llvm-project/llvm/lib/Object/ELFObjectFile.cpp

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

641 lines
18 KiB
C++
Raw Normal View History

//===- ELFObjectFile.cpp - ELF object file implementation -----------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Part of the ELFObjectFile class implementation.
//
//===----------------------------------------------------------------------===//
#include "llvm/Object/ELFObjectFile.h"
#include "llvm/ADT/Triple.h"
#include "llvm/BinaryFormat/ELF.h"
#include "llvm/MC/MCInstrAnalysis.h"
#include "llvm/MC/SubtargetFeature.h"
#include "llvm/Object/ELF.h"
#include "llvm/Object/ELFTypes.h"
#include "llvm/Object/Error.h"
#include "llvm/Support/ARMAttributeParser.h"
#include "llvm/Support/ARMBuildAttributes.h"
#include "llvm/Support/Endian.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/RISCVAttributeParser.h"
#include "llvm/Support/RISCVAttributes.h"
#include "llvm/Support/TargetRegistry.h"
#include <algorithm>
#include <cstddef>
#include <cstdint>
#include <memory>
#include <string>
#include <system_error>
#include <utility>
using namespace llvm;
using namespace object;
const EnumEntry<unsigned> llvm::object::ElfSymbolTypes[NumElfSymbolTypes] = {
{"None", "NOTYPE", ELF::STT_NOTYPE},
{"Object", "OBJECT", ELF::STT_OBJECT},
{"Function", "FUNC", ELF::STT_FUNC},
{"Section", "SECTION", ELF::STT_SECTION},
{"File", "FILE", ELF::STT_FILE},
{"Common", "COMMON", ELF::STT_COMMON},
{"TLS", "TLS", ELF::STT_TLS},
{"Unknown", "<unknown>: 7", 7},
{"Unknown", "<unknown>: 8", 8},
{"Unknown", "<unknown>: 9", 9},
{"GNU_IFunc", "IFUNC", ELF::STT_GNU_IFUNC},
{"OS Specific", "<OS specific>: 11", 11},
{"OS Specific", "<OS specific>: 12", 12},
{"Proc Specific", "<processor specific>: 13", 13},
{"Proc Specific", "<processor specific>: 14", 14},
{"Proc Specific", "<processor specific>: 15", 15}
};
ELFObjectFileBase::ELFObjectFileBase(unsigned int Type, MemoryBufferRef Source)
: ObjectFile(Type, Source) {}
template <class ELFT>
static Expected<std::unique_ptr<ELFObjectFile<ELFT>>>
Recommit: [llvm-readelf/obj] - Allow dumping of ELF header even if some elements are corrupt. This is recommit for D90903 with fixes for BB: 1) Used std::move<> when returning Expected<> (http://lab.llvm.org:8011/#/builders/112/builds/913) 2) Fixed the name of temporarily file in the file-headers.test (http://lab.llvm.org:8011/#/builders/36/builds/1269) (a local old temporarily file was used before) For creating `ELFObjectFile` instances we have the factory method `ELFObjectFile<ELFT>::create(MemoryBufferRef Object)`. The problem of this method is that it scans the section header to locate some sections. When a file is truncated or has broken fields in the ELF header, this approach does not allow us to create the `ELFObjectFile` and dump the ELF header. This is https://bugs.llvm.org/show_bug.cgi?id=40804 This patch suggests a solution - it allows to delay scaning sections in the `ELFObjectFile<ELFT>::create`. It now allows user code to call an object initialization (`initContent()`) later. With that it is possible, for example, for dumpers just to dump the file header and exit. By default initialization is still performed as before, what helps to keep the logic of existent callers untouched. I've experimented with different approaches when worked on this patch. I think this approach is better than doing initialization of sections (i.e. scan of them) on demand, because normally users of `ELFObjectFile` API expect to work with a valid object. In most cases when a section header table can't be read (because of an error), we don't have to continue to work with object. So we probably don't need to implement a more complex API. Differential revision: https://reviews.llvm.org/D90903
