llvm-project/clang/lib/StaticAnalyzer/Core/Store.cpp

513 lines
19 KiB
C++
Raw Normal View History

//===- Store.cpp - Interface for maps from Locations to Values ------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defined the types Store and StoreManager.
//
//===----------------------------------------------------------------------===//
#include "clang/StaticAnalyzer/Core/PathSensitive/Store.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/CXXInheritance.h"
#include "clang/AST/CharUnits.h"
#include "clang/AST/Decl.h"
#include "clang/AST/DeclCXX.h"
#include "clang/AST/DeclObjC.h"
#include "clang/AST/Expr.h"
#include "clang/AST/Type.h"
#include "clang/Basic/LLVM.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/BasicValueFactory.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/MemRegion.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/SValBuilder.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/SVals.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/StoreRef.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/SymExpr.h"
#include "llvm/ADT/APSInt.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/ErrorHandling.h"
#include <cassert>
#include <cstdint>
using namespace clang;
using namespace ento;
StoreManager::StoreManager(ProgramStateManager &stateMgr)
: svalBuilder(stateMgr.getSValBuilder()), StateMgr(stateMgr),
MRMgr(svalBuilder.getRegionManager()), Ctx(stateMgr.getContext()) {}
StoreRef StoreManager::enterStackFrame(Store OldStore,
const CallEvent &Call,
const StackFrameContext *LCtx) {
StoreRef Store = StoreRef(OldStore, *this);
SmallVector<CallEvent::FrameBindingTy, 16> InitialBindings;
Call.getInitialStackFrameContents(LCtx, InitialBindings);
for (const auto &I : InitialBindings)
Store = Bind(Store.getStore(), I.first, I.second);
return Store;
}
const ElementRegion *StoreManager::MakeElementRegion(const SubRegion *Base,
QualType EleTy,
uint64_t index) {
NonLoc idx = svalBuilder.makeArrayIndex(index);
return MRMgr.getElementRegion(EleTy, idx, Base, svalBuilder.getContext());
}
const ElementRegion *StoreManager::GetElementZeroRegion(const SubRegion *R,
QualType T) {
NonLoc idx = svalBuilder.makeZeroArrayIndex();
assert(!T.isNull());
return MRMgr.getElementRegion(T, idx, R, Ctx);
}
const MemRegion *StoreManager::castRegion(const MemRegion *R, QualType CastToTy) {
ASTContext &Ctx = StateMgr.getContext();
// Handle casts to Objective-C objects.
This is a fairly large patch, which resulted from a cascade of changes made to RegionStore (and related classes) in order to handle some analyzer failures involving casts and manipulation of symbolic memory. The root of the change is in StoreManager::CastRegion(). Instead of using ad hoc heuristics to decide when to layer an ElementRegion on a casted MemRegion, we now always layer an ElementRegion when the cast type is different than the original type of the region. This carries the current cast information associated with a region around without resorting to the error prone recording of "casted types" in GRState. Along with this new policy of layering ElementRegions, I added a new algorithm to strip away existing ElementRegions when they simply represented casts of a base memory object. This algorithm computes the raw "byte offset" that an ElementRegion represents from the base region, and allows the new ElementRegion to be based off that offset. The added benefit is that this naturally handles a series of casts of a MemRegion without building up a set of redundant ElementRegions (thus canonicalizing the region view). Other related changes that cascaded from this one (as tests were failing in RegionStore): - Revamped RegionStoreManager::InvalidateRegion() to completely remove all bindings and default values from a region and all subregions. Now invalidated fields are not bound directly to new symbolic values; instead the base region has a "default" symbol value from which "derived symbols" can be created. The main advantage of this approach is that it allows us to invalidate a region hierarchy and then lazily instantiate new values no matter how deep the hierarchy went (i.e., regardless of the number of field accesses, e.g. x->f->y->z->...). The previous approach did not do this. - Slightly reworked RegionStoreManager::RemoveDeadBindings() to also incorporate live symbols and live regions that do not have direct bindings but also have "default values" used for lazy instantiation. The changes to 'InvalidateRegion' revealed that these were necessary in order to achieve lazy instantiation of values in the region store with those bindings being removed too early. - The changes to InvalidateRegion() and RemoveDeadBindings() revealed a serious bug in 'getSubRegionMap()' where not all region -> subregion relationships involved in actually bindings (explicit and implicit) were being recorded. This has been fixed by using a worklist algorithm to iteratively fill in the region map. - Added special support to RegionStoreManager::Bind()/Retrieve() to handle OSAtomicCompareAndSwap in light of the new 'CastRegion' changes and the layering of ElementRegions. - Fixed a bug in SymbolReaper::isLive() where derived symbols were not being marked live if the symbol they were derived from was also live. This fix was critical for getting lazy instantiation in RegionStore to work. - Tidied up the implementation of ValueManager::getXXXSymbolVal() methods to use SymbolManager::canSymbolicate() to decide whether or not a symbol should be symbolicated. - 'test/Analysis/misc-ps-xfail.m' now passes; that test case has been moved to 'test/Analysis/misc-ps.m'. - Tweaked some pretty-printing of MemRegions, and implemented 'ElementRegion::getRawOffset()' for use with the CastRegion changes. llvm-svn: 77782
2009-08-01 14:17:29 +08:00
if (CastToTy->isObjCObjectPointerType())
return R->StripCasts();
This is a fairly large patch, which resulted from a cascade of changes made to RegionStore (and related classes) in order to handle some analyzer failures involving casts and manipulation of symbolic memory. The root of the change is in StoreManager::CastRegion(). Instead of using ad hoc heuristics to decide when to layer an ElementRegion on a casted MemRegion, we now always layer an ElementRegion when the cast type is different than the original type of the region. This carries the current cast information associated with a region around without resorting to the error prone recording of "casted types" in GRState. Along with this new policy of layering ElementRegions, I added a new algorithm to strip away existing ElementRegions when they simply represented casts of a base memory object. This algorithm computes the raw "byte offset" that an ElementRegion represents from the base region, and allows the new ElementRegion to be based off that offset. The added benefit is that this naturally handles a series of casts of a MemRegion without building up a set of redundant ElementRegions (thus canonicalizing the region view). Other related changes that cascaded from this one (as tests were failing in RegionStore): - Revamped RegionStoreManager::InvalidateRegion() to completely remove all bindings and default values from a region and all subregions. Now invalidated fields are not bound directly to new symbolic values; instead the base region has a "default" symbol value from which "derived symbols" can be created. The main advantage of this approach is that it allows us to invalidate a region hierarchy and then lazily instantiate new values no matter how deep the hierarchy went (i.e., regardless of the number of field accesses, e.g. x->f->y->z->...). The previous approach did not do this. - Slightly reworked RegionStoreManager::RemoveDeadBindings() to also incorporate live symbols and live regions that do not have direct bindings but also have "default values" used for lazy instantiation. The changes to 'InvalidateRegion' revealed that these were necessary in order to achieve lazy instantiation of values in the region store with those bindings being removed too early. - The changes to InvalidateRegion() and RemoveDeadBindings() revealed a serious bug in 'getSubRegionMap()' where not all region -> subregion relationships involved in actually bindings (explicit and implicit) were being recorded. This has been fixed by using a worklist algorithm to iteratively fill in the region map. - Added special support to RegionStoreManager::Bind()/Retrieve() to handle OSAtomicCompareAndSwap in light of the new 'CastRegion' changes and the layering of ElementRegions. - Fixed a bug in SymbolReaper::isLive() where derived symbols were not being marked live if the symbol they were derived from was also live. This fix was critical for getting lazy instantiation in RegionStore to work. - Tidied up the implementation of ValueManager::getXXXSymbolVal() methods to use SymbolManager::canSymbolicate() to decide whether or not a symbol should be symbolicated. - 'test/Analysis/misc-ps-xfail.m' now passes; that test case has been moved to 'test/Analysis/misc-ps.m'. - Tweaked some pretty-printing of MemRegions, and implemented 'ElementRegion::getRawOffset()' for use with the CastRegion changes. llvm-svn: 77782
2009-08-01 14:17:29 +08:00
if (CastToTy->isBlockPointerType()) {
// FIXME: We may need different solutions, depending on the symbol
// involved. Blocks can be casted to/from 'id', as they can be treated
// as Objective-C objects. This could possibly be handled by enhancing
// our reasoning of downcasts of symbolic objects.
if (isa<CodeTextRegion>(R) || isa<SymbolicRegion>(R))
return R;
// We don't know what to make of it. Return a NULL region, which
// will be interpretted as UnknownVal.
return nullptr;
}
// Now assume we are casting from pointer to pointer. Other cases should
// already be handled.
QualType PointeeTy = CastToTy->getPointeeType();
QualType CanonPointeeTy = Ctx.getCanonicalType(PointeeTy);
// Handle casts to void*. We just pass the region through.
if (CanonPointeeTy.getLocalUnqualifiedType() == Ctx.VoidTy)
return R;
// Handle casts from compatible types.
