llvm-project/libcxx/include/functional

2654 lines
78 KiB
Plaintext
Raw Normal View History

2010-05-12 03:42:16 +08:00
// -*- C++ -*-
//===------------------------ functional ----------------------------------===//
//
// The LLVM Compiler Infrastructure
2010-05-12 03:42:16 +08:00
//
2010-11-17 06:09:02 +08:00
// This file is dual licensed under the MIT and the University of Illinois Open
// Source Licenses. See LICENSE.TXT for details.
2010-05-12 03:42:16 +08:00
//
//===----------------------------------------------------------------------===//
#ifndef _LIBCPP_FUNCTIONAL
#define _LIBCPP_FUNCTIONAL
/*
functional synopsis
namespace std
{
template <class Arg, class Result>
struct unary_function
{
typedef Arg argument_type;
typedef Result result_type;
};
template <class Arg1, class Arg2, class Result>
struct binary_function
{
typedef Arg1 first_argument_type;
typedef Arg2 second_argument_type;
typedef Result result_type;
};
template <class T>
2010-05-12 03:42:16 +08:00
class reference_wrapper
: public unary_function<T1, R> // if wrapping a unary functor
: public binary_function<T1, T2, R> // if wraping a binary functor
{
public:
// types
typedef T type;
typedef see below result_type; // Not always defined
// construct/copy/destroy
reference_wrapper(T&) noexcept;
2010-05-12 03:42:16 +08:00
reference_wrapper(T&&) = delete; // do not bind to temps
reference_wrapper(const reference_wrapper<T>& x) noexcept;
2010-05-12 03:42:16 +08:00
// assignment
reference_wrapper& operator=(const reference_wrapper<T>& x) noexcept;
2010-05-12 03:42:16 +08:00
// access
operator T& () const noexcept;
T& get() const noexcept;
2010-05-12 03:42:16 +08:00
// invoke
template <class... ArgTypes>
typename result_of<T&(ArgTypes&&...)>::type
2010-05-12 03:42:16 +08:00
operator() (ArgTypes&&...) const;
};
template <class T> reference_wrapper<T> ref(T& t) noexcept;
template <class T> void ref(const T&& t) = delete;
template <class T> reference_wrapper<T> ref(reference_wrapper<T>t) noexcept;
2010-05-12 03:42:16 +08:00
template <class T> reference_wrapper<const T> cref(const T& t) noexcept;
template <class T> void cref(const T&& t) = delete;
template <class T> reference_wrapper<const T> cref(reference_wrapper<T> t) noexcept;
2010-05-12 03:42:16 +08:00
template <class T> // <class T=void> in C++14
2010-05-12 03:42:16 +08:00
struct plus : binary_function<T, T, T>
{
T operator()(const T& x, const T& y) const;
};
template <class T> // <class T=void> in C++14
2010-05-12 03:42:16 +08:00
struct minus : binary_function<T, T, T>
{
T operator()(const T& x, const T& y) const;
};
template <class T> // <class T=void> in C++14
2010-05-12 03:42:16 +08:00
struct multiplies : binary_function<T, T, T>
{
T operator()(const T& x, const T& y) const;
};
template <class T> // <class T=void> in C++14
2010-05-12 03:42:16 +08:00
struct divides : binary_function<T, T, T>
{
T operator()(const T& x, const T& y) const;
};
template <class T> // <class T=void> in C++14
2010-05-12 03:42:16 +08:00
struct modulus : binary_function<T, T, T>
{
T operator()(const T& x, const T& y) const;
};
template <class T> // <class T=void> in C++14
2010-05-12 03:42:16 +08:00
struct negate : unary_function<T, T>
{
T operator()(const T& x) const;
};
template <class T> // <class T=void> in C++14
2010-05-12 03:42:16 +08:00
struct equal_to : binary_function<T, T, bool>
{
bool operator()(const T& x, const T& y) const;
};
template <class T> // <class T=void> in C++14
2010-05-12 03:42:16 +08:00
struct not_equal_to : binary_function<T, T, bool>
{
bool operator()(const T& x, const T& y) const;
};
template <class T> // <class T=void> in C++14
2010-05-12 03:42:16 +08:00
struct greater : binary_function<T, T, bool>
{
bool operator()(const T& x, const T& y) const;
};
template <class T> // <class T=void> in C++14
2010-05-12 03:42:16 +08:00
struct less : binary_function<T, T, bool>
{
bool operator()(const T& x, const T& y) const;
};
template <class T> // <class T=void> in C++14
2010-05-12 03:42:16 +08:00
struct greater_equal : binary_function<T, T, bool>
{
bool operator()(const T& x, const T& y) const;
};
template <class T> // <class T=void> in C++14
2010-05-12 03:42:16 +08:00
struct less_equal : binary_function<T, T, bool>
{
bool operator()(const T& x, const T& y) const;
};
template <class T> // <class T=void> in C++14
2010-05-12 03:42:16 +08:00
struct logical_and : binary_function<T, T, bool>
{
bool operator()(const T& x, const T& y) const;
};
template <class T> // <class T=void> in C++14
2010-05-12 03:42:16 +08:00
struct logical_or : binary_function<T, T, bool>
{
bool operator()(const T& x, const T& y) const;
};
template <class T> // <class T=void> in C++14
2010-05-12 03:42:16 +08:00
struct logical_not : unary_function<T, bool>
{
bool operator()(const T& x) const;
};
template <class T> // <class T=void> in C++14
struct bit_and : unary_function<T, bool>
{
bool operator()(const T& x, const T& y) const;
};
template <class T> // <class T=void> in C++14
struct bit_or : unary_function<T, bool>
{
bool operator()(const T& x, const T& y) const;
};
template <class T> // <class T=void> in C++14
struct bit_xor : unary_function<T, bool>
{
bool operator()(const T& x, const T& y) const;
};
template <class T=void> // C++14
struct bit_xor : unary_function<T, bool>
{
bool operator()(const T& x) const;
};
2010-05-12 03:42:16 +08:00
template <class Predicate>
class unary_negate
: public unary_function<typename Predicate::argument_type, bool>
{
public:
explicit unary_negate(const Predicate& pred);
bool operator()(const typename Predicate::argument_type& x) const;
};
template <class Predicate> unary_negate<Predicate> not1(const Predicate& pred);
template <class Predicate>
class binary_negate
: public binary_function<typename Predicate::first_argument_type,
typename Predicate::second_argument_type,
bool>
{
public:
explicit binary_negate(const Predicate& pred);
bool operator()(const typename Predicate::first_argument_type& x,
const typename Predicate::second_argument_type& y) const;
};
template <class Predicate> binary_negate<Predicate> not2(const Predicate& pred);
template <class F> unspecified not_fn(F&& f); // C++17
2010-05-12 03:42:16 +08:00
template<class T> struct is_bind_expression;
template<class T> struct is_placeholder;
// See C++14 20.9.9, Function object binders
template <class T> constexpr bool is_bind_expression_v
= is_bind_expression<T>::value; // C++17
template <class T> constexpr int is_placeholder_v
= is_placeholder<T>::value; // C++17
template<class Fn, class... BoundArgs>
unspecified bind(Fn&&, BoundArgs&&...);
template<class R, class Fn, class... BoundArgs>
unspecified bind(Fn&&, BoundArgs&&...);
2010-05-12 03:42:16 +08:00
namespace placeholders {
// M is the implementation-defined number of placeholders
2010-05-12 03:42:16 +08:00
extern unspecified _1;
extern unspecified _2;
.
.
.