2020-11-09 17:18:18 +08:00
createPtr(MemoryBufferRef Object, bool InitContent) {
auto Ret = ELFObjectFile<ELFT>::create(Object, InitContent);
if (Error E = Ret.takeError())
return std::move(E);
return std::make_unique<ELFObjectFile<ELFT>>(std::move(*Ret));
}
Expected<std::unique_ptr<ObjectFile>>
Recommit: [llvm-readelf/obj] - Allow dumping of ELF header even if some elements are corrupt. This is recommit for D90903 with fixes for BB: 1) Used std::move<> when returning Expected<> (http://lab.llvm.org:8011/#/builders/112/builds/913) 2) Fixed the name of temporarily file in the file-headers.test (http://lab.llvm.org:8011/#/builders/36/builds/1269) (a local old temporarily file was used before) For creating `ELFObjectFile` instances we have the factory method `ELFObjectFile<ELFT>::create(MemoryBufferRef Object)`. The problem of this method is that it scans the section header to locate some sections. When a file is truncated or has broken fields in the ELF header, this approach does not allow us to create the `ELFObjectFile` and dump the ELF header. This is https://bugs.llvm.org/show_bug.cgi?id=40804 This patch suggests a solution - it allows to delay scaning sections in the `ELFObjectFile<ELFT>::create`. It now allows user code to call an object initialization (`initContent()`) later. With that it is possible, for example, for dumpers just to dump the file header and exit. By default initialization is still performed as before, what helps to keep the logic of existent callers untouched. I've experimented with different approaches when worked on this patch. I think this approach is better than doing initialization of sections (i.e. scan of them) on demand, because normally users of `ELFObjectFile` API expect to work with a valid object. In most cases when a section header table can't be read (because of an error), we don't have to continue to work with object. So we probably don't need to implement a more complex API. Differential revision: https://reviews.llvm.org/D90903
2020-11-09 17:18:18 +08:00
ObjectFile::createELFObjectFile(MemoryBufferRef Obj, bool InitContent) {
std::pair<unsigned char, unsigned char> Ident =
getElfArchType(Obj.getBuffer());
std::size_t MaxAlignment =
1ULL << countTrailingZeros(
reinterpret_cast<uintptr_t>(Obj.getBufferStart()));
if (MaxAlignment < 2)
return createError("Insufficient alignment");
if (Ident.first == ELF::ELFCLASS32) {
if (Ident.second == ELF::ELFDATA2LSB)
Recommit: [llvm-readelf/obj] - Allow dumping of ELF header even if some elements are corrupt. This is recommit for D90903 with fixes for BB: 1) Used std::move<> when returning Expected<> (http://lab.llvm.org:8011/#/builders/112/builds/913) 2) Fixed the name of temporarily file in the file-headers.test (http://lab.llvm.org:8011/#/builders/36/builds/1269) (a local old temporarily file was used before) For creating `ELFObjectFile` instances we have the factory method `ELFObjectFile<ELFT>::create(MemoryBufferRef Object)`. The problem of this method is that it scans the section header to locate some sections. When a file is truncated or has broken fields in the ELF header, this approach does not allow us to create the `ELFObjectFile` and dump the ELF header. This is https://bugs.llvm.org/show_bug.cgi?id=40804 This patch suggests a solution - it allows to delay scaning sections in the `ELFObjectFile<ELFT>::create`. It now allows user code to call an object initialization (`initContent()`) later. With that it is possible, for example, for dumpers just to dump the file header and exit. By default initialization is still performed