This is a fairly large patch, which resulted from a cascade of changes made to RegionStore (and related classes) in order to handle some analyzer failures involving casts and manipulation of symbolic memory. The root of the change is in StoreManager::CastRegion(). Instead of using ad hoc heuristics to decide when to layer an ElementRegion on a casted MemRegion, we now always layer an ElementRegion when the cast type is different than the original type of the region. This carries the current cast information associated with a region around without resorting to the error prone recording of "casted types" in GRState. Along with this new policy of layering ElementRegions, I added a new algorithm to strip away existing ElementRegions when they simply represented casts of a base memory object. This algorithm computes the raw "byte offset" that an ElementRegion represents from the base region, and allows the new ElementRegion to be based off that offset. The added benefit is that this naturally handles a series of casts of a MemRegion without building up a set of redundant ElementRegions (thus canonicalizing the region view). Other related changes that cascaded from this one (as tests were failing in RegionStore): - Revamped RegionStoreManager::InvalidateRegion() to completely remove all bindings and default values from a region and all subregions. Now invalidated fields are not bound directly to new symbolic values; instead the base region has a "default" symbol value from which "derived symbols" can be created. The main advantage of this approach is that it allows us to invalidate a region hierarchy and then lazily instantiate new values no matter how deep the hierarchy went (i.e., regardless of the number of field accesses, e.g. x->f->y->z->...). The previous approach did not do this. - Slightly reworked RegionStoreManager::RemoveDeadBindings() to also incorporate live symbols and live regions that do not have direct bindings but also have "default values" used for lazy instantiation. The changes to 'InvalidateRegion' revealed that these were necessary in order to achieve lazy instantiation of values in the region store with those bindings being removed too early. - The changes to InvalidateRegion() and RemoveDeadBindings() revealed a serious bug in 'getSubRegionMap()' where not all region -> subregion relationships involved in actually bindings (explicit and implicit) were being recorded. This has been fixed by using a worklist algorithm to iteratively fill in the region map. - Added special support to RegionStoreManager::Bind()/Retrieve() to handle OSAtomicCompareAndSwap in light of the new 'CastRegion' changes and the layering of ElementRegions. - Fixed a bug in SymbolReaper::isLive() where derived symbols were not being marked live if the symbol they were derived from was also live. This fix was critical for getting lazy instantiation in RegionStore to work. - Tidied up the implementation of ValueManager::getXXXSymbolVal() methods to use SymbolManager::canSymbolicate() to decide whether or not a symbol should be symbolicated. - 'test/Analysis/misc-ps-xfail.m' now passes; that test case has been moved to 'test/Analysis/misc-ps.m'. - Tweaked some pretty-printing of MemRegions, and implemented 'ElementRegion::getRawOffset()' for use with the CastRegion changes. llvm-svn: 77782
2009-08-01 14:17:29 +08:00
if (R->isBoundable())
if (const auto *TR = dyn_cast<TypedValueRegion>(R)) {
QualType ObjTy = Ctx.getCanonicalType(TR->getValueType());
if (CanonPointeeTy == ObjTy)
return R;
This is a fairly large patch, which resulted from a cascade of changes made to RegionStore (and related classes) in order to handle some analyzer failures involving casts and manipulation of symbolic memory. The root of the change is in StoreManager::CastRegion(). Instead of using ad hoc heuristics to decide when to layer an ElementRegion on a casted MemRegion, we now always layer an ElementRegion when the cast type is different than the original type of the region. This carries the current cast information associated with a region around without resorting to the error prone recording of "casted types" in GRState. Along with this new policy of layering ElementRegions, I added a new algorithm to strip away existing ElementRegions when they simply represented casts of a base memory object. This algorithm computes the raw "byte offset" that an ElementRegion represents from the base region, and allows the new ElementRegion to be based off that offset. The added benefit is that this naturally handles a series of casts of a MemRegion without building up a set of redundant ElementRegions (thus canonicalizing the region view). Other related changes that cascaded from this one (as tests were failing in RegionStore): - Revamped RegionStoreManager::InvalidateRegion() to completely remove all bindings and default values from a region and all subregions. Now invalidated fields are not bound directly to new symbolic values; instead the base region has a "default" symbol value from which "derived symbols" can be created. The main advantage of this approach is that it allows us to invalidate a region hierarchy and then lazily instantiate new values no matter how deep the hierarchy went (i.e., regardless of the number of field accesses, e.g. x->f->y->z->...). The previous approach did not do this. - Slightly reworked RegionStoreManager::RemoveDeadBindings() to also incorporate live symbols and live regions that do not have direct bindings but also have "default values" used for lazy instantiation. The changes to 'InvalidateRegion' revealed that these were necessary in order to achieve lazy instantiation of values in the region store with those bindings being removed too early. - The changes to InvalidateRegion() and RemoveDeadBindings() revealed a serious bug in 'getSubRegionMap()' where not all region -> subregion relationships involved in actually bindings (explicit and implicit) were being recorded. This has been fixed by using a worklist algorithm to iteratively fill in the region map. - Added special support to RegionStoreManager::Bind()/Retrieve() to handle OSAtomicCompareAndSwap in light of the new 'CastRegion' changes and the layering of ElementRegions. - Fixed a bug in SymbolReaper::isLive() where derived symbols were not being marked live if the symbol they were derived from was also live. This fix was critical for getting lazy instantiation in RegionStore to work. - Tidied up the implementation of ValueManager::getXXXSymbolVal() methods to use SymbolManager::canSymbolicate() to decide whether or not a symbol should be symbolicated. - 'test/Analysis/misc-ps-xfail.m' now passes; that test case has been moved to 'test/Analysis/misc-ps.m'. - Tweaked some pretty-printing of MemRegions, and implemented 'ElementRegion::getRawOffset()' for use with the CastRegion changes. llvm-svn: 77782
2009-08-01 14:17:29 +08:00
}
// Process region cast according to the kind of the region being cast.
switch (R->getKind()) {
case MemRegion::CXXThisRegionKind:
case MemRegion::CodeSpaceRegionKind:
case MemRegion::StackLocalsSpaceRegionKind:
case MemRegion::StackArgumentsSpaceRegionKind:
case MemRegion::HeapSpaceRegionKind:
case MemRegion::UnknownSpaceRegionKind:
case MemRegion::StaticGlobalSpaceRegionKind:
case MemRegion::GlobalInternalSpaceRegionKind:
case MemRegion::GlobalSystemSpaceRegionKind:
case MemRegion::GlobalImmutableSpaceRegionKind: {
llvm_unreachable("Invalid region cast");
}
case MemRegion::FunctionCodeRegionKind:
case MemRegion::BlockCodeRegionKind:
case MemRegion::BlockDataRegionKind:
case MemRegion::StringRegionKind:
// FIXME: Need to handle arbitrary downcasts.
This is a fairly large patch, which resulted from a cascade of changes made to RegionStore (and related classes) in order to handle some analyzer failures involving casts and manipulation of symbolic memory. The root of the change is in StoreManager::CastRegion(). Instead of using ad hoc heuristics to decide when to layer an ElementRegion on a casted MemRegion, we now always layer an ElementRegion when the cast type is different than the original type of the region. This carries the current cast information associated with a region around without resorting to the error prone recording of "casted types" in GRState. Along with this new policy of layering ElementRegions, I added a new algorithm to strip away existing ElementRegions when they simply represented casts of a base memory object. This algorithm computes the raw "byte offset" that an ElementRegion represents from the base region, and allows the new ElementRegion to be based off that offset. The added benefit is that this naturally handles a series of casts of a MemRegion without building up a set of redundant ElementRegions (thus canonicalizing the region view). Other related changes that cascaded from this one (as tests were failing in RegionStore): - Revamped RegionStoreManager::InvalidateRegion() to completely remove all bindings and default values from a region and all subregions. Now invalidated fields are not bound directly to new symbolic values; instead the base region has a "default" symbol value from which "derived symbols" can be created. The main advantage of this approach is that it allows us to invalidate a region hierarchy and then lazily instantiate new values no matter how deep the hierarchy went (i.e., regardless of the number of field accesses, e.g. x->f->y->z->...). The previous approach did not do this. - Slightly reworked RegionStoreManager::RemoveDeadBindings() to also incorporate live symbols and live regions that do not have direct bindings but also have "default values" used for lazy instantiation. The changes to 'InvalidateRegion' revealed that these were necessary in order to achieve lazy instantiation of values in the region store with those bindings being removed too early. - The changes to InvalidateRegion() and RemoveDeadBindings() revealed a serious bug in 'getSubRegionMap()' where not all region -> subregion relationships involved in actually bindings (explicit and implicit) were being recorded. This has been fixed by using a worklist algorithm to iteratively fill in the region map. - Added special support to RegionStoreManager::Bind()/Retrieve() to handle OSAtomicCompareAndSwap in light of the new 'CastRegion' changes and the layering of ElementRegions. - Fixed a bug in SymbolReaper::isLive() where derived symbols were not being marked live if the symbol they were derived from was also live. This fix was critical for getting lazy instantiation in RegionStore to work. - Tidied up the implementation of ValueManager::getXXXSymbolVal() methods to use SymbolManager::canSymbolicate() to decide whether or not a symbol should be symbolicated. - 'test/Analysis/misc-ps-xfail.m' now passes; that test case has been moved to 'test/Analysis/misc-ps.m'. - Tweaked some pretty-printing of MemRegions, and implemented 'ElementRegion::getRawOffset()' for use with the CastRegion changes. llvm-svn: 77782
2009-08-01 14:17:29 +08:00
case MemRegion::SymbolicRegionKind:
case MemRegion::AllocaRegionKind:
case MemRegion::CompoundLiteralRegionKind:
case MemRegion::FieldRegionKind:
case MemRegion::ObjCIvarRegionKind:
case MemRegion::ObjCStringRegionKind:
case MemRegion::VarRegionKind:
case MemRegion::CXXTempObjectRegionKind:
case MemRegion::CXXBaseObjectRegionKind:
return MakeElementRegion(cast<SubRegion>(R), PointeeTy);
This is a fairly large patch, which resulted from a cascade of changes made to RegionStore (and related classes) in order to handle some analyzer failures involving casts and manipulation of symbolic memory. The root of the change is in StoreManager::CastRegion(). Instead of using ad hoc heuristics to decide when to layer an ElementRegion on a casted MemRegion, we now always layer an ElementRegion when the cast type is different than the original type of the region. This carries the current cast information associated with a region around without resorting to the error prone recording of "casted types" in GRState. Along with this new policy of layering ElementRegions, I added a new algorithm to strip away existing ElementRegions when they simply represented casts of a base memory object. This algorithm computes the raw "byte offset" that an ElementRegion represents from the base region, and allows the new ElementRegion to be based off that offset. The added benefit is that this naturally handles a series of casts of a MemRegion without building up a set of redundant ElementRegions (thus canonicalizing the region view). Other related changes that cascaded from this one (as tests were failing in RegionStore): - Revamped RegionStoreManager::InvalidateRegion() to completely remove all bindings and default values from a region and all subregions. Now invalidated fields are not bound directly to new symbolic values; instead the base region has a "default" symbol value from which "derived symbols" can be created. The main advantage of this approach is that it allows us to invalidate a region hierarchy and then lazily instantiate new values no matter how deep the hierarchy went (i.e., regardless of the number of field accesses, e.g. x->f->y->z->...). The previous approach did not do this. - Slightly reworked RegionStoreManager::RemoveDeadBindings() to also incorporate live symbols and live regions that do not have direct bindings but also have "default values" used for lazy instantiation. The changes to 'InvalidateRegion' revealed that these were necessary in order to achieve lazy instantiation of values in the region store with those bindings being removed too early. - The changes to InvalidateRegion() and RemoveDeadBindings() revealed a serious bug in 'getSubRegionMap()' where not all region -> subregion relationships involved in actually bindings (explicit and implicit) were being recorded. This has been fixed by using a worklist algorithm to iteratively fill in the region map. - Added special support to RegionStoreManager::Bind()/Retrieve() to handle OSAtomicCompareAndSwap in light of the new 'CastRegion' changes and the layering of ElementRegions. - Fixed a bug in SymbolReaper::isLive() where derived symbols were not being marked live if the symbol they were derived from was also live. This fix was critical for getting lazy instantiation in RegionStore to work. - Tidied up the implementation of ValueManager::getXXXSymbolVal() methods to use SymbolManager::canSymbolicate() to decide whether or not a symbol should be symbolicated. - 'test/Analysis/misc-ps-xfail.m' now passes; that test case has been moved to 'test/Analysis/misc-ps.m'. - Tweaked some pretty-printing of MemRegions, and implemented 'ElementRegion::getRawOffset()' for use with the CastRegion changes. llvm-svn: 77782
2009-08-01 14:17:29 +08:00
case MemRegion::ElementRegionKind: {
// If we are casting from an ElementRegion to another type, the
// algorithm is as follows:
//
// (1) Compute the "raw offset" of the ElementRegion from the
// base region. This is done by calling 'getAsRawOffset()'.
