llvm-project/clang/lib/Analysis/GRExprEngine.cpp

2056 lines
59 KiB
C++
Raw Normal View History

//=-- GRExprEngine.cpp - Path-Sensitive Expression-Level Dataflow ---*- C++ -*-=
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines a meta-engine for path-sensitive dataflow analysis that
// is built on GREngine, but provides the boilerplate to execute transfer
// functions and build the ExplodedGraph at the expression level.
//
//===----------------------------------------------------------------------===//
#include "clang/Analysis/PathSensitive/GRExprEngine.h"
#include "clang/Basic/SourceManager.h"
#include "llvm/Support/Streams.h"
#ifndef NDEBUG
#include "llvm/Support/GraphWriter.h"
#include <sstream>
#endif
// SaveAndRestore - A utility class that uses RIIA to save and restore
// the value of a variable.
template<typename T>
struct VISIBILITY_HIDDEN SaveAndRestore {
SaveAndRestore(T& x) : X(x), old_value(x) {}
~SaveAndRestore() { X = old_value; }
T get() { return old_value; }
T& X;
T old_value;
};
using namespace clang;
using llvm::dyn_cast;
using llvm::cast;
using llvm::APSInt;
ValueState* GRExprEngine::getInitialState() {
// The LiveVariables information already has a compilation of all VarDecls
// used in the function. Iterate through this set, and "symbolicate"
// any VarDecl whose value originally comes from outside the function.
typedef LiveVariables::AnalysisDataTy LVDataTy;
LVDataTy& D = Liveness.getAnalysisData();
ValueState StateImpl = *StateMgr.getInitialState();
for (LVDataTy::decl_iterator I=D.begin_decl(), E=D.end_decl(); I != E; ++I) {
VarDecl* VD = cast<VarDecl>(const_cast<ScopedDecl*>(I->first));
if (VD->hasGlobalStorage() || isa<ParmVarDecl>(VD)) {
RVal X = RVal::GetSymbolValue(SymMgr, VD);
StateMgr.BindVar(StateImpl, VD, X);
}
}
return StateMgr.getPersistentState(StateImpl);
}
ValueState* GRExprEngine::SetRVal(ValueState* St, Expr* Ex, RVal V) {
bool isBlkExpr = false;
if (Ex == CurrentStmt) {
isBlkExpr = getCFG().isBlkExpr(Ex);
if (!isBlkExpr)
return St;
}
return StateMgr.SetRVal(St, Ex, V, isBlkExpr, false);
}
ValueState* GRExprEngine::MarkBranch(ValueState* St, Stmt* Terminator,
bool branchTaken) {
switch (Terminator->getStmtClass()) {
default:
return St;
case Stmt::BinaryOperatorClass: { // '&&' and '||'
BinaryOperator* B = cast<BinaryOperator>(Terminator);
BinaryOperator::Opcode Op = B->getOpcode();
assert (Op == BinaryOperator::LAnd || Op == BinaryOperator::LOr);
// For &&, if we take the true branch, then the value of the whole
// expression is that of the RHS expression.
//
// For ||, if we take the false branch, then the value of the whole
// expression is that of the RHS expression.
Expr* Ex = (Op == BinaryOperator::LAnd && branchTaken) ||
(Op == BinaryOperator::LOr && !branchTaken)
? B->getRHS() : B->getLHS();
return SetBlkExprRVal(St, B, UndefinedVal(Ex));
}
case Stmt::ConditionalOperatorClass: { // ?:
ConditionalOperator* C = cast<ConditionalOperator>(Terminator);
// For ?, if branchTaken == true then the value is either the LHS or
// the condition itself. (GNU extension).
Expr* Ex;
if (branchTaken)
Ex = C->getLHS() ? C->getLHS() : C->getCond();
else
Ex = C->getRHS();
return SetBlkExprRVal(St, C, UndefinedVal(Ex));
}
case Stmt::ChooseExprClass: { // ?:
ChooseExpr* C = cast<ChooseExpr>(Terminator);
Expr* Ex = branchTaken ? C->getLHS() : C->getRHS();
return SetBlkExprRVal(St, C, UndefinedVal(Ex));
}
}
}
bool GRExprEngine::ProcessBlockEntrance(CFGBlock* B, ValueState*,
GRBlockCounter BC) {
return BC.getNumVisited(B->getBlockID()) < 3;
}
void GRExprEngine::ProcessBranch(Expr* Condition, Stmt* Term,
BranchNodeBuilder& builder) {
// Remove old bindings for subexpressions.
ValueState* PrevState = StateMgr.RemoveSubExprBindings(builder.getState());
// Check for NULL conditions; e.g. "for(;;)"
if (!Condition) {
builder.markInfeasible(false);
return;
}
RVal V = GetRVal(PrevState, Condition);
switch (V.getBaseKind()) {
default:
break;
case RVal::UnknownKind:
builder.generateNode(MarkBranch(PrevState, Term, true), true);
builder.generateNode(MarkBranch(PrevState, Term, false), false);
return;
case RVal::UndefinedKind: {
NodeTy* N = builder.generateNode(PrevState, true);
if (N) {
N->markAsSink();
UndefBranches.insert(N);
}
builder.markInfeasible(false);
return;
}
}
// Process the true branch.
bool isFeasible = false;
ValueState* St = Assume(PrevState, V, true, isFeasible);
if (isFeasible)
builder.generateNode(MarkBranch(St, Term, true), true);
else
builder.markInfeasible(true);
// Process the false branch.
isFeasible = false;
St = Assume(PrevState, V, false, isFeasible);
if (isFeasible)
builder.generateNode(MarkBranch(St, Term, false), false);
else
builder.markInfeasible(false);
}
/// ProcessIndirectGoto - Called by GRCoreEngine. Used to generate successor
/// nodes by processing the 'effects' of a computed goto jump.
void GRExprEngine::ProcessIndirectGoto(IndirectGotoNodeBuilder& builder) {
ValueState* St = builder.getState();
RVal V = GetRVal(St, builder.getTarget());
// Three possibilities:
//
// (1) We know the computed label.
// (2) The label is NULL (or some other constant), or Undefined.
// (3) We have no clue about the label. Dispatch to all targets.
//
typedef IndirectGotoNodeBuilder::iterator iterator;
if (isa<lval::GotoLabel>(V)) {
LabelStmt* L = cast<lval::GotoLabel>(V).getLabel();
for (iterator I=builder.begin(), E=builder.end(); I != E; ++I) {
if (I.getLabel() == L) {
builder.generateNode(I, St);
return;
}
}
assert (false && "No block with label.");
return;
}
if (isa<lval::ConcreteInt>(V) || isa<UndefinedVal>(V)) {
// Dispatch to the first target and mark it as a sink.
