2017-08-18 05:26:39 +08:00
|
|
|
//===- llvm/CodeGen/DwarfExpression.h - Dwarf Compile Unit ------*- C++ -*-===//
|
2015-01-13 06:19:22 +08:00
|
|
|
//
|
2019-01-19 16:50:56 +08:00
|
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
2015-01-13 06:19:22 +08:00
|
|
|
//
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
//
|
|
|
|
// This file contains support for writing dwarf compile unit.
|
|
|
|
//
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
|
|
|
|
#ifndef LLVM_LIB_CODEGEN_ASMPRINTER_DWARFEXPRESSION_H
|
|
|
|
#define LLVM_LIB_CODEGEN_ASMPRINTER_DWARFEXPRESSION_H
|
|
|
|
|
[DebugInfo] Add interface for pre-calculating the size of emitted DWARF
Summary:
DWARF's DW_OP_entry_value operation has two operands; the first is a
ULEB128 operand that specifies the size of the second operand, which is
a DWARF block. This means that we need to be able to pre-calculate and
emit the size of DWARF expressions before emitting them. There is
currently no interface for doing this in DwarfExpression, so this patch
introduces that.
When implementing this I initially thought about running through
DwarfExpression's emission two times; first with a temporary buffer to
emit the expression, in order to being able to calculate the size of
that emitted data. However, DwarfExpression is a quite complex state
machine, so I decided against that, as it seemed like the two runs could
get out of sync, resulting in incorrect size operands. Therefore I have
implemented this in a way that we only have to run DwarfExpression once.
The idea is to emit DWARF to a temporary buffer, for which it is
possible to query the size. The data in the temporary buffer can then be
emitted to DwarfExpression's main output.
In the case of DIEDwarfExpression, a temporary DIE is used. The values
are all allocated using the same BumpPtrAllocator as for all other DIEs,
and the values are then transferred to the real value list. In the case
of DebugLocDwarfExpression, the temporary buffer is implemented using a
BufferByteStreamer which emits to a buffer in the DwarfExpression
object.
Reviewers: aprantl, vsk, NikolaPrica, djtodoro
Reviewed By: aprantl
Subscribers: hiraditya, llvm-commits
Tags: #debug-info, #llvm
Differential Revision: https://reviews.llvm.org/D67768
llvm-svn: 374879
2019-10-15 19:14:35 +08:00
|
|
|
#include "ByteStreamer.h"
|
2017-08-18 05:26:39 +08:00
|
|
|
#include "llvm/ADT/ArrayRef.h"
|
|
|
|
#include "llvm/ADT/None.h"
|
|
|
|
#include "llvm/ADT/Optional.h"
|
|
|
|
#include "llvm/ADT/SmallVector.h"
|
|
|
|
#include "llvm/IR/DebugInfoMetadata.h"
|
|
|
|
#include <cassert>
|
|
|
|
#include <cstdint>
|
|
|
|
#include <iterator>
|
2015-01-13 06:19:22 +08:00
|
|
|
|
|
|
|
namespace llvm {
|
|
|
|
|
2015-01-13 07:36:56 +08:00
|
|
|
class AsmPrinter;
|
2017-08-18 05:26:39 +08:00
|
|
|
class APInt;
|
2019-03-19 21:16:28 +08:00
|
|
|
class DwarfCompileUnit;
|
2015-01-14 09:01:22 +08:00
|
|
|
class DIELoc;
|
2017-08-18 05:26:39 +08:00
|
|
|
class TargetRegisterInfo;
|
2020-05-21 06:30:58 +08:00
|
|
|
class MachineLocation;
|
2015-01-13 06:19:22 +08:00
|
|
|
|
2016-11-03 00:12:20 +08:00
|
|
|
/// Holds a DIExpression and keeps track of how many operands have been consumed
|
|
|
|
/// so far.
|
|
|
|
class DIExpressionCursor {
|
|
|
|
DIExpression::expr_op_iterator Start, End;
|
2017-08-18 05:26:39 +08:00
|
|
|
|
2016-11-03 00:12:20 +08:00
|
|
|
public:
|
|
|
|
DIExpressionCursor(const DIExpression *Expr) {
|
|
|
|
if (!Expr) {
|
|
|
|
assert(Start == End);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
Start = Expr->expr_op_begin();
|
|
|
|
End = Expr->expr_op_end();
|
|
|
|
}
|
|
|
|
|
2016-12-10 04:43:40 +08:00
|
|
|
DIExpressionCursor(ArrayRef<uint64_t> Expr)
|
|
|
|
: Start(Expr.begin()), End(Expr.end()) {}
|
|
|
|
|
2017-08-18 05:26:39 +08:00
|
|
|
DIExpressionCursor(const DIExpressionCursor &) = default;
|
2017-06-14 21:14:38 +08:00
|
|
|
|
2016-11-03 00:12:20 +08:00
|
|
|
/// Consume one operation.
|
|
|
|
Optional<DIExpression::ExprOperand> take() {
|
|
|
|
if (Start == End)
|
|
|
|
return None;
|
|
|
|
return *(Start++);
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Consume N operations.
|
|
|
|
void consume(unsigned N) { std::advance(Start, N); }
|
|
|
|
|
|
|
|
/// Return the current operation.
|
|
|
|
Optional<DIExpression::ExprOperand> peek() const {
|
|
|
|
if (Start == End)
|
|
|
|
return None;
|
|
|
|
return *(Start);
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Return the next operation.
|
|
|
|
Optional<DIExpression::ExprOperand> peekNext() const {
|
|
|
|
if (Start == End)
|
|
|
|
return None;
|
|
|
|
|
|
|
|
auto Next = Start.getNext();
|
|
|
|
if (Next == End)
|
|
|
|
return None;
|
|
|
|
|
|
|
|
return *Next;
|
|
|
|
}
|
2017-08-18 05:26:39 +08:00
|
|
|
|
2016-11-03 00:20:37 +08:00
|
|
|
/// Determine whether there are any operations left in this expression.
|
2016-11-03 00:12:20 +08:00
|
|
|
operator bool() const { return Start != End; }
|
2017-08-18 05:26:39 +08:00
|
|
|
|
2017-04-21 04:42:33 +08:00
|
|
|
DIExpression::expr_op_iterator begin() const { return Start; }
|
|
|
|
DIExpression::expr_op_iterator end() const { return End; }
|
2016-12-22 14:10:41 +08:00
|
|
|
|
|
|
|
/// Retrieve the fragment information, if any.
|
|
|
|
Optional<DIExpression::FragmentInfo> getFragmentInfo() const {
|
|
|
|
return DIExpression::getFragmentInfo(Start, End);
|
|
|
|
}
|
2016-11-03 00:12:20 +08:00
|
|
|
};
|
|
|
|
|
2015-01-13 06:19:22 +08:00
|
|
|
/// Base class containing the logic for constructing DWARF expressions
|
|
|
|
/// independently of whether they are emitted into a DIE or into a .debug_loc
|
|
|
|
/// entry.
|
[DebugInfo] Add interface for pre-calculating the size of emitted DWARF
Summary:
DWARF's DW_OP_entry_value operation has two operands; the first is a
ULEB128 operand that specifies the size of the second operand, which is
a DWARF block. This means that we need to be able to pre-calculate and
emit the size of DWARF expressions before emitting them. There is
currently no interface for doing this in DwarfExpression, so this patch
introduces that.
