llvm-project/clang/lib/Analysis/BasicConstraintManager.cpp

573 lines
19 KiB
C++
Raw Normal View History

//== BasicConstraintManager.cpp - Manage basic constraints.------*- C++ -*--==//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines BasicConstraintManager, a class that tracks simple
// equality and inequality constraints on symbolic values of GRState.
//
//===----------------------------------------------------------------------===//
#include "clang/Analysis/PathSensitive/ConstraintManager.h"
#include "clang/Analysis/PathSensitive/GRState.h"
#include "clang/Analysis/PathSensitive/GRStateTrait.h"
#include "clang/Analysis/PathSensitive/GRTransferFuncs.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/raw_ostream.h"
using namespace clang;
namespace { class VISIBILITY_HIDDEN ConstNotEq {}; }
namespace { class VISIBILITY_HIDDEN ConstEq {}; }
typedef llvm::ImmutableMap<SymbolRef,GRState::IntSetTy> ConstNotEqTy;
typedef llvm::ImmutableMap<SymbolRef,const llvm::APSInt*> ConstEqTy;
static int ConstEqIndex = 0;
static int ConstNotEqIndex = 0;
namespace clang {
template<>
struct GRStateTrait<ConstNotEq> : public GRStatePartialTrait<ConstNotEqTy> {
static inline void* GDMIndex() { return &ConstNotEqIndex; }
};
template<>
struct GRStateTrait<ConstEq> : public GRStatePartialTrait<ConstEqTy> {
static inline void* GDMIndex() { return &ConstEqIndex; }
};
}
namespace {
// BasicConstraintManager only tracks equality and inequality constraints of
// constants and integer variables.
class VISIBILITY_HIDDEN BasicConstraintManager : public ConstraintManager {
GRStateManager& StateMgr;
GRState::IntSetTy::Factory ISetFactory;
public:
BasicConstraintManager(GRStateManager& statemgr)
: StateMgr(statemgr), ISetFactory(statemgr.getAllocator()) {}
virtual const GRState* Assume(const GRState* St, SVal Cond,
bool Assumption, bool& isFeasible);
const GRState* Assume(const GRState* St, Loc Cond, bool Assumption,
bool& isFeasible);
const GRState* AssumeAux(const GRState* St, Loc Cond,bool Assumption,
bool& isFeasible);
const GRState* Assume(const GRState* St, NonLoc Cond, bool Assumption,
bool& isFeasible);
const GRState* AssumeAux(const GRState* St, NonLoc Cond, bool Assumption,
bool& isFeasible);
const GRState* AssumeSymInt(const GRState* St, bool Assumption,
const SymIntConstraint& C, bool& isFeasible);
const GRState* AssumeSymNE(const GRState* St, SymbolRef sym,
const llvm::APSInt& V, bool& isFeasible);
const GRState* AssumeSymEQ(const GRState* St, SymbolRef sym,
const llvm::APSInt& V, bool& isFeasible);
const GRState* AssumeSymLT(const GRState* St, SymbolRef sym,
const llvm::APSInt& V, bool& isFeasible);
const GRState* AssumeSymGT(const GRState* St, SymbolRef sym,
const llvm::APSInt& V, bool& isFeasible);
const GRState* AssumeSymGE(const GRState* St, SymbolRef sym,
const llvm::APSInt& V, bool& isFeasible);
const GRState* AssumeSymLE(const GRState* St, SymbolRef sym,
const llvm::APSInt& V, bool& isFeasible);
const GRState* AssumeInBound(const GRState* St, SVal Idx, SVal UpperBound,
bool Assumption, bool& isFeasible);