NodeTy* N = builder.generateNode(builder.begin(), St, true);
UndefBranches.insert(N);
return;
}
// This is really a catch-all. We don't support symbolics yet.
assert (V.isUnknown());
for (iterator I=builder.begin(), E=builder.end(); I != E; ++I)
builder.generateNode(I, St);
}
/// ProcessSwitch - Called by GRCoreEngine. Used to generate successor
/// nodes by processing the 'effects' of a switch statement.
void GRExprEngine::ProcessSwitch(SwitchNodeBuilder& builder) {
typedef SwitchNodeBuilder::iterator iterator;
ValueState* St = builder.getState();
Expr* CondE = builder.getCondition();
RVal CondV = GetRVal(St, CondE);
if (CondV.isUndef()) {
NodeTy* N = builder.generateDefaultCaseNode(St, true);
UndefBranches.insert(N);
return;
}
ValueState* DefaultSt = St;
// While most of this can be assumed (such as the signedness), having it
// just computed makes sure everything makes the same assumptions end-to-end.
unsigned bits = getContext().getTypeSize(CondE->getType());
APSInt V1(bits, false);
APSInt V2 = V1;
for (iterator I = builder.begin(), EI = builder.end(); I != EI; ++I) {
CaseStmt* Case = cast<CaseStmt>(I.getCase());
// Evaluate the case.
if (!Case->getLHS()->isIntegerConstantExpr(V1, getContext(), 0, true)) {
assert (false && "Case condition must evaluate to an integer constant.");
return;
}
// Get the RHS of the case, if it exists.
if (Expr* E = Case->getRHS()) {
if (!E->isIntegerConstantExpr(V2, getContext(), 0, true)) {
assert (false &&
"Case condition (RHS) must evaluate to an integer constant.");
return ;
}
assert (V1 <= V2);
}
else
V2 = V1;
// FIXME: Eventually we should replace the logic below with a range
// comparison, rather than concretize the values within the range.
// This should be easy once we have "ranges" for NonLVals.
do {
nonlval::ConcreteInt CaseVal(BasicVals.getValue(V1));
RVal Res = EvalBinOp(BinaryOperator::EQ, CondV, CaseVal);
// Now "assume" that the case matches.
bool isFeasible = false;
ValueState* StNew = Assume(St, Res, true, isFeasible);
if (isFeasible) {
builder.generateCaseStmtNode(I, StNew);
// If CondV evaluates to a constant, then we know that this
// is the *only* case that we can take, so stop evaluating the
// others.
if (isa<nonlval::ConcreteInt>(CondV))
return;
}
// Now "assume" that the case doesn't match. Add this state
// to the default state (if it is feasible).
isFeasible = false;
StNew = Assume(DefaultSt, Res, false, isFeasible);
if (isFeasible)
DefaultSt = StNew;
// Concretize the next value in the range.
if (V1 == V2)
break;
++V1;
2008-03-18 06:18:22 +08:00
assert (V1 <= V2);
} while (true);
}
// If we reach here, than we know that the default branch is
// possible.
builder.generateDefaultCaseNode(DefaultSt);
}
void GRExprEngine::VisitLogicalExpr(BinaryOperator* B, NodeTy* Pred,
NodeSet& Dst) {
assert (B->getOpcode() == BinaryOperator::LAnd ||
B->getOpcode() == BinaryOperator::LOr);
assert (B == CurrentStmt && getCFG().isBlkExpr(B));
ValueState* St = GetState(Pred);
RVal X = GetBlkExprRVal(St, B);
assert (X.isUndef());
Expr* Ex = (Expr*) cast<UndefinedVal>(X).getData();
assert (Ex);
if (Ex == B->getRHS()) {
X = GetBlkExprRVal(St, Ex);
// Handle undefined values.
if (X.isUndef()) {
MakeNode(Dst, B, Pred, SetBlkExprRVal(St, B, X));
return;
}
// We took the RHS. Because the value of the '&&' or '||' expression must
// evaluate to 0 or 1, we must assume the value of the RHS evaluates to 0
// or 1. Alternatively, we could take a lazy approach, and calculate this
// value later when necessary. We don't have the machinery in place for
// this right now, and since most logical expressions are used for branches,
// the payoff is not likely to be large. Instead, we do eager evaluation.
bool isFeasible = false;
ValueState* NewState = Assume(St, X, true, isFeasible);
if (isFeasible)
MakeNode(Dst, B, Pred,
SetBlkExprRVal(NewState, B, MakeConstantVal(1U, B)));
isFeasible = false;
NewState = Assume(St, X, false, isFeasible);
if (isFeasible)
MakeNode(Dst, B, Pred,
SetBlkExprRVal(NewState, B, MakeConstantVal(0U, B)));
}
else {
// We took the LHS expression. Depending on whether we are '&&' or
// '||' we know what the value of the expression is via properties of
// the short-circuiting.
X = MakeConstantVal( B->getOpcode() == BinaryOperator::LAnd ? 0U : 1U, B);
MakeNode(Dst, B, Pred, SetBlkExprRVal(St, B, X));
}
}
void GRExprEngine::ProcessStmt(Stmt* S, StmtNodeBuilder& builder) {
Builder = &builder;
StmtEntryNode = builder.getLastNode();
CurrentStmt = S;
NodeSet Dst;
// Create the cleaned state.
CleanedState = StateMgr.RemoveDeadBindings(StmtEntryNode->getState(),
CurrentStmt, Liveness);
Builder->SetCleanedState(CleanedState);
// Visit the statement.
Visit(S, StmtEntryNode, Dst);
// If no nodes were generated, generate a new node that has all the
// dead mappings removed.
if (Dst.size() == 1 && *Dst.begin() == StmtEntryNode)
builder.generateNode(S, GetState(StmtEntryNode), StmtEntryNode);
// NULL out these variables to cleanup.
CurrentStmt = NULL;
StmtEntryNode = NULL;
Builder = NULL;
CleanedState = NULL;
}
void GRExprEngine::VisitDeclRefExpr(DeclRefExpr* D, NodeTy* Pred, NodeSet& Dst){
if (D != CurrentStmt) {
Dst.Add(Pred); // No-op. Simply propagate the current state unchanged.
return;
}
// If we are here, we are loading the value of the decl and binding
// it to the block-level expression.
ValueState* St = GetState(Pred);
RVal X = RVal::MakeVal(BasicVals, D);
RVal Y = isa<lval::DeclVal>(X) ? GetRVal(St, cast<lval::DeclVal>(X)) : X;
MakeNode(Dst, D, Pred, SetBlkExprRVal(St, D, Y));
}
void GRExprEngine::VisitCall(CallExpr* CE, NodeTy* Pred,
CallExpr::arg_iterator AI,
CallExpr::arg_iterator AE,
NodeSet& Dst) {
// Process the arguments.
if (AI != AE) {
NodeSet DstTmp;
Visit(*AI, Pred, DstTmp);
++AI;
for (NodeSet::iterator DI=DstTmp.begin(), DE=DstTmp.end(); DI != DE; ++DI)
VisitCall(CE, *DI, AI, AE, Dst);
return;
}
// If we reach here we have processed all of the arguments. Evaluate
// the callee expression.
2008-03-04 00:47:31 +08:00
NodeSet DstTmp;
Expr* Callee = CE->getCallee()->IgnoreParenCasts();
2008-03-04 00:47:31 +08:00
VisitLVal(Callee, Pred, DstTmp);
2008-03-04 00:47:31 +08:00
if (DstTmp.empty())
DstTmp.Add(Pred);
// Finally, evaluate the function call.
for (NodeSet::iterator DI = DstTmp.begin(), DE = DstTmp.end(); DI!=DE; ++DI) {
ValueState* St = GetState(*DI);
RVal L = GetLVal(St, Callee);
2008-03-04 00:47:31 +08:00
// FIXME: Add support for symbolic function calls (calls involving
// function pointer values that are symbolic).
// Check for undefined control-flow or calls to NULL.
if (L.isUndef() || isa<lval::ConcreteInt>(L)) {
NodeTy* N = Builder->generateNode(CE, St, *DI);
if (N) {
N->markAsSink();
BadCalls.insert(N);
}
continue;
}
// Check for the "noreturn" attribute.
SaveAndRestore<bool> OldSink(Builder->BuildSinks);
if (isa<lval::FuncVal>(L)) {
FunctionDecl* FD = cast<lval::FuncVal>(L).getDecl();
if (FD->getAttr<NoReturnAttr>())
Builder->BuildSinks = true;
else {
// HACK: Some functions are not marked noreturn, and don't return.
