llvm-project/llvm/test/CodeGen/AArch64/vector_merge_dep_check.ll

41 lines
2.0 KiB
LLVM
Raw Normal View History

In visitSTORE, always use FindBetterChain, rather than only when UseAA is enabled. Retrying after upstream changes. Simplify Consecutive Merge Store Candidate Search Now that address aliasing is much less conservative, push through simplified store merging search which only checks for parallel stores through the chain subgraph. This is cleaner as the separation of non-interfering loads/stores from the store-merging logic. Whem merging stores, search up the chain through a single load, and finds all possible stores by looking down from through a load and a TokenFactor to all stores visited. This improves the quality of the output SelectionDAG and generally the output CodeGen (with some exceptions). Additional Minor Changes: 1. Finishes removing unused AliasLoad code 2. Unifies the the chain aggregation in the merged stores across code paths 3. Re-add the Store node to the worklist after calling SimplifyDemandedBits. 4. Increase GatherAllAliasesMaxDepth from 6 to 18. That number is arbitrary, but seemed sufficient to not cause regressions in tests. This finishes the change Matt Arsenault started in r246307 and jyknight's original patch. Many tests required some changes as memory operations are now reorderable. Some tests relying on the order were changed to use volatile memory operations Noteworthy tests: CodeGen/AArch64/argument-blocks.ll - It's not entirely clear what the test_varargs_stackalign test is supposed to be asserting, but the new code looks right. CodeGen/AArch64/arm64-memset-inline.lli - CodeGen/AArch64/arm64-stur.ll - CodeGen/ARM/memset-inline.ll - The backend now generates *worse* code due to store merging succeeding, as we do do a 16-byte constant-zero store efficiently. CodeGen/AArch64/merge-store.ll - Improved, but there still seems to be an extraneous vector insert from an element to itself? CodeGen/PowerPC/ppc64-align-long-double.ll - Worse code emitted in this case, due to the improved store->load forwarding. CodeGen/X86/dag-merge-fast-accesses.ll - CodeGen/X86/MergeConsecutiveStores.ll - CodeGen/X86/stores-merging.ll - CodeGen/Mips/load-store-left-right.ll - Restored correct merging of non-aligned stores CodeGen/AMDGPU/promote-alloca-stored-pointer-value.ll - Improved. Correctly merges buffer_store_dword calls CodeGen/AMDGPU/si-triv-disjoint-mem-access.ll - Improved. Sidesteps loading a stored value and merges two stores CodeGen/X86/pr18023.ll - This test has been removed, as it was asserting incorrect behavior. Non-volatile stores *CAN* be moved past volatile loads, and now are. CodeGen/X86/vector-idiv.ll - CodeGen/X86/vector-lzcnt-128.ll - It's basically impossible to tell what these tests are actually testing. But, looks like the code got better due to the memory operations being recognized as non-aliasing. CodeGen/X86/win32-eh.ll - Both loads of the securitycookie are now merged. CodeGen/AMDGPU/vgpr-spill-emergency-stack-slot-compute.ll - This test appears to work but no longer exhibits the spill behavior. Reviewers: arsenm, hfinkel, tstellarAMD, jyknight, nhaehnle Subscribers: wdng, nhaehnle, nemanjai, arsenm, weimingz, niravd, RKSimon, aemerson, qcolombet, dsanders, resistor, tstellarAMD, t.p.northover, spatel Differential Revision: https://reviews.llvm.org/D14834 llvm-svn: 284151
2016-10-14 03:20:16 +08:00
; RUN: llc < %s | FileCheck %s
; This test checks that we do not merge stores together which have
; dependencies through their non-chain operands (e.g. one store is the
; chain ancestor of a load whose value is used in as the data for the
; other store). Merging in such cases creates a loop in the DAG.
target datalayout = "e-m:e-i64:64-i128:128-n32:64-S128"
target triple = "aarch64--linux-android"
%"class.std::__1::complex.0.20.56.60.64.72.76.88.92.112.140.248" = type { float, float }
; Function Attrs: noinline norecurse nounwind ssp uwtable
define void @fn(<2 x i64>* %argA, <2 x i64>* %argB, i64* %a) #0 align 2 {
%_p_vec_full = load <2 x i64>, <2 x i64>* %argA, align 4, !alias.scope !1, !noalias !3
%x = extractelement <2 x i64> %_p_vec_full, i32 1
store i64 %x, i64* %a, align 8, !alias.scope !4, !noalias !9
%_p_vec_full155 = load <2 x i64>, <2 x i64>* %argB, align 4, !alias.scope !1, !noalias !3
%y = extractelement <2 x i64> %_p_vec_full155, i32 0
%scevgep41 = getelementptr i64, i64* %a, i64 -1
store i64 %y, i64* %scevgep41, align 8, !alias.scope !4, !noalias !9
ret void
}
; CHECK: ret
attributes #0 = { noinline norecurse nounwind ssp uwtable "disable-tail-calls"="false" "less-precise-fpmad"="false" "no-frame-pointer-elim"="true" "no-frame-pointer-elim-non-leaf" "no-infs-fp-math"="false" "no-nans-fp-math"="false" "polly-optimized" "stack-protector-buffer-size"="8" "target-features"="+crc,+crypto,+neon" "unsafe-fp-math"="false" "use-soft-float"="false" }
!llvm.ident = !{!0}
!0 = !{!"Snapdragon LLVM ARM Compiler 3.8.0 (based on LLVM 3.8.0)"}
!1 = distinct !{!1, !2, !"polly.alias.scope.rhs"}
!2 = distinct !{!2, !"polly.alias.scope.domain"}
!3 = !{!4, !5, !6, !7, !8}
!4 = distinct !{!4, !2, !"polly.alias.scope.blockB"}
!5 = distinct !{!5, !2, !"polly.alias.scope.add28.lcssa.reg2mem"}
!6 = distinct !{!6, !2, !"polly.alias.scope.count.0.lcssa.reg2mem"}
!7 = distinct !{!7, !2, !"polly.alias.scope.mul"}
!8 = distinct !{!8, !2, !"polly.alias.scope.add28.us.lcssa.reg2mem"}
!9 = !{!1, !5, !6, !7, !8}