llvm-project/llvm/lib/CodeGen/MIRCanonicalizerPass.cpp

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

434 lines
12 KiB
C++
Raw Normal View History

//===-------------- MIRCanonicalizer.cpp - MIR Canonicalizer --------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// The purpose of this pass is to employ a canonical code transformation so
// that code compiled with slightly different IR passes can be diffed more
// effectively than otherwise. This is done by renaming vregs in a given
// LiveRange in a canonical way. This pass also does a pseudo-scheduling to
// move defs closer to their use inorder to reduce diffs caused by slightly
// different schedules.
//
// Basic Usage:
//
// llc -o - -run-pass mir-canonicalizer example.mir
//
// Reorders instructions canonically.
// Renames virtual register operands canonically.
// Strips certain MIR artifacts (optionally).
//
//===----------------------------------------------------------------------===//
#include "MIRVRegNamerUtils.h"
#include "llvm/ADT/PostOrderIterator.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/InitializePasses.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include <queue>
using namespace llvm;
namespace llvm {
extern char &MIRCanonicalizerID;
} // namespace llvm
#define DEBUG_TYPE "mir-canonicalizer"
static cl::opt<unsigned>
CanonicalizeFunctionNumber("canon-nth-function", cl::Hidden, cl::init(~0u),
cl::value_desc("N"),
cl::desc("Function number to canonicalize."));
namespace {
class MIRCanonicalizer : public MachineFunctionPass {
public:
static char ID;
MIRCanonicalizer() : MachineFunctionPass(ID) {}
StringRef getPassName() const override {
return "Rename register operands in a canonical ordering.";
}
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.setPreservesCFG();
MachineFunctionPass::getAnalysisUsage(AU);
}
bool runOnMachineFunction(MachineFunction &MF) override;
};
} // end anonymous namespace
char MIRCanonicalizer::ID;
char &llvm::MIRCanonicalizerID = MIRCanonicalizer::ID;
INITIALIZE_PASS_BEGIN(MIRCanonicalizer, "mir-canonicalizer",
"Rename Register Operands Canonically", false, false)
INITIALIZE_PASS_END(MIRCanonicalizer, "mir-canonicalizer",
"Rename Register Operands Canonically", false, false)
static std::vector<MachineBasicBlock *> GetRPOList(MachineFunction &MF) {
if (MF.empty())
return {};
ReversePostOrderTraversal<MachineBasicBlock *> RPOT(&*MF.begin());
std::vector<MachineBasicBlock *> RPOList;
2021-01-22 11:59:46 +08:00
append_range(RPOList, RPOT);
return RPOList;
}
static bool
rescheduleLexographically(std::vector<MachineInstr *> instructions,
MachineBasicBlock *MBB,
std::function<MachineBasicBlock::iterator()> getPos) {
bool Changed = false;
using StringInstrPair = std::pair<std::string, MachineInstr *>;
std::vector<StringInstrPair> StringInstrMap;
for (auto *II : instructions) {
std::string S;
raw_string_ostream OS(S);
II->print(OS);
OS.flush();
// Trim the assignment, or start from the beginning in the case of a store.
const size_t i = S.find('=');
StringInstrMap.push_back({(i == std::string::npos) ? S : S.substr(i), II});
}
llvm::sort(StringInstrMap,
[](const StringInstrPair &a, const StringInstrPair &b) -> bool {
return (a.first < b.first);
});
for (auto &II : StringInstrMap) {
LLVM_DEBUG({
dbgs() << "Splicing ";
II.second->dump();
dbgs() << " right before: ";
getPos()->dump();
});
Changed = true;
MBB->splice(getPos(), MBB, II.second);
}
return Changed;
}
static bool rescheduleCanonically(unsigned &PseudoIdempotentInstCount,
MachineBasicBlock *MBB) {
bool Changed = false;
// Calculates the distance of MI from the beginning of its parent BB.
auto getInstrIdx = [](const MachineInstr &MI) {
unsigned i = 0;
for (auto &CurMI : *MI.getParent()) {
if (&CurMI == &MI)
return i;
i++;
}
return ~0U;
};
// Pre-Populate vector of instructions to reschedule so that we don't
// clobber the iterator.