const GRState* AddEQ(const GRState* St, SymbolRef sym, const llvm::APSInt& V);
const GRState* AddNE(const GRState* St, SymbolRef sym, const llvm::APSInt& V);
const llvm::APSInt* getSymVal(const GRState* St, SymbolRef sym);
bool isNotEqual(const GRState* St, SymbolRef sym, const llvm::APSInt& V) const;
bool isEqual(const GRState* St, SymbolRef sym, const llvm::APSInt& V) const;
const GRState* RemoveDeadBindings(const GRState* St, SymbolReaper& SymReaper);
void print(const GRState* St, std::ostream& Out,
const char* nl, const char *sep);
private:
BasicValueFactory& getBasicVals() { return StateMgr.getBasicVals(); }
};
} // end anonymous namespace
ConstraintManager* clang::CreateBasicConstraintManager(GRStateManager& StateMgr)
{
return new BasicConstraintManager(StateMgr);
}
const GRState* BasicConstraintManager::Assume(const GRState* St, SVal Cond,
bool Assumption, bool& isFeasible) {
if (Cond.isUnknown()) {
isFeasible = true;
return St;
}
if (isa<NonLoc>(Cond))
return Assume(St, cast<NonLoc>(Cond), Assumption, isFeasible);
else
return Assume(St, cast<Loc>(Cond), Assumption, isFeasible);
}
const GRState* BasicConstraintManager::Assume(const GRState* St, Loc Cond,
bool Assumption, bool& isFeasible) {
St = AssumeAux(St, Cond, Assumption, isFeasible);
if (!isFeasible)
return St;
// EvalAssume is used to call into the GRTransferFunction object to perform
// any checker-specific update of the state based on this assumption being
// true or false.
return StateMgr.getTransferFuncs().EvalAssume(StateMgr, St, Cond, Assumption,
isFeasible);
}
const GRState* BasicConstraintManager::AssumeAux(const GRState* St, Loc Cond,
bool Assumption, bool& isFeasible) {
BasicValueFactory& BasicVals = StateMgr.getBasicVals();
switch (Cond.getSubKind()) {
default:
assert (false && "'Assume' not implemented for this Loc.");
return St;
case loc::SymbolValKind:
if (Assumption)
return AssumeSymNE(St, cast<loc::SymbolVal>(Cond).getSymbol(),
BasicVals.getZeroWithPtrWidth(), isFeasible);
else
return AssumeSymEQ(St, cast<loc::SymbolVal>(Cond).getSymbol(),
BasicVals.getZeroWithPtrWidth(), isFeasible);
case loc::MemRegionKind: {
// FIXME: Should this go into the storemanager?
const MemRegion* R = cast<loc::MemRegionVal>(Cond).getRegion();
while (R) {
if (const SubRegion* SubR = dyn_cast<SubRegion>(R)) {
R = SubR->getSuperRegion();
continue;
}
else if (const SymbolicRegion* SymR = dyn_cast<SymbolicRegion>(R))
return AssumeAux(St, loc::SymbolVal(SymR->getSymbol()), Assumption,
isFeasible);
break;
}
// FALL-THROUGH.
}
case loc::FuncValKind:
case loc::GotoLabelKind:
isFeasible = Assumption;
return St;
case loc::ConcreteIntKind: {
bool b = cast<loc::ConcreteInt>(Cond).getValue() != 0;
isFeasible = b ? Assumption : !Assumption;
return St;
}
} // end switch
}
const GRState*
BasicConstraintManager::Assume(const GRState* St, NonLoc Cond, bool Assumption,
bool& isFeasible) {
St = AssumeAux(St, Cond, Assumption, isFeasible);
if (!isFeasible)
return St;
// EvalAssume is used to call into the GRTransferFunction object to perform
// any checker-specific update of the state based on this assumption being
// true or false.