// Here are a few hardwired ones. If this takes too long, we can
// potentially cache these results.
const char* s = FD->getIdentifier()->getName();
unsigned n = strlen(s);
switch (n) {
default:
break;
case 4:
if (!memcmp(s, "exit", 4)) Builder->BuildSinks = true;
break;
case 5:
if (!memcmp(s, "panic", 5)) Builder->BuildSinks = true;
break;
}
}
}
// Evaluate the call.
2008-03-04 00:47:31 +08:00
bool invalidateArgs = false;
if (L.isUnknown()) {
// Check for an "unknown" callee.
invalidateArgs = true;
}
else if (isa<lval::FuncVal>(L)) {
IdentifierInfo* Info = cast<lval::FuncVal>(L).getDecl()->getIdentifier();
if (unsigned id = Info->getBuiltinID()) {
switch (id) {
case Builtin::BI__builtin_expect: {
// For __builtin_expect, just return the value of the subexpression.
assert (CE->arg_begin() != CE->arg_end());
RVal X = GetRVal(St, *(CE->arg_begin()));
MakeNode(Dst, CE, *DI, SetRVal(St, CE, X));
continue;
}
default:
invalidateArgs = true;
break;
}
}
}
if (invalidateArgs) {
// Invalidate all arguments passed in by reference (LVals).
for (CallExpr::arg_iterator I = CE->arg_begin(), E = CE->arg_end();
I != E; ++I) {
RVal V = GetRVal(St, *I);
if (isa<LVal>(V))
St = SetRVal(St, cast<LVal>(V), UnknownVal());
}
MakeNode(Dst, CE, *DI, St);
}
else {
// Check any arguments passed-by-value against being undefined.
bool badArg = false;
for (CallExpr::arg_iterator I = CE->arg_begin(), E = CE->arg_end();
I != E; ++I) {
if (GetRVal(GetState(*DI), *I).isUndef()) {
NodeTy* N = Builder->generateNode(CE, GetState(*DI), *DI);
if (N) {
N->markAsSink();
UndefArgs[N] = *I;
}
badArg = true;
break;
}
}
if (badArg)
continue;
// Dispatch to the plug-in transfer function.
unsigned size = Dst.size();
EvalCall(Dst, CE, cast<LVal>(L), *DI);
if (!Builder->BuildSinks && Dst.size() == size)
MakeNode(Dst, CE, *DI, St);
}
}
}
void GRExprEngine::VisitCast(Expr* CastE, Expr* Ex, NodeTy* Pred, NodeSet& Dst){
NodeSet S1;
QualType T = CastE->getType();
if (T->isReferenceType())
VisitLVal(Ex, Pred, S1);
else
Visit(Ex, Pred, S1);
// Check for redundant casts or casting to "void"
if (T->isVoidType() ||
Ex->getType() == T ||
(T->isPointerType() && Ex->getType()->isFunctionType())) {
for (NodeSet::iterator I1 = S1.begin(), E1 = S1.end(); I1 != E1; ++I1)
Dst.Add(*I1);
return;
}
for (NodeSet::iterator I1 = S1.begin(), E1 = S1.end(); I1 != E1; ++I1) {
NodeTy* N = *I1;
ValueState* St = GetState(N);
RVal V = T->isReferenceType() ? GetLVal(St, Ex) : GetRVal(St, Ex);
MakeNode(Dst, CastE, N, SetRVal(St, CastE, EvalCast(V, CastE->getType())));
}
}
void GRExprEngine::VisitDeclStmt(DeclStmt* DS, GRExprEngine::NodeTy* Pred,
GRExprEngine::NodeSet& Dst) {
ValueState* St = GetState(Pred);
for (const ScopedDecl* D = DS->getDecl(); D; D = D->getNextDeclarator())
if (const VarDecl* VD = dyn_cast<VarDecl>(D)) {
// FIXME: Add support for local arrays.
if (VD->getType()->isArrayType())
continue;
const Expr* Ex = VD->getInit();
if (!VD->hasGlobalStorage() || VD->getStorageClass() == VarDecl::Static) {
// In this context, Static => Local variable.
assert (!VD->getStorageClass() == VarDecl::Static ||
!isa<FileVarDecl>(VD));
// If there is no initializer, set the value of the
// variable to "Undefined".
//
// FIXME: static variables may have an initializer, but the second
// time a function is called those values may not be current.
QualType T = VD->getType();
if ( VD->getStorageClass() == VarDecl::Static) {
// C99: 6.7.8 Initialization
// If an object that has static storage duration is not initialized
// explicitly, then:
// —if it has pointer type, it is initialized to a null pointer;
// —if it has arithmetic type, it is initialized to (positive or
// unsigned) zero;
// FIXME: Handle structs. Now we treat their values as unknown.
if (T->isPointerType()) {
St = SetRVal(St, lval::DeclVal(VD),
lval::ConcreteInt(BasicVals.getValue(0, T)));
}
else if (T->isIntegerType()) {
St = SetRVal(St, lval::DeclVal(VD),
nonlval::ConcreteInt(BasicVals.getValue(0, T)));
}
}
else {
// FIXME: Handle structs. Now we treat them as unknown. What
// we need to do is treat their members as unknown.
if (T->isPointerType() || T->isIntegerType())
St = SetRVal(St, lval::DeclVal(VD),
Ex ? GetRVal(St, Ex) : UndefinedVal());
}
}
}
MakeNode(Dst, DS, Pred, St);
}
void GRExprEngine::VisitGuardedExpr(Expr* Ex, Expr* L, Expr* R,
NodeTy* Pred, NodeSet& Dst) {
assert (Ex == CurrentStmt && getCFG().isBlkExpr(Ex));
ValueState* St = GetState(Pred);
RVal X = GetBlkExprRVal(St, Ex);
assert (X.isUndef());
Expr* SE = (Expr*) cast<UndefinedVal>(X).getData();
assert (SE);
X = GetBlkExprRVal(St, SE);
// Make sure that we invalidate the previous binding.
MakeNode(Dst, Ex, Pred, StateMgr.SetRVal(St, Ex, X, true, true));
}
/// VisitSizeOfAlignOfTypeExpr - Transfer function for sizeof(type).
void GRExprEngine::VisitSizeOfAlignOfTypeExpr(SizeOfAlignOfTypeExpr* Ex,
NodeTy* Pred,
NodeSet& Dst) {
QualType T = Ex->getArgumentType();
uint64_t amt;
if (Ex->isSizeOf()) {
// FIXME: Add support for VLAs.
if (!T.getTypePtr()->isConstantSizeType())
return;
amt = 1; // Handle sizeof(void)
if (T != getContext().VoidTy)
amt = getContext().getTypeSize(T) / 8;
}
else // Get alignment of the type.
amt = getContext().getTypeAlign(T) / 8;
MakeNode(Dst, Ex, Pred,
SetRVal(GetState(Pred), Ex,
NonLVal::MakeVal(BasicVals, amt, Ex->getType())));
}
void GRExprEngine::VisitDeref(UnaryOperator* U, NodeTy* Pred,
NodeSet& Dst, bool GetLVal) {
Expr* Ex = U->getSubExpr()->IgnoreParens();
NodeSet DstTmp;
if (isa<DeclRefExpr>(Ex))
DstTmp.Add(Pred);
else
Visit(Ex, Pred, DstTmp);
for (NodeSet::iterator I = DstTmp.begin(), DE = DstTmp.end(); I != DE; ++I) {
NodeTy* N = *I;
ValueState* St = GetState(N);
// FIXME: Bifurcate when dereferencing a symbolic with no constraints?