std::vector<MachineInstr *> Instructions;
for (auto &MI : *MBB) {
Instructions.push_back(&MI);
}
std::map<MachineInstr *, std::vector<MachineInstr *>> MultiUsers;
std::map<unsigned, MachineInstr *> MultiUserLookup;
unsigned UseToBringDefCloserToCount = 0;
std::vector<MachineInstr *> PseudoIdempotentInstructions;
std::vector<unsigned> PhysRegDefs;
for (auto *II : Instructions) {
for (unsigned i = 1; i < II->getNumOperands(); i++) {
MachineOperand &MO = II->getOperand(i);
if (!MO.isReg())
continue;
if (Register::isVirtualRegister(MO.getReg()))
continue;
if (!MO.isDef())
continue;
PhysRegDefs.push_back(MO.getReg());
}
}
for (auto *II : Instructions) {
if (II->getNumOperands() == 0)
continue;
if (II->mayLoadOrStore())
continue;
MachineOperand &MO = II->getOperand(0);
if (!MO.isReg() || !Register::isVirtualRegister(MO.getReg()))
continue;
if (!MO.isDef())
continue;
bool IsPseudoIdempotent = true;
for (unsigned i = 1; i < II->getNumOperands(); i++) {
if (II->getOperand(i).isImm()) {
continue;
}
if (II->getOperand(i).isReg()) {
if (!Register::isVirtualRegister(II->getOperand(i).getReg()))
2020-11-20 14:07:55 +08:00
if (!llvm::is_contained(PhysRegDefs, II->getOperand(i).getReg())) {
continue;
}
}
IsPseudoIdempotent = false;
break;
}
if (IsPseudoIdempotent) {
PseudoIdempotentInstructions.push_back(II);
continue;
}
LLVM_DEBUG(dbgs() << "Operand " << 0 << " of "; II->dump(); MO.dump(););
MachineInstr *Def = II;
unsigned Distance = ~0U;
MachineInstr *UseToBringDefCloserTo = nullptr;
MachineRegisterInfo *MRI = &MBB->getParent()->getRegInfo();
for (auto &UO : MRI->use_nodbg_operands(MO.getReg())) {
MachineInstr *UseInst = UO.getParent();
const unsigned DefLoc = getInstrIdx(*Def);
const unsigned UseLoc = getInstrIdx(*UseInst);
const unsigned Delta = (UseLoc - DefLoc);
if (UseInst->getParent() != Def->getParent())
continue;
if (DefLoc >= UseLoc)
continue;
if (Delta < Distance) {
Distance = Delta;
UseToBringDefCloserTo = UseInst;
MultiUserLookup[UseToBringDefCloserToCount++] = UseToBringDefCloserTo;
}
}
const auto BBE = MBB->instr_end();
MachineBasicBlock::iterator DefI = BBE;
MachineBasicBlock::iterator UseI = BBE;
for (auto BBI = MBB->instr_begin(); BBI != BBE; ++BBI) {
if (DefI != BBE && UseI != BBE)
break;
if (&*BBI == Def) {
DefI = BBI;
continue;
}
if (&*BBI == UseToBringDefCloserTo) {
UseI = BBI;
continue;
}
}
if (DefI == BBE || UseI == BBE)
continue;
LLVM_DEBUG({
dbgs() << "Splicing ";
DefI->dump();
dbgs() << " right before: ";
UseI->dump();
});
MultiUsers[UseToBringDefCloserTo].push_back(Def);
Changed = true;
MBB->splice(UseI, MBB, DefI);
}
// Sort the defs for users of multiple defs lexographically.