//
// (2a) If we get a 'RegionRawOffset' after calling
This is a fairly large patch, which resulted from a cascade of changes made to RegionStore (and related classes) in order to handle some analyzer failures involving casts and manipulation of symbolic memory. The root of the change is in StoreManager::CastRegion(). Instead of using ad hoc heuristics to decide when to layer an ElementRegion on a casted MemRegion, we now always layer an ElementRegion when the cast type is different than the original type of the region. This carries the current cast information associated with a region around without resorting to the error prone recording of "casted types" in GRState. Along with this new policy of layering ElementRegions, I added a new algorithm to strip away existing ElementRegions when they simply represented casts of a base memory object. This algorithm computes the raw "byte offset" that an ElementRegion represents from the base region, and allows the new ElementRegion to be based off that offset. The added benefit is that this naturally handles a series of casts of a MemRegion without building up a set of redundant ElementRegions (thus canonicalizing the region view). Other related changes that cascaded from this one (as tests were failing in RegionStore): - Revamped RegionStoreManager::InvalidateRegion() to completely remove all bindings and default values from a region and all subregions. Now invalidated fields are not bound directly to new symbolic values; instead the base region has a "default" symbol value from which "derived symbols" can be created. The main advantage of this approach is that it allows us to invalidate a region hierarchy and then lazily instantiate new values no matter how deep the hierarchy went (i.e., regardless of the number of field accesses, e.g. x->f->y->z->...). The previous approach did not do this. - Slightly reworked RegionStoreManager::RemoveDeadBindings() to also incorporate live symbols and live regions that do not have direct bindings but also have "default values" used for lazy instantiation. The changes to 'InvalidateRegion' revealed that these were necessary in order to achieve lazy instantiation of values in the region store with those bindings being removed too early. - The changes to InvalidateRegion() and RemoveDeadBindings() revealed a serious bug in 'getSubRegionMap()' where not all region -> subregion relationships involved in actually bindings (explicit and implicit) were being recorded. This has been fixed by using a worklist algorithm to iteratively fill in the region map. - Added special support to RegionStoreManager::Bind()/Retrieve() to handle OSAtomicCompareAndSwap in light of the new 'CastRegion' changes and the layering of ElementRegions. - Fixed a bug in SymbolReaper::isLive() where derived symbols were not being marked live if the symbol they were derived from was also live. This fix was critical for getting lazy instantiation in RegionStore to work. - Tidied up the implementation of ValueManager::getXXXSymbolVal() methods to use SymbolManager::canSymbolicate() to decide whether or not a symbol should be symbolicated. - 'test/Analysis/misc-ps-xfail.m' now passes; that test case has been moved to 'test/Analysis/misc-ps.m'. - Tweaked some pretty-printing of MemRegions, and implemented 'ElementRegion::getRawOffset()' for use with the CastRegion changes. llvm-svn: 77782
2009-08-01 14:17:29 +08:00
// 'getAsRawOffset()', determine if the absolute offset
// can be exactly divided into chunks of the size of the
// casted-pointee type. If so, create a new ElementRegion with
This is a fairly large patch, which resulted from a cascade of changes made to RegionStore (and related classes) in order to handle some analyzer failures involving casts and manipulation of symbolic memory. The root of the change is in StoreManager::CastRegion(). Instead of using ad hoc heuristics to decide when to layer an ElementRegion on a casted MemRegion, we now always layer an ElementRegion when the cast type is different than the original type of the region. This carries the current cast information associated with a region around without resorting to the error prone recording of "casted types" in GRState. Along with this new policy of layering ElementRegions, I added a new algorithm to strip away existing ElementRegions when they simply represented casts of a base memory object. This algorithm computes the raw "byte offset" that an ElementRegion represents from the base region, and allows the new ElementRegion to be based off that offset. The added benefit is that this naturally handles a series of casts of a MemRegion without building up a set of redundant ElementRegions (thus canonicalizing the region view). Other related changes that cascaded from this one (as tests were failing in RegionStore): - Revamped RegionStoreManager::InvalidateRegion() to completely remove all bindings and default values from a region and all subregions. Now invalidated fields are not bound directly to new symbolic values; instead the base region has a "default" symbol value from which "derived symbols" can be created. The main advantage of this approach is that it allows us to invalidate a region hierarchy and then lazily instantiate new values no matter how deep the hierarchy went (i.e., regardless of the number of field accesses, e.g. x->f->y->z->...). The previous approach did not do this. - Slightly reworked RegionStoreManager::RemoveDeadBindings() to also incorporate live symbols and live regions that do not have direct bindings but also have "default values" used for lazy instantiation. The changes to 'InvalidateRegion' revealed that these were necessary in order to achieve lazy instantiation of values in the region store with those bindings being removed too early. - The changes to InvalidateRegion() and RemoveDeadBindings() revealed a serious bug in 'getSubRegionMap()' where not all region -> subregion relationships involved in actually bindings (explicit and implicit) were being recorded. This has been fixed by using a worklist algorithm to iteratively fill in the region map. - Added special support to RegionStoreManager::Bind()/Retrieve() to handle OSAtomicCompareAndSwap in light of the new 'CastRegion' changes and the layering of ElementRegions. - Fixed a bug in SymbolReaper::isLive() where derived symbols were not being marked live if the symbol they were derived from was also live. This fix was critical for getting lazy instantiation in RegionStore to work. - Tidied up the implementation of ValueManager::getXXXSymbolVal() methods to use SymbolManager::canSymbolicate() to decide whether or not a symbol should be symbolicated. - 'test/Analysis/misc-ps-xfail.m' now passes; that test case has been moved to 'test/Analysis/misc-ps.m'. - Tweaked some pretty-printing of MemRegions, and implemented 'ElementRegion::getRawOffset()' for use with the CastRegion changes. llvm-svn: 77782
2009-08-01 14:17:29 +08:00
// the pointee-cast type as the new ElementType and the index
// being the offset divded by the chunk size. If not, create
// a new ElementRegion at offset 0 off the raw offset region.
//
// (2b) If we don't a get a 'RegionRawOffset' after calling
// 'getAsRawOffset()', it means that we are at offset 0.
//
This is a fairly large patch, which resulted from a cascade of changes made to RegionStore (and related classes) in order to handle some analyzer failures involving casts and manipulation of symbolic memory. The root of the change is in StoreManager::CastRegion(). Instead of using ad hoc heuristics to decide when to layer an ElementRegion on a casted MemRegion, we now always layer an ElementRegion when the cast type is different than the original type of the region. This carries the current cast information associated with a region around without resorting to the error prone recording of "casted types" in GRState. Along with this new policy of layering ElementRegions, I added a new algorithm to strip away existing ElementRegions when they simply represented casts of a base memory object. This algorithm computes the raw "byte offset" that an ElementRegion represents from the base region, and allows the new ElementRegion to be based off that offset. The added benefit is that this naturally handles a series of casts of a MemRegion without building up a set of redundant ElementRegions (thus canonicalizing the region view). Other related changes that cascaded from this one (as tests were failing in RegionStore): - Revamped RegionStoreManager::InvalidateRegion() to completely remove all bindings and default values from a region and all subregions. Now invalidated fields are not bound directly to new symbolic values; instead the base region has a "default" symbol value from which "derived symbols" can be created. The main advantage of this approach is that it allows us to invalidate a region hierarchy and then lazily instantiate new values no matter how deep the hierarchy went (i.e., regardless of the number of field accesses, e.g. x->f->y->z->...). The previous approach did not do this. - Slightly reworked RegionStoreManager::RemoveDeadBindings() to also incorporate live symbols and live regions that do not have direct bindings but also have "default values" used for lazy instantiation. The changes to 'InvalidateRegion' revealed that these were necessary in order to achieve lazy instantiation of values in the region store with those bindings being removed too early. - The changes to InvalidateRegion() and RemoveDeadBindings() revealed a serious bug in 'getSubRegionMap()' where not all region -> subregion relationships involved in actually bindings (explicit and implicit) were being recorded. This has been fixed by using a worklist algorithm to iteratively fill in the region map. - Added special support to RegionStoreManager::Bind()/Retrieve() to handle OSAtomicCompareAndSwap in light of the new 'CastRegion' changes and the layering of ElementRegions. - Fixed a bug in SymbolReaper::isLive() where derived symbols were not being marked live if the symbol they were derived from was also live. This fix was critical for getting lazy instantiation in RegionStore to work. - Tidied up the implementation of ValueManager::getXXXSymbolVal() methods to use SymbolManager::canSymbolicate() to decide whether or not a symbol should be symbolicated. - 'test/Analysis/misc-ps-xfail.m' now passes; that test case has been moved to 'test/Analysis/misc-ps.m'. - Tweaked some pretty-printing of MemRegions, and implemented 'ElementRegion::getRawOffset()' for use with the CastRegion changes. llvm-svn: 77782
2009-08-01 14:17:29 +08:00
// FIXME: Handle symbolic raw offsets.