When implementing this I initially thought about running through
DwarfExpression's emission two times; first with a temporary buffer to
emit the expression, in order to being able to calculate the size of
that emitted data. However, DwarfExpression is a quite complex state
machine, so I decided against that, as it seemed like the two runs could
get out of sync, resulting in incorrect size operands. Therefore I have
implemented this in a way that we only have to run DwarfExpression once.
The idea is to emit DWARF to a temporary buffer, for which it is
possible to query the size. The data in the temporary buffer can then be
emitted to DwarfExpression's main output.
In the case of DIEDwarfExpression, a temporary DIE is used. The values
are all allocated using the same BumpPtrAllocator as for all other DIEs,
and the values are then transferred to the real value list. In the case
of DebugLocDwarfExpression, the temporary buffer is implemented using a
BufferByteStreamer which emits to a buffer in the DwarfExpression
object.
Reviewers: aprantl, vsk, NikolaPrica, djtodoro
Reviewed By: aprantl
Subscribers: hiraditya, llvm-commits
Tags: #debug-info, #llvm
Differential Revision: https://reviews.llvm.org/D67768
llvm-svn: 374879
2019-10-15 19:14:35 +08:00
|
|
|
///
|
|
|
|
/// Some DWARF operations, e.g. DW_OP_entry_value, need to calculate the size
|
|
|
|
/// of a succeeding DWARF block before the latter is emitted to the output.
|
|
|
|
/// To handle such cases, data can conditionally be emitted to a temporary
|
|
|
|
/// buffer, which can later on be committed to the main output. The size of the
|
|
|
|
/// temporary buffer is queryable, allowing for the size of the data to be
|
|
|
|
/// emitted before the data is committed.
|
2015-01-13 06:19:22 +08:00
|
|
|
class DwarfExpression {
|
2015-01-13 06:19:26 +08:00
|
|
|
protected:
|
2017-03-22 09:15:57 +08:00
|
|
|
/// Holds information about all subregisters comprising a register location.
|
|
|
|
struct Register {
|
|
|
|
int DwarfRegNo;
|
2020-01-18 02:38:41 +08:00
|
|
|
unsigned SubRegSize;
|
2017-03-22 09:15:57 +08:00
|
|
|
const char *Comment;
|
2020-01-18 02:38:41 +08:00
|
|
|
|
|
|
|
/// Create a full register, no extra DW_OP_piece operators necessary.
|
|
|
|
static Register createRegister(int RegNo, const char *Comment) {
|
|
|
|
return {RegNo, 0, Comment};
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Create a subregister that needs a DW_OP_piece operator with SizeInBits.
|
|
|
|
static Register createSubRegister(int RegNo, unsigned SizeInBits,
|
|
|
|
const char *Comment) {
|
|
|
|
return {RegNo, SizeInBits, Comment};
|
|
|
|
}
|
|
|
|
|
|
|
|
bool isSubRegister() const { return SubRegSize; }
|
2017-03-22 09:15:57 +08:00
|
|
|
};
|
|
|
|
|
[DebugInfo] Add a DW_OP_LLVM_entry_value operation
Summary:
Internally in LLVM's metadata we use DW_OP_entry_value operations with
the same semantics as DWARF; that is, its operand specifies the number
of bytes that the entry value covers.
At the time of emitting entry values we don't know the emitted size of
the DWARF expression that the entry value will cover. Currently the size
is hardcoded to 1 in DIExpression, and other values causes the verifier
to fail. As the size is 1, that effectively means that we can only have
valid entry values for registers that can be encoded in one byte, which
are the registers with DWARF numbers 0 to 31 (as they can be encoded as
single-byte DW_OP_reg0..DW_OP_reg31 rather than a multi-byte
DW_OP_regx). It is a bit confusing, but it seems like llvm-dwarfdump
will print an operation "correctly", even if the byte size is less than
that, which may make it seem that we emit correct DWARF for registers
with DWARF numbers > 31. If you instead use readelf for such cases, it
will interpret the number of specified bytes as a DWARF expression. This
seems like a limitation in llvm-dwarfdump.
As suggested in D66746, a way forward would be to add an internal
variant of DW_OP_entry_value, DW_OP_LLVM_entry_value, whose operand
instead specifies the number of operations that the entry value covers,
and we then translate that into the byte size at the time of emission.
In this patch that internal operation is added. This patch keeps the
limitation that a entry value can only be applied to simple register
locations, but it will fix the issue with the size operand being
incorrect for DWARF numbers > 31.
Reviewers: aprantl, vsk, djtodoro, NikolaPrica
Reviewed By: aprantl
Subscribers: jyknight, fedor.sergeev, hiraditya, llvm-commits
Tags: #debug-info, #llvm
Differential Revision: https://reviews.llvm.org/D67492
llvm-svn: 374881
2019-10-15 19:31:21 +08:00
|
|
|
/// Whether we are currently emitting an entry value operation.
|
|
|
|
bool IsEmittingEntryValue = false;
|
|
|
|
|
2019-03-19 21:16:28 +08:00
|
|
|
DwarfCompileUnit &CU;
|
|
|
|
|
2017-03-22 09:15:57 +08:00
|
|
|
/// The register location, if any.
|
|
|
|
SmallVector<Register, 2> DwarfRegs;
|
|
|
|
|
2016-12-10 04:43:40 +08:00
|
|
|
/// Current Fragment Offset in Bits.
|
|
|
|
uint64_t OffsetInBits = 0;
|
|
|
|
|
2018-07-31 03:41:25 +08:00
|
|
|
/// Sometimes we need to add a DW_OP_bit_piece to describe a subregister.
|
2019-05-23 18:37:13 +08:00
|
|
|
unsigned SubRegisterSizeInBits : 16;
|
|
|
|
unsigned SubRegisterOffsetInBits : 16;
|
2016-12-10 04:43:40 +08:00
|
|
|
|
2017-04-18 09:21:53 +08:00
|
|
|
/// The kind of location description being produced.
|
2019-05-23 18:37:13 +08:00
|
|
|
enum { Unknown = 0, Register, Memory, Implicit };
|
2017-04-18 09:21:53 +08:00
|
|
|
|
2020-05-21 06:30:58 +08:00
|
|
|
/// Additional location flags which may be combined with any location kind.
|
|
|
|
/// Currently, entry values are not supported for the Memory location kind.