as before, what helps to keep the logic of existent callers untouched. I've experimented with different approaches when worked on this patch. I think this approach is better than doing initialization of sections (i.e. scan of them) on demand, because normally users of `ELFObjectFile` API expect to work with a valid object. In most cases when a section header table can't be read (because of an error), we don't have to continue to work with object. So we probably don't need to implement a more complex API. Differential revision: https://reviews.llvm.org/D90903
2020-11-09 17:18:18 +08:00
return createPtr<ELF32LE>(Obj, InitContent);
else if (Ident.second == ELF::ELFDATA2MSB)
Recommit: [llvm-readelf/obj] - Allow dumping of ELF header even if some elements are corrupt. This is recommit for D90903 with fixes for BB: 1) Used std::move<> when returning Expected<> (http://lab.llvm.org:8011/#/builders/112/builds/913) 2) Fixed the name of temporarily file in the file-headers.test (http://lab.llvm.org:8011/#/builders/36/builds/1269) (a local old temporarily file was used before) For creating `ELFObjectFile` instances we have the factory method `ELFObjectFile<ELFT>::create(MemoryBufferRef Object)`. The problem of this method is that it scans the section header to locate some sections. When a file is truncated or has broken fields in the ELF header, this approach does not allow us to create the `ELFObjectFile` and dump the ELF header. This is https://bugs.llvm.org/show_bug.cgi?id=40804 This patch suggests a solution - it allows to delay scaning sections in the `ELFObjectFile<ELFT>::create`. It now allows user code to call an object initialization (`initContent()`) later. With that it is possible, for example, for dumpers just to dump the file header and exit. By default initialization is still performed as before, what helps to keep the logic of existent callers untouched. I've experimented with different approaches when worked on this patch. I think this approach is better than doing initialization of sections (i.e. scan of them) on demand, because normally users of `ELFObjectFile` API expect to work with a valid object. In most cases when a section header table can't be read (because of an error), we don't have to continue to work with object. So we probably don't need to implement a more complex API. Differential revision: https://reviews.llvm.org/D90903
2020-11-09 17:18:18 +08:00
return createPtr<ELF32BE>(Obj, InitContent);
else
return createError("Invalid ELF data");
} else if (Ident.first == ELF::ELFCLASS64) {
if (Ident.second == ELF::ELFDATA2LSB)
Recommit: [llvm-readelf/obj] - Allow dumping of ELF header even if some elements are corrupt. This is recommit for D90903 with fixes for BB: 1) Used std::move<> when returning Expected<> (http://lab.llvm.org:8011/#/builders/112/builds/913) 2) Fixed the name of temporarily file in the file-headers.test (http://lab.llvm.org:8011/#/builders/36/builds/1269) (a local old temporarily file was used before) For creating `ELFObjectFile` instances we have the factory method `ELFObjectFile<ELFT>::create(MemoryBufferRef Object)`. The problem of this method is that it scans the section header to locate some sections. When a file is truncated or has broken fields in the ELF header, this approach does not allow us to create the `ELFObjectFile` and dump the ELF header. This is https://bugs.llvm.org/show_bug.cgi?id=40804 This patch suggests a solution - it allows to delay scaning sections in the `ELFObjectFile<ELFT>::create`. It now allows user code to call an object initialization (`initContent()`) later. With that it is possible, for example, for dumpers just to dump the