extern unspecified _Mp;
2010-05-12 03:42:16 +08:00
}
template <class Operation>
class binder1st
: public unary_function<typename Operation::second_argument_type,
typename Operation::result_type>
{
protected:
Operation op;
typename Operation::first_argument_type value;
public:
binder1st(const Operation& x, const typename Operation::first_argument_type y);
typename Operation::result_type operator()( typename Operation::second_argument_type& x) const;
typename Operation::result_type operator()(const typename Operation::second_argument_type& x) const;
};
template <class Operation, class T>
binder1st<Operation> bind1st(const Operation& op, const T& x);
template <class Operation>
class binder2nd
: public unary_function<typename Operation::first_argument_type,
typename Operation::result_type>
{
protected:
Operation op;
typename Operation::second_argument_type value;
public:
binder2nd(const Operation& x, const typename Operation::second_argument_type y);
typename Operation::result_type operator()( typename Operation::first_argument_type& x) const;
typename Operation::result_type operator()(const typename Operation::first_argument_type& x) const;
};
template <class Operation, class T>
binder2nd<Operation> bind2nd(const Operation& op, const T& x);
template <class Arg, class Result>
class pointer_to_unary_function : public unary_function<Arg, Result>
{
public:
explicit pointer_to_unary_function(Result (*f)(Arg));
Result operator()(Arg x) const;
};
template <class Arg, class Result>
pointer_to_unary_function<Arg,Result> ptr_fun(Result (*f)(Arg));
template <class Arg1, class Arg2, class Result>
class pointer_to_binary_function : public binary_function<Arg1, Arg2, Result>
{
public:
explicit pointer_to_binary_function(Result (*f)(Arg1, Arg2));
Result operator()(Arg1 x, Arg2 y) const;
};
template <class Arg1, class Arg2, class Result>
pointer_to_binary_function<Arg1,Arg2,Result> ptr_fun(Result (*f)(Arg1,Arg2));
template<class S, class T>
class mem_fun_t : public unary_function<T*, S>
{
public:
explicit mem_fun_t(S (T::*p)());
S operator()(T* p) const;
};
template<class S, class T, class A>
class mem_fun1_t : public binary_function<T*, A, S>
{
public:
explicit mem_fun1_t(S (T::*p)(A));
S operator()(T* p, A x) const;
};
template<class S, class T> mem_fun_t<S,T> mem_fun(S (T::*f)());
template<class S, class T, class A> mem_fun1_t<S,T,A> mem_fun(S (T::*f)(A));
template<class S, class T>
class mem_fun_ref_t : public unary_function<T, S>
{
public:
explicit mem_fun_ref_t(S (T::*p)());
S operator()(T& p) const;
};
template<class S, class T, class A>
class mem_fun1_ref_t : public binary_function<T, A, S>
{
public:
explicit mem_fun1_ref_t(S (T::*p)(A));
S operator()(T& p, A x) const;
};
template<class S, class T> mem_fun_ref_t<S,T> mem_fun_ref(S (T::*f)());
template<class S, class T, class A> mem_fun1_ref_t<S,T,A> mem_fun_ref(S (T::*f)(A));
template <class S, class T>
class const_mem_fun_t : public unary_function<const T*, S>
{
public:
explicit const_mem_fun_t(S (T::*p)() const);
S operator()(const T* p) const;
};
template <class S, class T, class A>
class const_mem_fun1_t : public binary_function<const T*, A, S>
{
public:
explicit const_mem_fun1_t(S (T::*p)(A) const);
S operator()(const T* p, A x) const;
};
template <class S, class T> const_mem_fun_t<S,T> mem_fun(S (T::*f)() const);
template <class S, class T, class A> const_mem_fun1_t<S,T,A> mem_fun(S (T::*f)(A) const);
template <class S, class T>
class const_mem_fun_ref_t : public unary_function<T, S>
{
public:
explicit const_mem_fun_ref_t(S (T::*p)() const);
S operator()(const T& p) const;
};
template <class S, class T, class A>
class const_mem_fun1_ref_t : public binary_function<T, A, S>
{
public:
explicit const_mem_fun1_ref_t(S (T::*p)(A) const);
S operator()(const T& p, A x) const;
};
template <class S, class T> const_mem_fun_ref_t<S,T> mem_fun_ref(S (T::*f)() const);
template <class S, class T, class A> const_mem_fun1_ref_t<S,T,A> mem_fun_ref(S (T::*f)(A) const);
template<class R, class T> unspecified mem_fn(R T::*);
2010-05-12 03:42:16 +08:00
class bad_function_call
: public exception
{
};
template<class> class function; // undefined
2010-05-12 03:42:16 +08:00
template<class R, class... ArgTypes>
2010-05-12 03:42:16 +08:00
class function<R(ArgTypes...)>
: public unary_function<T1, R> // iff sizeof...(ArgTypes) == 1 and
// ArgTypes contains T1
: public binary_function<T1, T2, R> // iff sizeof...(ArgTypes) == 2 and
// ArgTypes contains T1 and T2
{
public:
typedef R result_type;
// construct/copy/destroy:
function() noexcept;
function(nullptr_t) noexcept;
2010-05-12 03:42:16 +08:00
function(const function&);
function(function&&) noexcept;
2010-05-12 03:42:16 +08:00
template<class F>
function(F);
template<Allocator Alloc>
function(allocator_arg_t, const Alloc&) noexcept; // removed in C++17
2010-05-12 03:42:16 +08:00
template<Allocator Alloc>
function(allocator_arg_t, const Alloc&, nullptr_t) noexcept; // removed in C++17
2010-05-12 03:42:16 +08:00
template<Allocator Alloc>
function(allocator_arg_t, const Alloc&, const function&); // removed in C++17
2010-05-12 03:42:16 +08:00
template<Allocator Alloc>
function(allocator_arg_t, const Alloc&, function&&); // removed in C++17
2010-05-12 03:42:16 +08:00
template<class F, Allocator Alloc>
function(allocator_arg_t, const Alloc&, F); // removed in C++17
2010-05-12 03:42:16 +08:00
function& operator=(const function&);
function& operator=(function&&) noexcept;
function& operator=(nullptr_t) noexcept;
2010-05-12 03:42:16 +08:00
template<class F>
function& operator=(F&&);
2010-05-12 03:42:16 +08:00
template<class F>
function& operator=(reference_wrapper<F>) noexcept;
2010-05-12 03:42:16 +08:00
~function();
// function modifiers:
void swap(function&) noexcept;
template<class F, class Alloc>
void assign(F&&, const Alloc&); // Removed in C++17
2010-05-12 03:42:16 +08:00
// function capacity:
explicit operator bool() const noexcept;
2010-05-12 03:42:16 +08:00
// function invocation:
2010-05-12 03:42:16 +08:00
R operator()(ArgTypes...) const;
// function target access:
const std::type_info& target_type() const noexcept;
template <typename T> T* target() noexcept;
template <typename T> const T* target() const noexcept;
};
// Null pointer comparisons:
template <class R, class ... ArgTypes>
bool operator==(const function<R(ArgTypes...)>&, nullptr_t) noexcept;
2010-05-12 03:42:16 +08:00
template <class R, class ... ArgTypes>
bool operator==(nullptr_t, const function<R(ArgTypes...)>&) noexcept;
2010-05-12 03:42:16 +08:00
template <class R, class ... ArgTypes>
bool operator!=(const function<R(ArgTypes...)>&, nullptr_t) noexcept;
2010-05-12 03:42:16 +08:00
template <class R, class ... ArgTypes>
bool operator!=(nullptr_t, const function<R(ArgTypes...)>&) noexcept;
2010-05-12 03:42:16 +08:00
// specialized algorithms:
template <class R, class ... ArgTypes>
void swap(function<R(ArgTypes...)>&, function<R(ArgTypes...)>&) noexcept;
2010-05-12 03:42:16 +08:00
template <class T> struct hash;
template <> struct hash<bool>;
template <> struct hash<char>;
template <> struct hash<signed char>;
template <> struct hash<unsigned char>;
template <> struct hash<char16_t>;
template <> struct hash<char32_t>;
template <> struct hash<wchar_t>;
template <> struct hash<short>;
template <> struct hash<unsigned short>;
template <> struct hash<int>;
template <> struct hash<unsigned int>;
template <> struct hash<long>;
template <> struct hash<long long>;
template <> struct hash<unsigned long>;
template <> struct hash<unsigned long long>;
template <> struct hash<float>;
template <> struct hash<double>;
template <> struct hash<long double>;
template<class T> struct hash<T*>;
} // std
POLICY: For non-variadic implementations, the number of arguments is limited
to 3. It is hoped that the need for non-variadic implementations
will be minimal.
*/
#include <__config>
#include <type_traits>
#include <typeinfo>
#include <exception>
#include <memory>
#include <tuple>
#include <__functional_base>