This is a fairly large patch, which resulted from a cascade of changes made to RegionStore (and related classes) in order to handle some analyzer failures involving casts and manipulation of symbolic memory. The root of the change is in StoreManager::CastRegion(). Instead of using ad hoc heuristics to decide when to layer an ElementRegion on a casted MemRegion, we now always layer an ElementRegion when the cast type is different than the original type of the region. This carries the current cast information associated with a region around without resorting to the error prone recording of "casted types" in GRState. Along with this new policy of layering ElementRegions, I added a new algorithm to strip away existing ElementRegions when they simply represented casts of a base memory object. This algorithm computes the raw "byte offset" that an ElementRegion represents from the base region, and allows the new ElementRegion to be based off that offset. The added benefit is that this naturally handles a series of casts of a MemRegion without building up a set of redundant ElementRegions (thus canonicalizing the region view). Other related changes that cascaded from this one (as tests were failing in RegionStore): - Revamped RegionStoreManager::InvalidateRegion() to completely remove all bindings and default values from a region and all subregions. Now invalidated fields are not bound directly to new symbolic values; instead the base region has a "default" symbol value from which "derived symbols" can be created. The main advantage of this approach is that it allows us to invalidate a region hierarchy and then lazily instantiate new values no matter how deep the hierarchy went (i.e., regardless of the number of field accesses, e.g. x->f->y->z->...). The previous approach did not do this. - Slightly reworked RegionStoreManager::RemoveDeadBindings() to also incorporate live symbols and live regions that do not have direct bindings but also have "default values" used for lazy instantiation. The changes to 'InvalidateRegion' revealed that these were necessary in order to achieve lazy instantiation of values in the region store with those bindings being removed too early. - The changes to InvalidateRegion() and RemoveDeadBindings() revealed a serious bug in 'getSubRegionMap()' where not all region -> subregion relationships involved in actually bindings (explicit and implicit) were being recorded. This has been fixed by using a worklist algorithm to iteratively fill in the region map. - Added special support to RegionStoreManager::Bind()/Retrieve() to handle OSAtomicCompareAndSwap in light of the new 'CastRegion' changes and the layering of ElementRegions. - Fixed a bug in SymbolReaper::isLive() where derived symbols were not being marked live if the symbol they were derived from was also live. This fix was critical for getting lazy instantiation in RegionStore to work. - Tidied up the implementation of ValueManager::getXXXSymbolVal() methods to use SymbolManager::canSymbolicate() to decide whether or not a symbol should be symbolicated. - 'test/Analysis/misc-ps-xfail.m' now passes; that test case has been moved to 'test/Analysis/misc-ps.m'. - Tweaked some pretty-printing of MemRegions, and implemented 'ElementRegion::getRawOffset()' for use with the CastRegion changes. llvm-svn: 77782
2009-08-01 14:17:29 +08:00
const ElementRegion *elementR = cast<ElementRegion>(R);
const RegionRawOffset &rawOff = elementR->getAsArrayOffset();
This is a fairly large patch, which resulted from a cascade of changes made to RegionStore (and related classes) in order to handle some analyzer failures involving casts and manipulation of symbolic memory. The root of the change is in StoreManager::CastRegion(). Instead of using ad hoc heuristics to decide when to layer an ElementRegion on a casted MemRegion, we now always layer an ElementRegion when the cast type is different than the original type of the region. This carries the current cast information associated with a region around without resorting to the error prone recording of "casted types" in GRState. Along with this new policy of layering ElementRegions, I added a new algorithm to strip away existing ElementRegions when they simply represented casts of a base memory object. This algorithm computes the raw "byte offset" that an ElementRegion represents from the base region, and allows the new ElementRegion to be based off that offset. The added benefit is that this naturally handles a series of casts of a MemRegion without building up a set of redundant ElementRegions (thus canonicalizing the region view). Other related changes that cascaded from this one (as tests were failing in RegionStore): - Revamped RegionStoreManager::InvalidateRegion() to completely remove all bindings and default values from a region and all subregions. Now invalidated fields are not bound directly to new symbolic values; instead the base region has a "default" symbol value from which "derived symbols" can be created. The main advantage of this approach is that it allows us to invalidate a region hierarchy and then lazily instantiate new values no matter how deep the hierarchy went (i.e., regardless of the number of field accesses, e.g. x->f->y->z->...). The previous approach did not do this. - Slightly reworked RegionStoreManager::RemoveDeadBindings() to also incorporate live symbols and live regions that do not have direct bindings but also have "default values" used for lazy instantiation. The changes to 'InvalidateRegion' revealed that these were necessary in order to achieve lazy instantiation of values in the region store with those bindings being removed too early. - The changes to InvalidateRegion() and RemoveDeadBindings() revealed a serious bug in 'getSubRegionMap()' where not all region -> subregion relationships involved in actually bindings (explicit and implicit) were being recorded. This has been fixed by using a worklist algorithm to iteratively fill in the region map. - Added special support to RegionStoreManager::Bind()/Retrieve() to handle OSAtomicCompareAndSwap in light of the new 'CastRegion' changes and the layering of ElementRegions. - Fixed a bug in SymbolReaper::isLive() where derived symbols were not being marked live if the symbol they were derived from was also live. This fix was critical for getting lazy instantiation in RegionStore to work. - Tidied up the implementation of ValueManager::getXXXSymbolVal() methods to use SymbolManager::canSymbolicate() to decide whether or not a symbol should be symbolicated. - 'test/Analysis/misc-ps-xfail.m' now passes; that test case has been moved to 'test/Analysis/misc-ps.m'. - Tweaked some pretty-printing of MemRegions, and implemented 'ElementRegion::getRawOffset()' for use with the CastRegion changes. llvm-svn: 77782
2009-08-01 14:17:29 +08:00
const MemRegion *baseR = rawOff.getRegion();
This is a fairly large patch, which resulted from a cascade of changes made to RegionStore (and related classes) in order to handle some analyzer failures involving casts and manipulation of symbolic memory. The root of the change is in StoreManager::CastRegion(). Instead of using ad hoc heuristics to decide when to layer an ElementRegion on a casted MemRegion, we now always layer an ElementRegion when the cast type is different than the original type of the region. This carries the current cast information associated with a region around without resorting to the error prone recording of "casted types" in GRState. Along with this new policy of layering ElementRegions, I added a new algorithm to strip away existing ElementRegions when they simply represented casts of a base memory object. This algorithm computes the raw "byte offset" that an ElementRegion represents from the base region, and allows the new ElementRegion to be based off that offset. The added benefit is that this naturally handles a series of casts of a MemRegion without building up a set of redundant ElementRegions (thus canonicalizing the region view). Other related changes that cascaded from this one (as tests were failing in RegionStore): - Revamped RegionStoreManager::InvalidateRegion() to completely remove all bindings and default values from a region and all subregions. Now invalidated fields are not bound directly to new symbolic values; instead the base region has a "default" symbol value from which "derived symbols" can be created. The main advantage of this approach is that it allows us to invalidate a region hierarchy and then lazily instantiate new values no matter how deep the hierarchy went (i.e., regardless of the number of field accesses, e.g. x->f->y->z->...). The previous approach did not do this. - Slightly reworked RegionStoreManager::RemoveDeadBindings() to also incorporate live symbols and live regions that do not have direct bindings but also have "default values" used for lazy instantiation. The changes to 'InvalidateRegion' revealed that these were necessary in order to achieve lazy instantiation of values in the region store with those bindings being removed too early. - The changes to InvalidateRegion() and RemoveDeadBindings() revealed a serious bug in 'getSubRegionMap()' where not all region -> subregion relationships involved in actually bindings (explicit and implicit) were being recorded. This has been fixed by using a worklist algorithm to iteratively fill in the region map. - Added special support to RegionStoreManager::Bind()/Retrieve() to handle OSAtomicCompareAndSwap in light of the new 'CastRegion' changes and the layering of ElementRegions. - Fixed a bug in SymbolReaper::isLive() where derived symbols were not being marked live if the symbol they were derived from was also live. This fix was critical for getting lazy instantiation in RegionStore to work. - Tidied up the implementation of ValueManager::getXXXSymbolVal() methods to use SymbolManager::canSymbolicate() to decide whether or not a symbol should be symbolicated. - 'test/Analysis/misc-ps-xfail.m' now passes; that test case has been moved to 'test/Analysis/misc-ps.m'. - Tweaked some pretty-printing of MemRegions, and implemented 'ElementRegion::getRawOffset()' for use with the CastRegion changes. llvm-svn: 77782
2009-08-01 14:17:29 +08:00
// If we cannot compute a raw offset, throw up our hands and return
// a NULL MemRegion*.
if (!baseR)
return nullptr;
CharUnits off = rawOff.getOffset();
if (off.isZero()) {
This is a fairly large patch, which resulted from a cascade of changes made to RegionStore (and related classes) in order to handle some analyzer failures involving casts and manipulation of symbolic memory. The root of the change is in StoreManager::CastRegion(). Instead of using ad hoc heuristics to decide when to layer an ElementRegion on a casted MemRegion, we now always layer an ElementRegion when the cast type is different than the original type of the region. This carries the current cast information associated with a region around without resorting to the error prone recording of "casted types" in GRState. Along with this new policy of layering ElementRegions, I added a new algorithm to strip away existing ElementRegions when they simply represented casts of a base memory object. This algorithm computes the raw "byte offset" that an ElementRegion represents from the base region, and allows the new ElementRegion to be based off that offset. The added benefit is that this naturally handles a series of casts of a MemRegion without building up a set of redundant ElementRegions (thus canonicalizing the region view). Other related changes that cascaded from this one (as tests were failing in RegionStore): - Revamped RegionStoreManager::InvalidateRegion() to completely remove all bindings and default values from a region and all subregions. Now invalidated fields are not bound directly to new symbolic values; instead the base region has a "default" symbol value from which "derived symbols" can be created. The main advantage of this approach is that it allows us to invalidate a region hierarchy and then lazily instantiate new values no matter how deep the hierarchy went (i.e., regardless of the number of field accesses, e.g. x->f->y->z->...). The previous approach did not do this. - Slightly reworked RegionStoreManager::RemoveDeadBindings() to also incorporate live symbols and live regions that do not have direct bindings but also have "default values" used for lazy instantiation. The changes to 'InvalidateRegion' revealed that these were necessary in order to achieve lazy instantiation of values in the region store with those bindings being removed too early. - The changes to InvalidateRegion() and RemoveDeadBindings() revealed a serious bug in 'getSubRegionMap()' where not all region -> subregion relationships involved in actually bindings (explicit and implicit) were being recorded. This has been fixed by using a worklist algorithm to iteratively fill in the region map. - Added special support to RegionStoreManager::Bind()/Retrieve() to handle OSAtomicCompareAndSwap in light of the new 'CastRegion' changes and the layering of ElementRegions. - Fixed a bug in SymbolReaper::isLive() where derived symbols were not being marked live if the symbol they were derived from was also live. This fix was critical for getting lazy instantiation in RegionStore to work. - Tidied up the implementation of ValueManager::getXXXSymbolVal() methods to use SymbolManager::canSymbolicate() to decide whether or not a symbol should be symbolicated. - 'test/Analysis/misc-ps-xfail.m' now passes; that test case has been moved to 'test/Analysis/misc-ps.m'. - Tweaked some pretty-printing of MemRegions, and implemented 'ElementRegion::getRawOffset()' for use with the CastRegion changes. llvm-svn: 77782
2009-08-01 14:17:29 +08:00
// Edge case: we are at 0 bytes off the beginning of baseR. We
// check to see if type we are casting to is the same as the base
// region. If so, just return the base region.