file header and exit. By default initialization is still performed as before, what helps to keep the logic of existent callers untouched. I've experimented with different approaches when worked on this patch. I think this approach is better than doing initialization of sections (i.e. scan of them) on demand, because normally users of `ELFObjectFile` API expect to work with a valid object. In most cases when a section header table can't be read (because of an error), we don't have to continue to work with object. So we probably don't need to implement a more complex API. Differential revision: https://reviews.llvm.org/D90903
2020-11-09 17:18:18 +08:00
return createPtr<ELF64LE>(Obj, InitContent);
else if (Ident.second == ELF::ELFDATA2MSB)
Recommit: [llvm-readelf/obj] - Allow dumping of ELF header even if some elements are corrupt. This is recommit for D90903 with fixes for BB: 1) Used std::move<> when returning Expected<> (http://lab.llvm.org:8011/#/builders/112/builds/913) 2) Fixed the name of temporarily file in the file-headers.test (http://lab.llvm.org:8011/#/builders/36/builds/1269) (a local old temporarily file was used before) For creating `ELFObjectFile` instances we have the factory method `ELFObjectFile<ELFT>::create(MemoryBufferRef Object)`. The problem of this method is that it scans the section header to locate some sections. When a file is truncated or has broken fields in the ELF header, this approach does not allow us to create the `ELFObjectFile` and dump the ELF header. This is https://bugs.llvm.org/show_bug.cgi?id=40804 This patch suggests a solution - it allows to delay scaning sections in the `ELFObjectFile<ELFT>::create`. It now allows user code to call an object initialization (`initContent()`) later. With that it is possible, for example, for dumpers just to dump the file header and exit. By default initialization is still performed as before, what helps to keep the logic of existent callers untouched. I've experimented with different approaches when worked on this patch. I think this approach is better than doing initialization of sections (i.e. scan of them) on demand, because normally users of `ELFObjectFile` API expect to work with a valid object. In most cases when a section header table can't be read (because of an error), we don't have to continue to work with object. So we probably don't need to implement a more complex API. Differential revision: https://reviews.llvm.org/D90903
2020-11-09 17:18:18 +08:00
return createPtr<ELF64BE>(Obj, InitContent);
else
return createError("Invalid ELF data");
}
return createError("Invalid ELF class");
}
SubtargetFeatures ELFObjectFileBase::getMIPSFeatures() const {
SubtargetFeatures Features;
unsigned PlatformFlags = getPlatformFlags();
switch (PlatformFlags & ELF::EF_MIPS_ARCH) {
case ELF::EF_MIPS_ARCH_1:
break;
case ELF::EF_MIPS_ARCH_2:
Features.AddFeature("mips2");
break;
case ELF::EF_MIPS_ARCH_3:
Features.AddFeature("mips3");
break;
case ELF::EF_MIPS_ARCH_4:
Features.AddFeature("mips4");
break;
case ELF::EF_MIPS_ARCH_5:
Features.AddFeature("mips5");
break;
case ELF::EF_MIPS_ARCH_32:
Features.AddFeature("mips32");
break;
case ELF::EF_MIPS_ARCH_64:
Features.AddFeature("mips64");
break;
case ELF::EF_MIPS_ARCH_32R2:
Features.AddFeature("mips32r2");
break;
case ELF::EF_MIPS_ARCH_64R2:
Features.AddFeature("mips64r2");
break;
case ELF::EF_MIPS_ARCH_32R6:
Features.AddFeature("mips32r6");
break;
case ELF::EF_MIPS_ARCH_64R6:
Features.AddFeature("mips64r6");
break;
default:
llvm_unreachable("Unknown EF_MIPS_ARCH value");
}
switch (PlatformFlags & ELF::EF_MIPS_MACH) {
case ELF::EF_MIPS_MACH_NONE:
// No feature associated with this value.