#if !defined(_LIBCPP_HAS_NO_PRAGMA_SYSTEM_HEADER)
2010-05-12 03:42:16 +08:00
#pragma GCC system_header
#endif
2010-05-12 03:42:16 +08:00
_LIBCPP_BEGIN_NAMESPACE_STD
#if _LIBCPP_STD_VER > 11
template <class _Tp = void>
#else
2010-05-12 03:42:16 +08:00
template <class _Tp>
#endif
struct _LIBCPP_TYPE_VIS_ONLY plus : binary_function<_Tp, _Tp, _Tp>
2010-05-12 03:42:16 +08:00
{
_LIBCPP_CONSTEXPR_AFTER_CXX11 _LIBCPP_INLINE_VISIBILITY
_Tp operator()(const _Tp& __x, const _Tp& __y) const
2010-05-12 03:42:16 +08:00
{return __x + __y;}
};
#if _LIBCPP_STD_VER > 11
template <>
struct _LIBCPP_TYPE_VIS_ONLY plus<void>
{
template <class _T1, class _T2>
_LIBCPP_CONSTEXPR_AFTER_CXX11 _LIBCPP_INLINE_VISIBILITY
auto operator()(_T1&& __t, _T2&& __u) const
_NOEXCEPT_(noexcept(_VSTD::forward<_T1>(__t) + _VSTD::forward<_T2>(__u)))
-> decltype (_VSTD::forward<_T1>(__t) + _VSTD::forward<_T2>(__u))
{ return _VSTD::forward<_T1>(__t) + _VSTD::forward<_T2>(__u); }
typedef void is_transparent;
};
#endif
#if _LIBCPP_STD_VER > 11
template <class _Tp = void>
#else
2010-05-12 03:42:16 +08:00
template <class _Tp>
#endif
struct _LIBCPP_TYPE_VIS_ONLY minus : binary_function<_Tp, _Tp, _Tp>
2010-05-12 03:42:16 +08:00
{
_LIBCPP_CONSTEXPR_AFTER_CXX11 _LIBCPP_INLINE_VISIBILITY
_Tp operator()(const _Tp& __x, const _Tp& __y) const
2010-05-12 03:42:16 +08:00
{return __x - __y;}
};
#if _LIBCPP_STD_VER > 11
template <>
struct _LIBCPP_TYPE_VIS_ONLY minus<void>
{
template <class _T1, class _T2>
_LIBCPP_CONSTEXPR_AFTER_CXX11 _LIBCPP_INLINE_VISIBILITY
auto operator()(_T1&& __t, _T2&& __u) const
_NOEXCEPT_(noexcept(_VSTD::forward<_T1>(__t) - _VSTD::forward<_T2>(__u)))
-> decltype (_VSTD::forward<_T1>(__t) - _VSTD::forward<_T2>(__u))
{ return _VSTD::forward<_T1>(__t) - _VSTD::forward<_T2>(__u); }
typedef void is_transparent;
};
#endif
#if _LIBCPP_STD_VER > 11
template <class _Tp = void>
#else
2010-05-12 03:42:16 +08:00
template <class _Tp>
#endif
struct _LIBCPP_TYPE_VIS_ONLY multiplies : binary_function<_Tp, _Tp, _Tp>
2010-05-12 03:42:16 +08:00
{
_LIBCPP_CONSTEXPR_AFTER_CXX11 _LIBCPP_INLINE_VISIBILITY
_Tp operator()(const _Tp& __x, const _Tp& __y) const
2010-05-12 03:42:16 +08:00
{return __x * __y;}
};
#if _LIBCPP_STD_VER > 11
template <>
struct _LIBCPP_TYPE_VIS_ONLY multiplies<void>
{
template <class _T1, class _T2>
_LIBCPP_CONSTEXPR_AFTER_CXX11 _LIBCPP_INLINE_VISIBILITY
auto operator()(_T1&& __t, _T2&& __u) const
_NOEXCEPT_(noexcept(_VSTD::forward<_T1>(__t) * _VSTD::forward<_T2>(__u)))
-> decltype (_VSTD::forward<_T1>(__t) * _VSTD::forward<_T2>(__u))
{ return _VSTD::forward<_T1>(__t) * _VSTD::forward<_T2>(__u); }
typedef void is_transparent;
};
#endif
#if _LIBCPP_STD_VER > 11
template <class _Tp = void>
#else
2010-05-12 03:42:16 +08:00
template <class _Tp>
#endif
struct _LIBCPP_TYPE_VIS_ONLY divides : binary_function<_Tp, _Tp, _Tp>
2010-05-12 03:42:16 +08:00
{
_LIBCPP_CONSTEXPR_AFTER_CXX11 _LIBCPP_INLINE_VISIBILITY
_Tp operator()(const _Tp& __x, const _Tp& __y) const
2010-05-12 03:42:16 +08:00
{return __x / __y;}
};
#if _LIBCPP_STD_VER > 11
template <>
struct _LIBCPP_TYPE_VIS_ONLY divides<void>
{
template <class _T1, class _T2>
_LIBCPP_CONSTEXPR_AFTER_CXX11 _LIBCPP_INLINE_VISIBILITY
auto operator()(_T1&& __t, _T2&& __u) const
_NOEXCEPT_(noexcept(_VSTD::forward<_T1>(__t) / _VSTD::forward<_T2>(__u)))
-> decltype (_VSTD::forward<_T1>(__t) / _VSTD::forward<_T2>(__u))
{ return _VSTD::forward<_T1>(__t) / _VSTD::forward<_T2>(__u); }
typedef void is_transparent;
};
#endif
#if _LIBCPP_STD_VER > 11
template <class _Tp = void>
#else
2010-05-12 03:42:16 +08:00
template <class _Tp>
#endif
struct _LIBCPP_TYPE_VIS_ONLY modulus : binary_function<_Tp, _Tp, _Tp>
2010-05-12 03:42:16 +08:00
{
_LIBCPP_CONSTEXPR_AFTER_CXX11 _LIBCPP_INLINE_VISIBILITY
_Tp operator()(const _Tp& __x, const _Tp& __y) const
2010-05-12 03:42:16 +08:00
{return __x % __y;}
};
#if _LIBCPP_STD_VER > 11
template <>
struct _LIBCPP_TYPE_VIS_ONLY modulus<void>
{
template <class _T1, class _T2>
_LIBCPP_CONSTEXPR_AFTER_CXX11 _LIBCPP_INLINE_VISIBILITY
auto operator()(_T1&& __t, _T2&& __u) const
_NOEXCEPT_(noexcept(_VSTD::forward<_T1>(__t) % _VSTD::forward<_T2>(__u)))
-> decltype (_VSTD::forward<_T1>(__t) % _VSTD::forward<_T2>(__u))
{ return _VSTD::forward<_T1>(__t) % _VSTD::forward<_T2>(__u); }
typedef void is_transparent;
};
#endif
#if _LIBCPP_STD_VER > 11
template <class _Tp = void>
#else
2010-05-12 03:42:16 +08:00
template <class _Tp>
#endif
struct _LIBCPP_TYPE_VIS_ONLY negate : unary_function<_Tp, _Tp>
2010-05-12 03:42:16 +08:00
{
_LIBCPP_CONSTEXPR_AFTER_CXX11 _LIBCPP_INLINE_VISIBILITY
_Tp operator()(const _Tp& __x) const
2010-05-12 03:42:16 +08:00
{return -__x;}
};
#if _LIBCPP_STD_VER > 11
template <>
struct _LIBCPP_TYPE_VIS_ONLY negate<void>
{
template <class _Tp>
_LIBCPP_CONSTEXPR_AFTER_CXX11 _LIBCPP_INLINE_VISIBILITY
auto operator()(_Tp&& __x) const
_NOEXCEPT_(noexcept(- _VSTD::forward<_Tp>(__x)))
-> decltype (- _VSTD::forward<_Tp>(__x))
{ return - _VSTD::forward<_Tp>(__x); }
typedef void is_transparent;
};
#endif
#if _LIBCPP_STD_VER > 11
template <class _Tp = void>
#else
2010-05-12 03:42:16 +08:00
template <class _Tp>
#endif
struct _LIBCPP_TYPE_VIS_ONLY equal_to : binary_function<_Tp, _Tp, bool>
2010-05-12 03:42:16 +08:00
{
_LIBCPP_CONSTEXPR_AFTER_CXX11 _LIBCPP_INLINE_VISIBILITY
bool operator()(const _Tp& __x, const _Tp& __y) const
2010-05-12 03:42:16 +08:00
{return __x == __y;}
};
#if _LIBCPP_STD_VER > 11
template <>
struct _LIBCPP_TYPE_VIS_ONLY equal_to<void>
{
template <class _T1, class _T2>
_LIBCPP_CONSTEXPR_AFTER_CXX11 _LIBCPP_INLINE_VISIBILITY
auto operator()(_T1&& __t, _T2&& __u) const
_NOEXCEPT_(noexcept(_VSTD::forward<_T1>(__t) == _VSTD::forward<_T2>(__u)))
-> decltype (_VSTD::forward<_T1>(__t) == _VSTD::forward<_T2>(__u))
{ return _VSTD::forward<_T1>(__t) == _VSTD::forward<_T2>(__u); }
typedef void is_transparent;
};
#endif
#if _LIBCPP_STD_VER > 11
template <class _Tp = void>
#else
2010-05-12 03:42:16 +08:00
template <class _Tp>
#endif
struct _LIBCPP_TYPE_VIS_ONLY not_equal_to : binary_function<_Tp, _Tp, bool>
2010-05-12 03:42:16 +08:00
{
_LIBCPP_CONSTEXPR_AFTER_CXX11 _LIBCPP_INLINE_VISIBILITY
bool operator()(const _Tp& __x, const _Tp& __y) const
2010-05-12 03:42:16 +08:00
{return __x != __y;}
};
#if _LIBCPP_STD_VER > 11
template <>
struct _LIBCPP_TYPE_VIS_ONLY not_equal_to<void>
{
template <class _T1, class _T2>
_LIBCPP_CONSTEXPR_AFTER_CXX11 _LIBCPP_INLINE_VISIBILITY
auto operator()(_T1&& __t, _T2&& __u) const
_NOEXCEPT_(noexcept(_VSTD::forward<_T1>(__t) != _VSTD::forward<_T2>(__u)))
-> decltype (_VSTD::forward<_T1>(__t) != _VSTD::forward<_T2>(__u))
{ return _VSTD::forward<_T1>(__t) != _VSTD::forward<_T2>(__u); }
typedef void is_transparent;
};
#endif
#if _LIBCPP_STD_VER > 11
template <class _Tp = void>
#else
2010-05-12 03:42:16 +08:00
template <class _Tp>
#endif
struct _LIBCPP_TYPE_VIS_ONLY greater : binary_function<_Tp, _Tp, bool>
2010-05-12 03:42:16 +08:00
{
_LIBCPP_CONSTEXPR_AFTER_CXX11 _LIBCPP_INLINE_VISIBILITY
bool operator()(const _Tp& __x, const _Tp& __y) const
2010-05-12 03:42:16 +08:00
{return __x > __y;}
};
#if _LIBCPP_STD_VER > 11
template <>
struct _LIBCPP_TYPE_VIS_ONLY greater<void>
{
template <class _T1, class _T2>
_LIBCPP_CONSTEXPR_AFTER_CXX11 _LIBCPP_INLINE_VISIBILITY
auto operator()(_T1&& __t, _T2&& __u) const
_NOEXCEPT_(noexcept(_VSTD::forward<_T1>(__t) > _VSTD::forward<_T2>(__u)))
-> decltype (_VSTD::forward<_T1>(__t) > _VSTD::forward<_T2>(__u))
{ return _VSTD::forward<_T1>(__t) > _VSTD::forward<_T2>(__u); }
typedef void is_transparent;
};
#endif
// less in <__functional_base>
2010-05-12 03:42:16 +08:00
#if _LIBCPP_STD_VER > 11
template <class _Tp = void>
#else
2010-05-12 03:42:16 +08:00
template <class _Tp>
#endif
struct _LIBCPP_TYPE_VIS_ONLY greater_equal : binary_function<_Tp, _Tp, bool>
2010-05-12 03:42:16 +08:00
{
_LIBCPP_CONSTEXPR_AFTER_CXX11 _LIBCPP_INLINE_VISIBILITY
bool operator()(const _Tp& __x, const _Tp& __y) const
2010-05-12 03:42:16 +08:00
{return __x >= __y;}