|
|
|
|
enum { EntryValue = 1 << 0, Indirect = 1 << 1, CallSiteParamValue = 1 << 2 };
|
2019-06-27 21:52:34 +08:00
|
|
|
|
2019-05-23 18:37:13 +08:00
|
|
|
unsigned LocationKind : 3;
|
2021-02-12 07:38:49 +08:00
|
|
|
unsigned SavedLocationKind : 3;
|
2020-05-21 06:30:58 +08:00
|
|
|
unsigned LocationFlags : 3;
|
2019-05-23 18:37:13 +08:00
|
|
|
unsigned DwarfVersion : 4;
|
|
|
|
|
|
|
|
public:
|
2020-05-21 06:30:58 +08:00
|
|
|
/// Set the location (\p Loc) and \ref DIExpression (\p DIExpr) to describe.
|
|
|
|
void setLocation(const MachineLocation &Loc, const DIExpression *DIExpr);
|
|
|
|
|
2020-01-30 02:22:15 +08:00
|
|
|
bool isUnknownLocation() const { return LocationKind == Unknown; }
|
2019-05-23 18:37:13 +08:00
|
|
|
|
2020-01-30 02:22:15 +08:00
|
|
|
bool isMemoryLocation() const { return LocationKind == Memory; }
|
2019-05-23 18:37:13 +08:00
|
|
|
|
2020-01-30 02:22:15 +08:00
|
|
|
bool isRegisterLocation() const { return LocationKind == Register; }
|
2019-05-23 18:37:13 +08:00
|
|
|
|
2020-01-30 02:22:15 +08:00
|
|
|
bool isImplicitLocation() const { return LocationKind == Implicit; }
|
2019-05-23 18:37:13 +08:00
|
|
|
|
2020-01-30 02:22:15 +08:00
|
|
|
bool isEntryValue() const { return LocationFlags & EntryValue; }
|
2019-06-27 21:52:34 +08:00
|
|
|
|
2020-05-21 06:30:58 +08:00
|
|
|
bool isIndirect() const { return LocationFlags & Indirect; }
|
|
|
|
|
2020-01-30 02:22:15 +08:00
|
|
|
bool isParameterValue() { return LocationFlags & CallSiteParamValue; }
|
2019-08-01 00:51:28 +08:00
|
|
|
|
2019-06-18 07:39:41 +08:00
|
|
|
Optional<uint8_t> TagOffset;
|
|
|
|
|
2019-05-23 18:37:13 +08:00
|
|
|
protected:
|
2016-12-10 04:43:40 +08:00
|
|
|
/// Push a DW_OP_piece / DW_OP_bit_piece for emitting later, if one is needed
|
|
|
|
/// to represent a subregister.
|
|
|
|
void setSubRegisterPiece(unsigned SizeInBits, unsigned OffsetInBits) {
|
2019-05-23 18:37:13 +08:00
|
|
|
assert(SizeInBits < 65536 && OffsetInBits < 65536);
|
2016-12-10 04:43:40 +08:00
|
|
|
SubRegisterSizeInBits = SizeInBits;
|
|
|
|
SubRegisterOffsetInBits = OffsetInBits;
|
|
|
|
}
|
2015-01-13 07:36:56 +08:00
|
|
|
|
2017-03-17 01:14:56 +08:00
|
|
|
/// Add masking operations to stencil out a subregister.
|
|
|
|
void maskSubRegister();
|
|
|
|
|
2015-01-14 07:11:07 +08:00
|
|
|
/// Output a dwarf operand and an optional assembler comment.
|
2017-03-17 01:42:45 +08:00
|
|
|
virtual void emitOp(uint8_t Op, const char *Comment = nullptr) = 0;
|
2017-08-18 05:26:39 +08:00
|
|
|
|
2015-01-14 07:11:07 +08:00
|
|
|
/// Emit a raw signed value.
|
2017-03-17 01:42:45 +08:00
|
|
|
virtual void emitSigned(int64_t Value) = 0;
|
2017-08-18 05:26:39 +08:00
|
|
|
|
2015-01-14 07:11:07 +08:00
|
|
|
/// Emit a raw unsigned value.
|
2017-03-17 01:42:45 +08:00
|
|
|
virtual void emitUnsigned(uint64_t Value) = 0;
|
2017-08-18 05:26:39 +08:00
|
|
|
|
2019-04-30 15:58:57 +08:00
|
|
|
virtual void emitData1(uint8_t Value) = 0;
|
|
|
|
|
2019-03-19 21:16:28 +08:00
|
|
|
virtual void emitBaseTypeRef(uint64_t Idx) = 0;
|
|
|
|
|
[DebugInfo] Add interface for pre-calculating the size of emitted DWARF
Summary:
DWARF's DW_OP_entry_value operation has two operands; the first is a
ULEB128 operand that specifies the size of the second operand, which is
a DWARF block. This means that we need to be able to pre-calculate and
emit the size of DWARF expressions before emitting them. There is
currently no interface for doing this in DwarfExpression, so this patch
introduces that.
When implementing this I initially thought about running through
DwarfExpression's emission two times; first with a temporary buffer to
emit the expression, in order to being able to calculate the size of
that emitted data. However, DwarfExpression is a quite complex state
machine, so I decided against that, as it seemed like the two runs could
get out of sync, resulting in incorrect size operands. Therefore I have
implemented this in a way that we only have to run DwarfExpression once.
The idea is to emit DWARF to a temporary buffer, for which it is
possible to query the size. The data in the temporary buffer can then be
emitted to DwarfExpression's main output.
In the case of DIEDwarfExpression, a temporary DIE is used. The values
are all allocated using the same BumpPtrAllocator as for all other DIEs,
and the values are then transferred to the real value list. In the case
of DebugLocDwarfExpression, the temporary buffer is implemented using a
BufferByteStreamer which emits to a buffer in the DwarfExpression
object.
Reviewers: aprantl, vsk, NikolaPrica, djtodoro
Reviewed By: aprantl
Subscribers: hiraditya, llvm-commits
Tags: #debug-info, #llvm
Differential Revision: https://reviews.llvm.org/D67768
llvm-svn: 374879
2019-10-15 19:14:35 +08:00
|
|
|
/// Start emitting data to the temporary buffer. The data stored in the
|
|
|
|
/// temporary buffer can be committed to the main output using
|
|
|
|
/// commitTemporaryBuffer().
|
|
|
|
virtual void enableTemporaryBuffer() = 0;
|
|
|
|
|
|
|
|
/// Disable emission to the temporary buffer. This does not commit data
|
|
|
|
/// in the temporary buffer to the main output.
|
|
|
|
virtual void disableTemporaryBuffer() = 0;
|
|
|
|
|
|
|
|
/// Return the emitted size, in number of bytes, for the data stored in the
|
|
|
|
/// temporary buffer.
|
|
|
|
virtual unsigned getTemporaryBufferSize() = 0;
|
|
|
|
|
|
|
|
/// Commit the data stored in the temporary buffer to the main output.