break;
case ELF::EF_MIPS_MACH_OCTEON:
Features.AddFeature("cnmips");
break;
default:
llvm_unreachable("Unknown EF_MIPS_ARCH value");
}
if (PlatformFlags & ELF::EF_MIPS_ARCH_ASE_M16)
Features.AddFeature("mips16");
if (PlatformFlags & ELF::EF_MIPS_MICROMIPS)
Features.AddFeature("micromips");
return Features;
}
SubtargetFeatures ELFObjectFileBase::getARMFeatures() const {
SubtargetFeatures Features;
ARMAttributeParser Attributes;
if (Error E = getBuildAttributes(Attributes)) {
consumeError(std::move(E));
return SubtargetFeatures();
}
// both ARMv7-M and R have to support thumb hardware div
bool isV7 = false;
Optional<unsigned> Attr =
Attributes.getAttributeValue(ARMBuildAttrs::CPU_arch);
if (Attr.hasValue())
isV7 = Attr.getValue() == ARMBuildAttrs::v7;
Attr = Attributes.getAttributeValue(ARMBuildAttrs::CPU_arch_profile);
if (Attr.hasValue()) {
switch (Attr.getValue()) {
case ARMBuildAttrs::ApplicationProfile:
Features.AddFeature("aclass");
break;
case ARMBuildAttrs::RealTimeProfile:
Features.AddFeature("rclass");
if (isV7)
Features.AddFeature("hwdiv");
break;
case ARMBuildAttrs::MicroControllerProfile:
Features.AddFeature("mclass");
if (isV7)
Features.AddFeature("hwdiv");
break;
}
}
Attr = Attributes.getAttributeValue(ARMBuildAttrs::THUMB_ISA_use);
if (Attr.hasValue()) {
switch (Attr.getValue()) {
default:
break;
case ARMBuildAttrs::Not_Allowed:
Features.AddFeature("thumb", false);
Features.AddFeature("thumb2", false);
break;
case ARMBuildAttrs::AllowThumb32:
Features.AddFeature("thumb2");
break;
}
}
Attr = Attributes.getAttributeValue(ARMBuildAttrs::FP_arch);
if (Attr.hasValue()) {
switch (Attr.getValue()) {
default:
break;
case ARMBuildAttrs::Not_Allowed:
Features.AddFeature("vfp2sp", false);
Features.AddFeature("vfp3d16sp", false);
Features.AddFeature("vfp4d16sp", false);
break;
case ARMBuildAttrs::AllowFPv2:
Features.AddFeature("vfp2");
break;
case ARMBuildAttrs::AllowFPv3A:
case ARMBuildAttrs::AllowFPv3B:
Features.AddFeature("vfp3");
break;
case ARMBuildAttrs::AllowFPv4A:
case ARMBuildAttrs::AllowFPv4B:
Features.AddFeature("vfp4");
break;
}
}
Attr = Attributes.getAttributeValue(ARMBuildAttrs::Advanced_SIMD_arch);
if (Attr.hasValue()) {
switch (Attr.getValue()) {
default:
break;
case ARMBuildAttrs::Not_Allowed:
Features.AddFeature("neon", false);
Features.AddFeature("fp16", false);
break;
case ARMBuildAttrs::AllowNeon:
Features.AddFeature("neon");
break;
case ARMBuildAttrs::AllowNeon2:
Features.AddFeature("neon");
Features.AddFeature("fp16");
break;
}
}
Attr = Attributes.getAttributeValue(ARMBuildAttrs::MVE_arch);
if (Attr.hasValue()) {
switch (Attr.getValue()) {
default:
break;
case ARMBuildAttrs::Not_Allowed:
Features.AddFeature("mve", false);
Features.AddFeature("mve.fp", false);
break;
case ARMBuildAttrs::AllowMVEInteger:
Features.AddFeature("mve.fp", false);
Features.AddFeature("mve");
break;
case ARMBuildAttrs::AllowMVEIntegerAndFloat:
Features.AddFeature("mve.fp");
break;
}
}
Attr = Attributes.getAttributeValue(ARMBuildAttrs::DIV_use);
if (Attr.hasValue()) {
switch (Attr.getValue()) {
default:
break;
case ARMBuildAttrs::DisallowDIV:
Features.AddFeature("hwdiv", false);
Features.AddFeature("hwdiv-arm", false);
break;
case ARMBuildAttrs::AllowDIVExt:
Features.AddFeature("hwdiv");
Features.AddFeature("hwdiv-arm");
break;
}
}
return Features;
}
SubtargetFeatures ELFObjectFileBase::getRISCVFeatures() const {
SubtargetFeatures Features;
unsigned PlatformFlags = getPlatformFlags();
if (PlatformFlags & ELF::EF_RISCV_RVC) {
Features.AddFeature("c");
}
// Add features according to the ELF attribute section.
// If there are any unrecognized features, ignore them.
RISCVAttributeParser Attributes;
if (Error E = getBuildAttributes(Attributes)) {
// TODO Propagate Error.
consumeError(std::move(E));
return Features; // Keep "c" feature if there is one in PlatformFlags.