};
#if _LIBCPP_STD_VER > 11
template <>
struct _LIBCPP_TYPE_VIS_ONLY greater_equal<void>
{
template <class _T1, class _T2>
_LIBCPP_CONSTEXPR_AFTER_CXX11 _LIBCPP_INLINE_VISIBILITY
auto operator()(_T1&& __t, _T2&& __u) const
_NOEXCEPT_(noexcept(_VSTD::forward<_T1>(__t) >= _VSTD::forward<_T2>(__u)))
-> decltype (_VSTD::forward<_T1>(__t) >= _VSTD::forward<_T2>(__u))
{ return _VSTD::forward<_T1>(__t) >= _VSTD::forward<_T2>(__u); }
typedef void is_transparent;
};
#endif
#if _LIBCPP_STD_VER > 11
template <class _Tp = void>
#else
2010-05-12 03:42:16 +08:00
template <class _Tp>
#endif
struct _LIBCPP_TYPE_VIS_ONLY less_equal : binary_function<_Tp, _Tp, bool>
2010-05-12 03:42:16 +08:00
{
_LIBCPP_CONSTEXPR_AFTER_CXX11 _LIBCPP_INLINE_VISIBILITY
bool operator()(const _Tp& __x, const _Tp& __y) const
2010-05-12 03:42:16 +08:00
{return __x <= __y;}
};
#if _LIBCPP_STD_VER > 11
template <>
struct _LIBCPP_TYPE_VIS_ONLY less_equal<void>
{
template <class _T1, class _T2>
_LIBCPP_CONSTEXPR_AFTER_CXX11 _LIBCPP_INLINE_VISIBILITY
auto operator()(_T1&& __t, _T2&& __u) const
_NOEXCEPT_(noexcept(_VSTD::forward<_T1>(__t) <= _VSTD::forward<_T2>(__u)))
-> decltype (_VSTD::forward<_T1>(__t) <= _VSTD::forward<_T2>(__u))
{ return _VSTD::forward<_T1>(__t) <= _VSTD::forward<_T2>(__u); }
typedef void is_transparent;
};
#endif
#if _LIBCPP_STD_VER > 11
template <class _Tp = void>
#else
2010-05-12 03:42:16 +08:00
template <class _Tp>
#endif
struct _LIBCPP_TYPE_VIS_ONLY logical_and : binary_function<_Tp, _Tp, bool>
2010-05-12 03:42:16 +08:00
{
_LIBCPP_CONSTEXPR_AFTER_CXX11 _LIBCPP_INLINE_VISIBILITY
bool operator()(const _Tp& __x, const _Tp& __y) const
2010-05-12 03:42:16 +08:00
{return __x && __y;}
};
#if _LIBCPP_STD_VER > 11
template <>
struct _LIBCPP_TYPE_VIS_ONLY logical_and<void>
{
template <class _T1, class _T2>
_LIBCPP_CONSTEXPR_AFTER_CXX11 _LIBCPP_INLINE_VISIBILITY
auto operator()(_T1&& __t, _T2&& __u) const
_NOEXCEPT_(noexcept(_VSTD::forward<_T1>(__t) && _VSTD::forward<_T2>(__u)))
-> decltype (_VSTD::forward<_T1>(__t) && _VSTD::forward<_T2>(__u))
{ return _VSTD::forward<_T1>(__t) && _VSTD::forward<_T2>(__u); }
typedef void is_transparent;
};
#endif
#if _LIBCPP_STD_VER > 11
template <class _Tp = void>
#else
2010-05-12 03:42:16 +08:00
template <class _Tp>
#endif
struct _LIBCPP_TYPE_VIS_ONLY logical_or : binary_function<_Tp, _Tp, bool>
2010-05-12 03:42:16 +08:00
{
_LIBCPP_CONSTEXPR_AFTER_CXX11 _LIBCPP_INLINE_VISIBILITY
bool operator()(const _Tp& __x, const _Tp& __y) const
2010-05-12 03:42:16 +08:00
{return __x || __y;}
};
#if _LIBCPP_STD_VER > 11
template <>
struct _LIBCPP_TYPE_VIS_ONLY logical_or<void>
{
template <class _T1, class _T2>
_LIBCPP_CONSTEXPR_AFTER_CXX11 _LIBCPP_INLINE_VISIBILITY
auto operator()(_T1&& __t, _T2&& __u) const
_NOEXCEPT_(noexcept(_VSTD::forward<_T1>(__t) || _VSTD::forward<_T2>(__u)))
-> decltype (_VSTD::forward<_T1>(__t) || _VSTD::forward<_T2>(__u))
{ return _VSTD::forward<_T1>(__t) || _VSTD::forward<_T2>(__u); }
typedef void is_transparent;
};
#endif
#if _LIBCPP_STD_VER > 11
template <class _Tp = void>
#else
2010-05-12 03:42:16 +08:00
template <class _Tp>
#endif
struct _LIBCPP_TYPE_VIS_ONLY logical_not : unary_function<_Tp, bool>
2010-05-12 03:42:16 +08:00
{
_LIBCPP_CONSTEXPR_AFTER_CXX11 _LIBCPP_INLINE_VISIBILITY
bool operator()(const _Tp& __x) const
2010-05-12 03:42:16 +08:00
{return !__x;}
};
#if _LIBCPP_STD_VER > 11
template <>
struct _LIBCPP_TYPE_VIS_ONLY logical_not<void>
{
template <class _Tp>
_LIBCPP_CONSTEXPR_AFTER_CXX11 _LIBCPP_INLINE_VISIBILITY
auto operator()(_Tp&& __x) const
_NOEXCEPT_(noexcept(!_VSTD::forward<_Tp>(__x)))
-> decltype (!_VSTD::forward<_Tp>(__x))
{ return !_VSTD::forward<_Tp>(__x); }
typedef void is_transparent;
};
#endif
#if _LIBCPP_STD_VER > 11
template <class _Tp = void>
#else
2010-05-12 03:42:16 +08:00
template <class _Tp>
#endif
struct _LIBCPP_TYPE_VIS_ONLY bit_and : binary_function<_Tp, _Tp, _Tp>
2010-05-12 03:42:16 +08:00
{
_LIBCPP_CONSTEXPR_AFTER_CXX11 _LIBCPP_INLINE_VISIBILITY
_Tp operator()(const _Tp& __x, const _Tp& __y) const
2010-05-12 03:42:16 +08:00
{return __x & __y;}
};
#if _LIBCPP_STD_VER > 11
template <>
struct _LIBCPP_TYPE_VIS_ONLY bit_and<void>
{
template <class _T1, class _T2>
_LIBCPP_CONSTEXPR_AFTER_CXX11 _LIBCPP_INLINE_VISIBILITY
auto operator()(_T1&& __t, _T2&& __u) const
_NOEXCEPT_(noexcept(_VSTD::forward<_T1>(__t) & _VSTD::forward<_T2>(__u)))
-> decltype (_VSTD::forward<_T1>(__t) & _VSTD::forward<_T2>(__u))
{ return _VSTD::forward<_T1>(__t) & _VSTD::forward<_T2>(__u); }
typedef void is_transparent;
};
#endif
#if _LIBCPP_STD_VER > 11
template <class _Tp = void>
#else
2010-05-12 03:42:16 +08:00
template <class _Tp>
#endif
struct _LIBCPP_TYPE_VIS_ONLY bit_or : binary_function<_Tp, _Tp, _Tp>
2010-05-12 03:42:16 +08:00
{
_LIBCPP_CONSTEXPR_AFTER_CXX11 _LIBCPP_INLINE_VISIBILITY
_Tp operator()(const _Tp& __x, const _Tp& __y) const
2010-05-12 03:42:16 +08:00
{return __x | __y;}
};
#if _LIBCPP_STD_VER > 11
template <>
struct _LIBCPP_TYPE_VIS_ONLY bit_or<void>
{
template <class _T1, class _T2>
_LIBCPP_CONSTEXPR_AFTER_CXX11 _LIBCPP_INLINE_VISIBILITY
auto operator()(_T1&& __t, _T2&& __u) const
_NOEXCEPT_(noexcept(_VSTD::forward<_T1>(__t) | _VSTD::forward<_T2>(__u)))
-> decltype (_VSTD::forward<_T1>(__t) | _VSTD::forward<_T2>(__u))
{ return _VSTD::forward<_T1>(__t) | _VSTD::forward<_T2>(__u); }
typedef void is_transparent;
};
#endif
#if _LIBCPP_STD_VER > 11
template <class _Tp = void>
#else
2010-05-12 03:42:16 +08:00
template <class _Tp>
#endif
struct _LIBCPP_TYPE_VIS_ONLY bit_xor : binary_function<_Tp, _Tp, _Tp>
2010-05-12 03:42:16 +08:00
{
_LIBCPP_CONSTEXPR_AFTER_CXX11 _LIBCPP_INLINE_VISIBILITY
_Tp operator()(const _Tp& __x, const _Tp& __y) const
2010-05-12 03:42:16 +08:00
{return __x ^ __y;}
};
#if _LIBCPP_STD_VER > 11
template <>
struct _LIBCPP_TYPE_VIS_ONLY bit_xor<void>
{
template <class _T1, class _T2>
_LIBCPP_CONSTEXPR_AFTER_CXX11 _LIBCPP_INLINE_VISIBILITY
auto operator()(_T1&& __t, _T2&& __u) const
_NOEXCEPT_(noexcept(_VSTD::forward<_T1>(__t) ^ _VSTD::forward<_T2>(__u)))
-> decltype (_VSTD::forward<_T1>(__t) ^ _VSTD::forward<_T2>(__u))
{ return _VSTD::forward<_T1>(__t) ^ _VSTD::forward<_T2>(__u); }
typedef void is_transparent;
};
#endif
#if _LIBCPP_STD_VER > 11
template <class _Tp = void>
struct _LIBCPP_TYPE_VIS_ONLY bit_not : unary_function<_Tp, _Tp>
{
_LIBCPP_CONSTEXPR_AFTER_CXX11 _LIBCPP_INLINE_VISIBILITY
_Tp operator()(const _Tp& __x) const
{return ~__x;}
};
template <>
struct _LIBCPP_TYPE_VIS_ONLY bit_not<void>
{
template <class _Tp>
_LIBCPP_CONSTEXPR_AFTER_CXX11 _LIBCPP_INLINE_VISIBILITY
auto operator()(_Tp&& __x) const
_NOEXCEPT_(noexcept(~_VSTD::forward<_Tp>(__x)))
-> decltype (~_VSTD::forward<_Tp>(__x))
{ return ~_VSTD::forward<_Tp>(__x); }
typedef void is_transparent;
};
#endif
2010-05-12 03:42:16 +08:00
template <class _Predicate>
class _LIBCPP_TYPE_VIS_ONLY unary_negate
2010-05-12 03:42:16 +08:00
: public unary_function<typename _Predicate::argument_type, bool>
{
_Predicate __pred_;
public:
_LIBCPP_CONSTEXPR_AFTER_CXX11 _LIBCPP_INLINE_VISIBILITY
explicit unary_negate(const _Predicate& __pred)
2010-05-12 03:42:16 +08:00
: __pred_(__pred) {}
_LIBCPP_CONSTEXPR_AFTER_CXX11 _LIBCPP_INLINE_VISIBILITY
bool operator()(const typename _Predicate::argument_type& __x) const
2010-05-12 03:42:16 +08:00
{return !__pred_(__x);}
};
template <class _Predicate>
inline _LIBCPP_CONSTEXPR_AFTER_CXX11 _LIBCPP_INLINE_VISIBILITY
2010-05-12 03:42:16 +08:00
unary_negate<_Predicate>
not1(const _Predicate& __pred) {return unary_negate<_Predicate>(__pred);}
template <class _Predicate>
class _LIBCPP_TYPE_VIS_ONLY binary_negate
2010-05-12 03:42:16 +08:00
: public binary_function<typename _Predicate::first_argument_type,
typename _Predicate::second_argument_type,
bool>
{
_Predicate __pred_;
public:
_LIBCPP_INLINE_VISIBILITY explicit _LIBCPP_CONSTEXPR_AFTER_CXX11
binary_negate(const _Predicate& __pred) : __pred_(__pred) {}
_LIBCPP_CONSTEXPR_AFTER_CXX11 _LIBCPP_INLINE_VISIBILITY