RVal V = GetRVal(St, Ex);
// Check for dereferences of undefined values.
if (V.isUndef()) {
NodeTy* Succ = Builder->generateNode(U, St, N);
if (Succ) {
Succ->markAsSink();
UndefDeref.insert(Succ);
}
continue;
}
// Check for dereferences of unknown values. Treat as No-Ops.
if (V.isUnknown()) {
Dst.Add(N);
continue;
}
// After a dereference, one of two possible situations arise:
// (1) A crash, because the pointer was NULL.
// (2) The pointer is not NULL, and the dereference works.
//
// We add these assumptions.
LVal LV = cast<LVal>(V);
bool isFeasibleNotNull;
// "Assume" that the pointer is Not-NULL.
ValueState* StNotNull = Assume(St, LV, true, isFeasibleNotNull);
if (isFeasibleNotNull) {
if (GetLVal) MakeNode(Dst, U, N, SetRVal(StNotNull, U, LV));
else {
// FIXME: Currently symbolic analysis "generates" new symbols
// for the contents of values. We need a better approach.
MakeNode(Dst, U, N, SetRVal(StNotNull, U,
GetRVal(StNotNull, LV, U->getType())));
}
}
bool isFeasibleNull;
// Now "assume" that the pointer is NULL.
ValueState* StNull = Assume(St, LV, false, isFeasibleNull);
if (isFeasibleNull) {
// We don't use "MakeNode" here because the node will be a sink
// and we have no intention of processing it later.
NodeTy* NullNode = Builder->generateNode(U, StNull, N);
if (NullNode) {
NullNode->markAsSink();
if (isFeasibleNotNull) ImplicitNullDeref.insert(NullNode);
else ExplicitNullDeref.insert(NullNode);
}
}
}
}
void GRExprEngine::VisitUnaryOperator(UnaryOperator* U, NodeTy* Pred,
NodeSet& Dst) {
NodeSet S1;
assert (U->getOpcode() != UnaryOperator::Deref);
assert (U->getOpcode() != UnaryOperator::SizeOf);
assert (U->getOpcode() != UnaryOperator::AlignOf);
bool use_GetLVal = false;
switch (U->getOpcode()) {
case UnaryOperator::PostInc:
case UnaryOperator::PostDec:
case UnaryOperator::PreInc:
case UnaryOperator::PreDec:
case UnaryOperator::AddrOf:
// Evalue subexpression as an LVal.
use_GetLVal = true;
VisitLVal(U->getSubExpr(), Pred, S1);
break;
default:
Visit(U->getSubExpr(), Pred, S1);
break;
}
for (NodeSet::iterator I1 = S1.begin(), E1 = S1.end(); I1 != E1; ++I1) {
NodeTy* N1 = *I1;
ValueState* St = GetState(N1);
RVal SubV = use_GetLVal ? GetLVal(St, U->getSubExpr()) :
GetRVal(St, U->getSubExpr());
if (SubV.isUnknown()) {
Dst.Add(N1);
continue;
}
if (SubV.isUndef()) {
MakeNode(Dst, U, N1, SetRVal(St, U, SubV));
continue;
}
if (U->isIncrementDecrementOp()) {
// Handle ++ and -- (both pre- and post-increment).
LVal SubLV = cast<LVal>(SubV);
RVal V = GetRVal(St, SubLV, U->getType());
if (V.isUnknown()) {
Dst.Add(N1);
continue;
}
// Propagate undefined values.
if (V.isUndef()) {
MakeNode(Dst, U, N1, SetRVal(St, U, V));
continue;
}
// Handle all other values.
BinaryOperator::Opcode Op = U->isIncrementOp() ? BinaryOperator::Add
: BinaryOperator::Sub;
RVal Result = EvalBinOp(Op, V, MakeConstantVal(1U, U));
if (U->isPostfix())
St = SetRVal(SetRVal(St, U, V), SubLV, Result);
else
St = SetRVal(SetRVal(St, U, Result), SubLV, Result);
MakeNode(Dst, U, N1, St);
continue;
}
// Handle all other unary operators.
switch (U->getOpcode()) {
case UnaryOperator::Extension:
St = SetRVal(St, U, SubV);
break;
case UnaryOperator::Minus:
St = SetRVal(St, U, EvalMinus(U, cast<NonLVal>(SubV)));
break;
case UnaryOperator::Not:
St = SetRVal(St, U, EvalComplement(cast<NonLVal>(SubV)));
break;
case UnaryOperator::LNot:
// C99 6.5.3.3: "The expression !E is equivalent to (0==E)."
//
// Note: technically we do "E == 0", but this is the same in the
// transfer functions as "0 == E".
if (isa<LVal>(SubV)) {
lval::ConcreteInt V(BasicVals.getZeroWithPtrWidth());
RVal Result = EvalBinOp(BinaryOperator::EQ, cast<LVal>(SubV), V);
St = SetRVal(St, U, Result);
}
else {
Expr* Ex = U->getSubExpr();
nonlval::ConcreteInt V(BasicVals.getValue(0, Ex->getType()));
RVal Result = EvalBinOp(BinaryOperator::EQ, cast<NonLVal>(SubV), V);
St = SetRVal(St, U, Result);
}
break;
case UnaryOperator::AddrOf: {
assert (isa<LVal>(SubV));
St = SetRVal(St, U, SubV);
break;
}
default: ;
assert (false && "Not implemented.");
}
MakeNode(Dst, U, N1, St);
}
}
void GRExprEngine::VisitSizeOfExpr(UnaryOperator* U, NodeTy* Pred,
NodeSet& Dst) {
QualType T = U->getSubExpr()->getType();
// FIXME: Add support for VLAs.
if (!T.getTypePtr()->isConstantSizeType())
return;
uint64_t size = getContext().getTypeSize(T) / 8;
ValueState* St = GetState(Pred);
St = SetRVal(St, U, NonLVal::MakeVal(BasicVals, size, U->getType()));
MakeNode(Dst, U, Pred, St);
}
void GRExprEngine::VisitLVal(Expr* Ex, NodeTy* Pred, NodeSet& Dst) {
if (Ex != CurrentStmt && getCFG().isBlkExpr(Ex)) {
Dst.Add(Pred);
return;
}
Ex = Ex->IgnoreParens();
if (isa<DeclRefExpr>(Ex)) {
Dst.Add(Pred);
return;
}
if (UnaryOperator* U = dyn_cast<UnaryOperator>(Ex))
if (U->getOpcode() == UnaryOperator::Deref) {
VisitDeref(U, Pred, Dst, true);
return;
}
Visit(Ex, Pred, Dst);
}
void GRExprEngine::VisitAsmStmt(AsmStmt* A, NodeTy* Pred, NodeSet& Dst) {
VisitAsmStmtHelperOutputs(A, A->begin_outputs(), A->end_outputs(), Pred, Dst);
}
void GRExprEngine::VisitAsmStmtHelperOutputs(AsmStmt* A,
AsmStmt::outputs_iterator I,
AsmStmt::outputs_iterator E,
NodeTy* Pred, NodeSet& Dst) {
if (I == E) {
VisitAsmStmtHelperInputs(A, A->begin_inputs(), A->end_inputs(), Pred, Dst);
return;
}
NodeSet Tmp;
VisitLVal(*I, Pred, Tmp);
++I;
for (NodeSet::iterator NI = Tmp.begin(), NE = Tmp.end(); NI != NE; ++NI)
VisitAsmStmtHelperOutputs(A, I, E, *NI, Dst);
}
void GRExprEngine::VisitAsmStmtHelperInputs(AsmStmt* A,
AsmStmt::inputs_iterator I,
AsmStmt::inputs_iterator E,
NodeTy* Pred, NodeSet& Dst) {
if (I == E) {
// We have processed both the inputs and the outputs. All of the outputs
// should evaluate to LVals. Nuke all of their values.