}
Optional<StringRef> Attr = Attributes.getAttributeString(RISCVAttrs::ARCH);
if (Attr.hasValue()) {
// The Arch pattern is [rv32|rv64][i|e]version(_[m|a|f|d|c]version)*
// Version string pattern is (major)p(minor). Major and minor are optional.
// For example, a version number could be 2p0, 2, or p92.
StringRef Arch = Attr.getValue();
if (Arch.consume_front("rv32"))
Features.AddFeature("64bit", false);
else if (Arch.consume_front("rv64"))
Features.AddFeature("64bit");
while (!Arch.empty()) {
switch (Arch[0]) {
default:
break; // Ignore unexpected features.
case 'i':
Features.AddFeature("e", false);
break;
case 'd':
Features.AddFeature("f"); // D-ext will imply F-ext.
LLVM_FALLTHROUGH;
case 'e':
case 'm':
case 'a':
case 'f':
case 'c':
Features.AddFeature(Arch.take_front());
break;
}
// FIXME: Handle version numbers.
Arch = Arch.drop_until([](char c) { return c == '_' || c == '\0'; });
Arch = Arch.drop_while([](char c) { return c == '_'; });
}
}
return Features;
}
SubtargetFeatures ELFObjectFileBase::getFeatures() const {
switch (getEMachine()) {
case ELF::EM_MIPS:
return getMIPSFeatures();
case ELF::EM_ARM:
return getARMFeatures();
case ELF::EM_RISCV:
return getRISCVFeatures();
default:
return SubtargetFeatures();
}
}
Optional<StringRef> ELFObjectFileBase::tryGetCPUName() const {
switch (getEMachine()) {
case ELF::EM_AMDGPU:
return getAMDGPUCPUName();
default:
return None;
}
}
StringRef ELFObjectFileBase::getAMDGPUCPUName() const {
assert(getEMachine() == ELF::EM_AMDGPU);
unsigned CPU = getPlatformFlags() & ELF::EF_AMDGPU_MACH;
switch (CPU) {
// Radeon HD 2000/3000 Series (R600).
case ELF::EF_AMDGPU_MACH_R600_R600:
return "r600";
case ELF::EF_AMDGPU_MACH_R600_R630:
return "r630";
case ELF::EF_AMDGPU_MACH_R600_RS880:
return "rs880";
case ELF::EF_AMDGPU_MACH_R600_RV670:
return "rv670";
// Radeon HD 4000 Series (R700).
case ELF::EF_AMDGPU_MACH_R600_RV710:
return "rv710";
case ELF::EF_AMDGPU_MACH_R600_RV730:
return "rv730";
case ELF::EF_AMDGPU_MACH_R600_RV770:
return "rv770";
// Radeon HD 5000 Series (Evergreen).
case ELF::EF_AMDGPU_MACH_R600_CEDAR:
return "cedar";
case ELF::EF_AMDGPU_MACH_R600_CYPRESS:
return "cypress";
case ELF::EF_AMDGPU_MACH_R600_JUNIPER:
return "juniper";
case ELF::EF_AMDGPU_MACH_R600_REDWOOD:
return "redwood";
case ELF::EF_AMDGPU_MACH_R600_SUMO:
return "sumo";
// Radeon HD 6000 Series (Northern Islands).
case ELF::EF_AMDGPU_MACH_R600_BARTS:
return "barts";
case ELF::EF_AMDGPU_MACH_R600_CAICOS:
return "caicos";
case ELF::EF_AMDGPU_MACH_R600_CAYMAN:
return "cayman";
case ELF::EF_AMDGPU_MACH_R600_TURKS:
return "turks";
// AMDGCN GFX6.
case ELF::EF_AMDGPU_MACH_AMDGCN_GFX600:
return "gfx600";
case ELF::EF_AMDGPU_MACH_AMDGCN_GFX601:
return "gfx601";
case ELF::EF_AMDGPU_MACH_AMDGCN_GFX602:
return "gfx602";
// AMDGCN GFX7.