return StateMgr.getTransferFuncs().EvalAssume(StateMgr, St, Cond, Assumption,
isFeasible);
}
const GRState*
BasicConstraintManager::AssumeAux(const GRState* St,NonLoc Cond,
bool Assumption, bool& isFeasible) {
BasicValueFactory& BasicVals = StateMgr.getBasicVals();
SymbolManager& SymMgr = StateMgr.getSymbolManager();
switch (Cond.getSubKind()) {
default:
assert(false && "'Assume' not implemented for this NonLoc");
case nonloc::SymbolValKind: {
nonloc::SymbolVal& SV = cast<nonloc::SymbolVal>(Cond);
SymbolRef sym = SV.getSymbol();
QualType T = SymMgr.getType(sym);
if (Assumption)
return AssumeSymNE(St, sym, BasicVals.getValue(0, T), isFeasible);
else
return AssumeSymEQ(St, sym, BasicVals.getValue(0, T), isFeasible);
}
case nonloc::SymIntConstraintValKind:
return
AssumeSymInt(St, Assumption,
cast<nonloc::SymIntConstraintVal>(Cond).getConstraint(),
isFeasible);
case nonloc::ConcreteIntKind: {
bool b = cast<nonloc::ConcreteInt>(Cond).getValue() != 0;
isFeasible = b ? Assumption : !Assumption;
return St;
}
case nonloc::LocAsIntegerKind:
return AssumeAux(St, cast<nonloc::LocAsInteger>(Cond).getLoc(),
Assumption, isFeasible);
} // end switch
}
const GRState*
BasicConstraintManager::AssumeSymInt(const GRState* St, bool Assumption,
const SymIntConstraint& C, bool& isFeasible) {
switch (C.getOpcode()) {
default:
// No logic yet for other operators.
isFeasible = true;
return St;
case BinaryOperator::EQ:
if (Assumption)
return AssumeSymEQ(St, C.getSymbol(), C.getInt(), isFeasible);
else
return AssumeSymNE(St, C.getSymbol(), C.getInt(), isFeasible);
case BinaryOperator::NE:
if (Assumption)
return AssumeSymNE(St, C.getSymbol(), C.getInt(), isFeasible);
else
return AssumeSymEQ(St, C.getSymbol(), C.getInt(), isFeasible);
case BinaryOperator::GT:
if (Assumption)
return AssumeSymGT(St, C.getSymbol(), C.getInt(), isFeasible);
else
return AssumeSymLE(St, C.getSymbol(), C.getInt(), isFeasible);
case BinaryOperator::GE:
if (Assumption)
return AssumeSymGE(St, C.getSymbol(), C.getInt(), isFeasible);
else
return AssumeSymLT(St, C.getSymbol(), C.getInt(), isFeasible);
case BinaryOperator::LT:
if (Assumption)
return AssumeSymLT(St, C.getSymbol(), C.getInt(), isFeasible);
else
return AssumeSymGE(St, C.getSymbol(), C.getInt(), isFeasible);
case BinaryOperator::LE:
if (Assumption)
return AssumeSymLE(St, C.getSymbol(), C.getInt(), isFeasible);
else
return AssumeSymGT(St, C.getSymbol(), C.getInt(), isFeasible);
} // end switch
}
const GRState*
BasicConstraintManager::AssumeSymNE(const GRState* St, SymbolRef sym,
const llvm::APSInt& V, bool& isFeasible) {
// First, determine if sym == X, where X != V.
if (const llvm::APSInt* X = getSymVal(St, sym)) {
isFeasible = (*X != V);
return St;
}
// Second, determine if sym != V.
if (isNotEqual(St, sym, V)) {
isFeasible = true;
return St;
}
// If we reach here, sym is not a constant and we don't know if it is != V.
// Make that assumption.
isFeasible = true;
return AddNE(St, sym, V);
}
const GRState*
BasicConstraintManager::AssumeSymEQ(const GRState* St, SymbolRef sym,
const llvm::APSInt& V, bool& isFeasible) {
// First, determine if sym == X, where X != V.
if (const llvm::APSInt* X = getSymVal(St, sym)) {
isFeasible = *X == V;
return St;
}
// Second, determine if sym != V.
if (isNotEqual(St, sym, V)) {
isFeasible = false;
return St;
}
// If we reach here, sym is not a constant and we don't know if it is == V.
