llvm.org/docs/GetElementPtr.html for some background on
// the complications described below.
if (codegen.curVecLength > 1) {
// Since the index vector is used in a subsequent gather/scatter operations,
// which effectively defines an unsigned pointer + signed index, we must
// zero extend the vector to an index width. For 8-bit and 16-bit values,
// an 32-bit index width suffices. For 32-bit values, zero extending the
// elements into 64-bit loses some performance since the 32-bit indexed
// gather/scatter is more efficient than the 64-bit index variant (if the
// negative 32-bit index space is unused, the enableSIMDIndex32 flag can
// preserve this performance). For 64-bit values, there is no good way
// to state that the indices are unsigned, with creates the potential of
// incorrect address calculations in the unlikely case we need such
// extremely large offsets.
Type etp = ptr.getType().cast<MemRefType>().getElementType();
Value vload = genVectorLoad(codegen, rewriter, ptr, {s});
if (!etp.isa<IndexType>()) {
if (etp.getIntOrFloatBitWidth() < 32)
vload = rewriter.create<ZeroExtendIOp>(
loc, vload, vectorType(codegen, rewriter.getIntegerType(32)));
else if (etp.getIntOrFloatBitWidth() < 64 &&
!codegen.options.enableSIMDIndex32)
vload = rewriter.create<ZeroExtendIOp>(
loc, vload, vectorType(codegen, rewriter.getIntegerType(64)));
}
return vload;
}
// For the scalar case, we simply zero extend narrower indices into 64-bit
// values before casting to index without a performance penalty. Here too,
// however, indices that already are 64-bit, in theory, cannot express the
// full range as explained above.
Value load = rewriter.create<memref::LoadOp>(loc, ptr, s);
if (!load.getType().isa<IndexType>()) {
if (load.getType().getIntOrFloatBitWidth() < 64)
load = rewriter.create<ZeroExtendIOp>(loc, load,
rewriter.getIntegerType(64));
load = rewriter.create<IndexCastOp>(loc, load, rewriter.getIndexType());
}
return load;
}
/// Generates an invariant value.
static Value genInvariantValue(Merger &merger, CodeGen &codegen,
PatternRewriter &rewriter, unsigned exp) {
Value val = merger.exp(exp).val;
if (codegen.curVecLength > 1)
return genVectorInvariantValue(codegen, rewriter, val);
return val;
}
/// Generates an address computation "sz * p + i".
static Value genAddress(CodeGen &codegen, PatternRewriter &rewriter,
Location loc, Value size, Value p, Value i) {
Value mul = rewriter.create<MulIOp>(loc, size, p);
if (auto vtp = i.getType().dyn_cast<VectorType>()) {
Value inv = rewriter.create<IndexCastOp>(loc, mul, vtp.getElementType());
mul = genVectorInvariantValue(codegen, rewriter, inv);
}
return rewriter.create<AddIOp>(loc, mul, i);
}
/// Generates start of a reduction.
static Value genReductionStart(Merger &merger, CodeGen &codegen,
PatternRewriter &rewriter,
linalg::GenericOp op) {
if (codegen.redVal)
return codegen.redVal; // chained with previous for-loop
if (codegen.curVecLength > 1) {
// TODO: assumes + reductions for now
VectorType vtp = vectorType(codegen, codegen.buffers[codegen.redExp]);
return rewriter.create<ConstantOp>(op.getLoc(), vtp,
rewriter.getZeroAttr(vtp));
}
return genTensorLoad(merger, codegen, rewriter, op, codegen.redExp);
}
/// Generates end of a reduction.
static void genReductionEnd(Merger &merger, CodeGen &codegen,
PatternRewriter &rewriter, linalg::GenericOp op) {
Value red = codegen.redVal;
if (!red)
return;
assert(codegen.curVecLength == 1);
codegen.redVal = merger.exp(codegen.redExp).val = Value(); // end chain
OpOperand *lhs = op.getOutputOperand(0);
if (auto vtp = red.getType().dyn_cast<VectorType>()) {
// TODO: assumes + reductions for now
StringAttr kind = rewriter.getStringAttr("add");
Value ld = genTensorLoad(merger, codegen, rewriter, op, codegen.redExp);
// Integer reductions don't accept an accumulator.