case ELF::EF_AMDGPU_MACH_AMDGCN_GFX700:
return "gfx700";
case ELF::EF_AMDGPU_MACH_AMDGCN_GFX701:
return "gfx701";
case ELF::EF_AMDGPU_MACH_AMDGCN_GFX702:
return "gfx702";
case ELF::EF_AMDGPU_MACH_AMDGCN_GFX703:
return "gfx703";
case ELF::EF_AMDGPU_MACH_AMDGCN_GFX704:
return "gfx704";
case ELF::EF_AMDGPU_MACH_AMDGCN_GFX705:
return "gfx705";
// AMDGCN GFX8.
case ELF::EF_AMDGPU_MACH_AMDGCN_GFX801:
return "gfx801";
case ELF::EF_AMDGPU_MACH_AMDGCN_GFX802:
return "gfx802";
case ELF::EF_AMDGPU_MACH_AMDGCN_GFX803:
return "gfx803";
case ELF::EF_AMDGPU_MACH_AMDGCN_GFX805:
return "gfx805";
case ELF::EF_AMDGPU_MACH_AMDGCN_GFX810:
return "gfx810";
// AMDGCN GFX9.
case ELF::EF_AMDGPU_MACH_AMDGCN_GFX900:
return "gfx900";
case ELF::EF_AMDGPU_MACH_AMDGCN_GFX902:
return "gfx902";
case ELF::EF_AMDGPU_MACH_AMDGCN_GFX904:
return "gfx904";
case ELF::EF_AMDGPU_MACH_AMDGCN_GFX906:
return "gfx906";
case ELF::EF_AMDGPU_MACH_AMDGCN_GFX908:
return "gfx908";
case ELF::EF_AMDGPU_MACH_AMDGCN_GFX909:
return "gfx909";
case ELF::EF_AMDGPU_MACH_AMDGCN_GFX90C:
return "gfx90c";
// AMDGCN GFX10.
case ELF::EF_AMDGPU_MACH_AMDGCN_GFX1010:
return "gfx1010";
case ELF::EF_AMDGPU_MACH_AMDGCN_GFX1011:
return "gfx1011";
case ELF::EF_AMDGPU_MACH_AMDGCN_GFX1012:
return "gfx1012";
case ELF::EF_AMDGPU_MACH_AMDGCN_GFX1030:
return "gfx1030";
case ELF::EF_AMDGPU_MACH_AMDGCN_GFX1031:
return "gfx1031";
case ELF::EF_AMDGPU_MACH_AMDGCN_GFX1032:
return "gfx1032";
case ELF::EF_AMDGPU_MACH_AMDGCN_GFX1033:
return "gfx1033";
default:
llvm_unreachable("Unknown EF_AMDGPU_MACH value");
}
}
// FIXME Encode from a tablegen description or target parser.
void ELFObjectFileBase::setARMSubArch(Triple &TheTriple) const {
if (TheTriple.getSubArch() != Triple::NoSubArch)
return;
ARMAttributeParser Attributes;
if (Error E = getBuildAttributes(Attributes)) {
// TODO Propagate Error.
consumeError(std::move(E));
return;
}
std::string Triple;
// Default to ARM, but use the triple if it's been set.