bool operator()(const typename _Predicate::first_argument_type& __x,
2010-05-12 03:42:16 +08:00
const typename _Predicate::second_argument_type& __y) const
{return !__pred_(__x, __y);}
};
template <class _Predicate>
inline _LIBCPP_CONSTEXPR_AFTER_CXX11 _LIBCPP_INLINE_VISIBILITY
2010-05-12 03:42:16 +08:00
binary_negate<_Predicate>
not2(const _Predicate& __pred) {return binary_negate<_Predicate>(__pred);}
template <class __Operation>
class _LIBCPP_TYPE_VIS_ONLY binder1st
2010-05-12 03:42:16 +08:00
: public unary_function<typename __Operation::second_argument_type,
typename __Operation::result_type>
{
protected:
__Operation op;
typename __Operation::first_argument_type value;
public:
_LIBCPP_INLINE_VISIBILITY binder1st(const __Operation& __x,
const typename __Operation::first_argument_type __y)
: op(__x), value(__y) {}
_LIBCPP_INLINE_VISIBILITY typename __Operation::result_type operator()
(typename __Operation::second_argument_type& __x) const
{return op(value, __x);}
_LIBCPP_INLINE_VISIBILITY typename __Operation::result_type operator()
(const typename __Operation::second_argument_type& __x) const
{return op(value, __x);}
};
template <class __Operation, class _Tp>
inline _LIBCPP_INLINE_VISIBILITY
binder1st<__Operation>
bind1st(const __Operation& __op, const _Tp& __x)
{return binder1st<__Operation>(__op, __x);}
template <class __Operation>
class _LIBCPP_TYPE_VIS_ONLY binder2nd
2010-05-12 03:42:16 +08:00
: public unary_function<typename __Operation::first_argument_type,
typename __Operation::result_type>
{
protected:
__Operation op;
typename __Operation::second_argument_type value;
public:
_LIBCPP_INLINE_VISIBILITY
2010-05-12 03:42:16 +08:00
binder2nd(const __Operation& __x, const typename __Operation::second_argument_type __y)
: op(__x), value(__y) {}
_LIBCPP_INLINE_VISIBILITY typename __Operation::result_type operator()
( typename __Operation::first_argument_type& __x) const
{return op(__x, value);}
_LIBCPP_INLINE_VISIBILITY typename __Operation::result_type operator()
(const typename __Operation::first_argument_type& __x) const
{return op(__x, value);}
};
template <class __Operation, class _Tp>
inline _LIBCPP_INLINE_VISIBILITY
binder2nd<__Operation>
bind2nd(const __Operation& __op, const _Tp& __x)
{return binder2nd<__Operation>(__op, __x);}
template <class _Arg, class _Result>
class _LIBCPP_TYPE_VIS_ONLY pointer_to_unary_function
: public unary_function<_Arg, _Result>
2010-05-12 03:42:16 +08:00
{
_Result (*__f_)(_Arg);
public:
_LIBCPP_INLINE_VISIBILITY explicit pointer_to_unary_function(_Result (*__f)(_Arg))
: __f_(__f) {}
_LIBCPP_INLINE_VISIBILITY _Result operator()(_Arg __x) const
{return __f_(__x);}
};
template <class _Arg, class _Result>
inline _LIBCPP_INLINE_VISIBILITY
pointer_to_unary_function<_Arg,_Result>
ptr_fun(_Result (*__f)(_Arg))
{return pointer_to_unary_function<_Arg,_Result>(__f);}
template <class _Arg1, class _Arg2, class _Result>
class _LIBCPP_TYPE_VIS_ONLY pointer_to_binary_function
: public binary_function<_Arg1, _Arg2, _Result>
2010-05-12 03:42:16 +08:00
{
_Result (*__f_)(_Arg1, _Arg2);
public:
_LIBCPP_INLINE_VISIBILITY explicit pointer_to_binary_function(_Result (*__f)(_Arg1, _Arg2))
: __f_(__f) {}
_LIBCPP_INLINE_VISIBILITY _Result operator()(_Arg1 __x, _Arg2 __y) const
{return __f_(__x, __y);}
};
template <class _Arg1, class _Arg2, class _Result>
inline _LIBCPP_INLINE_VISIBILITY
pointer_to_binary_function<_Arg1,_Arg2,_Result>
ptr_fun(_Result (*__f)(_Arg1,_Arg2))
{return pointer_to_binary_function<_Arg1,_Arg2,_Result>(__f);}
template<class _Sp, class _Tp>
class _LIBCPP_TYPE_VIS_ONLY mem_fun_t : public unary_function<_Tp*, _Sp>
2010-05-12 03:42:16 +08:00
{
_Sp (_Tp::*__p_)();
public:
_LIBCPP_INLINE_VISIBILITY explicit mem_fun_t(_Sp (_Tp::*__p)())
: __p_(__p) {}
_LIBCPP_INLINE_VISIBILITY _Sp operator()(_Tp* __p) const
{return (__p->*__p_)();}
};
template<class _Sp, class _Tp, class _Ap>
class _LIBCPP_TYPE_VIS_ONLY mem_fun1_t : public binary_function<_Tp*, _Ap, _Sp>
2010-05-12 03:42:16 +08:00
{
_Sp (_Tp::*__p_)(_Ap);
public:
_LIBCPP_INLINE_VISIBILITY explicit mem_fun1_t(_Sp (_Tp::*__p)(_Ap))
: __p_(__p) {}
_LIBCPP_INLINE_VISIBILITY _Sp operator()(_Tp* __p, _Ap __x) const
{return (__p->*__p_)(__x);}
};
template<class _Sp, class _Tp>
inline _LIBCPP_INLINE_VISIBILITY
mem_fun_t<_Sp,_Tp>
mem_fun(_Sp (_Tp::*__f)())
{return mem_fun_t<_Sp,_Tp>(__f);}
template<class _Sp, class _Tp, class _Ap>
inline _LIBCPP_INLINE_VISIBILITY
mem_fun1_t<_Sp,_Tp,_Ap>
mem_fun(_Sp (_Tp::*__f)(_Ap))
{return mem_fun1_t<_Sp,_Tp,_Ap>(__f);}
template<class _Sp, class _Tp>
class _LIBCPP_TYPE_VIS_ONLY mem_fun_ref_t : public unary_function<_Tp, _Sp>
2010-05-12 03:42:16 +08:00
{
_Sp (_Tp::*__p_)();
public:
_LIBCPP_INLINE_VISIBILITY explicit mem_fun_ref_t(_Sp (_Tp::*__p)())
: __p_(__p) {}
_LIBCPP_INLINE_VISIBILITY _Sp operator()(_Tp& __p) const
{return (__p.*__p_)();}
};
template<class _Sp, class _Tp, class _Ap>
class _LIBCPP_TYPE_VIS_ONLY mem_fun1_ref_t : public binary_function<_Tp, _Ap, _Sp>
2010-05-12 03:42:16 +08:00
{
_Sp (_Tp::*__p_)(_Ap);
public:
_LIBCPP_INLINE_VISIBILITY explicit mem_fun1_ref_t(_Sp (_Tp::*__p)(_Ap))
: __p_(__p) {}
_LIBCPP_INLINE_VISIBILITY _Sp operator()(_Tp& __p, _Ap __x) const
{return (__p.*__p_)(__x);}
};
template<class _Sp, class _Tp>
inline _LIBCPP_INLINE_VISIBILITY
mem_fun_ref_t<_Sp,_Tp>
mem_fun_ref(_Sp (_Tp::*__f)())
{return mem_fun_ref_t<_Sp,_Tp>(__f);}
template<class _Sp, class _Tp, class _Ap>
inline _LIBCPP_INLINE_VISIBILITY
mem_fun1_ref_t<_Sp,_Tp,_Ap>
mem_fun_ref(_Sp (_Tp::*__f)(_Ap))
{return mem_fun1_ref_t<_Sp,_Tp,_Ap>(__f);}
template <class _Sp, class _Tp>
class _LIBCPP_TYPE_VIS_ONLY const_mem_fun_t : public unary_function<const _Tp*, _Sp>
2010-05-12 03:42:16 +08:00
{
_Sp (_Tp::*__p_)() const;
public:
_LIBCPP_INLINE_VISIBILITY explicit const_mem_fun_t(_Sp (_Tp::*__p)() const)
: __p_(__p) {}
_LIBCPP_INLINE_VISIBILITY _Sp operator()(const _Tp* __p) const
{return (__p->*__p_)();}
};
template <class _Sp, class _Tp, class _Ap>
class _LIBCPP_TYPE_VIS_ONLY const_mem_fun1_t : public binary_function<const _Tp*, _Ap, _Sp>
2010-05-12 03:42:16 +08:00
{
_Sp (_Tp::*__p_)(_Ap) const;
public:
_LIBCPP_INLINE_VISIBILITY explicit const_mem_fun1_t(_Sp (_Tp::*__p)(_Ap) const)
: __p_(__p) {}
_LIBCPP_INLINE_VISIBILITY _Sp operator()(const _Tp* __p, _Ap __x) const
{return (__p->*__p_)(__x);}
};
template <class _Sp, class _Tp>
inline _LIBCPP_INLINE_VISIBILITY
const_mem_fun_t<_Sp,_Tp>
mem_fun(_Sp (_Tp::*__f)() const)
{return const_mem_fun_t<_Sp,_Tp>(__f);}
template <class _Sp, class _Tp, class _Ap>
inline _LIBCPP_INLINE_VISIBILITY
const_mem_fun1_t<_Sp,_Tp,_Ap>
mem_fun(_Sp (_Tp::*__f)(_Ap) const)
{return const_mem_fun1_t<_Sp,_Tp,_Ap>(__f);}
template <class _Sp, class _Tp>
class _LIBCPP_TYPE_VIS_ONLY const_mem_fun_ref_t : public unary_function<_Tp, _Sp>
2010-05-12 03:42:16 +08:00
{
_Sp (_Tp::*__p_)() const;
public:
_LIBCPP_INLINE_VISIBILITY explicit const_mem_fun_ref_t(_Sp (_Tp::*__p)() const)
: __p_(__p) {}
_LIBCPP_INLINE_VISIBILITY _Sp operator()(const _Tp& __p) const
{return (__p.*__p_)();}
};
template <class _Sp, class _Tp, class _Ap>
class _LIBCPP_TYPE_VIS_ONLY const_mem_fun1_ref_t
: public binary_function<_Tp, _Ap, _Sp>
2010-05-12 03:42:16 +08:00
{
_Sp (_Tp::*__p_)(_Ap) const;
public:
_LIBCPP_INLINE_VISIBILITY explicit const_mem_fun1_ref_t(_Sp (_Tp::*__p)(_Ap) const)
: __p_(__p) {}
_LIBCPP_INLINE_VISIBILITY _Sp operator()(const _Tp& __p, _Ap __x) const
{return (__p.*__p_)(__x);}
};
template <class _Sp, class _Tp>
inline _LIBCPP_INLINE_VISIBILITY
const_mem_fun_ref_t<_Sp,_Tp>
mem_fun_ref(_Sp (_Tp::*__f)() const)
{return const_mem_fun_ref_t<_Sp,_Tp>(__f);}
template <class _Sp, class _Tp, class _Ap>
inline _LIBCPP_INLINE_VISIBILITY
const_mem_fun1_ref_t<_Sp,_Tp,_Ap>
mem_fun_ref(_Sp (_Tp::*__f)(_Ap) const)
{return const_mem_fun1_ref_t<_Sp,_Tp,_Ap>(__f);}
////////////////////////////////////////////////////////////////////////////////
// MEMFUN
//==============================================================================
2010-05-12 03:42:16 +08:00