for (const auto &E : MultiUserLookup) {
auto UseI = llvm::find_if(MBB->instrs(), [&](MachineInstr &MI) -> bool {
return &MI == E.second;
});
if (UseI == MBB->instr_end())
continue;
LLVM_DEBUG(
dbgs() << "Rescheduling Multi-Use Instructions Lexographically.";);
Changed |= rescheduleLexographically(
MultiUsers[E.second], MBB,
[&]() -> MachineBasicBlock::iterator { return UseI; });
}
PseudoIdempotentInstCount = PseudoIdempotentInstructions.size();
LLVM_DEBUG(
dbgs() << "Rescheduling Idempotent Instructions Lexographically.";);
Changed |= rescheduleLexographically(
PseudoIdempotentInstructions, MBB,
[&]() -> MachineBasicBlock::iterator { return MBB->begin(); });
return Changed;
}
static bool propagateLocalCopies(MachineBasicBlock *MBB) {
bool Changed = false;
MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
std::vector<MachineInstr *> Copies;
for (MachineInstr &MI : MBB->instrs()) {
if (MI.isCopy())
Copies.push_back(&MI);
}
for (MachineInstr *MI : Copies) {
if (!MI->getOperand(0).isReg())
continue;
if (!MI->getOperand(1).isReg())
continue;
Apply llvm-prefer-register-over-unsigned from clang-tidy to LLVM Summary: This clang-tidy check is looking for unsigned integer variables whose initializer starts with an implicit cast from llvm::Register and changes the type of the variable to llvm::Register (dropping the llvm:: where possible). Partial reverts in: X86FrameLowering.cpp - Some functions return unsigned and arguably should be MCRegister X86FixupLEAs.cpp - Some functions return unsigned and arguably should be MCRegister X86FrameLowering.cpp - Some functions return unsigned and arguably should be MCRegister HexagonBitSimplify.cpp - Function takes BitTracker::RegisterRef which appears to be unsigned& MachineVerifier.cpp - Ambiguous operator==() given MCRegister and const Register PPCFastISel.cpp - No Register::operator-=() PeepholeOptimizer.cpp - TargetInstrInfo::optimizeLoadInstr() takes an unsigned& MachineTraceMetrics.cpp - MachineTraceMetrics lacks a suitable constructor Manual fixups in: ARMFastISel.cpp - ARMEmitLoad() now takes a Register& instead of unsigned& HexagonSplitDouble.cpp - Ternary operator was ambiguous between unsigned/Register HexagonConstExtenders.cpp - Has a local class named Register, used llvm::Register instead of Register. PPCFastISel.cpp - PPCEmitLoad() now takes a Register& instead of unsigned& Depends on D65919 Reviewers: arsenm, bogner, craig.topper, RKSimon Reviewed By: arsenm Subscribers: RKSimon, craig.topper, lenary, aemerson, wuzish, jholewinski, MatzeB, qcolombet, dschuff, jyknight, dylanmckay, sdardis, nemanjai, jvesely, wdng, nhaehnle, sbc100, jgravelle-google, kristof.beyls, hiraditya, aheejin, kbarton, fedor.sergeev, javed.absar, asb, rbar, johnrusso, simoncook, apazos, sabuasal, niosHD, jrtc27, MaskRay, zzheng, edward-jones, atanasyan, rogfer01, MartinMosbeck, brucehoult, the_o, tpr, PkmX, jocewei, jsji, Petar.Avramovic, asbirlea, Jim, s.egerton, llvm-commits Tags: #llvm Differential Revision: https://reviews.llvm.org/D65962 llvm-svn: 369041
2019-08-16 03:22:08 +08:00
const Register Dst = MI->getOperand(0).getReg();
const Register Src = MI->getOperand(1).getReg();
if (!Register::isVirtualRegister(Dst))
continue;
if (!Register::isVirtualRegister(Src))
continue;
// Not folding COPY instructions if regbankselect has not set the RCs.
// Why are we only considering Register Classes? Because the verifier
// sometimes gets upset if the register classes don't match even if the
// types do. A future patch might add COPY folding for matching types in
// pre-registerbankselect code.
if (!MRI.getRegClassOrNull(Dst))
continue;
if (MRI.getRegClass(Dst) != MRI.getRegClass(Src))
continue;
std::vector<MachineOperand *> Uses;
for (auto UI = MRI.use_begin(Dst); UI != MRI.use_end(); ++UI)
Uses.push_back(&*UI);
for (auto *MO : Uses)
MO->setReg(Src);
Changed = true;
MI->eraseFromParent();
}
return Changed;
}
static bool doDefKillClear(MachineBasicBlock *MBB) {
bool Changed = false;
for (auto &MI : *MBB) {
for (auto &MO : MI.operands()) {
if (!MO.isReg())
continue;
if (!MO.isDef() && MO.isKill()) {
Changed = true;
MO.setIsKill(false);
}
if (MO.isDef() && MO.isDead()) {
Changed = true;
MO.setIsDead(false);
}
}
}
return Changed;
}
static bool runOnBasicBlock(MachineBasicBlock *MBB,
unsigned BasicBlockNum, VRegRenamer &Renamer) {
LLVM_DEBUG({
dbgs() << "\n\n NEW BASIC BLOCK: " << MBB->getName() << " \n\n";
dbgs() << "\n\n================================================\n\n";
});
bool Changed = false;
LLVM_DEBUG(dbgs() << "\n\n NEW BASIC BLOCK: " << MBB->getName() << "\n\n";);
LLVM_DEBUG(dbgs() << "MBB Before Canonical Copy Propagation:\n";
MBB->dump(););
Changed |= propagateLocalCopies(MBB);
LLVM_DEBUG(dbgs() << "MBB After Canonical Copy Propagation:\n"; MBB->dump(););
LLVM_DEBUG(dbgs() << "MBB Before Scheduling:\n"; MBB->dump(););
unsigned IdempotentInstCount = 0;
Changed |= rescheduleCanonically(IdempotentInstCount, MBB);
LLVM_DEBUG(dbgs() << "MBB After Scheduling:\n"; MBB->dump(););
Changed |= Renamer.renameVRegs(MBB, BasicBlockNum);
// TODO: Consider dropping this. Dropping kill defs is probably not
// semantically sound.