if (vtp.getElementType().isa<IntegerType>()) {
red = rewriter.create<vector::ReductionOp>(op.getLoc(), ld.getType(),
kind, red, ValueRange{});
red = rewriter.create<AddIOp>(op.getLoc(), red, ld);
} else {
red = rewriter.create<vector::ReductionOp>(op.getLoc(), ld.getType(),
kind, red, ld);
}
}
genTensorStore(merger, codegen, rewriter, op, lhs, red);
}
/// Recursively generates tensor expression.
static Value genExp(Merger &merger, CodeGen &codegen, PatternRewriter &rewriter,
linalg::GenericOp op, unsigned exp) {
if (merger.exp(exp).kind == Kind::kTensor)
return genTensorLoad(merger, codegen, rewriter, op, exp);
else if (merger.exp(exp).kind == Kind::kInvariant)
return genInvariantValue(merger, codegen, rewriter, exp);
Value v0 = genExp(merger, codegen, rewriter, op, merger.exp(exp).e0);
Value v1 = genExp(merger, codegen, rewriter, op, merger.exp(exp).e1);
switch (merger.exp(exp).kind) {
case Kind::kTensor:
case Kind::kInvariant:
llvm_unreachable("handled above");
case Kind::kMulF:
return rewriter.create<MulFOp>(op.getLoc(), v0, v1);
case Kind::kMulI:
return rewriter.create<MulIOp>(op.getLoc(), v0, v1);
case Kind::kAddF:
return rewriter.create<AddFOp>(op.getLoc(), v0, v1);
case Kind::kAddI:
return rewriter.create<AddIOp>(op.getLoc(), v0, v1);
}
2021-01-19 13:59:15 +08:00
llvm_unreachable("unexpected expression kind");
}
/// Hoists loop invariant tensor loads for which indices have been exhausted.
static void genInvariants(Merger &merger, CodeGen &codegen,
PatternRewriter &rewriter, linalg::GenericOp op,
unsigned exp, unsigned ldx, bool hoist) {
if (merger.exp(exp).kind == Kind::kTensor) {
// Inspect tensor indices.
bool atLevel = ldx == -1u;
OpOperand *t = op.getInputAndOutputOperands()[merger.exp(exp).e0];
auto map = op.getTiedIndexingMap(t);
auto enc = getSparseTensorEncoding(t->get().getType());
for (unsigned d = 0, rank = map.getNumResults(); d < rank; d++) {
unsigned idx = map.getDimPosition(perm(enc, d));
if (!codegen.loops[idx])
return; // still in play
else if (idx == ldx)
atLevel = true;
}
// All exhausted at this level (atLevel denotes exactly at this level).
OpOperand *lhs = op.getOutputOperand(0);
if (lhs == t) {
codegen.redExp = hoist ? exp : -1u;
} else if (atLevel) {
merger.exp(exp).val =
hoist ? genTensorLoad(merger, codegen, rewriter, op, exp) : Value();
}
} else if (merger.exp(exp).kind != Kind::kInvariant) {
// Traverse into the binary operations. Note that we only hoist
// tensor loads, since subsequent MLIR/LLVM passes know how to
// deal with all other kinds of derived loop invariants.
unsigned e0 = merger.exp(exp).e0;
unsigned e1 = merger.exp(exp).e1;
genInvariants(merger, codegen, rewriter, op, e0, ldx, hoist);
genInvariants(merger, codegen, rewriter, op, e1, ldx, hoist);
}
}
/// Generates initialization code for the subsequent loop sequence at
/// current index level. Returns true if the loop sequence needs to
/// maintain the universal index.
static bool genInit(Merger &merger, CodeGen &codegen, PatternRewriter &rewriter,
linalg::GenericOp op, std::vector<unsigned> &topSort,
unsigned at, llvm::BitVector &inits) {
bool needsUniv = false;
Location loc = op.getLoc();
unsigned idx = topSort[at];
// Initialize sparse positions.
for (unsigned b = 0, be = inits.size(); b < be; b++) {
if (inits[b]) {
unsigned tensor = merger.tensor(b);
assert(idx == merger.index(b));
if (merger.isDim(b, Dim::kSparse)) {
// Initialize sparse index.