template <class _Tp>
class __mem_fn
: public __weak_result_type<_Tp>
{
public:
// types
typedef _Tp type;
private:
type __f_;
public:
_LIBCPP_INLINE_VISIBILITY __mem_fn(type __f) _NOEXCEPT : __f_(__f) {}
2010-05-12 03:42:16 +08:00
#ifndef _LIBCPP_HAS_NO_VARIADICS
2010-05-12 03:42:16 +08:00
// invoke
template <class... _ArgTypes>
_LIBCPP_INLINE_VISIBILITY
typename __invoke_return<type, _ArgTypes...>::type
operator() (_ArgTypes&&... __args) const {
return __invoke(__f_, _VSTD::forward<_ArgTypes>(__args)...);
}
#else
template <class _A0>
[libcxx] Rewrite C++03 __invoke. Summary: This patch rewrites the C++03 `__invoke` and related meta-programming. There are a number of major changes. `__invoke` in C++03 now has a fallback overload for when the invoke expression is ill-formed (similar to C++11). This means that the `__invoke_return` traits will return `__nat` when `__invoke(...)` is ill formed. This would previously cause a compile error. Bullets 1-4 of `__invoke` have been rewritten. In the old version `__invoke` had 32 overloads for bullets 1 and 2, one for each possible cv-qualified function signature with arities 0-3. 64 overloads would be needed to support member functions with varargs. Currently these overloads were fundamentally broken. An example overload looked like: ``` template <class Rp, class Tp, class T1, class A0> Rp __invoke(Rp (Tp::*pm)(A0) const, T1&, A0&) ``` Because `A0` appeared in two different deducible contexts it would have to deduce to be an exact match or the overload would be rejected. This is made even worse because `A0` appears without a reference qualifier in the member function signature and with a reference qualifier as an `__invoke` parameter. This means that only member functions that took all of their arguments by value could be matched. One possible fix would be to make the second occurrence of `A0` appear in a non-deducible context. This way any type convertible to `A0` could be passed as the first parameter. The benefit of this approach is that the signature of the member function enforces the arity and types taken by the `__invoke` signature it generates. However nothing in the `INVOKE` specification requires this behavior. My solution is to use a `__invoke_enable_if<PM_Type, Tp>` metafunction to selectively enable the `__invoke` overloads for bullets 1, 2, 3 and 4. It uses `__member_function_traits` to inspect and extract the return type and class type of the pointer to member. Using `__member_function_traits` to inspect `PM_Type` also allows us to reduce the number of `__invoke` overloads from 32 to 8 and add varargs support at the same time. Because `__invoke_enable_if` knows the exact return type of `__invoke` for bullets 1-4 we no longer need to use `decltype(__invoke(...))` to compute the return type in the `__invoke_return*` traits. This will reduce the problems caused by `#define decltype(X) __typeof__(X)` in C++03. Tests for this change have already been committed. All tests in `test/std/utilities/function.objects` now pass in C++03, previously there were 20 failures. Reviewers: K-ballo, howard.hinnant, mclow.lists Subscribers: cfe-commits Differential Revision: http://reviews.llvm.org/D11553 llvm-svn: 246068
2015-08-27 04:15:02 +08:00
_LIBCPP_INLINE_VISIBILITY
typename __invoke_return0<type, _A0>::type
operator() (_A0& __a0) const {
return __invoke(__f_, __a0);
}
[libcxx] Rewrite C++03 __invoke. Summary: This patch rewrites the C++03 `__invoke` and related meta-programming. There are a number of major changes. `__invoke` in C++03 now has a fallback overload for when the invoke expression is ill-formed (similar to C++11). This means that the `__invoke_return` traits will return `__nat` when `__invoke(...)` is ill formed. This would previously cause a compile error. Bullets 1-4 of `__invoke` have been rewritten. In the old version `__invoke` had 32 overloads for bullets 1 and 2, one for each possible cv-qualified function signature with arities 0-3. 64 overloads would be needed to support member functions with varargs. Currently these overloads were fundamentally broken. An example overload looked like: ``` template <class Rp, class Tp, class T1, class A0> Rp __invoke(Rp (Tp::*pm)(A0) const, T1&, A0&) ``` Because `A0` appeared in two different deducible contexts it would have to deduce to be an exact match or the overload would be rejected. This is made even worse because `A0` appears without a reference qualifier in the member function signature and with a reference qualifier as an `__invoke` parameter. This means that only member functions that took all of their arguments by value could be matched. One possible fix would be to make the second occurrence of `A0` appear in a non-deducible context. This way any type convertible to `A0` could be passed as the first parameter. The benefit of this approach is that the signature of the member function enforces the arity and types taken by the `__invoke` signature it generates. However nothing in the `INVOKE` specification requires this behavior. My solution is to use a `__invoke_enable_if<PM_Type, Tp>` metafunction to selectively enable the `__invoke` overloads for bullets 1, 2, 3 and 4. It uses `__member_function_traits` to inspect and extract the return type and class type of the pointer to member. Using `__member_function_traits` to inspect `PM_Type` also allows us to reduce the number of `__invoke` overloads from 32 to 8 and add varargs support at the same time. Because `__invoke_enable_if` knows the exact return type of `__invoke` for bullets 1-4 we no longer need to use `decltype(__invoke(...))` to compute the return type in the `__invoke_return*` traits. This will reduce the problems caused by `#define decltype(X) __typeof__(X)` in C++03. Tests for this change have already been committed. All tests in `test/std/utilities/function.objects` now pass in C++03, previously there were 20 failures. Reviewers: K-ballo, howard.hinnant, mclow.lists Subscribers: cfe-commits Differential Revision: http://reviews.llvm.org/D11553 llvm-svn: 246068
2015-08-27 04:15:02 +08:00
template <class _A0>
_LIBCPP_INLINE_VISIBILITY
typename __invoke_return0<type, _A0 const>::type
operator() (_A0 const& __a0) const {
return __invoke(__f_, __a0);
}
template <class _A0, class _A1>
[libcxx] Rewrite C++03 __invoke. Summary: This patch rewrites the C++03 `__invoke` and related meta-programming. There are a number of major changes. `__invoke` in C++03 now has a fallback overload for when the invoke expression is ill-formed (similar to C++11). This means that the `__invoke_return` traits will return `__nat` when `__invoke(...)` is ill formed. This would previously cause a compile error. Bullets 1-4 of `__invoke` have been rewritten. In the old version `__invoke` had 32 overloads for bullets 1 and 2, one for each possible cv-qualified function signature with arities 0-3. 64 overloads would be needed to support member functions with varargs. Currently these overloads were fundamentally broken. An example overload looked like: ``` template <class Rp, class Tp, class T1, class A0> Rp __invoke(Rp (Tp::*pm)(A0) const, T1&, A0&) ``` Because `A0` appeared in two different deducible contexts it would have to deduce to be an exact match or the overload would be rejected. This is made even worse because `A0` appears without a reference qualifier in the member function signature and with a reference qualifier as an `__invoke` parameter. This means that only member functions that took all of their arguments by value could be matched. One possible fix would be to make the second occurrence of `A0` appear in a non-deducible context. This way any type convertible to `A0` could be passed as the first parameter. The benefit of this approach is that the signature of the member function enforces the arity and types taken by the `__invoke` signature it generates. However nothing in the `INVOKE` specification requires this behavior. My solution is to use a `__invoke_enable_if<PM_Type, Tp>` metafunction to selectively enable the `__invoke` overloads for bullets 1, 2, 3 and 4. It uses `__member_function_traits` to inspect and extract the return type and class type of the pointer to member. Using `__member_function_traits` to inspect `PM_Type` also allows us to reduce the number of `__invoke` overloads from 32 to 8 and add varargs support at the same time. Because `__invoke_enable_if` knows the exact return type of `__invoke` for bullets 1-4 we no longer need to use `decltype(__invoke(...))` to compute the return type in the `__invoke_return*` traits. This will reduce the problems caused by `#define decltype(X) __typeof__(X)` in C++03. Tests for this change have already been committed. All tests in `test/std/utilities/function.objects` now pass in C++03, previously there were 20 failures. Reviewers: K-ballo, howard.hinnant, mclow.lists Subscribers: cfe-commits Differential Revision: http://reviews.llvm.org/D11553 llvm-svn: 246068