|
|
|
|
virtual void commitTemporaryBuffer() = 0;
|
|
|
|
|
2018-09-05 18:18:36 +08:00
|
|
|
/// Emit a normalized unsigned constant.
|
|
|
|
void emitConstu(uint64_t Value);
|
|
|
|
|
2015-01-14 07:11:07 +08:00
|
|
|
/// Return whether the given machine register is the frame register in the
|
|
|
|
/// current function.
|
2020-01-30 02:22:15 +08:00
|
|
|
virtual bool isFrameRegister(const TargetRegisterInfo &TRI,
|
2020-11-07 13:00:28 +08:00
|
|
|
llvm::Register MachineReg) = 0;
|
2015-01-13 06:19:26 +08:00
|
|
|
|
2017-04-18 09:21:53 +08:00
|
|
|
/// Emit a DW_OP_reg operation. Note that this is only legal inside a DWARF
|
|
|
|
/// register location description.
|
2017-03-17 01:42:45 +08:00
|
|
|
void addReg(int DwarfReg, const char *Comment = nullptr);
|
2017-08-18 05:26:39 +08:00
|
|
|
|
2017-03-23 01:19:55 +08:00
|
|
|
/// Emit a DW_OP_breg operation.
|
|
|
|
void addBReg(int DwarfReg, int Offset);
|
2017-08-18 05:26:39 +08:00
|
|
|
|
2017-03-22 09:15:57 +08:00
|
|
|
/// Emit DW_OP_fbreg <Offset>.
|
|
|
|
void addFBReg(int Offset);
|
2017-03-21 05:35:09 +08:00
|
|
|
|
|
|
|
/// Emit a partial DWARF register operation.
|
|
|
|
///
|
|
|
|
/// \param MachineReg The register number.
|
|
|
|
/// \param MaxSize If the register must be composed from
|
|
|
|
/// sub-registers this is an upper bound
|
|
|
|
/// for how many bits the emitted DW_OP_piece
|
|
|
|
/// may cover.
|
|
|
|
///
|
|
|
|
/// If size and offset is zero an operation for the entire register is
|
|
|
|
/// emitted: Some targets do not provide a DWARF register number for every
|
|
|
|
/// register. If this is the case, this function will attempt to emit a DWARF
|
|
|
|
/// register by emitting a fragment of a super-register or by piecing together
|
|
|
|
/// multiple subregisters that alias the register.
|
|
|
|
///
|
|
|
|
/// \return false if no DWARF register exists for MachineReg.
|
2020-11-07 13:00:28 +08:00
|
|
|
bool addMachineReg(const TargetRegisterInfo &TRI, llvm::Register MachineReg,
|
2017-03-21 05:35:09 +08:00
|
|
|
unsigned MaxSize = ~1U);
|
|
|
|
|
2016-12-10 04:43:40 +08:00
|
|
|
/// Emit a DW_OP_piece or DW_OP_bit_piece operation for a variable fragment.
|
|
|
|
/// \param OffsetInBits This is an optional offset into the location that
|
|
|
|
/// is at the top of the DWARF stack.
|
2017-03-17 01:42:45 +08:00
|
|
|
void addOpPiece(unsigned SizeInBits, unsigned OffsetInBits = 0);
|
2016-12-06 02:04:47 +08:00
|
|
|
|
2017-03-17 01:14:56 +08:00
|
|
|
/// Emit a shift-right dwarf operation.
|
2017-03-17 01:42:45 +08:00
|
|
|
void addShr(unsigned ShiftBy);
|
2017-08-18 05:26:39 +08:00
|
|
|
|
2017-03-17 01:14:56 +08:00
|
|
|
/// Emit a bitwise and dwarf operation.
|
2017-03-17 01:42:45 +08:00
|
|
|
void addAnd(unsigned Mask);
|
2016-12-06 02:04:47 +08:00
|
|
|
|
2016-04-08 08:38:37 +08:00
|
|
|
/// Emit a DW_OP_stack_value, if supported.
|
|
|
|
///
|
2016-11-03 00:20:37 +08:00
|
|
|
/// The proper way to describe a constant value is DW_OP_constu <const>,
|
|
|
|
/// DW_OP_stack_value. Unfortunately, DW_OP_stack_value was not available
|
|
|
|
/// until DWARF 4, so we will continue to generate DW_OP_constu <const> for
|
|
|
|
/// DWARF 2 and DWARF 3. Technically, this is incorrect since DW_OP_const
|
2018-12-20 08:01:57 +08:00
|
|
|
/// <const> actually describes a value at a constant address, not a constant
|
2016-11-03 00:20:37 +08:00
|
|
|
/// value. However, in the past there was no better way to describe a
|
|
|
|
/// constant value, so the producers and consumers started to rely on
|
|
|
|
/// heuristics to disambiguate the value vs. location status of the
|
|
|
|
/// expression. See PR21176 for more details.
|
2017-03-17 01:42:45 +08:00
|
|
|
void addStackValue();
|
2015-01-13 06:19:22 +08:00
|
|
|
|
[DebugInfo] Add a DW_OP_LLVM_entry_value operation
Summary:
Internally in LLVM's metadata we use DW_OP_entry_value operations with
the same semantics as DWARF; that is, its operand specifies the number
of bytes that the entry value covers.
At the time of emitting entry values we don't know the emitted size of
the DWARF expression that the entry value will cover. Currently the size
is hardcoded to 1 in DIExpression, and other values causes the verifier
to fail. As the size is 1, that effectively means that we can only have
valid entry values for registers that can be encoded in one byte, which
are the registers with DWARF numbers 0 to 31 (as they can be encoded as
single-byte DW_OP_reg0..DW_OP_reg31 rather than a multi-byte
DW_OP_regx). It is a bit confusing, but it seems like llvm-dwarfdump
will print an operation "correctly", even if the byte size is less than
that, which may make it seem that we emit correct DWARF for registers
with DWARF numbers > 31. If you instead use readelf for such cases, it
will interpret the number of specified bytes as a DWARF expression. This
seems like a limitation in llvm-dwarfdump.
As suggested in D66746, a way forward would be to add an internal
variant of DW_OP_entry_value, DW_OP_LLVM_entry_value, whose operand
instead specifies the number of operations that the entry value covers,
and we then translate that into the byte size at the time of emission.
In this patch that internal operation is added. This patch keeps the
limitation that a entry value can only be applied to simple register
locations, but it will fix the issue with the size operand being
incorrect for DWARF numbers > 31.
Reviewers: aprantl, vsk, djtodoro, NikolaPrica
Reviewed By: aprantl
Subscribers: jyknight, fedor.sergeev, hiraditya, llvm-commits
Tags: #debug-info, #llvm
Differential Revision: https://reviews.llvm.org/D67492
llvm-svn: 374881
2019-10-15 19:31:21 +08:00
|
|
|
/// Finalize an entry value by emitting its size operand, and committing the
|
|
|
|
/// DWARF block which has been emitted to the temporary buffer.
|
|
|
|
void finalizeEntryValue();
|
2020-01-30 02:22:15 +08:00
|
|
|
|
[DebugInfo] Do not emit entry values for composite locations
Summary:
This is a fix for PR45009.