// FIXME: Some day in the future it would be nice to allow a "plug-in"
// which interprets the inline asm and stores proper results in the
// outputs.
ValueState* St = GetState(Pred);
for (AsmStmt::outputs_iterator OI = A->begin_outputs(),
OE = A->end_outputs(); OI != OE; ++OI) {
RVal X = GetLVal(St, *OI);
assert (!isa<NonLVal>(X));
if (isa<LVal>(X))
St = SetRVal(St, cast<LVal>(X), UnknownVal());
}
MakeNode(Dst, A, Pred, St);
return;
}
NodeSet Tmp;
Visit(*I, Pred, Tmp);
++I;
for (NodeSet::iterator NI = Tmp.begin(), NE = Tmp.end(); NI != NE; ++NI)
VisitAsmStmtHelperInputs(A, I, E, *NI, Dst);
}
void GRExprEngine::VisitObjCMessageExpr(ObjCMessageExpr* ME, NodeTy* Pred,
NodeSet& Dst){
VisitObjCMessageExprHelper(ME, ME->arg_begin(), ME->arg_end(), Pred, Dst);
}
void GRExprEngine::VisitObjCMessageExprHelper(ObjCMessageExpr* ME,
ObjCMessageExpr::arg_iterator I,
ObjCMessageExpr::arg_iterator E,
NodeTy* Pred, NodeSet& Dst) {
if (I == E) {
// Process the receiver.
Expr* Receiver = ME->getReceiver();
NodeSet Tmp;
VisitLVal(Receiver, Pred, Tmp);
// FIXME: More logic for the processing the method call.
for (NodeSet::iterator NI = Tmp.begin(), NE = Tmp.end(); NI != NE; ++NI)
Dst.Add(*NI);
return;
}
NodeSet Tmp;
Visit(*I, Pred, Tmp);
++I;
for (NodeSet::iterator NI = Tmp.begin(), NE = Tmp.end(); NI != NE; ++NI)
VisitObjCMessageExprHelper(ME, I, E, *NI, Dst);
}
void GRExprEngine::VisitBinaryOperator(BinaryOperator* B,
GRExprEngine::NodeTy* Pred,
GRExprEngine::NodeSet& Dst) {
NodeSet S1;
if (B->isAssignmentOp())
VisitLVal(B->getLHS(), Pred, S1);
else
Visit(B->getLHS(), Pred, S1);
for (NodeSet::iterator I1=S1.begin(), E1=S1.end(); I1 != E1; ++I1) {
NodeTy* N1 = *I1;
// When getting the value for the LHS, check if we are in an assignment.
// In such cases, we want to (initially) treat the LHS as an LVal,
// so we use GetLVal instead of GetRVal so that DeclRefExpr's are
// evaluated to LValDecl's instead of to an NonLVal.
RVal LeftV = B->isAssignmentOp() ? GetLVal(GetState(N1), B->getLHS())
: GetRVal(GetState(N1), B->getLHS());
// Visit the RHS...
NodeSet S2;
Visit(B->getRHS(), N1, S2);
// Process the binary operator.
for (NodeSet::iterator I2 = S2.begin(), E2 = S2.end(); I2 != E2; ++I2) {
NodeTy* N2 = *I2;
ValueState* St = GetState(N2);
Expr* RHS = B->getRHS();
RVal RightV = GetRVal(St, RHS);
BinaryOperator::Opcode Op = B->getOpcode();
if ((Op == BinaryOperator::Div || Op == BinaryOperator::Rem)
&& RHS->getType()->isIntegerType()) {
// Check if the denominator is undefined.
if (!RightV.isUnknown()) {
if (RightV.isUndef()) {
NodeTy* DivUndef = Builder->generateNode(B, St, N2);
if (DivUndef) {
DivUndef->markAsSink();
ExplicitBadDivides.insert(DivUndef);
}
continue;
}
// Check for divide/remainder-by-zero.
//
// First, "assume" that the denominator is 0 or undefined.
bool isFeasibleZero = false;
ValueState* ZeroSt = Assume(St, RightV, false, isFeasibleZero);
// Second, "assume" that the denominator cannot be 0.
bool isFeasibleNotZero = false;
St = Assume(St, RightV, true, isFeasibleNotZero);
// Create the node for the divide-by-zero (if it occurred).
if (isFeasibleZero)
if (NodeTy* DivZeroNode = Builder->generateNode(B, ZeroSt, N2)) {
DivZeroNode->markAsSink();
if (isFeasibleNotZero)
ImplicitBadDivides.insert(DivZeroNode);
else
ExplicitBadDivides.insert(DivZeroNode);
}
if (!isFeasibleNotZero)
continue;
}
// Fall-through. The logic below processes the divide.
}
if (Op <= BinaryOperator::Or) {
// Process non-assignements except commas or short-circuited
// logical expressions (LAnd and LOr).
RVal Result = EvalBinOp(Op, LeftV, RightV);
if (Result.isUnknown()) {
Dst.Add(N2);
continue;
}
if (Result.isUndef() && !LeftV.isUndef() && !RightV.isUndef()) {
// The operands were not undefined, but the result is undefined.
if (NodeTy* UndefNode = Builder->generateNode(B, St, N2)) {
UndefNode->markAsSink();
UndefResults.insert(UndefNode);
}
continue;
}
MakeNode(Dst, B, N2, SetRVal(St, B, Result));
continue;
}
// Process assignments.
switch (Op) {
case BinaryOperator::Assign: {
// Simple assignments.
if (LeftV.isUndef()) {
HandleUndefinedStore(B, N2);
continue;
}
// EXPERIMENTAL: "Conjured" symbols.
if (RightV.isUnknown()) {
unsigned Count = Builder->getCurrentBlockCount();
SymbolID Sym = SymMgr.getConjuredSymbol(B->getRHS(), Count);
RightV = B->getRHS()->getType()->isPointerType()
? cast<RVal>(lval::SymbolVal(Sym))
: cast<RVal>(nonlval::SymbolVal(Sym));
}
// Even if the LHS evaluates to an unknown L-Value, the entire
// expression still evaluates to the RHS.
if (LeftV.isUnknown()) {
St = SetRVal(St, B, RightV);
break;
}
// Simulate the effects of a "store": bind the value of the RHS
// to the L-Value represented by the LHS.
St = SetRVal(SetRVal(St, B, RightV), cast<LVal>(LeftV), RightV);
break;
}
// Compound assignment operators.
default: {
assert (B->isCompoundAssignmentOp());
if (Op >= BinaryOperator::AndAssign)
((int&) Op) -= (BinaryOperator::AndAssign - BinaryOperator::And);
else
((int&) Op) -= BinaryOperator::MulAssign;
// Check if the LHS is undefined.
if (LeftV.isUndef()) {
HandleUndefinedStore(B, N2);
continue;
}
if (LeftV.isUnknown()) {
assert (isa<UnknownVal>(GetRVal(St, B)));
Dst.Add(N2);
continue;
}
// At this pointer we know that the LHS evaluates to an LVal
// that is neither "Unknown" or "Undefined."
LVal LeftLV = cast<LVal>(LeftV);
// Fetch the value of the LHS (the value of the variable, etc.).