if (const auto *TR = dyn_cast<TypedValueRegion>(baseR)) {
QualType ObjTy = Ctx.getCanonicalType(TR->getValueType());
This is a fairly large patch, which resulted from a cascade of changes made to RegionStore (and related classes) in order to handle some analyzer failures involving casts and manipulation of symbolic memory. The root of the change is in StoreManager::CastRegion(). Instead of using ad hoc heuristics to decide when to layer an ElementRegion on a casted MemRegion, we now always layer an ElementRegion when the cast type is different than the original type of the region. This carries the current cast information associated with a region around without resorting to the error prone recording of "casted types" in GRState. Along with this new policy of layering ElementRegions, I added a new algorithm to strip away existing ElementRegions when they simply represented casts of a base memory object. This algorithm computes the raw "byte offset" that an ElementRegion represents from the base region, and allows the new ElementRegion to be based off that offset. The added benefit is that this naturally handles a series of casts of a MemRegion without building up a set of redundant ElementRegions (thus canonicalizing the region view). Other related changes that cascaded from this one (as tests were failing in RegionStore): - Revamped RegionStoreManager::InvalidateRegion() to completely remove all bindings and default values from a region and all subregions. Now invalidated fields are not bound directly to new symbolic values; instead the base region has a "default" symbol value from which "derived symbols" can be created. The main advantage of this approach is that it allows us to invalidate a region hierarchy and then lazily instantiate new values no matter how deep the hierarchy went (i.e., regardless of the number of field accesses, e.g. x->f->y->z->...). The previous approach did not do this. - Slightly reworked RegionStoreManager::RemoveDeadBindings() to also incorporate live symbols and live regions that do not have direct bindings but also have "default values" used for lazy instantiation. The changes to 'InvalidateRegion' revealed that these were necessary in order to achieve lazy instantiation of values in the region store with those bindings being removed too early. - The changes to InvalidateRegion() and RemoveDeadBindings() revealed a serious bug in 'getSubRegionMap()' where not all region -> subregion relationships involved in actually bindings (explicit and implicit) were being recorded. This has been fixed by using a worklist algorithm to iteratively fill in the region map. - Added special support to RegionStoreManager::Bind()/Retrieve() to handle OSAtomicCompareAndSwap in light of the new 'CastRegion' changes and the layering of ElementRegions. - Fixed a bug in SymbolReaper::isLive() where derived symbols were not being marked live if the symbol they were derived from was also live. This fix was critical for getting lazy instantiation in RegionStore to work. - Tidied up the implementation of ValueManager::getXXXSymbolVal() methods to use SymbolManager::canSymbolicate() to decide whether or not a symbol should be symbolicated. - 'test/Analysis/misc-ps-xfail.m' now passes; that test case has been moved to 'test/Analysis/misc-ps.m'. - Tweaked some pretty-printing of MemRegions, and implemented 'ElementRegion::getRawOffset()' for use with the CastRegion changes. llvm-svn: 77782
2009-08-01 14:17:29 +08:00
QualType CanonPointeeTy = Ctx.getCanonicalType(PointeeTy);
if (CanonPointeeTy == ObjTy)
return baseR;
This is a fairly large patch, which resulted from a cascade of changes made to RegionStore (and related classes) in order to handle some analyzer failures involving casts and manipulation of symbolic memory. The root of the change is in StoreManager::CastRegion(). Instead of using ad hoc heuristics to decide when to layer an ElementRegion on a casted MemRegion, we now always layer an ElementRegion when the cast type is different than the original type of the region. This carries the current cast information associated with a region around without resorting to the error prone recording of "casted types" in GRState. Along with this new policy of layering ElementRegions, I added a new algorithm to strip away existing ElementRegions when they simply represented casts of a base memory object. This algorithm computes the raw "byte offset" that an ElementRegion represents from the base region, and allows the new ElementRegion to be based off that offset. The added benefit is that this naturally handles a series of casts of a MemRegion without building up a set of redundant ElementRegions (thus canonicalizing the region view). Other related changes that cascaded from this one (as tests were failing in RegionStore): - Revamped RegionStoreManager::InvalidateRegion() to completely remove all bindings and default values from a region and all subregions. Now invalidated fields are not bound directly to new symbolic values; instead the base region has a "default" symbol value from which "derived symbols" can be created. The main advantage of this approach is that it allows us to invalidate a region hierarchy and then lazily instantiate new values no matter how deep the hierarchy went (i.e., regardless of the number of field accesses, e.g. x->f->y->z->...). The previous approach did not do this. - Slightly reworked RegionStoreManager::RemoveDeadBindings() to also incorporate live symbols and live regions that do not have direct bindings but also have "default values" used for lazy instantiation. The changes to 'InvalidateRegion' revealed that these were necessary in order to achieve lazy instantiation of values in the region store with those bindings being removed too early. - The changes to InvalidateRegion() and RemoveDeadBindings() revealed a serious bug in 'getSubRegionMap()' where not all region -> subregion relationships involved in actually bindings (explicit and implicit) were being recorded. This has been fixed by using a worklist algorithm to iteratively fill in the region map. - Added special support to RegionStoreManager::Bind()/Retrieve() to handle OSAtomicCompareAndSwap in light of the new 'CastRegion' changes and the layering of ElementRegions. - Fixed a bug in SymbolReaper::isLive() where derived symbols were not being marked live if the symbol they were derived from was also live. This fix was critical for getting lazy instantiation in RegionStore to work. - Tidied up the implementation of ValueManager::getXXXSymbolVal() methods to use SymbolManager::canSymbolicate() to decide whether or not a symbol should be symbolicated. - 'test/Analysis/misc-ps-xfail.m' now passes; that test case has been moved to 'test/Analysis/misc-ps.m'. - Tweaked some pretty-printing of MemRegions, and implemented 'ElementRegion::getRawOffset()' for use with the CastRegion changes. llvm-svn: 77782
2009-08-01 14:17:29 +08:00
}
This is a fairly large patch, which resulted from a cascade of changes made to RegionStore (and related classes) in order to handle some analyzer failures involving casts and manipulation of symbolic memory. The root of the change is in StoreManager::CastRegion(). Instead of using ad hoc heuristics to decide when to layer an ElementRegion on a casted MemRegion, we now always layer an ElementRegion when the cast type is different than the original type of the region. This carries the current cast information associated with a region around without resorting to the error prone recording of "casted types" in GRState. Along with this new policy of layering ElementRegions, I added a new algorithm to strip away existing ElementRegions when they simply represented casts of a base memory object. This algorithm computes the raw "byte offset" that an ElementRegion represents from the base region, and allows the new ElementRegion to be based off that offset. The added benefit is that this naturally handles a series of casts of a MemRegion without building up a set of redundant ElementRegions (thus canonicalizing the region view). Other related changes that cascaded from this one (as tests were failing in RegionStore): - Revamped RegionStoreManager::InvalidateRegion() to completely remove all bindings and default values from a region and all subregions. Now invalidated fields are not bound directly to new symbolic values; instead the base region has a "default" symbol value from which "derived symbols" can be created. The main advantage of this approach is that it allows us to invalidate a region hierarchy and then lazily instantiate new values no matter how deep the hierarchy went (i.e., regardless of the number of field accesses, e.g. x->f->y->z->...). The previous approach did not do this. - Slightly reworked RegionStoreManager::RemoveDeadBindings() to also incorporate live symbols and live regions that do not have direct bindings but also have "default values" used for lazy instantiation. The changes to 'InvalidateRegion' revealed that these were necessary in order to achieve lazy instantiation of values in the region store with those bindings being removed too early. - The changes to InvalidateRegion() and RemoveDeadBindings() revealed a serious bug in 'getSubRegionMap()' where not all region -> subregion relationships involved in actually bindings (explicit and implicit) were being recorded. This has been fixed by using a worklist algorithm to iteratively fill in the region map. - Added special support to RegionStoreManager::Bind()/Retrieve() to handle OSAtomicCompareAndSwap in light of the new 'CastRegion' changes and the layering of ElementRegions. - Fixed a bug in SymbolReaper::isLive() where derived symbols were not being marked live if the symbol they were derived from was also live. This fix was critical for getting lazy instantiation in RegionStore to work. - Tidied up the implementation of ValueManager::getXXXSymbolVal() methods to use SymbolManager::canSymbolicate() to decide whether or not a symbol should be symbolicated. - 'test/Analysis/misc-ps-xfail.m' now passes; that test case has been moved to 'test/Analysis/misc-ps.m'. - Tweaked some pretty-printing of MemRegions, and implemented 'ElementRegion::getRawOffset()' for use with the CastRegion changes. llvm-svn: 77782
2009-08-01 14:17:29 +08:00
// Otherwise, create a new ElementRegion at offset 0.