2015-08-27 04:15:02 +08:00
_LIBCPP_INLINE_VISIBILITY
typename __invoke_return1<type, _A0, _A1>::type
operator() (_A0& __a0, _A1& __a1) const {
return __invoke(__f_, __a0, __a1);
}
[libcxx] Rewrite C++03 __invoke. Summary: This patch rewrites the C++03 `__invoke` and related meta-programming. There are a number of major changes. `__invoke` in C++03 now has a fallback overload for when the invoke expression is ill-formed (similar to C++11). This means that the `__invoke_return` traits will return `__nat` when `__invoke(...)` is ill formed. This would previously cause a compile error. Bullets 1-4 of `__invoke` have been rewritten. In the old version `__invoke` had 32 overloads for bullets 1 and 2, one for each possible cv-qualified function signature with arities 0-3. 64 overloads would be needed to support member functions with varargs. Currently these overloads were fundamentally broken. An example overload looked like: ``` template <class Rp, class Tp, class T1, class A0> Rp __invoke(Rp (Tp::*pm)(A0) const, T1&, A0&) ``` Because `A0` appeared in two different deducible contexts it would have to deduce to be an exact match or the overload would be rejected. This is made even worse because `A0` appears without a reference qualifier in the member function signature and with a reference qualifier as an `__invoke` parameter. This means that only member functions that took all of their arguments by value could be matched. One possible fix would be to make the second occurrence of `A0` appear in a non-deducible context. This way any type convertible to `A0` could be passed as the first parameter. The benefit of this approach is that the signature of the member function enforces the arity and types taken by the `__invoke` signature it generates. However nothing in the `INVOKE` specification requires this behavior. My solution is to use a `__invoke_enable_if<PM_Type, Tp>` metafunction to selectively enable the `__invoke` overloads for bullets 1, 2, 3 and 4. It uses `__member_function_traits` to inspect and extract the return type and class type of the pointer to member. Using `__member_function_traits` to inspect `PM_Type` also allows us to reduce the number of `__invoke` overloads from 32 to 8 and add varargs support at the same time. Because `__invoke_enable_if` knows the exact return type of `__invoke` for bullets 1-4 we no longer need to use `decltype(__invoke(...))` to compute the return type in the `__invoke_return*` traits. This will reduce the problems caused by `#define decltype(X) __typeof__(X)` in C++03. Tests for this change have already been committed. All tests in `test/std/utilities/function.objects` now pass in C++03, previously there were 20 failures. Reviewers: K-ballo, howard.hinnant, mclow.lists Subscribers: cfe-commits Differential Revision: http://reviews.llvm.org/D11553 llvm-svn: 246068
2015-08-27 04:15:02 +08:00
template <class _A0, class _A1>
_LIBCPP_INLINE_VISIBILITY
typename __invoke_return1<type, _A0 const, _A1>::type
operator() (_A0 const& __a0, _A1& __a1) const {
return __invoke(__f_, __a0, __a1);
}
template <class _A0, class _A1>
_LIBCPP_INLINE_VISIBILITY
typename __invoke_return1<type, _A0, _A1 const>::type
operator() (_A0& __a0, _A1 const& __a1) const {
return __invoke(__f_, __a0, __a1);
}
template <class _A0, class _A1>
_LIBCPP_INLINE_VISIBILITY
typename __invoke_return1<type, _A0 const, _A1 const>::type
operator() (_A0 const& __a0, _A1 const& __a1) const {
return __invoke(__f_, __a0, __a1);
}
template <class _A0, class _A1, class _A2>
[libcxx] Rewrite C++03 __invoke. Summary: This patch rewrites the C++03 `__invoke` and related meta-programming. There are a number of major changes. `__invoke` in C++03 now has a fallback overload for when the invoke expression is ill-formed (similar to C++11). This means that the `__invoke_return` traits will return `__nat` when `__invoke(...)` is ill formed. This would previously cause a compile error. Bullets 1-4 of `__invoke` have been rewritten. In the old version `__invoke` had 32 overloads for bullets 1 and 2, one for each possible cv-qualified function signature with arities 0-3. 64 overloads would be needed to support member functions with varargs. Currently these overloads were fundamentally broken. An example overload looked like: ``` template <class Rp, class Tp, class T1, class A0> Rp __invoke(Rp (Tp::*pm)(A0) const, T1&, A0&) ``` Because `A0` appeared in two different deducible contexts it would have to deduce to be an exact match or the overload would be rejected. This is made even worse because `A0` appears without a reference qualifier in the member function signature and with a reference qualifier as an `__invoke` parameter. This means that only member functions that took all of their arguments by value could be matched. One possible fix would be to make the second occurrence of `A0` appear in a non-deducible context. This way any type convertible to `A0` could be passed as the first parameter. The benefit of this approach is that the signature of the member function enforces the arity and types taken by the `__invoke` signature it generates. However nothing in the `INVOKE` specification requires this behavior. My solution is to use a `__invoke_enable_if<PM_Type, Tp>` metafunction to selectively enable the `__invoke` overloads for bullets 1, 2, 3 and 4. It uses `__member_function_traits` to inspect and extract the return type and class type of the pointer to member. Using `__member_function_traits` to inspect `PM_Type` also allows us to reduce the number of `__invoke` overloads from 32 to 8 and add varargs support at the same time. Because `__invoke_enable_if` knows the exact return type of `__invoke` for bullets 1-4 we no longer need to use `decltype(__invoke(...))` to compute the return type in the `__invoke_return*` traits. This will reduce the problems caused by `#define decltype(X) __typeof__(X)` in C++03. Tests for this change have already been committed. All tests in `test/std/utilities/function.objects` now pass in C++03, previously there were 20 failures. Reviewers: K-ballo, howard.hinnant, mclow.lists Subscribers: cfe-commits Differential Revision: http://reviews.llvm.org/D11553 llvm-svn: 246068
2015-08-27 04:15:02 +08:00
_LIBCPP_INLINE_VISIBILITY
typename __invoke_return2<type, _A0, _A1, _A2>::type
operator() (_A0& __a0, _A1& __a1, _A2& __a2) const {
return __invoke(__f_, __a0, __a1, __a2);
}