// Make that assumption.
isFeasible = true;
return AddEQ(St, sym, V);
}
// These logic will be handled in another ConstraintManager.
const GRState*
BasicConstraintManager::AssumeSymLT(const GRState* St, SymbolRef sym,
const llvm::APSInt& V, bool& isFeasible) {
// Is 'V' the smallest possible value?
if (V == llvm::APSInt::getMinValue(V.getBitWidth(), V.isUnsigned())) {
// sym cannot be any value less than 'V'. This path is infeasible.
isFeasible = false;
return St;
}
// FIXME: For now have assuming x < y be the same as assuming sym != V;
return AssumeSymNE(St, sym, V, isFeasible);
}
const GRState*
BasicConstraintManager::AssumeSymGT(const GRState* St, SymbolRef sym,
const llvm::APSInt& V, bool& isFeasible) {
// Is 'V' the largest possible value?
if (V == llvm::APSInt::getMaxValue(V.getBitWidth(), V.isUnsigned())) {
// sym cannot be any value greater than 'V'. This path is infeasible.
isFeasible = false;
return St;
}
// FIXME: For now have assuming x > y be the same as assuming sym != V;
return AssumeSymNE(St, sym, V, isFeasible);
}
const GRState*
BasicConstraintManager::AssumeSymGE(const GRState* St, SymbolRef sym,
const llvm::APSInt& V, bool& isFeasible) {
// Reject a path if the value of sym is a constant X and !(X >= V).
if (const llvm::APSInt* X = getSymVal(St, sym)) {
isFeasible = *X >= V;
return St;
}
// Sym is not a constant, but it is worth looking to see if V is the
// maximum integer value.
if (V == llvm::APSInt::getMaxValue(V.getBitWidth(), V.isUnsigned())) {
// If we know that sym != V, then this condition is infeasible since
// there is no other value greater than V.
isFeasible = !isNotEqual(St, sym, V);
// If the path is still feasible then as a consequence we know that
// 'sym == V' because we cannot have 'sym > V' (no larger values).
// Add this constraint.
if (isFeasible)
return AddEQ(St, sym, V);
}
else
isFeasible = true;
return St;
}
const GRState*
BasicConstraintManager::AssumeSymLE(const GRState* St, SymbolRef sym,
const llvm::APSInt& V, bool& isFeasible) {
// Reject a path if the value of sym is a constant X and !(X <= V).
if (const llvm::APSInt* X = getSymVal(St, sym)) {
isFeasible = *X <= V;
return St;
}
// Sym is not a constant, but it is worth looking to see if V is the
// minimum integer value.
if (V == llvm::APSInt::getMinValue(V.getBitWidth(), V.isUnsigned())) {
// If we know that sym != V, then this condition is infeasible since
// there is no other value less than V.
isFeasible = !isNotEqual(St, sym, V);
// If the path is still feasible then as a consequence we know that
// 'sym == V' because we cannot have 'sym < V' (no smaller values).
// Add this constraint.
if (isFeasible)
return AddEQ(St, sym, V);
}
else
isFeasible = true;
return St;
}
const GRState*
BasicConstraintManager::AssumeInBound(const GRState* St, SVal Idx,
SVal UpperBound, bool Assumption,
bool& isFeasible) {
// Only support ConcreteInt for now.
if (!(isa<nonloc::ConcreteInt>(Idx) && isa<nonloc::ConcreteInt>(UpperBound))){
isFeasible = true;
return St;
}
const llvm::APSInt& Zero = getBasicVals().getZeroWithPtrWidth(false);
llvm::APSInt IdxV = cast<nonloc::ConcreteInt>(Idx).getValue();
// IdxV might be too narrow.
if (IdxV.getBitWidth() < Zero.getBitWidth())
IdxV.extend(Zero.getBitWidth());
// UBV might be too narrow, too.
llvm::APSInt UBV = cast<nonloc::ConcreteInt>(UpperBound).getValue();
if (UBV.getBitWidth() < Zero.getBitWidth())
UBV.extend(Zero.getBitWidth());
bool InBound = (Zero <= IdxV) && (IdxV < UBV);
isFeasible = Assumption ? InBound : !InBound;
return St;
}
const GRState* BasicConstraintManager::AddEQ(const GRState* St, SymbolRef sym,
const llvm::APSInt& V) {
// Create a new state with the old binding replaced.