unsigned pat = at;
for (; pat != 0; pat--) {
if (codegen.pidxs[tensor][topSort[pat - 1]])
break;
}
Value ptr = codegen.pointers[tensor][idx];
Value one = rewriter.create<ConstantIndexOp>(loc, 1);
Value p0 = (pat == 0) ? rewriter.create<ConstantIndexOp>(loc, 0)
: codegen.pidxs[tensor][topSort[pat - 1]];
codegen.pidxs[tensor][idx] = genLoad(codegen, rewriter, loc, ptr, p0);
Value p1 = rewriter.create<AddIOp>(loc, p0, one);
codegen.highs[tensor][idx] = genLoad(codegen, rewriter, loc, ptr, p1);
} else {
// Dense index still in play.
needsUniv = true;
}
}
}
// Initialize the universal dense index.
codegen.loops[idx] = rewriter.create<ConstantIndexOp>(loc, 0);
return needsUniv;
}
/// Returns vectorization strategy. Any implicit inner loop in the Linalg
/// operation is a candidate. Whether it is actually converted to SIMD code
/// depends on the requested strategy.
static bool isVectorFor(CodeGen &codegen, bool isInner, bool isSparse) {
switch (codegen.options.vectorizationStrategy) {
case SparseVectorizationStrategy::kNone:
return false;
case SparseVectorizationStrategy::kDenseInnerLoop:
return isInner && !isSparse;
case SparseVectorizationStrategy::kAnyStorageInnerLoop:
return isInner;
}
2021-01-19 13:59:15 +08:00
llvm_unreachable("unexpected vectorization strategy");
}
/// Returns parallelization strategy. Any implicit loop in the Linalg operation
/// that is marked "parallel" is a candidate. Whether it is actually converted
/// to a parallel operation depends on the requested strategy.
static bool isParallelFor(CodeGen &codegen, bool isOuter, bool isReduction,
bool isSparse, bool isVector) {
switch (codegen.options.parallelizationStrategy) {
case SparseParallelizationStrategy::kNone:
return false;
case SparseParallelizationStrategy::kDenseOuterLoop:
return isOuter && !isSparse && !isReduction && !isVector;
case SparseParallelizationStrategy::kAnyStorageOuterLoop:
return isOuter && !isReduction && !isVector;
case SparseParallelizationStrategy::kDenseAnyLoop:
return !isSparse && !isReduction && !isVector;
case SparseParallelizationStrategy::kAnyStorageAnyLoop:
return !isReduction && !isVector;
}
2021-01-19 13:59:15 +08:00
llvm_unreachable("unexpected parallelization strategy");
}
/// Checks unit strides for dense tensors. The iteration graph may have ignored
/// dense access patterns in order to avoid cycles (sparse access patterns are
/// always placed innermost), but that means dense access has become strided.
/// For now, we reject vectorization of such cases.
/// TODO: implement strided load/stores on dense arrays
static bool denseUnitStrides(Merger &merger, linalg::GenericOp op,
unsigned idx) {
for (OpOperand *t : op.getInputAndOutputOperands()) {
if (!getSparseTensorEncoding(t->get().getType())) {
auto map = op.getTiedIndexingMap(t);
for (unsigned d = 0, rank = map.getNumResults(); d < rank; d++) {
if (map.getDimPosition(d) == idx && d != rank - 1)
return false;
}
}
}
return true;
}
/// Generates a for-loop on a single index.
static Operation *genFor(Merger &merger, CodeGen &codegen,
PatternRewriter &rewriter, linalg::GenericOp op,
bool isOuter, bool isInner, unsigned idx,
llvm::BitVector &indices) {
unsigned fb = indices.find_first();
unsigned tensor = merger.tensor(fb);
assert(idx == merger.index(fb));
auto iteratorTypes = op.iterator_types().getValue();
bool isReduction = linalg::isReductionIteratorType(iteratorTypes[idx]);
bool isSparse = merger.isDim(fb, Dim::kSparse);
bool isVector = isVectorFor(codegen, isInner, isSparse) &&
denseUnitStrides(merger, op, idx);
bool isParallel =
isParallelFor(codegen, isOuter, isReduction, isSparse, isVector);
// Prepare vector length.
if (isVector)
codegen.curVecLength = codegen.options.vectorLength;
// Loop bounds and increment.