RVal V = GetRVal(GetState(N1), LeftLV, B->getLHS()->getType());
// Propagate undefined value (left-side). We
// propogate undefined values for the RHS below when
// we also check for divide-by-zero.
if (V.isUndef()) {
St = SetRVal(St, B, V);
break;
}
// Propagate unknown values.
if (V.isUnknown()) {
// The value bound to LeftV is unknown. Thus we just
// propagate the current node (as "B" is already bound to nothing).
assert (isa<UnknownVal>(GetRVal(St, B)));
Dst.Add(N2);
continue;
}
if (RightV.isUnknown()) {
assert (isa<UnknownVal>(GetRVal(St, B)));
St = SetRVal(St, LeftLV, UnknownVal());
break;
}
// At this point:
//
// The LHS is not Undef/Unknown.
// The RHS is not Unknown.
// Get the computation type.
QualType CTy = cast<CompoundAssignOperator>(B)->getComputationType();
// Perform promotions.
V = EvalCast(V, CTy);
RightV = EvalCast(RightV, CTy);
// Evaluate operands and promote to result type.
if ((Op == BinaryOperator::Div || Op == BinaryOperator::Rem)
&& RHS->getType()->isIntegerType()) {
// Check if the denominator is undefined.
if (RightV.isUndef()) {
NodeTy* DivUndef = Builder->generateNode(B, St, N2);
if (DivUndef) {
DivUndef->markAsSink();
ExplicitBadDivides.insert(DivUndef);
}
continue;
}
// First, "assume" that the denominator is 0.
bool isFeasibleZero = false;
ValueState* ZeroSt = Assume(St, RightV, false, isFeasibleZero);
// Second, "assume" that the denominator cannot be 0.
bool isFeasibleNotZero = false;
St = Assume(St, RightV, true, isFeasibleNotZero);
// Create the node for the divide-by-zero error (if it occurred).
if (isFeasibleZero) {
NodeTy* DivZeroNode = Builder->generateNode(B, ZeroSt, N2);
if (DivZeroNode) {
DivZeroNode->markAsSink();
if (isFeasibleNotZero)
ImplicitBadDivides.insert(DivZeroNode);
else
ExplicitBadDivides.insert(DivZeroNode);
}
}
if (!isFeasibleNotZero)
continue;
// Fall-through. The logic below processes the divide.
}
else {
// Propagate undefined values (right-side).
if (RightV.isUndef()) {
St = SetRVal(SetRVal(St, B, RightV), LeftLV, RightV);
break;
}
}
RVal Result = EvalCast(EvalBinOp(Op, V, RightV), B->getType());
if (Result.isUndef()) {
// The operands were not undefined, but the result is undefined.
if (NodeTy* UndefNode = Builder->generateNode(B, St, N2)) {
UndefNode->markAsSink();
UndefResults.insert(UndefNode);
}
continue;
}
St = SetRVal(SetRVal(St, B, Result), LeftLV, Result);
}
}
MakeNode(Dst, B, N2, St);
}
}
}
void GRExprEngine::HandleUndefinedStore(Stmt* S, NodeTy* Pred) {
NodeTy* N = Builder->generateNode(S, GetState(Pred), Pred);
N->markAsSink();
UndefStores.insert(N);
}
void GRExprEngine::Visit(Stmt* S, NodeTy* Pred, NodeSet& Dst) {
// FIXME: add metadata to the CFG so that we can disable
// this check when we KNOW that there is no block-level subexpression.
// The motivation is that this check requires a hashtable lookup.
if (S != CurrentStmt && getCFG().isBlkExpr(S)) {
Dst.Add(Pred);
return;
}
switch (S->getStmtClass()) {
default:
// Cases we intentionally have "default" handle:
// AddrLabelExpr, IntegerLiteral, CharacterLiteral
Dst.Add(Pred); // No-op. Simply propagate the current state unchanged.
break;
case Stmt::AsmStmtClass:
VisitAsmStmt(cast<AsmStmt>(S), Pred, Dst);
break;
case Stmt::BinaryOperatorClass: {
BinaryOperator* B = cast<BinaryOperator>(S);
if (B->isLogicalOp()) {
VisitLogicalExpr(B, Pred, Dst);
break;
}
else if (B->getOpcode() == BinaryOperator::Comma) {
ValueState* St = GetState(Pred);
MakeNode(Dst, B, Pred, SetRVal(St, B, GetRVal(St, B->getRHS())));
break;
}
VisitBinaryOperator(cast<BinaryOperator>(S), Pred, Dst);
break;
}
case Stmt::CallExprClass: {
CallExpr* C = cast<CallExpr>(S);
VisitCall(C, Pred, C->arg_begin(), C->arg_end(), Dst);
break;
}
case Stmt::CastExprClass: {
CastExpr* C = cast<CastExpr>(S);
VisitCast(C, C->getSubExpr(), Pred, Dst);
break;
}
// FIXME: ChooseExpr is really a constant. We need to fix
// the CFG do not model them as explicit control-flow.
case Stmt::ChooseExprClass: { // __builtin_choose_expr
ChooseExpr* C = cast<ChooseExpr>(S);
VisitGuardedExpr(C, C->getLHS(), C->getRHS(), Pred, Dst);
break;
}
case Stmt::CompoundAssignOperatorClass:
VisitBinaryOperator(cast<BinaryOperator>(S), Pred, Dst);
break;
case Stmt::ConditionalOperatorClass: { // '?' operator
ConditionalOperator* C = cast<ConditionalOperator>(S);
VisitGuardedExpr(C, C->getLHS(), C->getRHS(), Pred, Dst);
break;
}
case Stmt::DeclRefExprClass:
VisitDeclRefExpr(cast<DeclRefExpr>(S), Pred, Dst);
break;
case Stmt::DeclStmtClass:
VisitDeclStmt(cast<DeclStmt>(S), Pred, Dst);
break;
case Stmt::ImplicitCastExprClass: {
ImplicitCastExpr* C = cast<ImplicitCastExpr>(S);
VisitCast(C, C->getSubExpr(), Pred, Dst);
break;
}
case Stmt::ObjCMessageExprClass: {
VisitObjCMessageExpr(cast<ObjCMessageExpr>(S), Pred, Dst);
break;
}
case Stmt::ParenExprClass:
Visit(cast<ParenExpr>(S)->getSubExpr(), Pred, Dst);
break;
case Stmt::SizeOfAlignOfTypeExprClass:
VisitSizeOfAlignOfTypeExpr(cast<SizeOfAlignOfTypeExpr>(S), Pred, Dst);
break;
case Stmt::StmtExprClass: {
StmtExpr* SE = cast<StmtExpr>(S);
ValueState* St = GetState(Pred);
// FIXME: Not certain if we can have empty StmtExprs. If so, we should
// probably just remove these from the CFG.
assert (!SE->getSubStmt()->body_empty());
if (Expr* LastExpr = dyn_cast<Expr>(*SE->getSubStmt()->body_rbegin()))
MakeNode(Dst, SE, Pred, SetRVal(St, SE, GetRVal(St, LastExpr)));
else
Dst.Add(Pred);
break;
}
// FIXME: We may wish to always bind state to ReturnStmts so
// that users can quickly query what was the state at the
// exit points of a function.
case Stmt::ReturnStmtClass: {
if (Expr* R = cast<ReturnStmt>(S)->getRetValue())
Visit(R, Pred, Dst);
else
Dst.Add(Pred);
break;
}
case Stmt::UnaryOperatorClass: {
UnaryOperator* U = cast<UnaryOperator>(S);
switch (U->getOpcode()) {
case UnaryOperator::Deref: VisitDeref(U, Pred, Dst); break;
case UnaryOperator::Plus: Visit(U->getSubExpr(), Pred, Dst); break;
case UnaryOperator::SizeOf: VisitSizeOfExpr(U, Pred, Dst); break;
default: VisitUnaryOperator(U, Pred, Dst); break;
}
break;
}
}
}
//===----------------------------------------------------------------------===//
// "Assume" logic.