return MakeElementRegion(cast<SubRegion>(baseR), PointeeTy);
}
This is a fairly large patch, which resulted from a cascade of changes made to RegionStore (and related classes) in order to handle some analyzer failures involving casts and manipulation of symbolic memory. The root of the change is in StoreManager::CastRegion(). Instead of using ad hoc heuristics to decide when to layer an ElementRegion on a casted MemRegion, we now always layer an ElementRegion when the cast type is different than the original type of the region. This carries the current cast information associated with a region around without resorting to the error prone recording of "casted types" in GRState. Along with this new policy of layering ElementRegions, I added a new algorithm to strip away existing ElementRegions when they simply represented casts of a base memory object. This algorithm computes the raw "byte offset" that an ElementRegion represents from the base region, and allows the new ElementRegion to be based off that offset. The added benefit is that this naturally handles a series of casts of a MemRegion without building up a set of redundant ElementRegions (thus canonicalizing the region view). Other related changes that cascaded from this one (as tests were failing in RegionStore): - Revamped RegionStoreManager::InvalidateRegion() to completely remove all bindings and default values from a region and all subregions. Now invalidated fields are not bound directly to new symbolic values; instead the base region has a "default" symbol value from which "derived symbols" can be created. The main advantage of this approach is that it allows us to invalidate a region hierarchy and then lazily instantiate new values no matter how deep the hierarchy went (i.e., regardless of the number of field accesses, e.g. x->f->y->z->...). The previous approach did not do this. - Slightly reworked RegionStoreManager::RemoveDeadBindings() to also incorporate live symbols and live regions that do not have direct bindings but also have "default values" used for lazy instantiation. The changes to 'InvalidateRegion' revealed that these were necessary in order to achieve lazy instantiation of values in the region store with those bindings being removed too early. - The changes to InvalidateRegion() and RemoveDeadBindings() revealed a serious bug in 'getSubRegionMap()' where not all region -> subregion relationships involved in actually bindings (explicit and implicit) were being recorded. This has been fixed by using a worklist algorithm to iteratively fill in the region map. - Added special support to RegionStoreManager::Bind()/Retrieve() to handle OSAtomicCompareAndSwap in light of the new 'CastRegion' changes and the layering of ElementRegions. - Fixed a bug in SymbolReaper::isLive() where derived symbols were not being marked live if the symbol they were derived from was also live. This fix was critical for getting lazy instantiation in RegionStore to work. - Tidied up the implementation of ValueManager::getXXXSymbolVal() methods to use SymbolManager::canSymbolicate() to decide whether or not a symbol should be symbolicated. - 'test/Analysis/misc-ps-xfail.m' now passes; that test case has been moved to 'test/Analysis/misc-ps.m'. - Tweaked some pretty-printing of MemRegions, and implemented 'ElementRegion::getRawOffset()' for use with the CastRegion changes. llvm-svn: 77782
2009-08-01 14:17:29 +08:00
// We have a non-zero offset from the base region. We want to determine
// if the offset can be evenly divided by sizeof(PointeeTy). If so,
// we create an ElementRegion whose index is that value. Otherwise, we
// create two ElementRegions, one that reflects a raw offset and the other
// that reflects the cast.
This is a fairly large patch, which resulted from a cascade of changes made to RegionStore (and related classes) in order to handle some analyzer failures involving casts and manipulation of symbolic memory. The root of the change is in StoreManager::CastRegion(). Instead of using ad hoc heuristics to decide when to layer an ElementRegion on a casted MemRegion, we now always layer an ElementRegion when the cast type is different than the original type of the region. This carries the current cast information associated with a region around without resorting to the error prone recording of "casted types" in GRState. Along with this new policy of layering ElementRegions, I added a new algorithm to strip away existing ElementRegions when they simply represented casts of a base memory object. This algorithm computes the raw "byte offset" that an ElementRegion represents from the base region, and allows the new ElementRegion to be based off that offset. The added benefit is that this naturally handles a series of casts of a MemRegion without building up a set of redundant ElementRegions (thus canonicalizing the region view). Other related changes that cascaded from this one (as tests were failing in RegionStore): - Revamped RegionStoreManager::InvalidateRegion() to completely remove all bindings and default values from a region and all subregions. Now invalidated fields are not bound directly to new symbolic values; instead the base region has a "default" symbol value from which "derived symbols" can be created. The main advantage of this approach is that it allows us to invalidate a region hierarchy and then lazily instantiate new values no matter how deep the hierarchy went (i.e., regardless of the number of field accesses, e.g. x->f->y->z->...). The previous approach did not do this. - Slightly reworked RegionStoreManager::RemoveDeadBindings() to also incorporate live symbols and live regions that do not have direct bindings but also have "default values" used for lazy instantiation. The changes to 'InvalidateRegion' revealed that these were necessary in order to achieve lazy instantiation of values in the region store with those bindings being removed too early. - The changes to InvalidateRegion() and RemoveDeadBindings() revealed a serious bug in 'getSubRegionMap()' where not all region -> subregion relationships involved in actually bindings (explicit and implicit) were being recorded. This has been fixed by using a worklist algorithm to iteratively fill in the region map. - Added special support to RegionStoreManager::Bind()/Retrieve() to handle OSAtomicCompareAndSwap in light of the new 'CastRegion' changes and the layering of ElementRegions. - Fixed a bug in SymbolReaper::isLive() where derived symbols were not being marked live if the symbol they were derived from was also live. This fix was critical for getting lazy instantiation in RegionStore to work. - Tidied up the implementation of ValueManager::getXXXSymbolVal() methods to use SymbolManager::canSymbolicate() to decide whether or not a symbol should be symbolicated. - 'test/Analysis/misc-ps-xfail.m' now passes; that test case has been moved to 'test/Analysis/misc-ps.m'. - Tweaked some pretty-printing of MemRegions, and implemented 'ElementRegion::getRawOffset()' for use with the CastRegion changes. llvm-svn: 77782
2009-08-01 14:17:29 +08:00
// Compute the index for the new ElementRegion.
int64_t newIndex = 0;
const MemRegion *newSuperR = nullptr;
This is a fairly large patch, which resulted from a cascade of changes made to RegionStore (and related classes) in order to handle some analyzer failures involving casts and manipulation of symbolic memory. The root of the change is in StoreManager::CastRegion(). Instead of using ad hoc heuristics to decide when to layer an ElementRegion on a casted MemRegion, we now always layer an ElementRegion when the cast type is different than the original type of the region. This carries the current cast information associated with a region around without resorting to the error prone recording of "casted types" in GRState. Along with this new policy of layering ElementRegions, I added a new algorithm to strip away existing ElementRegions when they simply represented casts of a base memory object. This algorithm computes the raw "byte offset" that an ElementRegion represents from the base region, and allows the new ElementRegion to be based off that offset. The added benefit is that this naturally handles a series of casts of a MemRegion without building up a set of redundant ElementRegions (thus canonicalizing the region view). Other related changes that cascaded from this one (as tests were failing in RegionStore): - Revamped RegionStoreManager::InvalidateRegion() to completely remove all bindings and default values from a region and all subregions. Now invalidated fields are not bound directly to new symbolic values; instead the base region has a "default" symbol value from which "derived symbols" can be created. The main advantage of this approach is that it allows us to invalidate a region hierarchy and then lazily instantiate new values no matter how deep the hierarchy went (i.e., regardless of the number of field accesses, e.g. x->f->y->z->...). The previous approach did not do this. - Slightly reworked RegionStoreManager::RemoveDeadBindings() to also incorporate live symbols and live regions that do not have direct bindings but also have "default values" used for lazy instantiation. The changes to 'InvalidateRegion' revealed that these were necessary in order to achieve lazy instantiation of values in the region store with those bindings being removed too early. - The changes to InvalidateRegion() and RemoveDeadBindings() revealed a serious bug in 'getSubRegionMap()' where not all region -> subregion relationships involved in actually bindings (explicit and implicit) were being recorded. This has been fixed by using a worklist algorithm to iteratively fill in the region map. - Added special support to RegionStoreManager::Bind()/Retrieve() to handle OSAtomicCompareAndSwap in light of the new 'CastRegion' changes and the layering of ElementRegions. - Fixed a bug in SymbolReaper::isLive() where derived symbols were not being marked live if the symbol they were derived from was also live. This fix was critical for getting lazy instantiation in RegionStore to work. - Tidied up the implementation of ValueManager::getXXXSymbolVal() methods to use SymbolManager::canSymbolicate() to decide whether or not a symbol should be symbolicated. - 'test/Analysis/misc-ps-xfail.m' now passes; that test case has been moved to 'test/Analysis/misc-ps.m'. - Tweaked some pretty-printing of MemRegions, and implemented 'ElementRegion::getRawOffset()' for use with the CastRegion changes. llvm-svn: 77782
2009-08-01 14:17:29 +08:00
// We can only compute sizeof(PointeeTy) if it is a complete type.
if (!PointeeTy->isIncompleteType()) {
This is a fairly large patch, which resulted from a cascade of changes made to RegionStore (and related classes) in order to handle some analyzer failures involving casts and manipulation of symbolic memory. The root of the change is in StoreManager::CastRegion(). Instead of using ad hoc heuristics to decide when to layer an ElementRegion on a casted MemRegion, we now always layer an ElementRegion when the cast type is different than the original type of the region. This carries the current cast information associated with a region around without resorting to the error prone recording of "casted types" in GRState. Along with this new policy of layering ElementRegions, I added a new algorithm to strip away existing ElementRegions when they simply represented casts of a base memory object. This algorithm computes the raw "byte offset" that an ElementRegion represents from the base region, and allows the new ElementRegion to be based off that offset. The added benefit is that this naturally handles a series of casts of a MemRegion without building up a set of redundant ElementRegions (thus canonicalizing the region view). Other related changes that cascaded from this one (as tests were failing in RegionStore): - Revamped RegionStoreManager::InvalidateRegion() to completely remove all bindings and default values from a region and all subregions. Now invalidated fields are not bound directly to new symbolic values; instead the base region has a "default" symbol value from which "derived symbols" can be created. The main advantage of this approach is that it allows us to invalidate a region hierarchy and then lazily instantiate new values no matter how deep the hierarchy went (i.e., regardless of the number of field accesses, e.g. x->f->y->z->...). The previous approach did not do this. - Slightly reworked RegionStoreManager::RemoveDeadBindings() to also incorporate live symbols and live regions that do not have direct bindings but also have "default values" used for lazy instantiation. The changes to 'InvalidateRegion' revealed that these were necessary in order to achieve lazy instantiation of values in the region store with those bindings being removed too early. - The changes to InvalidateRegion() and RemoveDeadBindings() revealed a serious bug in 'getSubRegionMap()' where not all region -> subregion relationships involved in actually bindings (explicit and implicit) were being recorded. This has been fixed by using a worklist algorithm to iteratively fill in the region map. - Added special support to RegionStoreManager::Bind()/Retrieve() to handle OSAtomicCompareAndSwap in light of the new 'CastRegion' changes and the layering of ElementRegions. - Fixed a bug in SymbolReaper::isLive() where derived symbols were not being marked live if the symbol they were derived from was also live. This fix was critical for getting lazy instantiation in RegionStore to work. - Tidied up the implementation of ValueManager::getXXXSymbolVal() methods to use SymbolManager::canSymbolicate() to decide whether or not a symbol should be symbolicated. - 'test/Analysis/misc-ps-xfail.m' now passes; that test case has been moved to 'test/Analysis/misc-ps.m'. - Tweaked some pretty-printing of MemRegions, and implemented 'ElementRegion::getRawOffset()' for use with the CastRegion changes. llvm-svn: 77782
2009-08-01 14:17:29 +08:00
// Compute the size in **bytes**.