Location loc = op.getLoc();
Value lo = isSparse ? codegen.pidxs[tensor][idx] : codegen.loops[idx];
Value hi = isSparse ? codegen.highs[tensor][idx] : codegen.sizes[idx];
Value step = rewriter.create<ConstantIndexOp>(loc, codegen.curVecLength);
// Emit a parallel loop.
if (isParallel) {
assert(!isVector);
scf::ParallelOp parOp = rewriter.create<scf::ParallelOp>(loc, lo, hi, step);
if (isSparse)
codegen.pidxs[tensor][idx] = parOp.getInductionVars()[0];
else
codegen.loops[idx] = parOp.getInductionVars()[0];
rewriter.setInsertionPointToStart(parOp.getBody());
return parOp;
}
// Emit a sequential loop, potentially with a scalarized reduction.
bool scalarRed = isInner && codegen.redExp != -1u;
SmallVector<Value, 4> operands;
if (scalarRed) {
Value load = genReductionStart(merger, codegen, rewriter, op);
operands.push_back(load);
}
scf::ForOp forOp = rewriter.create<scf::ForOp>(loc, lo, hi, step, operands);
if (scalarRed) {
codegen.redVal = merger.exp(codegen.redExp).val =
forOp.getRegionIterArgs().front();
}
// Assign induction variable to sparse or dense index.
Value iv = forOp.getInductionVar();
if (isSparse)
codegen.pidxs[tensor][idx] = iv;
else
codegen.loops[idx] = iv;
rewriter.setInsertionPointToStart(forOp.getBody());
// Share vector iteration mask between all subsequent loads/stores.
if (isVector)
codegen.curVecMask = genVectorMask(codegen, rewriter, iv, lo, hi, step);
return forOp;
}
/// Emit a while-loop for co-iteration over multiple indices.
static Operation *genWhile(Merger &merger, CodeGen &codegen,
PatternRewriter &rewriter, linalg::GenericOp op,
unsigned idx, bool needsUniv,
llvm::BitVector &indices) {
SmallVector<Type, 4> types;
SmallVector<Value, 4> operands;
// Construct the while-loop with a parameter for each index.
Type indexType = rewriter.getIndexType();
for (unsigned b = 0, be = indices.size(); b < be; b++) {
if (indices[b] && merger.isDim(b, Dim::kSparse)) {
unsigned tensor = merger.tensor(b);
assert(idx == merger.index(b));
types.push_back(indexType);
assert(codegen.pidxs[tensor][idx].getType().isa<IndexType>() &&
"type mismatch for sparse index");
operands.push_back(codegen.pidxs[tensor][idx]);
}
}
if (needsUniv) {
types.push_back(indexType);
assert(codegen.loops[idx].getType().isa<IndexType>() &&
"type mismatch for universal index");
operands.push_back(codegen.loops[idx]);
}
Location loc = op.getLoc();
scf::WhileOp whileOp = rewriter.create<scf::WhileOp>(loc, types, operands);
Block *before = rewriter.createBlock(&whileOp.before(), {}, types);
Block *after = rewriter.createBlock(&whileOp.after(), {}, types);
// Build the "before" region, which effectively consists
// of a conjunction of "i < upper" tests on all induction.
rewriter.setInsertionPointToStart(&whileOp.before().front());
Value cond;
unsigned o = 0;
for (unsigned b = 0, be = indices.size(); b < be; b++) {
if (indices[b] && merger.isDim(b, Dim::kSparse)) {
unsigned tensor = merger.tensor(b);
assert(idx == merger.index(b));
Value op1 = before->getArgument(o);
Value op2 = codegen.highs[tensor][idx];
Value opc = rewriter.create<CmpIOp>(loc, CmpIPredicate::ult, op1, op2);
cond = cond ? rewriter.create<AndOp>(loc, cond, opc) : opc;
codegen.pidxs[tensor][idx] = after->getArgument(o++);
}
}
if (needsUniv)
codegen.loops[idx] = after->getArgument(o++);
assert(o == operands.size());
rewriter.create<scf::ConditionOp>(loc, cond, before->getArguments());
rewriter.setInsertionPointToStart(&whileOp.after().front());
return whileOp;
}
/// Generates a for-loop or a while-loop, depending on whether it implements
/// singleton iteration or co-iteration over the given conjunction.