GRStateRef state(St, StateMgr);
return state.set<ConstEq>(sym, &V);
}
const GRState* BasicConstraintManager::AddNE(const GRState* St, SymbolRef sym,
const llvm::APSInt& V) {
GRStateRef state(St, StateMgr);
// First, retrieve the NE-set associated with the given symbol.
ConstNotEqTy::data_type* T = state.get<ConstNotEq>(sym);
GRState::IntSetTy S = T ? *T : ISetFactory.GetEmptySet();
// Now add V to the NE set.
S = ISetFactory.Add(S, &V);
// Create a new state with the old binding replaced.
return state.set<ConstNotEq>(sym, S);
}
const llvm::APSInt* BasicConstraintManager::getSymVal(const GRState* St,
SymbolRef sym) {
const ConstEqTy::data_type* T = St->get<ConstEq>(sym);
return T ? *T : NULL;
}
bool BasicConstraintManager::isNotEqual(const GRState* St, SymbolRef sym,
const llvm::APSInt& V) const {
// Retrieve the NE-set associated with the given symbol.
const ConstNotEqTy::data_type* T = St->get<ConstNotEq>(sym);
// See if V is present in the NE-set.
return T ? T->contains(&V) : false;
}
bool BasicConstraintManager::isEqual(const GRState* St, SymbolRef sym,
const llvm::APSInt& V) const {
// Retrieve the EQ-set associated with the given symbol.
const ConstEqTy::data_type* T = St->get<ConstEq>(sym);
// See if V is present in the EQ-set.
return T ? **T == V : false;
}
2008-11-27 10:39:34 +08:00
/// Scan all symbols referenced by the constraints. If the symbol is not alive
/// as marked in LSymbols, mark it as dead in DSymbols.
const GRState*
BasicConstraintManager::RemoveDeadBindings(const GRState* St,
SymbolReaper& SymReaper) {
GRStateRef state(St, StateMgr);
ConstEqTy CE = state.get<ConstEq>();
ConstEqTy::Factory& CEFactory = state.get_context<ConstEq>();
for (ConstEqTy::iterator I = CE.begin(), E = CE.end(); I!=E; ++I) {
SymbolRef sym = I.getKey();
if (SymReaper.maybeDead(sym)) CE = CEFactory.Remove(CE, sym);
}
state = state.set<ConstEq>(CE);
ConstNotEqTy CNE = state.get<ConstNotEq>();
ConstNotEqTy::Factory& CNEFactory = state.get_context<ConstNotEq>();
for (ConstNotEqTy::iterator I = CNE.begin(), E = CNE.end(); I != E; ++I) {
SymbolRef sym = I.getKey();
if (SymReaper.maybeDead(sym)) CNE = CNEFactory.Remove(CNE, sym);
}
return state.set<ConstNotEq>(CNE);
}
void BasicConstraintManager::print(const GRState* St, std::ostream& Out,
const char* nl, const char *sep) {
// Print equality constraints.
ConstEqTy CE = St->get<ConstEq>();
if (!CE.isEmpty()) {
Out << nl << sep << "'==' constraints:";
for (ConstEqTy::iterator I = CE.begin(), E = CE.end(); I!=E; ++I) {
Out << nl << " $" << I.getKey();
llvm::raw_os_ostream OS(Out);
OS << " : " << *I.getData();
}
}
// Print != constraints.
ConstNotEqTy CNE = St->get<ConstNotEq>();
if (!CNE.isEmpty()) {
Out << nl << sep << "'!=' constraints:";
for (ConstNotEqTy::iterator I = CNE.begin(), EI = CNE.end(); I!=EI; ++I) {
Out << nl << " $" << I.getKey() << " : ";
bool isFirst = true;
GRState::IntSetTy::iterator J = I.getData().begin(),
EJ = I.getData().end();
for ( ; J != EJ; ++J) {
if (isFirst) isFirst = false;
else Out << ", ";
Out << (*J)->getSExtValue(); // Hack: should print to raw_ostream.
}
}
}
}