CharUnits pointeeTySize = Ctx.getTypeSizeInChars(PointeeTy);
if (!pointeeTySize.isZero()) {
// Is the offset a multiple of the size? If so, we can layer the
// ElementRegion (with elementType == PointeeTy) directly on top of
// the base region.
if (off % pointeeTySize == 0) {
newIndex = off / pointeeTySize;
newSuperR = baseR;
}
This is a fairly large patch, which resulted from a cascade of changes made to RegionStore (and related classes) in order to handle some analyzer failures involving casts and manipulation of symbolic memory. The root of the change is in StoreManager::CastRegion(). Instead of using ad hoc heuristics to decide when to layer an ElementRegion on a casted MemRegion, we now always layer an ElementRegion when the cast type is different than the original type of the region. This carries the current cast information associated with a region around without resorting to the error prone recording of "casted types" in GRState. Along with this new policy of layering ElementRegions, I added a new algorithm to strip away existing ElementRegions when they simply represented casts of a base memory object. This algorithm computes the raw "byte offset" that an ElementRegion represents from the base region, and allows the new ElementRegion to be based off that offset. The added benefit is that this naturally handles a series of casts of a MemRegion without building up a set of redundant ElementRegions (thus canonicalizing the region view). Other related changes that cascaded from this one (as tests were failing in RegionStore): - Revamped RegionStoreManager::InvalidateRegion() to completely remove all bindings and default values from a region and all subregions. Now invalidated fields are not bound directly to new symbolic values; instead the base region has a "default" symbol value from which "derived symbols" can be created. The main advantage of this approach is that it allows us to invalidate a region hierarchy and then lazily instantiate new values no matter how deep the hierarchy went (i.e., regardless of the number of field accesses, e.g. x->f->y->z->...). The previous approach did not do this. - Slightly reworked RegionStoreManager::RemoveDeadBindings() to also incorporate live symbols and live regions that do not have direct bindings but also have "default values" used for lazy instantiation. The changes to 'InvalidateRegion' revealed that these were necessary in order to achieve lazy instantiation of values in the region store with those bindings being removed too early. - The changes to InvalidateRegion() and RemoveDeadBindings() revealed a serious bug in 'getSubRegionMap()' where not all region -> subregion relationships involved in actually bindings (explicit and implicit) were being recorded. This has been fixed by using a worklist algorithm to iteratively fill in the region map. - Added special support to RegionStoreManager::Bind()/Retrieve() to handle OSAtomicCompareAndSwap in light of the new 'CastRegion' changes and the layering of ElementRegions. - Fixed a bug in SymbolReaper::isLive() where derived symbols were not being marked live if the symbol they were derived from was also live. This fix was critical for getting lazy instantiation in RegionStore to work. - Tidied up the implementation of ValueManager::getXXXSymbolVal() methods to use SymbolManager::canSymbolicate() to decide whether or not a symbol should be symbolicated. - 'test/Analysis/misc-ps-xfail.m' now passes; that test case has been moved to 'test/Analysis/misc-ps.m'. - Tweaked some pretty-printing of MemRegions, and implemented 'ElementRegion::getRawOffset()' for use with the CastRegion changes. llvm-svn: 77782
2009-08-01 14:17:29 +08:00
}
}
This is a fairly large patch, which resulted from a cascade of changes made to RegionStore (and related classes) in order to handle some analyzer failures involving casts and manipulation of symbolic memory. The root of the change is in StoreManager::CastRegion(). Instead of using ad hoc heuristics to decide when to layer an ElementRegion on a casted MemRegion, we now always layer an ElementRegion when the cast type is different than the original type of the region. This carries the current cast information associated with a region around without resorting to the error prone recording of "casted types" in GRState. Along with this new policy of layering ElementRegions, I added a new algorithm to strip away existing ElementRegions when they simply represented casts of a base memory object. This algorithm computes the raw "byte offset" that an ElementRegion represents from the base region, and allows the new ElementRegion to be based off that offset. The added benefit is that this naturally handles a series of casts of a MemRegion without building up a set of redundant ElementRegions (thus canonicalizing the region view). Other related changes that cascaded from this one (as tests were failing in RegionStore): - Revamped RegionStoreManager::InvalidateRegion() to completely remove all bindings and default values from a region and all subregions. Now invalidated fields are not bound directly to new symbolic values; instead the base region has a "default" symbol value from which "derived symbols" can be created. The main advantage of this approach is that it allows us to invalidate a region hierarchy and then lazily instantiate new values no matter how deep the hierarchy went (i.e., regardless of the number of field accesses, e.g. x->f->y->z->...). The previous approach did not do this. - Slightly reworked RegionStoreManager::RemoveDeadBindings() to also incorporate live symbols and live regions that do not have direct bindings but also have "default values" used for lazy instantiation. The changes to 'InvalidateRegion' revealed that these were necessary in order to achieve lazy instantiation of values in the region store with those bindings being removed too early. - The changes to InvalidateRegion() and RemoveDeadBindings() revealed a serious bug in 'getSubRegionMap()' where not all region -> subregion relationships involved in actually bindings (explicit and implicit) were being recorded. This has been fixed by using a worklist algorithm to iteratively fill in the region map. - Added special support to RegionStoreManager::Bind()/Retrieve() to handle OSAtomicCompareAndSwap in light of the new 'CastRegion' changes and the layering of ElementRegions. - Fixed a bug in SymbolReaper::isLive() where derived symbols were not being marked live if the symbol they were derived from was also live. This fix was critical for getting lazy instantiation in RegionStore to work. - Tidied up the implementation of ValueManager::getXXXSymbolVal() methods to use SymbolManager::canSymbolicate() to decide whether or not a symbol should be symbolicated. - 'test/Analysis/misc-ps-xfail.m' now passes; that test case has been moved to 'test/Analysis/misc-ps.m'. - Tweaked some pretty-printing of MemRegions, and implemented 'ElementRegion::getRawOffset()' for use with the CastRegion changes. llvm-svn: 77782
2009-08-01 14:17:29 +08:00
if (!newSuperR) {
// Create an intermediate ElementRegion to represent the raw byte.
// This will be the super region of the final ElementRegion.
newSuperR = MakeElementRegion(cast<SubRegion>(baseR), Ctx.CharTy,
off.getQuantity());
This is a fairly large patch, which resulted from a cascade of changes made to RegionStore (and related classes) in order to handle some analyzer failures involving casts and manipulation of symbolic memory. The root of the change is in StoreManager::CastRegion(). Instead of using ad hoc heuristics to decide when to layer an ElementRegion on a casted MemRegion, we now always layer an ElementRegion when the cast type is different than the original type of the region. This carries the current cast information associated with a region around without resorting to the error prone recording of "casted types" in GRState. Along with this new policy of layering ElementRegions, I added a new algorithm to strip away existing ElementRegions when they simply represented casts of a base memory object. This algorithm computes the raw "byte offset" that an ElementRegion represents from the base region, and allows the new ElementRegion to be based off that offset. The added benefit is that this naturally handles a series of casts of a MemRegion without building up a set of redundant ElementRegions (thus canonicalizing the region view). Other related changes that cascaded from this one (as tests were failing in RegionStore): - Revamped RegionStoreManager::InvalidateRegion() to completely remove all bindings and default values from a region and all subregions. Now invalidated fields are not bound directly to new symbolic values; instead the base region has a "default" symbol value from which "derived symbols" can be created. The main advantage of this approach is that it allows us to invalidate a region hierarchy and then lazily instantiate new values no matter how deep the hierarchy went (i.e., regardless of the number of field accesses, e.g. x->f->y->z->...). The previous approach did not do this. - Slightly reworked RegionStoreManager::RemoveDeadBindings() to also incorporate live symbols and live regions that do not have direct bindings but also have "default values" used for lazy instantiation. The changes to 'InvalidateRegion' revealed that these were necessary in order to achieve lazy instantiation of values in the region store with those bindings being removed too early. - The changes to InvalidateRegion() and RemoveDeadBindings() revealed a serious bug in 'getSubRegionMap()' where not all region -> subregion relationships involved in actually bindings (explicit and implicit) were being recorded. This has been fixed by using a worklist algorithm to iteratively fill in the region map. - Added special support to RegionStoreManager::Bind()/Retrieve() to handle OSAtomicCompareAndSwap in light of the new 'CastRegion' changes and the layering of ElementRegions. - Fixed a bug in SymbolReaper::isLive() where derived symbols were not being marked live if the symbol they were derived from was also live. This fix was critical for getting lazy instantiation in RegionStore to work. - Tidied up the implementation of ValueManager::getXXXSymbolVal() methods to use SymbolManager::canSymbolicate() to decide whether or not a symbol should be symbolicated. - 'test/Analysis/misc-ps-xfail.m' now passes; that test case has been moved to 'test/Analysis/misc-ps.m'. - Tweaked some pretty-printing of MemRegions, and implemented 'ElementRegion::getRawOffset()' for use with the CastRegion changes. llvm-svn: 77782
2009-08-01 14:17:29 +08:00
}
return MakeElementRegion(cast<SubRegion>(newSuperR), PointeeTy, newIndex);
}
}
llvm_unreachable("unreachable");
}
static bool regionMatchesCXXRecordType(SVal V, QualType Ty) {
const MemRegion *MR = V.getAsRegion();
if (!MR)
return true;
const auto *TVR = dyn_cast<TypedValueRegion>(MR);
if (!TVR)
return true;
const CXXRecordDecl *RD = TVR->getValueType()->getAsCXXRecordDecl();
if (!RD)
return true;
const CXXRecordDecl *Expected = Ty->getPointeeCXXRecordDecl();
if (!Expected)
Expected = Ty->getAsCXXRecordDecl();
return Expected->getCanonicalDecl() == RD->getCanonicalDecl();
}
SVal StoreManager::evalDerivedToBase(SVal Derived, const CastExpr *Cast) {
// Sanity check to avoid doing the wrong thing in the face of
// reinterpret_cast.
if (!regionMatchesCXXRecordType(Derived, Cast->getSubExpr()->getType()))
return UnknownVal();
// Walk through the cast path to create nested CXXBaseRegions.