When working on D67492 I made DwarfExpression emit a single
DW_OP_entry_value operation covering the whole composite location
description that is produced if a register does not have a valid DWARF
number, and is instead composed of multiple register pieces. Looking
closer at the standard, this appears to not be valid DWARF. A
DW_OP_entry_value operation's block can only be a DWARF expression or a
register location description, so it appears to not be valid for it to
hold a composite location description like that.
See DWARFv5 sec. 2.5.1.7:
"The DW_OP_entry_value operation pushes the value that the described
location held upon entering the current subprogram. It has two
operands: an unsigned LEB128 length, followed by a block containing a
DWARF expression or a register location description (see Section
2.6.1.1.3 on page 39)."
Here is a dwarf-discuss mail thread regarding this:
http://lists.dwarfstd.org/pipermail/dwarf-discuss-dwarfstd.org/2020-March/004610.html
There was not a strong consensus reached there, but people seem to lean
towards that operations specified under 2.6 (e.g. DW_OP_piece) may not
be part of a DWARF expression, and thus the DW_OP_entry_value operation
can't contain those.
Perhaps we instead want to emit a entry value operation per each
DW_OP_reg* operation, e.g.:
- DW_OP_entry_value(DW_OP_regx sub_reg0),
DW_OP_stack_value,
DW_OP_piece 8,
- DW_OP_entry_value(DW_OP_regx sub_reg1),
DW_OP_stack_value,
DW_OP_piece 8,
[...]
The question then becomes how the call site should look; should a
composite location description be emitted there, and we then leave it up
to the debugger to match those two composite location descriptions?
Another alternative could be to emit a call site parameter entry for
each sub-register, but firstly I'm unsure if that is even valid DWARF,
and secondly it seems like that would complicate the collection of call
site values quite a bit. As far as I can tell GCC does not emit any
entry values / call sites in these cases, so we do not have something to
compare with, but the former seems like the more reasonable approach.
Currently when trying to emit a call site entry for a parameter composed
of multiple DWARF registers a (DwarfRegs.size() == 1) assert is
triggered in addMachineRegExpression(). Until the call site
representation is figured out, and until there is use for these entry
values in practice, this commit simply stops the invalid DWARF from
being emitted.
Reviewers: djtodoro, vsk, aprantl
Reviewed By: djtodoro, vsk
Subscribers: jyknight, hiraditya, fedor.sergeev, jrtc27, llvm-commits
Tags: #debug-info, #llvm
Differential Revision: https://reviews.llvm.org/D75270
2020-07-01 15:45:56 +08:00
|
|
|
/// Cancel the emission of an entry value.
|
|
|
|
void cancelEntryValue();
|
|
|
|
|
2017-03-28 01:34:04 +08:00
|
|
|
~DwarfExpression() = default;
|
2017-08-18 05:26:39 +08:00
|
|
|
|
2017-03-21 05:34:19 +08:00
|
|
|
public:
|
2019-03-19 21:16:28 +08:00
|
|
|
DwarfExpression(unsigned DwarfVersion, DwarfCompileUnit &CU)
|
2019-05-23 18:37:13 +08:00
|
|
|
: CU(CU), SubRegisterSizeInBits(0), SubRegisterOffsetInBits(0),
|
2021-02-12 07:38:49 +08:00
|
|
|
LocationKind(Unknown), SavedLocationKind(Unknown),
|
|
|
|
LocationFlags(Unknown), DwarfVersion(DwarfVersion) {}
|
2017-03-21 05:34:19 +08:00
|
|
|
|
|
|
|
/// This needs to be called last to commit any pending changes.
|
|
|
|
void finalize();
|
|
|
|
|
2015-01-13 08:04:06 +08:00
|
|
|
/// Emit a signed constant.
|
2017-03-17 01:42:45 +08:00
|
|
|
void addSignedConstant(int64_t Value);
|
2017-08-18 05:26:39 +08:00
|
|
|
|
2015-01-13 08:04:06 +08:00
|
|
|
/// Emit an unsigned constant.
|
2017-03-17 01:42:45 +08:00
|
|
|
void addUnsignedConstant(uint64_t Value);
|
2017-08-18 05:26:39 +08:00
|
|
|
|
2016-04-08 08:38:37 +08:00
|
|
|
/// Emit an unsigned constant.
|
2020-11-24 16:00:42 +08:00
|
|
|
void addUnsignedConstant(const APInt &Value);
|
2015-01-13 08:04:06 +08:00
|
|
|
|
2020-08-20 04:00:31 +08:00
|
|
|
/// Emit an floating point constant.
|
|
|
|
void addConstantFP(const APFloat &Value, const AsmPrinter &AP);
|
|
|
|
|
2017-04-20 07:42:25 +08:00
|
|
|
/// Lock this down to become a memory location description.
|
|
|
|
void setMemoryLocationKind() {
|
2019-05-23 18:37:13 +08:00
|
|
|
assert(isUnknownLocation());
|
2017-04-20 07:42:25 +08:00
|
|
|
LocationKind = Memory;
|
|
|
|
}
|
|
|
|
|
2019-06-27 21:52:34 +08:00
|
|
|
/// Lock this down to become an entry value location.
|
2020-05-21 06:30:58 +08:00
|
|
|
void setEntryValueFlags(const MachineLocation &Loc);
|
2019-06-27 21:52:34 +08:00
|
|
|
|
2019-08-01 00:51:28 +08:00
|
|
|
/// Lock this down to become a call site parameter location.
|
2020-01-30 02:22:15 +08:00
|
|
|
void setCallSiteParamValueFlag() { LocationFlags |= CallSiteParamValue; }
|
2019-08-01 00:51:28 +08:00
|
|
|
|
2016-11-03 00:20:37 +08:00
|
|
|
/// Emit a machine register location. As an optimization this may also consume
|
|
|
|
/// the prefix of a DwarfExpression if a more efficient representation for
|
|
|
|
/// combining the register location and the first operation exists.
|
2015-04-22 02:44:06 +08:00
|
|
|
///
|
2017-04-20 07:42:25 +08:00
|
|
|
/// \param FragmentOffsetInBits If this is one fragment out of a
|
|
|
|
/// fragmented
|
2016-12-06 02:04:47 +08:00
|
|
|
/// location, this is the offset of the
|
|
|
|
/// fragment inside the entire variable.
|
|
|
|
/// \return false if no DWARF register exists
|
|
|
|
/// for MachineReg.
|
2017-04-20 07:42:25 +08:00
|
|
|
bool addMachineRegExpression(const TargetRegisterInfo &TRI,
|
2020-11-07 13:00:28 +08:00
|
|
|
DIExpressionCursor &Expr,
|
|
|
|
llvm::Register MachineReg,
|
2016-12-06 02:04:47 +08:00
|
|
|
unsigned FragmentOffsetInBits = 0);
|
2017-08-18 05:26:39 +08:00
|
|
|
|
[DebugInfo] Add a DW_OP_LLVM_entry_value operation
Summary:
Internally in LLVM's metadata we use DW_OP_entry_value operations with
the same semantics as DWARF; that is, its operand specifies the number
of bytes that the entry value covers.