static Operation *genLoop(Merger &merger, CodeGen &codegen,
PatternRewriter &rewriter, linalg::GenericOp op,
std::vector<unsigned> &topSort, unsigned at,
bool needsUniv, llvm::BitVector &indices) {
unsigned idx = topSort[at];
if (indices.count() == 1) {
bool isOuter = at == 0;
bool isInner = at == topSort.size() - 1;
return genFor(merger, codegen, rewriter, op, isOuter, isInner, idx,
indices);
}
genReductionEnd(merger, codegen, rewriter, op); // cannot chain
return genWhile(merger, codegen, rewriter, op, idx, needsUniv, indices);
}
/// Generates the local variables for this loop, consisting of the sparse
/// indices, restored universal dense index, and dense positions.
static void genLocals(Merger &merger, CodeGen &codegen,
PatternRewriter &rewriter, linalg::GenericOp op,
std::vector<unsigned> &topSort, unsigned at,
bool needsUniv, llvm::BitVector &locals) {
Location loc = op.getLoc();
unsigned idx = topSort[at];
// Initialize sparse indices.
Value min;
for (unsigned b = 0, be = locals.size(); b < be; b++) {
if (locals[b] && merger.isDim(b, Dim::kSparse)) {
unsigned tensor = merger.tensor(b);
assert(idx == merger.index(b));
Value ptr = codegen.indices[tensor][idx];
Value s = codegen.pidxs[tensor][idx];
Value load = genLoad(codegen, rewriter, loc, ptr, s);
codegen.idxs[tensor][idx] = load;
if (!needsUniv) {
if (min) {
Value cmp =
rewriter.create<CmpIOp>(loc, CmpIPredicate::ult, load, min);
min = rewriter.create<SelectOp>(loc, cmp, load, min);
} else {
min = load;
}
}
}
}
// Merge dense universal index over minimum.
if (min) {
assert(!needsUniv);
codegen.loops[idx] = min;
}
// Initialize dense positions. Note that we generate dense indices of the
// output tensor unconditionally, since they may not appear in the lattice,
// but may be needed for linearized codegen.
for (unsigned b = 0, be = locals.size(); b < be; b++) {
if ((locals[b] || merger.isOutTensor(b, idx)) &&
merger.isDim(b, Dim::kDense)) {
unsigned tensor = merger.tensor(b);
assert(idx == merger.index(b));
unsigned pat = at;
for (; pat != 0; pat--)
if (codegen.pidxs[tensor][topSort[pat - 1]])
break;
Value p = (pat == 0) ? rewriter.create<ConstantIndexOp>(loc, 0)
: codegen.pidxs[tensor][topSort[pat - 1]];
codegen.pidxs[tensor][idx] = genAddress(
codegen, rewriter, loc, codegen.sizes[idx], p, codegen.loops[idx]);
}
}
}
/// Generates the induction structure for a while-loop.
static void genWhileInduction(Merger &merger, CodeGen &codegen,
PatternRewriter &rewriter, linalg::GenericOp op,
unsigned idx, bool needsUniv,
llvm::BitVector &induction, ResultRange results) {
Location loc = op.getLoc();
unsigned o = 0;
SmallVector<Value, 4> operands;
Value one = rewriter.create<ConstantIndexOp>(loc, 1);
for (unsigned b = 0, be = induction.size(); b < be; b++) {
if (induction[b] && merger.isDim(b, Dim::kSparse)) {
unsigned tensor = merger.tensor(b);
assert(idx == merger.index(b));
Value op1 = codegen.idxs[tensor][idx];
Value op2 = codegen.loops[idx];
Value op3 = codegen.pidxs[tensor][idx];
Value cmp = rewriter.create<CmpIOp>(loc, CmpIPredicate::eq, op1, op2);
Value add = rewriter.create<AddIOp>(loc, op3, one);
operands.push_back(rewriter.create<SelectOp>(loc, cmp, add, op3));
codegen.pidxs[tensor][idx] = results[o++];
}
}
if (needsUniv) {
operands.push_back(rewriter.create<AddIOp>(loc, codegen.loops[idx], one));
codegen.loops[idx] = results[o++];
}
assert(o == operands.size());
rewriter.create<scf::YieldOp>(loc, operands);
}
/// Generates a single if-statement within a while-loop.