SVal Result = Derived;
for (CastExpr::path_const_iterator I = Cast->path_begin(),
E = Cast->path_end();
I != E; ++I) {
Result = evalDerivedToBase(Result, (*I)->getType(), (*I)->isVirtual());
}
return Result;
}
SVal StoreManager::evalDerivedToBase(SVal Derived, const CXXBasePath &Path) {
// Walk through the path to create nested CXXBaseRegions.
SVal Result = Derived;
for (const auto &I : Path)
Result = evalDerivedToBase(Result, I.Base->getType(),
I.Base->isVirtual());
return Result;
}
SVal StoreManager::evalDerivedToBase(SVal Derived, QualType BaseType,
bool IsVirtual) {
Optional<loc::MemRegionVal> DerivedRegVal =
Derived.getAs<loc::MemRegionVal>();
if (!DerivedRegVal)
return Derived;
const CXXRecordDecl *BaseDecl = BaseType->getPointeeCXXRecordDecl();
if (!BaseDecl)
BaseDecl = BaseType->getAsCXXRecordDecl();
assert(BaseDecl && "not a C++ object?");
const MemRegion *BaseReg = MRMgr.getCXXBaseObjectRegion(
BaseDecl, cast<SubRegion>(DerivedRegVal->getRegion()), IsVirtual);
return loc::MemRegionVal(BaseReg);
}
/// Returns the static type of the given region, if it represents a C++ class
/// object.
///
/// This handles both fully-typed regions, where the dynamic type is known, and
/// symbolic regions, where the dynamic type is merely bounded (and even then,
/// only ostensibly!), but does not take advantage of any dynamic type info.
static const CXXRecordDecl *getCXXRecordType(const MemRegion *MR) {
if (const auto *TVR = dyn_cast<TypedValueRegion>(MR))
return TVR->getValueType()->getAsCXXRecordDecl();
if (const auto *SR = dyn_cast<SymbolicRegion>(MR))
return SR->getSymbol()->getType()->getPointeeCXXRecordDecl();
return nullptr;
}
SVal StoreManager::attemptDownCast(SVal Base, QualType TargetType,
bool &Failed) {
Failed = false;
const MemRegion *MR = Base.getAsRegion();
if (!MR)
return UnknownVal();
// Assume the derived class is a pointer or a reference to a CXX record.
TargetType = TargetType->getPointeeType();
assert(!TargetType.isNull());
const CXXRecordDecl *TargetClass = TargetType->getAsCXXRecordDecl();
if (!TargetClass && !TargetType->isVoidType())
return UnknownVal();
// Drill down the CXXBaseObject chains, which represent upcasts (casts from
// derived to base).
while (const CXXRecordDecl *MRClass = getCXXRecordType(MR)) {
// If found the derived class, the cast succeeds.
if (MRClass == TargetClass)
return loc::MemRegionVal(MR);
// We skip over incomplete types. They must be the result of an earlier
// reinterpret_cast, as one can only dynamic_cast between types in the same
// class hierarchy.
if (!TargetType->isVoidType() && MRClass->hasDefinition()) {
// Static upcasts are marked as DerivedToBase casts by Sema, so this will
// only happen when multiple or virtual inheritance is involved.
CXXBasePaths Paths(/*FindAmbiguities=*/false, /*RecordPaths=*/true,
/*DetectVirtual=*/false);
if (MRClass->isDerivedFrom(TargetClass, Paths))
return evalDerivedToBase(loc::MemRegionVal(MR), Paths.front());
}
if (const auto *BaseR = dyn_cast<CXXBaseObjectRegion>(MR)) {
// Drill down the chain to get the derived classes.
MR = BaseR->getSuperRegion();
continue;
}
// If this is a cast to void*, return the region.
if (TargetType->isVoidType())
return loc::MemRegionVal(MR);
// Strange use of reinterpret_cast can give us paths we don't reason
// about well, by putting in ElementRegions where we'd expect
// CXXBaseObjectRegions. If it's a valid reinterpret_cast (i.e. if the
// derived class has a zero offset from the base class), then it's safe
// to strip the cast; if it's invalid, -Wreinterpret-base-class should
// catch it. In the interest of performance, the analyzer will silently
// do the wrong thing in the invalid case (because offsets for subregions
// will be wrong).
const MemRegion *Uncasted = MR->StripCasts(/*IncludeBaseCasts=*/false);
if (Uncasted == MR) {
// We reached the bottom of the hierarchy and did not find the derived
// class. We must be casting the base to derived, so the cast should
// fail.
break;
}
MR = Uncasted;
}
// We failed if the region we ended up with has perfect type info.
Failed = isa<TypedValueRegion>(MR);
return UnknownVal();
}
/// CastRetrievedVal - Used by subclasses of StoreManager to implement
/// implicit casts that arise from loads from regions that are reinterpreted
/// as another region.
SVal StoreManager::CastRetrievedVal(SVal V, const TypedValueRegion *R,
QualType castTy) {
if (castTy.isNull() || V.isUnknownOrUndef())
return V;
return svalBuilder.dispatchCast(V, castTy);
}
SVal StoreManager::getLValueFieldOrIvar(const Decl *D, SVal Base) {
if (Base.isUnknownOrUndef())
return Base;
Loc BaseL = Base.castAs<Loc>();
const SubRegion* BaseR = nullptr;
switch (BaseL.getSubKind()) {
case loc::MemRegionValKind:
BaseR = cast<SubRegion>(BaseL.castAs<loc::MemRegionVal>().getRegion());
break;
case loc::GotoLabelKind:
// These are anormal cases. Flag an undefined value.
return UndefinedVal();
case loc::ConcreteIntKind:
// While these seem funny, this can happen through casts.
// FIXME: What we should return is the field offset, not base. For example,
// add the field offset to the integer value. That way things
// like this work properly: &(((struct foo *) 0xa)->f)
// However, that's not easy to fix without reducing our abilities
// to catch null pointer dereference. Eg., ((struct foo *)0x0)->f = 7
// is a null dereference even though we're dereferencing offset of f
// rather than null. Coming up with an approach that computes offsets
// over null pointers properly while still being able to catch null
// dereferences might be worth it.
return Base;
default:
llvm_unreachable("Unhandled Base.");
}
// NOTE: We must have this check first because ObjCIvarDecl is a subclass
// of FieldDecl.
if (const auto *ID = dyn_cast<ObjCIvarDecl>(D))
return loc::MemRegionVal(MRMgr.getObjCIvarRegion(ID, BaseR));
return loc::MemRegionVal(MRMgr.getFieldRegion(cast<FieldDecl>(D), BaseR));
}
SVal StoreManager::getLValueIvar(const ObjCIvarDecl *decl, SVal base) {
return getLValueFieldOrIvar(decl, base);
}
SVal StoreManager::getLValueElement(QualType elementType, NonLoc Offset,
SVal Base) {
// If the base is an unknown or undefined value, just return it back.
// FIXME: For absolute pointer addresses, we just return that value back as
// well, although in reality we should return the offset added to that
// value. See also the similar FIXME in getLValueFieldOrIvar().
if (Base.isUnknownOrUndef() || Base.getAs<loc::ConcreteInt>())
return Base;
if (Base.getAs<loc::GotoLabel>())
return UnknownVal();
const SubRegion *BaseRegion =
Base.castAs<loc::MemRegionVal>().getRegionAs<SubRegion>();
// Pointer of any type can be cast and used as array base.
const auto *ElemR = dyn_cast<ElementRegion>(BaseRegion);
// Convert the offset to the appropriate size and signedness.
Offset = svalBuilder.convertToArrayIndex(Offset).castAs<NonLoc>();
if (!ElemR) {
// If the base region is not an ElementRegion, create one.
// This can happen in the following example:
//
// char *p = __builtin_alloc(10);
// p[1] = 8;
//
// Observe that 'p' binds to an AllocaRegion.
return loc::MemRegionVal(MRMgr.getElementRegion(elementType, Offset,
BaseRegion, Ctx));
}
SVal BaseIdx = ElemR->getIndex();
if (!BaseIdx.getAs<nonloc::ConcreteInt>())
return UnknownVal();
const llvm::APSInt &BaseIdxI =
BaseIdx.castAs<nonloc::ConcreteInt>().getValue();
// Only allow non-integer offsets if the base region has no offset itself.
// FIXME: This is a somewhat arbitrary restriction. We should be using
// SValBuilder here to add the two offsets without checking their types.
if (!Offset.getAs<nonloc::ConcreteInt>()) {
if (isa<ElementRegion>(BaseRegion->StripCasts()))
return UnknownVal();
return loc::MemRegionVal(MRMgr.getElementRegion(
elementType, Offset, cast<SubRegion>(ElemR->getSuperRegion()), Ctx));
}
const llvm::APSInt& OffI = Offset.castAs<nonloc::ConcreteInt>().getValue();
assert(BaseIdxI.isSigned());
// Compute the new index.
nonloc::ConcreteInt NewIdx(svalBuilder.getBasicValueFactory().getValue(BaseIdxI +
OffI));
// Construct the new ElementRegion.
const SubRegion *ArrayR = cast<SubRegion>(ElemR->getSuperRegion());
return loc::MemRegionVal(MRMgr.getElementRegion(elementType, NewIdx, ArrayR,
Ctx));
}
StoreManager::BindingsHandler::~BindingsHandler() = default;
bool StoreManager::FindUniqueBinding::HandleBinding(StoreManager& SMgr,
Store store,
const MemRegion* R,
SVal val) {
SymbolRef SymV = val.getAsLocSymbol();
if (!SymV || SymV != Sym)
return true;
if (Binding) {
First = false;
return false;
}
else
Binding = R;
return true;
}