//===----------------------------------------------------------------------===//
ValueState* GRExprEngine::Assume(ValueState* St, LVal Cond,
bool Assumption,
bool& isFeasible) {
switch (Cond.getSubKind()) {
default:
assert (false && "'Assume' not implemented for this LVal.");
return St;
case lval::SymbolValKind:
if (Assumption)
return AssumeSymNE(St, cast<lval::SymbolVal>(Cond).getSymbol(),
BasicVals.getZeroWithPtrWidth(), isFeasible);
else
return AssumeSymEQ(St, cast<lval::SymbolVal>(Cond).getSymbol(),
BasicVals.getZeroWithPtrWidth(), isFeasible);
case lval::DeclValKind:
case lval::FuncValKind:
case lval::GotoLabelKind:
isFeasible = Assumption;
return St;
case lval::ConcreteIntKind: {
bool b = cast<lval::ConcreteInt>(Cond).getValue() != 0;
isFeasible = b ? Assumption : !Assumption;
return St;
}
}
}
ValueState* GRExprEngine::Assume(ValueState* St, NonLVal Cond,
bool Assumption,
bool& isFeasible) {
switch (Cond.getSubKind()) {
default:
assert (false && "'Assume' not implemented for this NonLVal.");
return St;
case nonlval::SymbolValKind: {
nonlval::SymbolVal& SV = cast<nonlval::SymbolVal>(Cond);
SymbolID sym = SV.getSymbol();
if (Assumption)
return AssumeSymNE(St, sym, BasicVals.getValue(0, SymMgr.getType(sym)),
isFeasible);
else
return AssumeSymEQ(St, sym, BasicVals.getValue(0, SymMgr.getType(sym)),
isFeasible);
}
case nonlval::SymIntConstraintValKind:
return
AssumeSymInt(St, Assumption,
cast<nonlval::SymIntConstraintVal>(Cond).getConstraint(),
isFeasible);
case nonlval::ConcreteIntKind: {
bool b = cast<nonlval::ConcreteInt>(Cond).getValue() != 0;
isFeasible = b ? Assumption : !Assumption;
return St;
}
}
}
ValueState*
GRExprEngine::AssumeSymNE(ValueState* St, SymbolID sym,
const llvm::APSInt& V, bool& isFeasible) {
// First, determine if sym == X, where X != V.
if (const llvm::APSInt* X = St->getSymVal(sym)) {
isFeasible = *X != V;
return St;
}
// Second, determine if sym != V.
if (St->isNotEqual(sym, V)) {
isFeasible = true;
return St;
}
// If we reach here, sym is not a constant and we don't know if it is != V.
// Make that assumption.
isFeasible = true;
return StateMgr.AddNE(St, sym, V);
}
ValueState*
GRExprEngine::AssumeSymEQ(ValueState* St, SymbolID sym,
const llvm::APSInt& V, bool& isFeasible) {
// First, determine if sym == X, where X != V.
if (const llvm::APSInt* X = St->getSymVal(sym)) {
isFeasible = *X == V;
return St;
}
// Second, determine if sym != V.
if (St->isNotEqual(sym, V)) {
isFeasible = false;
return St;
}
// If we reach here, sym is not a constant and we don't know if it is == V.
// Make that assumption.
isFeasible = true;
return StateMgr.AddEQ(St, sym, V);
}
ValueState*
GRExprEngine::AssumeSymInt(ValueState* St, bool Assumption,
const SymIntConstraint& C, bool& isFeasible) {
switch (C.getOpcode()) {
default:
// No logic yet for other operators.
isFeasible = true;
return St;
case BinaryOperator::EQ:
if (Assumption)
return AssumeSymEQ(St, C.getSymbol(), C.getInt(), isFeasible);
else
return AssumeSymNE(St, C.getSymbol(), C.getInt(), isFeasible);
case BinaryOperator::NE:
if (Assumption)
return AssumeSymNE(St, C.getSymbol(), C.getInt(), isFeasible);
else
return AssumeSymEQ(St, C.getSymbol(), C.getInt(), isFeasible);
}
}
//===----------------------------------------------------------------------===//
// Visualization.
//===----------------------------------------------------------------------===//
#ifndef NDEBUG
static GRExprEngine* GraphPrintCheckerState;
static SourceManager* GraphPrintSourceManager;
static ValueState::CheckerStatePrinter* GraphCheckerStatePrinter;
namespace llvm {
template<>
struct VISIBILITY_HIDDEN DOTGraphTraits<GRExprEngine::NodeTy*> :
public DefaultDOTGraphTraits {
static void PrintVarBindings(std::ostream& Out, ValueState* St) {
Out << "Variables:\\l";
bool isFirst = true;
for (ValueState::vb_iterator I=St->vb_begin(), E=St->vb_end(); I!=E;++I) {
if (isFirst)
isFirst = false;
else
Out << "\\l";
Out << ' ' << I.getKey()->getName() << " : ";
I.getData().print(Out);
}
}
static void PrintSubExprBindings(std::ostream& Out, ValueState* St){
bool isFirst = true;
for (ValueState::seb_iterator I=St->seb_begin(), E=St->seb_end();I!=E;++I) {
if (isFirst) {
Out << "\\l\\lSub-Expressions:\\l";
isFirst = false;
}
else
Out << "\\l";
Out << " (" << (void*) I.getKey() << ") ";
I.getKey()->printPretty(Out);
Out << " : ";
I.getData().print(Out);
}
}
static void PrintBlkExprBindings(std::ostream& Out, ValueState* St){
bool isFirst = true;
for (ValueState::beb_iterator I=St->beb_begin(), E=St->beb_end(); I!=E;++I){
if (isFirst) {
Out << "\\l\\lBlock-level Expressions:\\l";
isFirst = false;
}
else
Out << "\\l";
Out << " (" << (void*) I.getKey() << ") ";
I.getKey()->printPretty(Out);
Out << " : ";
I.getData().print(Out);
}
}
static void PrintEQ(std::ostream& Out, ValueState* St) {
ValueState::ConstEqTy CE = St->ConstEq;
if (CE.isEmpty())
return;
Out << "\\l\\|'==' constraints:";
for (ValueState::ConstEqTy::iterator I=CE.begin(), E=CE.end(); I!=E;++I)
Out << "\\l $" << I.getKey() << " : " << I.getData()->toString();
}
static void PrintNE(std::ostream& Out, ValueState* St) {
ValueState::ConstNotEqTy NE = St->ConstNotEq;
if (NE.isEmpty())
return;
Out << "\\l\\|'!=' constraints:";
for (ValueState::ConstNotEqTy::iterator I=NE.begin(), EI=NE.end();
I != EI; ++I){
Out << "\\l $" << I.getKey() << " : ";
bool isFirst = true;
ValueState::IntSetTy::iterator J=I.getData().begin(),
EJ=I.getData().end();
for ( ; J != EJ; ++J) {
if (isFirst) isFirst = false;
else Out << ", ";
Out << (*J)->toString();
}
}
}
static std::string getNodeAttributes(const GRExprEngine::NodeTy* N, void*) {
if (GraphPrintCheckerState->isImplicitNullDeref(N) ||
GraphPrintCheckerState->isExplicitNullDeref(N) ||
GraphPrintCheckerState->isUndefDeref(N) ||
GraphPrintCheckerState->isUndefStore(N) ||
GraphPrintCheckerState->isUndefControlFlow(N) ||
GraphPrintCheckerState->isExplicitBadDivide(N) ||
GraphPrintCheckerState->isImplicitBadDivide(N) ||
GraphPrintCheckerState->isUndefResult(N) ||
GraphPrintCheckerState->isBadCall(N) ||
GraphPrintCheckerState->isUndefArg(N))
return "color=\"red\",style=\"filled\"";
if (GraphPrintCheckerState->isNoReturnCall(N))
return "color=\"blue\",style=\"filled\"";
return "";
}
static std::string getNodeLabel(const GRExprEngine::NodeTy* N, void*) {
std::ostringstream Out;
// Program Location.