Changed |= doDefKillClear(MBB);
LLVM_DEBUG(dbgs() << "Updated MachineBasicBlock:\n"; MBB->dump();
dbgs() << "\n";);
LLVM_DEBUG(
dbgs() << "\n\n================================================\n\n");
return Changed;
}
bool MIRCanonicalizer::runOnMachineFunction(MachineFunction &MF) {
static unsigned functionNum = 0;
if (CanonicalizeFunctionNumber != ~0U) {
if (CanonicalizeFunctionNumber != functionNum++)
return false;
LLVM_DEBUG(dbgs() << "\n Canonicalizing Function " << MF.getName()
<< "\n";);
}
// we need a valid vreg to create a vreg type for skipping all those
// stray vreg numbers so reach alignment/canonical vreg values.
std::vector<MachineBasicBlock *> RPOList = GetRPOList(MF);
LLVM_DEBUG(
dbgs() << "\n\n NEW MACHINE FUNCTION: " << MF.getName() << " \n\n";
dbgs() << "\n\n================================================\n\n";
dbgs() << "Total Basic Blocks: " << RPOList.size() << "\n";
for (auto MBB
: RPOList) { dbgs() << MBB->getName() << "\n"; } dbgs()
<< "\n\n================================================\n\n";);
unsigned BBNum = 0;
bool Changed = false;
MachineRegisterInfo &MRI = MF.getRegInfo();
[MirNamer][Canonicalizer]: Perform instruction semantic based renaming https://reviews.llvm.org/D70210 Previously: Due to sensitivity of the algorithm with gaps, and extra instructions, when diffing, often we see naming being off by a few. Makes the diff unreadable even for tests with 7 and 8 instructions respectively. Naming can change depending on candidates (and order of picking candidates). Suddenly if there's one extra instruction somewhere, the entire subtree would be named completely differently. No consistent naming of similar instructions which occur in different functions. If we try to do something like count the frequency distribution of various differences across suite, then the above sensitivity issues are going to result in poor results. Instead: Name instruction based on semantics of the instruction (hash of the opcode and operands). Essentially for a given instruction that occurs in any module/function it'll be named similarly (ie semantic). This has some nice properties Can easily look at many instructions and just check the hash and if they're named similarly, then it's the same instruction. Makes it very easy to spot the same instruction both multiple times, as well as across many functions (useful for frequency distribution). Independent of traversal/candidates/depth of graph. No need to keep track of last index/gaps/skip count etc. No off by few issues with diffs. I've tried the old vs new implementation in files ranging from 30 to 700 instructions. In both cases with the old algorithm, diffs are a sea of red, where as for the semantic version, in both cases, the diffs line up beautifully. Simplified implementation of the main loop (simple iteration) , no keep track of what's visited and not. Handle collision just by incrementing a counter. Roughly bb[N]_hash_[CollisionCount]. Additionally with the new implementation, we can probably avoid doing the hoisting of instructions to various places, as they'll likely be named the same resulting in differences only based on collision (ie regardless of whether the instruction is hoisted or not/close to use or not, it'll be named the same hash which should result in use of the instruction be identical with the only change being the collision count) which is very easy to spot visually.
2019-11-16 00:23:32 +08:00
VRegRenamer Renamer(MRI);
for (auto MBB : RPOList)
Changed |= runOnBasicBlock(MBB, BBNum++, Renamer);
return Changed;
}