static scf::IfOp genIf(Merger &merger, CodeGen &codegen,
PatternRewriter &rewriter, linalg::GenericOp op,
unsigned idx, llvm::BitVector &conditions) {
Location loc = op.getLoc();
Value cond;
for (unsigned b = 0, be = conditions.size(); b < be; b++) {
if (conditions[b]) {
unsigned tensor = merger.tensor(b);
assert(idx == merger.index(b));
Value clause;
if (merger.isDim(b, Dim::kSparse)) {
Value op1 = codegen.idxs[tensor][idx];
Value op2 = codegen.loops[idx];
clause = rewriter.create<CmpIOp>(loc, CmpIPredicate::eq, op1, op2);
} else {
clause = rewriter.create<ConstantIntOp>(loc, 1, 1); // true
}
cond = cond ? rewriter.create<AndOp>(loc, cond, clause) : clause;
}
}
scf::IfOp ifOp = rewriter.create<scf::IfOp>(loc, cond, /*else*/ true);
rewriter.setInsertionPointToStart(&ifOp.thenRegion().front());
return ifOp;
}
/// Recursively generates code while computing iteration lattices in order
/// to manage the complexity of implementing co-iteration over unions
/// and intersections of sparse iterations spaces.
static void genStmt(Merger &merger, CodeGen &codegen, PatternRewriter &rewriter,
linalg::GenericOp op, std::vector<unsigned> &topSort,
unsigned exp, unsigned at) {
// At each leaf, assign remaining tensor (sub)expression to output tensor.
if (at == topSort.size()) {
OpOperand *lhs = op.getOutputOperand(0);
Value rhs = genExp(merger, codegen, rewriter, op, exp);
genTensorStore(merger, codegen, rewriter, op, lhs, rhs);
return;
}
assert(codegen.curVecLength == 1);
// Construct iteration lattices for current loop index, with L0 at top.
// Then emit initialization code for the loop sequence at this level.
// We maintain the universal dense index if dense indices are still
// in play for a non-singleton loop sequence.
Location loc = op.getLoc();
unsigned idx = topSort[at];
unsigned lts = merger.optimizeSet(buildLattices(merger, op, exp, idx));
unsigned lsize = merger.set(lts).size();
assert(lsize != 0);
unsigned l0 = merger.set(lts)[0];
unsigned ldx = at == 0 ? -1u : topSort[at - 1];
genInvariants(merger, codegen, rewriter, op, exp, ldx, /*hoist=*/true);
bool needsUniv = false;
if (genInit(merger, codegen, rewriter, op, topSort, at,
merger.lat(l0).bits)) {
// Maintain the universal index only if it is actually
// consumed by a subsequent lattice point.
for (unsigned i = 1; i < lsize; i++) {
unsigned li = merger.set(lts)[i];
if (!merger.hasAnyDimOf(merger.lat(li).simple, Dim::kSparse)) {
needsUniv = true;
break;
}
}
}
// Emit a loop for every lattice point L0 >= Li.
for (unsigned i = 0; i < lsize; i++) {
unsigned li = merger.set(lts)[i];
// Emit loop.
codegen.curVecLength = 1;
llvm::BitVector indices = merger.lat(li).simple;
Operation *loop =
genLoop(merger, codegen, rewriter, op, topSort, at, needsUniv, indices);
genLocals(merger, codegen, rewriter, op, topSort, at, needsUniv,
merger.lat(li).bits);
// Visit all lattices points with Li >= Lj to generate the
// loop-body, possibly with if statements for coiteration.
bool isWhile = dyn_cast<scf::WhileOp>(loop) != nullptr;
for (unsigned j = 0; j < lsize; j++) {
unsigned lj = merger.set(lts)[j];
unsigned ej = merger.lat(lj).exp;
if (li == lj || merger.latGT(li, lj)) {
// Recurse into body of each branch.