ProgramPoint Loc = N->getLocation();
switch (Loc.getKind()) {
case ProgramPoint::BlockEntranceKind:
Out << "Block Entrance: B"
<< cast<BlockEntrance>(Loc).getBlock()->getBlockID();
break;
case ProgramPoint::BlockExitKind:
assert (false);
break;
case ProgramPoint::PostStmtKind: {
const PostStmt& L = cast<PostStmt>(Loc);
Stmt* S = L.getStmt();
SourceLocation SLoc = S->getLocStart();
Out << S->getStmtClassName() << ' ' << (void*) S << ' ';
S->printPretty(Out);
if (SLoc.isFileID()) {
Out << "\\lline="
<< GraphPrintSourceManager->getLineNumber(SLoc) << " col="
<< GraphPrintSourceManager->getColumnNumber(SLoc) << "\\l";
}
if (GraphPrintCheckerState->isImplicitNullDeref(N))
Out << "\\|Implicit-Null Dereference.\\l";
else if (GraphPrintCheckerState->isExplicitNullDeref(N))
Out << "\\|Explicit-Null Dereference.\\l";
else if (GraphPrintCheckerState->isUndefDeref(N))
Out << "\\|Dereference of undefialied value.\\l";
else if (GraphPrintCheckerState->isUndefStore(N))
Out << "\\|Store to Undefined LVal.";
else if (GraphPrintCheckerState->isExplicitBadDivide(N))
Out << "\\|Explicit divide-by zero or undefined value.";
else if (GraphPrintCheckerState->isImplicitBadDivide(N))
Out << "\\|Implicit divide-by zero or undefined value.";
else if (GraphPrintCheckerState->isUndefResult(N))
Out << "\\|Result of operation is undefined.";
else if (GraphPrintCheckerState->isNoReturnCall(N))
Out << "\\|Call to function marked \"noreturn\".";
else if (GraphPrintCheckerState->isBadCall(N))
Out << "\\|Call to NULL/Undefined.";
else if (GraphPrintCheckerState->isUndefArg(N))
Out << "\\|Argument in call is undefined";
break;
}
default: {
const BlockEdge& E = cast<BlockEdge>(Loc);
Out << "Edge: (B" << E.getSrc()->getBlockID() << ", B"
<< E.getDst()->getBlockID() << ')';
if (Stmt* T = E.getSrc()->getTerminator()) {
SourceLocation SLoc = T->getLocStart();
Out << "\\|Terminator: ";
E.getSrc()->printTerminator(Out);
if (SLoc.isFileID()) {
Out << "\\lline="
<< GraphPrintSourceManager->getLineNumber(SLoc) << " col="
<< GraphPrintSourceManager->getColumnNumber(SLoc);
}
if (isa<SwitchStmt>(T)) {
Stmt* Label = E.getDst()->getLabel();
if (Label) {
if (CaseStmt* C = dyn_cast<CaseStmt>(Label)) {
Out << "\\lcase ";
C->getLHS()->printPretty(Out);
if (Stmt* RHS = C->getRHS()) {
Out << " .. ";
RHS->printPretty(Out);
}
Out << ":";
}
else {
assert (isa<DefaultStmt>(Label));
Out << "\\ldefault:";
}
}
else
Out << "\\l(implicit) default:";
}
else if (isa<IndirectGotoStmt>(T)) {
// FIXME
}
else {
Out << "\\lCondition: ";
if (*E.getSrc()->succ_begin() == E.getDst())
Out << "true";
else
Out << "false";
}
Out << "\\l";
}
if (GraphPrintCheckerState->isUndefControlFlow(N)) {
Out << "\\|Control-flow based on\\lUndefined value.\\l";
}
}
}
Out << "\\|StateID: " << (void*) N->getState() << "\\|";
N->getState()->printDOT(Out, GraphCheckerStatePrinter);
Out << "\\l";
return Out.str();
}
};
} // end llvm namespace
#endif
#ifndef NDEBUG
template <typename ITERATOR>
GRExprEngine::NodeTy* GetGraphNode(ITERATOR I) { return *I; }
template <>
GRExprEngine::NodeTy*
GetGraphNode<llvm::DenseMap<GRExprEngine::NodeTy*, Expr*>::iterator>
(llvm::DenseMap<GRExprEngine::NodeTy*, Expr*>::iterator I) {
return I->first;
}
template <typename ITERATOR>
static void AddSources(llvm::SmallVector<GRExprEngine::NodeTy*, 10>& Sources,
ITERATOR I, ITERATOR E) {
llvm::SmallPtrSet<void*,10> CachedSources;
for ( ; I != E; ++I ) {
GRExprEngine::NodeTy* N = GetGraphNode(I);
void* p = N->getLocation().getRawData();
if (CachedSources.count(p))
continue;
CachedSources.insert(p);
Sources.push_back(N);
}
}
#endif
void GRExprEngine::ViewGraph(bool trim) {
#ifndef NDEBUG
if (trim) {
llvm::SmallVector<NodeTy*, 10> Src;
AddSources(Src, null_derefs_begin(), null_derefs_end());
AddSources(Src, undef_derefs_begin(), undef_derefs_end());
AddSources(Src, explicit_bad_divides_begin(), explicit_bad_divides_end());
AddSources(Src, undef_results_begin(), undef_results_end());
AddSources(Src, bad_calls_begin(), bad_calls_end());
AddSources(Src, undef_arg_begin(), undef_arg_end());
AddSources(Src, undef_branches_begin(), undef_branches_end());
ViewGraph(&Src[0], &Src[0]+Src.size());
}
else {
GraphPrintCheckerState = this;
GraphPrintSourceManager = &getContext().getSourceManager();
GraphCheckerStatePrinter = TF->getCheckerStatePrinter();
llvm::ViewGraph(*G.roots_begin(), "GRExprEngine");
GraphPrintCheckerState = NULL;
GraphPrintSourceManager = NULL;
GraphCheckerStatePrinter = NULL;
}
#endif
}
void GRExprEngine::ViewGraph(NodeTy** Beg, NodeTy** End) {
#ifndef NDEBUG
GraphPrintCheckerState = this;
GraphPrintSourceManager = &getContext().getSourceManager();
GraphCheckerStatePrinter = TF->getCheckerStatePrinter();
GRExprEngine::GraphTy* TrimmedG = G.Trim(Beg, End);
if (!TrimmedG)
llvm::cerr << "warning: Trimmed ExplodedGraph is empty.\n";
else {
llvm::ViewGraph(*TrimmedG->roots_begin(), "TrimmedGRExprEngine");
delete TrimmedG;
}
GraphPrintCheckerState = NULL;
GraphPrintSourceManager = NULL;
GraphCheckerStatePrinter = NULL;
#endif
}