At the time of emitting entry values we don't know the emitted size of
the DWARF expression that the entry value will cover. Currently the size
is hardcoded to 1 in DIExpression, and other values causes the verifier
to fail. As the size is 1, that effectively means that we can only have
valid entry values for registers that can be encoded in one byte, which
are the registers with DWARF numbers 0 to 31 (as they can be encoded as
single-byte DW_OP_reg0..DW_OP_reg31 rather than a multi-byte
DW_OP_regx). It is a bit confusing, but it seems like llvm-dwarfdump
will print an operation "correctly", even if the byte size is less than
that, which may make it seem that we emit correct DWARF for registers
with DWARF numbers > 31. If you instead use readelf for such cases, it
will interpret the number of specified bytes as a DWARF expression. This
seems like a limitation in llvm-dwarfdump.
As suggested in D66746, a way forward would be to add an internal
variant of DW_OP_entry_value, DW_OP_LLVM_entry_value, whose operand
instead specifies the number of operations that the entry value covers,
and we then translate that into the byte size at the time of emission.
In this patch that internal operation is added. This patch keeps the
limitation that a entry value can only be applied to simple register
locations, but it will fix the issue with the size operand being
incorrect for DWARF numbers > 31.
Reviewers: aprantl, vsk, djtodoro, NikolaPrica
Reviewed By: aprantl
Subscribers: jyknight, fedor.sergeev, hiraditya, llvm-commits
Tags: #debug-info, #llvm
Differential Revision: https://reviews.llvm.org/D67492
llvm-svn: 374881
2019-10-15 19:31:21 +08:00
|
|
|
/// Begin emission of an entry value dwarf operation. The entry value's
|
|
|
|
/// first operand is the size of the DWARF block (its second operand),
|
|
|
|
/// which needs to be calculated at time of emission, so we don't emit
|
|
|
|
/// any operands here.
|
|
|
|
void beginEntryValueExpression(DIExpressionCursor &ExprCursor);
|
2019-06-27 21:52:34 +08:00
|
|
|
|
2020-01-30 02:08:57 +08:00
|
|
|
/// Return the index of a base type with the given properties and
|
|
|
|
/// create one if necessary.
|
|
|
|
unsigned getOrCreateBaseType(unsigned BitSize, dwarf::TypeKind Encoding);
|
2020-01-30 02:22:15 +08:00
|
|
|
|
2016-11-03 00:12:20 +08:00
|
|
|
/// Emit all remaining operations in the DIExpressionCursor.
|
2016-12-06 02:04:47 +08:00
|
|
|
///
|
|
|
|
/// \param FragmentOffsetInBits If this is one fragment out of multiple
|
|
|
|
/// locations, this is the offset of the
|
|
|
|
/// fragment inside the entire variable.
|
2017-03-17 01:42:45 +08:00
|
|
|
void addExpression(DIExpressionCursor &&Expr,
|
2016-12-06 02:04:47 +08:00
|
|
|
unsigned FragmentOffsetInBits = 0);
|
2021-03-10 22:35:55 +08:00
|
|
|
void
|
|
|
|
addExpression(DIExpressionCursor &&Expr,
|
2021-03-11 16:21:02 +08:00
|
|
|
llvm::function_ref<bool(unsigned, DIExpressionCursor &)> InsertArg);
|
2016-12-10 04:43:40 +08:00
|
|
|
|
|
|
|
/// If applicable, emit an empty DW_OP_piece / DW_OP_bit_piece to advance to
|
|
|
|
/// the fragment described by \c Expr.
|
|
|
|
void addFragmentOffset(const DIExpression *Expr);
|
2019-03-19 21:16:28 +08:00
|
|
|
|
|
|
|
void emitLegacySExt(unsigned FromBits);
|
2020-10-29 09:55:46 +08:00
|
|
|
void emitLegacyZExt(unsigned FromBits);
|
2019-12-21 06:31:56 +08:00
|
|
|
|
|
|
|
/// Emit location information expressed via WebAssembly location + offset
|
|
|
|
/// The Index is an identifier for locals, globals or operand stack.
|
2020-03-20 10:53:51 +08:00
|
|
|
void addWasmLocation(unsigned Index, uint64_t Offset);
|
Debug Info: Move the complex expression handling (=the remainder) of
emitDebugLocValue() into DwarfExpression.
Ought to be NFC, but it actually uncovered a bug in the debug-loc-asan.ll
testcase. The testcase checks that the address of variable "y" is stored
at [RSP+16], which also lines up with the comment.
It also check(ed) that the *value* of "y" is stored in RDI before that,
but that is actually incorrect, since RDI is the very value that is
stored in [RSP+16]. Here's the assembler output:
movb 2147450880(%rcx), %r8b
#DEBUG_VALUE: bar:y <- RDI
cmpb $0, %r8b
movq %rax, 32(%rsp) # 8-byte Spill
movq %rsi, 24(%rsp) # 8-byte Spill
movq %rdi, 16(%rsp) # 8-byte Spill
.Ltmp3:
#DEBUG_VALUE: bar:y <- [RSP+16]
Fixed the comment to spell out the correct register and the check to
expect an address rather than a value.
Note that the range that is emitted for the RDI location was and is still
wrong, it claims to begin at the function prologue, but really it should
start where RDI is first assigned.
llvm-svn: 225851
2015-01-14 07:39:11 +08:00
|
|
|
};
|
2015-01-13 08:04:06 +08:00
|
|
|
|
|
|
|
/// DwarfExpression implementation for .debug_loc entries.
|
2017-03-28 01:34:04 +08:00
|
|
|
class DebugLocDwarfExpression final : public DwarfExpression {
|
[DebugInfo] Add interface for pre-calculating the size of emitted DWARF
Summary:
DWARF's DW_OP_entry_value operation has two operands; the first is a
ULEB128 operand that specifies the size of the second operand, which is
a DWARF block. This means that we need to be able to pre-calculate and
emit the size of DWARF expressions before emitting them. There is
currently no interface for doing this in DwarfExpression, so this patch
introduces that.
When implementing this I initially thought about running through
DwarfExpression's emission two times; first with a temporary buffer to
emit the expression, in order to being able to calculate the size of
that emitted data. However, DwarfExpression is a quite complex state
machine, so I decided against that, as it seemed like the two runs could
get out of sync, resulting in incorrect size operands. Therefore I have
implemented this in a way that we only have to run DwarfExpression once.