if (isWhile) {
scf::IfOp ifOp =
genIf(merger, codegen, rewriter, op, idx, merger.lat(lj).simple);
genStmt(merger, codegen, rewriter, op, topSort, ej, at + 1);
rewriter.setInsertionPointToStart(&ifOp.elseRegion().front());
} else {
genStmt(merger, codegen, rewriter, op, topSort, ej, at + 1);
}
}
}
// Wrap-up induction and restore insertion point.
if (isWhile) {
scf::WhileOp whileOp = cast<scf::WhileOp>(loop);
rewriter.setInsertionPointToEnd(&whileOp.after().front());
genWhileInduction(merger, codegen, rewriter, op, idx, needsUniv,
merger.lat(li).bits, whileOp.results());
} else {
needsUniv = false;
if (codegen.redVal) {
rewriter.create<scf::YieldOp>(loc, codegen.redVal);
codegen.redVal = loop->getResult(0);
}
}
rewriter.setInsertionPointAfter(loop);
}
// Wrap-up loop sequence.
codegen.curVecLength = 1;
genReductionEnd(merger, codegen, rewriter, op);
genInvariants(merger, codegen, rewriter, op, exp, ldx, /*hoist=*/false);
codegen.loops[idx] = Value();
}
/// Converts the result computed by the sparse kernel into the required form.
static void genResult(CodeGen &codegen, PatternRewriter &rewriter,
linalg::GenericOp op) {
RankedTensorType resType = op.getOutputTensorTypes()[0];
Value result = codegen.buffers.back();
if (getSparseTensorEncoding(resType))
result = rewriter.create<ToTensorOp>(op.getLoc(), resType, result);
else
result =
rewriter.create<memref::TensorLoadOp>(op.getLoc(), resType, result);
rewriter.replaceOp(op, result);
}
namespace {
/// Sparse rewriting rule for generic Lingalg operation.
struct GenericOpSparsifier : public OpRewritePattern<linalg::GenericOp> {
public:
GenericOpSparsifier(MLIRContext *context, SparsificationOptions o)
: OpRewritePattern<linalg::GenericOp>(context), options(o) {}
LogicalResult matchAndRewrite(linalg::GenericOp op,
PatternRewriter &rewriter) const override {
// Detects sparse annotations and translate the per-dimension sparsity
// information for all tensors to loop indices in the kernel.
assert(op.getNumOutputs() == 1);
unsigned numTensors = op.getNumInputsAndOutputs();
unsigned numLoops = op.iterator_types().getValue().size();
Merger merger(numTensors, numLoops);
if (!findSparseAnnotations(merger, op))
return failure();
// Computes a topologically sorted iteration graph to ensure
// tensors are visited in natural index order. Fails on cycles.
// This assumes that higher-level passes have already put the
// tensors in each tensor expression in a feasible order.
std::vector<unsigned> topSort;
if (!computeIterationGraph(merger, op, topSort, /*sparseOnly=*/false) &&
!computeIterationGraph(merger, op, topSort, /*sparseOnly=*/true))
return failure();
// Finds the terminating yield statement and builds the tensor
// expression for the Linalg operation in SSA form.
Operation *yield = op.region().front().getTerminator();
Optional<unsigned> exp = buildTensorExp(merger, op, yield->getOperand(0));
if (!exp.hasValue())
return failure(); // build failure
// Recursively generates code.
CodeGen codegen(options, numTensors, numLoops);
if (!genBuffers(merger, codegen, rewriter, op))
return failure(); // could not bufferize
genStmt(merger, codegen, rewriter, op, topSort, exp.getValue(), 0);
genResult(codegen, rewriter, op);
return success();
}
private:
/// Options to control sparse code generation.
SparsificationOptions options;
};
} // namespace
/// Populates the given patterns list with rewriting rules required for
/// the sparsification of linear algebra operations.
void mlir::populateSparsificationPatterns(
RewritePatternSet &patterns, const SparsificationOptions &options) {
patterns.add<GenericOpSparsifier>(patterns.getContext(), options);
}