if (TheTriple.isThumb())
Triple = "thumb";
else
Triple = "arm";
Optional<unsigned> Attr =
Attributes.getAttributeValue(ARMBuildAttrs::CPU_arch);
if (Attr.hasValue()) {
switch (Attr.getValue()) {
case ARMBuildAttrs::v4:
Triple += "v4";
break;
case ARMBuildAttrs::v4T:
Triple += "v4t";
break;
case ARMBuildAttrs::v5T:
Triple += "v5t";
break;
case ARMBuildAttrs::v5TE:
Triple += "v5te";
break;
case ARMBuildAttrs::v5TEJ:
Triple += "v5tej";
break;
case ARMBuildAttrs::v6:
Triple += "v6";
break;
case ARMBuildAttrs::v6KZ:
Triple += "v6kz";
break;
case ARMBuildAttrs::v6T2:
Triple += "v6t2";
break;
case ARMBuildAttrs::v6K:
Triple += "v6k";
break;
case ARMBuildAttrs::v7:
Triple += "v7";
break;
case ARMBuildAttrs::v6_M:
Triple += "v6m";
break;
case ARMBuildAttrs::v6S_M:
Triple += "v6sm";
break;
case ARMBuildAttrs::v7E_M:
Triple += "v7em";
break;
case ARMBuildAttrs::v8_A:
Triple += "v8a";
break;
case ARMBuildAttrs::v8_R:
Triple += "v8r";
break;
case ARMBuildAttrs::v8_M_Base:
Triple += "v8m.base";
break;
case ARMBuildAttrs::v8_M_Main:
Triple += "v8m.main";
break;
case ARMBuildAttrs::v8_1_M_Main:
Triple += "v8.1m.main";
break;
}
}
if (!isLittleEndian())
Triple += "eb";
TheTriple.setArchName(Triple);
}
std::vector<std::pair<Optional<DataRefImpl>, uint64_t>>
ELFObjectFileBase::getPltAddresses() const {
std::string Err;
const auto Triple = makeTriple();
const auto *T = TargetRegistry::lookupTarget(Triple.str(), Err);
if (!T)
return {};
uint64_t JumpSlotReloc = 0;
switch (Triple.getArch()) {
case Triple::x86:
JumpSlotReloc = ELF::R_386_JUMP_SLOT;
break;
case Triple::x86_64:
JumpSlotReloc = ELF::R_X86_64_JUMP_SLOT;
break;
case Triple::aarch64:
JumpSlotReloc = ELF::R_AARCH64_JUMP_SLOT;
break;
default:
return {};
}
std::unique_ptr<const MCInstrInfo> MII(T->createMCInstrInfo());
2018-08-25 03:40:35 +08:00
std::unique_ptr<const MCInstrAnalysis> MIA(
T->createMCInstrAnalysis(MII.get()));
if (!MIA)
return {};
Optional<SectionRef> Plt = None, RelaPlt = None, GotPlt = None;
for (const SectionRef &Section : sections()) {
Expected<StringRef> NameOrErr = Section.getName();
if (!NameOrErr) {
consumeError(NameOrErr.takeError());
continue;
}
StringRef Name = *NameOrErr;
if (Name == ".plt")
Plt = Section;
else if (Name == ".rela.plt" || Name == ".rel.plt")
RelaPlt = Section;
else if (Name == ".got.plt")
GotPlt = Section;
}
if (!Plt || !RelaPlt || !GotPlt)
return {};
Expected<StringRef> PltContents = Plt->getContents();
if (!PltContents) {
consumeError(PltContents.takeError());
return {};
}
auto PltEntries = MIA->findPltEntries(Plt->getAddress(),
arrayRefFromStringRef(*PltContents),
GotPlt->getAddress(), Triple);
// Build a map from GOT entry virtual address to PLT entry virtual address.
DenseMap<uint64_t, uint64_t> GotToPlt;
for (const auto &Entry : PltEntries)
GotToPlt.insert(std::make_pair(Entry.second, Entry.first));
// Find the relocations in the dynamic relocation table that point to
// locations in the GOT for which we know the corresponding PLT entry.
std::vector<std::pair<Optional<DataRefImpl>, uint64_t>> Result;
for (const auto &Relocation : RelaPlt->relocations()) {
if (Relocation.getType() != JumpSlotReloc)
continue;
auto PltEntryIter = GotToPlt.find(Relocation.getOffset());
if (PltEntryIter != GotToPlt.end()) {
symbol_iterator Sym = Relocation.getSymbol();
if (Sym == symbol_end())
Result.emplace_back(None, PltEntryIter->second);
else
Result.emplace_back(Sym->getRawDataRefImpl(), PltEntryIter->second);
}
}
return Result;
}