The idea is to emit DWARF to a temporary buffer, for which it is
possible to query the size. The data in the temporary buffer can then be
emitted to DwarfExpression's main output.
In the case of DIEDwarfExpression, a temporary DIE is used. The values
are all allocated using the same BumpPtrAllocator as for all other DIEs,
and the values are then transferred to the real value list. In the case
of DebugLocDwarfExpression, the temporary buffer is implemented using a
BufferByteStreamer which emits to a buffer in the DwarfExpression
object.
Reviewers: aprantl, vsk, NikolaPrica, djtodoro
Reviewed By: aprantl
Subscribers: hiraditya, llvm-commits
Tags: #debug-info, #llvm
Differential Revision: https://reviews.llvm.org/D67768
llvm-svn: 374879
2019-10-15 19:14:35 +08:00
|
|
|
|
|
|
|
struct TempBuffer {
|
|
|
|
SmallString<32> Bytes;
|
|
|
|
std::vector<std::string> Comments;
|
|
|
|
BufferByteStreamer BS;
|
|
|
|
|
|
|
|
TempBuffer(bool GenerateComments) : BS(Bytes, Comments, GenerateComments) {}
|
|
|
|
};
|
|
|
|
|
|
|
|
std::unique_ptr<TempBuffer> TmpBuf;
|
|
|
|
BufferByteStreamer &OutBS;
|
|
|
|
bool IsBuffering = false;
|
|
|
|
|
|
|
|
/// Return the byte streamer that currently is being emitted to.
|
|
|
|
ByteStreamer &getActiveStreamer() { return IsBuffering ? TmpBuf->BS : OutBS; }
|
2015-01-13 08:04:06 +08:00
|
|
|
|
2017-03-17 01:42:45 +08:00
|
|
|
void emitOp(uint8_t Op, const char *Comment = nullptr) override;
|
|
|
|
void emitSigned(int64_t Value) override;
|
|
|
|
void emitUnsigned(uint64_t Value) override;
|
2019-04-30 15:58:57 +08:00
|
|
|
void emitData1(uint8_t Value) override;
|
2019-03-19 21:16:28 +08:00
|
|
|
void emitBaseTypeRef(uint64_t Idx) override;
|
[DebugInfo] Add interface for pre-calculating the size of emitted DWARF
Summary:
DWARF's DW_OP_entry_value operation has two operands; the first is a
ULEB128 operand that specifies the size of the second operand, which is
a DWARF block. This means that we need to be able to pre-calculate and
emit the size of DWARF expressions before emitting them. There is
currently no interface for doing this in DwarfExpression, so this patch
introduces that.
When implementing this I initially thought about running through
DwarfExpression's emission two times; first with a temporary buffer to
emit the expression, in order to being able to calculate the size of
that emitted data. However, DwarfExpression is a quite complex state
machine, so I decided against that, as it seemed like the two runs could
get out of sync, resulting in incorrect size operands. Therefore I have
implemented this in a way that we only have to run DwarfExpression once.
The idea is to emit DWARF to a temporary buffer, for which it is
possible to query the size. The data in the temporary buffer can then be
emitted to DwarfExpression's main output.
In the case of DIEDwarfExpression, a temporary DIE is used. The values
are all allocated using the same BumpPtrAllocator as for all other DIEs,
and the values are then transferred to the real value list. In the case
of DebugLocDwarfExpression, the temporary buffer is implemented using a
BufferByteStreamer which emits to a buffer in the DwarfExpression
object.
Reviewers: aprantl, vsk, NikolaPrica, djtodoro
Reviewed By: aprantl
Subscribers: hiraditya, llvm-commits
Tags: #debug-info, #llvm
Differential Revision: https://reviews.llvm.org/D67768
llvm-svn: 374879
2019-10-15 19:14:35 +08:00
|
|
|
|
|
|
|
void enableTemporaryBuffer() override;
|
|
|
|
void disableTemporaryBuffer() override;
|
|
|
|
unsigned getTemporaryBufferSize() override;
|
|
|
|
void commitTemporaryBuffer() override;
|
|
|
|
|
2016-05-21 03:35:17 +08:00
|
|
|
bool isFrameRegister(const TargetRegisterInfo &TRI,
|
2020-11-07 13:00:28 +08:00
|
|
|
llvm::Register MachineReg) override;
|
2020-01-30 02:22:15 +08:00
|
|
|
|
2017-03-21 05:34:19 +08:00
|
|
|
public:
|
[DebugInfo] Add interface for pre-calculating the size of emitted DWARF
Summary:
DWARF's DW_OP_entry_value operation has two operands; the first is a
ULEB128 operand that specifies the size of the second operand, which is
a DWARF block. This means that we need to be able to pre-calculate and
emit the size of DWARF expressions before emitting them. There is
currently no interface for doing this in DwarfExpression, so this patch
introduces that.
When implementing this I initially thought about running through
DwarfExpression's emission two times; first with a temporary buffer to
emit the expression, in order to being able to calculate the size of
that emitted data. However, DwarfExpression is a quite complex state
machine, so I decided against that, as it seemed like the two runs could
get out of sync, resulting in incorrect size operands. Therefore I have
implemented this in a way that we only have to run DwarfExpression once.
The idea is to emit DWARF to a temporary buffer, for which it is
possible to query the size. The data in the temporary buffer can then be
emitted to DwarfExpression's main output.
In the case of DIEDwarfExpression, a temporary DIE is used. The values
are all allocated using the same BumpPtrAllocator as for all other DIEs,
and the values are then transferred to the real value list. In the case
of DebugLocDwarfExpression, the temporary buffer is implemented using a
BufferByteStreamer which emits to a buffer in the DwarfExpression
object.
Reviewers: aprantl, vsk, NikolaPrica, djtodoro
Reviewed By: aprantl
Subscribers: hiraditya, llvm-commits
Tags: #debug-info, #llvm
Differential Revision: https://reviews.llvm.org/D67768
llvm-svn: 374879
2019-10-15 19:14:35 +08:00
|
|
|
DebugLocDwarfExpression(unsigned DwarfVersion, BufferByteStreamer &BS,
|
|
|
|
DwarfCompileUnit &CU)
|
|
|
|
: DwarfExpression(DwarfVersion, CU), OutBS(BS) {}
|
2015-01-13 06:19:22 +08:00
|
|
|
};
|
2015-01-14 09:01:22 +08:00
|
|
|
|
|
|
|
/// DwarfExpression implementation for singular DW_AT_location.
|
2017-03-28 01:34:04 +08:00
|
|
|
class DIEDwarfExpression final : public DwarfExpression {
|
[DebugInfo] Add interface for pre-calculating the size of emitted DWARF
Summary:
DWARF's DW_OP_entry_value operation has two operands; the first is a
ULEB128 operand that specifies the size of the second operand, which is
a DWARF block. This means that we need to be able to pre-calculate and
emit the size of DWARF expressions before emitting them. There is
currently no interface for doing this in DwarfExpression, so this patch
introduces that.
When implementing this I initially thought about running through
DwarfExpression's emission two times; first with a temporary buffer to
emit the expression, in order to being able to calculate the size of
that emitted data. However, DwarfExpression is a quite complex state
machine, so I decided against that, as it seemed like the two runs could
get out of sync, resulting in incorrect size operands. Therefore I have
implemented this in a way that we only have to run DwarfExpression once.
The idea is to emit DWARF to a temporary buffer, for which it is
possible to query the size. The data in the temporary buffer can then be
emitted to DwarfExpression's main output.
In the case of DIEDwarfExpression, a temporary DIE is used. The values
are all allocated using the same BumpPtrAllocator as for all other DIEs,
and the values are then transferred to the real value list. In the case
of DebugLocDwarfExpression, the temporary buffer is implemented using a
BufferByteStreamer which emits to a buffer in the DwarfExpression
object.
Reviewers: aprantl, vsk, NikolaPrica, djtodoro
Reviewed By: aprantl
Subscribers: hiraditya, llvm-commits
Tags: #debug-info, #llvm
Differential Revision: https://reviews.llvm.org/D67768
llvm-svn: 374879
2019-10-15 19:14:35 +08:00
|
|
|
const AsmPrinter &AP;
|
|
|
|
DIELoc &OutDIE;
|
|
|
|
DIELoc TmpDIE;
|
|
|
|
bool IsBuffering = false;
|
|
|
|
|
|
|
|
/// Return the DIE that currently is being emitted to.
|
|
|
|
DIELoc &getActiveDIE() { return IsBuffering ? TmpDIE : OutDIE; }
|
2015-01-14 09:01:22 +08:00
|
|
|
|
2017-03-17 01:42:45 +08:00
|
|
|
void emitOp(uint8_t Op, const char *Comment = nullptr) override;
|
|
|
|
void emitSigned(int64_t Value) override;
|
|
|
|
void emitUnsigned(uint64_t Value) override;
|
2019-04-30 15:58:57 +08:00
|
|
|
void emitData1(uint8_t Value) override;
|
2019-03-19 21:16:28 +08:00
|
|
|
void emitBaseTypeRef(uint64_t Idx) override;
|
[DebugInfo] Add interface for pre-calculating the size of emitted DWARF
Summary:
DWARF's DW_OP_entry_value operation has two operands; the first is a
ULEB128 operand that specifies the size of the second operand, which is
a DWARF block. This means that we need to be able to pre-calculate and
emit the size of DWARF expressions before emitting them. There is
currently no interface for doing this in DwarfExpression, so this patch
introduces that.
When implementing this I initially thought about running through
DwarfExpression's emission two times; first with a temporary buffer to
emit the expression, in order to being able to calculate the size of
that emitted data. However, DwarfExpression is a quite complex state
machine, so I decided against that, as it seemed like the two runs could
get out of sync, resulting in incorrect size operands. Therefore I have
implemented this in a way that we only have to run DwarfExpression once.
The idea is to emit DWARF to a temporary buffer, for which it is
possible to query the size. The data in the temporary buffer can then be
emitted to DwarfExpression's main output.
In the case of DIEDwarfExpression, a temporary DIE is used. The values
are all allocated using the same BumpPtrAllocator as for all other DIEs,
and the values are then transferred to the real value list. In the case
of DebugLocDwarfExpression, the temporary buffer is implemented using a
BufferByteStreamer which emits to a buffer in the DwarfExpression
object.
Reviewers: aprantl, vsk, NikolaPrica, djtodoro
Reviewed By: aprantl
Subscribers: hiraditya, llvm-commits
Tags: #debug-info, #llvm
Differential Revision: https://reviews.llvm.org/D67768
llvm-svn: 374879
2019-10-15 19:14:35 +08:00
|
|
|
|
|
|
|
void enableTemporaryBuffer() override;
|
|
|
|
void disableTemporaryBuffer() override;
|
|
|
|
unsigned getTemporaryBufferSize() override;
|
|
|
|
void commitTemporaryBuffer() override;
|
|
|
|
|
2016-05-21 03:35:17 +08:00
|
|
|
bool isFrameRegister(const TargetRegisterInfo &TRI,
|
2020-11-07 13:00:28 +08:00
|
|
|
llvm::Register MachineReg) override;
|
2020-01-30 02:22:15 +08:00
|
|
|
|
2017-03-21 05:34:19 +08:00
|
|
|
public:
|
2019-03-19 21:16:28 +08:00
|
|
|
DIEDwarfExpression(const AsmPrinter &AP, DwarfCompileUnit &CU, DIELoc &DIE);
|
2017-08-18 05:26:39 +08:00
|
|
|
|
2016-12-20 10:09:43 +08:00
|
|
|
DIELoc *finalize() {
|
|
|
|
DwarfExpression::finalize();
|
[DebugInfo] Add interface for pre-calculating the size of emitted DWARF
Summary:
DWARF's DW_OP_entry_value operation has two operands; the first is a
ULEB128 operand that specifies the size of the second operand, which is
a DWARF block. This means that we need to be able to pre-calculate and
emit the size of DWARF expressions before emitting them. There is
currently no interface for doing this in DwarfExpression, so this patch
introduces that.
When implementing this I initially thought about running through
DwarfExpression's emission two times; first with a temporary buffer to
emit the expression, in order to being able to calculate the size of
that emitted data. However, DwarfExpression is a quite complex state
machine, so I decided against that, as it seemed like the two runs could
get out of sync, resulting in incorrect size operands. Therefore I have
implemented this in a way that we only have to run DwarfExpression once.
The idea is to emit DWARF to a temporary buffer, for which it is
possible to query the size. The data in the temporary buffer can then be
emitted to DwarfExpression's main output.
In the case of DIEDwarfExpression, a temporary DIE is used. The values
are all allocated using the same BumpPtrAllocator as for all other DIEs,
and the values are then transferred to the real value list. In the case
of DebugLocDwarfExpression, the temporary buffer is implemented using a
BufferByteStreamer which emits to a buffer in the DwarfExpression
object.
Reviewers: aprantl, vsk, NikolaPrica, djtodoro
Reviewed By: aprantl
Subscribers: hiraditya, llvm-commits
Tags: #debug-info, #llvm
Differential Revision: https://reviews.llvm.org/D67768
llvm-svn: 374879
2019-10-15 19:14:35 +08:00
|
|
|
return &OutDIE;
|
2016-12-20 10:09:43 +08:00
|
|
|
}
|
2015-01-14 09:01:22 +08:00
|
|
|
};
|
2015-01-13 06:19:22 +08:00
|
|
|
|
2017-08-18 05:26:39 +08:00
|
|
|
} // end namespace llvm
|
|
|
|
|
|
|
|
#endif // LLVM_LIB_CODEGEN_ASMPRINTER_DWARFEXPRESSION_H
|