[libcxx] Rewrite C++03 __invoke. Summary: This patch rewrites the C++03 `__invoke` and related meta-programming. There are a number of major changes. `__invoke` in C++03 now has a fallback overload for when the invoke expression is ill-formed (similar to C++11). This means that the `__invoke_return` traits will return `__nat` when `__invoke(...)` is ill formed. This would previously cause a compile error. Bullets 1-4 of `__invoke` have been rewritten. In the old version `__invoke` had 32 overloads for bullets 1 and 2, one for each possible cv-qualified function signature with arities 0-3. 64 overloads would be needed to support member functions with varargs. Currently these overloads were fundamentally broken. An example overload looked like: ``` template <class Rp, class Tp, class T1, class A0> Rp __invoke(Rp (Tp::*pm)(A0) const, T1&, A0&) ``` Because `A0` appeared in two different deducible contexts it would have to deduce to be an exact match or the overload would be rejected. This is made even worse because `A0` appears without a reference qualifier in the member function signature and with a reference qualifier as an `__invoke` parameter. This means that only member functions that took all of their arguments by value could be matched. One possible fix would be to make the second occurrence of `A0` appear in a non-deducible context. This way any type convertible to `A0` could be passed as the first parameter. The benefit of this approach is that the signature of the member function enforces the arity and types taken by the `__invoke` signature it generates. However nothing in the `INVOKE` specification requires this behavior. My solution is to use a `__invoke_enable_if<PM_Type, Tp>` metafunction to selectively enable the `__invoke` overloads for bullets 1, 2, 3 and 4. It uses `__member_function_traits` to inspect and extract the return type and class type of the pointer to member. Using `__member_function_traits` to inspect `PM_Type` also allows us to reduce the number of `__invoke` overloads from 32 to 8 and add varargs support at the same time. Because `__invoke_enable_if` knows the exact return type of `__invoke` for bullets 1-4 we no longer need to use `decltype(__invoke(...))` to compute the return type in the `__invoke_return*` traits. This will reduce the problems caused by `#define decltype(X) __typeof__(X)` in C++03. Tests for this change have already been committed. All tests in `test/std/utilities/function.objects` now pass in C++03, previously there were 20 failures. Reviewers: K-ballo, howard.hinnant, mclow.lists Subscribers: cfe-commits Differential Revision: http://reviews.llvm.org/D11553 llvm-svn: 246068
2015-08-27 04:15:02 +08:00
template <class _A0, class _A1, class _A2>
_LIBCPP_INLINE_VISIBILITY
typename __invoke_return2<type, _A0 const, _A1, _A2>::type
operator() (_A0 const& __a0, _A1& __a1, _A2& __a2) const {
return __invoke(__f_, __a0, __a1, __a2);
}
template <class _A0, class _A1, class _A2>
_LIBCPP_INLINE_VISIBILITY
typename __invoke_return2<type, _A0, _A1 const, _A2>::type
operator() (_A0& __a0, _A1 const& __a1, _A2& __a2) const {
return __invoke(__f_, __a0, __a1, __a2);
}
template <class _A0, class _A1, class _A2>
_LIBCPP_INLINE_VISIBILITY
typename __invoke_return2<type, _A0, _A1, _A2 const>::type
operator() (_A0& __a0, _A1& __a1, _A2 const& __a2) const {
return __invoke(__f_, __a0, __a1, __a2);
}
template <class _A0, class _A1, class _A2>
_LIBCPP_INLINE_VISIBILITY
typename __invoke_return2<type, _A0 const, _A1 const, _A2>::type
operator() (_A0 const& __a0, _A1 const& __a1, _A2& __a2) const {
return __invoke(__f_, __a0, __a1, __a2);
}
template <class _A0, class _A1, class _A2>
_LIBCPP_INLINE_VISIBILITY
typename __invoke_return2<type, _A0 const, _A1, _A2 const>::type
operator() (_A0 const& __a0, _A1& __a1, _A2 const& __a2) const {
return __invoke(__f_, __a0, __a1, __a2);
}
template <class _A0, class _A1, class _A2>
_LIBCPP_INLINE_VISIBILITY
typename __invoke_return2<type, _A0, _A1 const, _A2 const>::type
operator() (_A0& __a0, _A1 const& __a1, _A2 const& __a2) const {
return __invoke(__f_, __a0, __a1, __a2);
}
template <class _A0, class _A1, class _A2>
_LIBCPP_INLINE_VISIBILITY
typename __invoke_return2<type, _A0 const, _A1 const, _A2 const>::type
operator() (_A0 const& __a0, _A1 const& __a1, _A2 const& __a2) const {
return __invoke(__f_, __a0, __a1, __a2);
}
#endif
2010-05-12 03:42:16 +08:00
};
template<class _Rp, class _Tp>
2010-05-12 03:42:16 +08:00
inline _LIBCPP_INLINE_VISIBILITY
__mem_fn<_Rp _Tp::*>
mem_fn(_Rp _Tp::* __pm) _NOEXCEPT
2010-05-12 03:42:16 +08:00
{
return __mem_fn<_Rp _Tp::*>(__pm);
2010-05-12 03:42:16 +08:00
}
////////////////////////////////////////////////////////////////////////////////
// FUNCTION
//==============================================================================
2010-05-12 03:42:16 +08:00
// bad_function_call
class _LIBCPP_EXCEPTION_ABI bad_function_call
2010-05-12 03:42:16 +08:00
: public exception
{
};
_LIBCPP_NORETURN inline _LIBCPP_ALWAYS_INLINE
void __throw_bad_function_call()
{
#ifndef _LIBCPP_NO_EXCEPTIONS
throw bad_function_call();
#else
_VSTD::abort();
#endif
}
template<class _Fp> class _LIBCPP_TYPE_VIS_ONLY function; // undefined
2010-05-12 03:42:16 +08:00
namespace __function
{
template<class _Rp>
2010-05-12 03:42:16 +08:00
struct __maybe_derive_from_unary_function
{
};
template<class _Rp, class _A1>
struct __maybe_derive_from_unary_function<_Rp(_A1)>
: public unary_function<_A1, _Rp>
2010-05-12 03:42:16 +08:00
{
};
template<class _Rp>
2010-05-12 03:42:16 +08:00
struct __maybe_derive_from_binary_function
{
};
template<class _Rp, class _A1, class _A2>
struct __maybe_derive_from_binary_function<_Rp(_A1, _A2)>
: public binary_function<_A1, _A2, _Rp>
2010-05-12 03:42:16 +08:00
{
};
template <class _Fp>
_LIBCPP_INLINE_VISIBILITY
bool __not_null(_Fp const&) { return true; }
template <class _Fp>
_LIBCPP_INLINE_VISIBILITY
bool __not_null(_Fp* __ptr) { return __ptr; }
template <class _Ret, class _Class>
_LIBCPP_INLINE_VISIBILITY
bool __not_null(_Ret _Class::*__ptr) { return __ptr; }
template <class _Fp>
_LIBCPP_INLINE_VISIBILITY
bool __not_null(function<_Fp> const& __f) { return !!__f; }
} // namespace __function
#ifndef _LIBCPP_HAS_NO_VARIADICS
namespace __function {
2010-05-12 03:42:16 +08:00
template<class _Fp> class __base;
template<class _Rp, class ..._ArgTypes>
class __base<_Rp(_ArgTypes...)>
2010-05-12 03:42:16 +08:00
{
__base(const __base&);
__base& operator=(const __base&);
public:
_LIBCPP_INLINE_VISIBILITY __base() {}
_LIBCPP_INLINE_VISIBILITY virtual ~__base() {}
2010-05-12 03:42:16 +08:00
virtual __base* __clone() const = 0;
virtual void __clone(__base*) const = 0;
virtual void destroy() _NOEXCEPT = 0;
virtual void destroy_deallocate() _NOEXCEPT = 0;
virtual _Rp operator()(_ArgTypes&& ...) = 0;
#ifndef _LIBCPP_NO_RTTI
virtual const void* target(const type_info&) const _NOEXCEPT = 0;
virtual const std::type_info& target_type() const _NOEXCEPT = 0;
#endif // _LIBCPP_NO_RTTI
2010-05-12 03:42:16 +08:00
};
template<class _FD, class _Alloc, class _FB> class __func;
template<class _Fp, class _Alloc, class _Rp, class ..._ArgTypes>
class __func<_Fp, _Alloc, _Rp(_ArgTypes...)>
: public __base<_Rp(_ArgTypes...)>
2010-05-12 03:42:16 +08:00
{
__compressed_pair<_Fp, _Alloc> __f_;
2010-05-12 03:42:16 +08:00
public:
_LIBCPP_INLINE_VISIBILITY
explicit __func(_Fp&& __f)
: __f_(piecewise_construct, _VSTD::forward_as_tuple(_VSTD::move(__f)),
_VSTD::forward_as_tuple()) {}
_LIBCPP_INLINE_VISIBILITY
explicit __func(const _Fp& __f, const _Alloc& __a)
: __f_(piecewise_construct, _VSTD::forward_as_tuple(__f),
_VSTD::forward_as_tuple(__a)) {}
_LIBCPP_INLINE_VISIBILITY
explicit __func(const _Fp& __f, _Alloc&& __a)
: __f_(piecewise_construct, _VSTD::forward_as_tuple(__f),
_VSTD::forward_as_tuple(_VSTD::move(__a))) {}
_LIBCPP_INLINE_VISIBILITY
explicit __func(_Fp&& __f, _Alloc&& __a)
: __f_(piecewise_construct, _VSTD::forward_as_tuple(_VSTD::move(__f)),
_VSTD::forward_as_tuple(_VSTD::move(__a))) {}
virtual __base<_Rp(_ArgTypes...)>* __clone() const;
virtual void __clone(__base<_Rp(_ArgTypes...)>*) const;
virtual void destroy() _NOEXCEPT;
virtual void destroy_deallocate() _NOEXCEPT;
virtual _Rp operator()(_ArgTypes&& ... __arg);
#ifndef _LIBCPP_NO_RTTI
virtual const void* target(const type_info&) const _NOEXCEPT;
virtual const std::type_info& target_type() const _NOEXCEPT;
#endif // _LIBCPP_NO_RTTI
2010-05-12 03:42:16 +08:00
};
template<class _Fp, class _Alloc, class _Rp, class ..._ArgTypes>
__base<_Rp(_ArgTypes...)>*
__func<_Fp, _Alloc, _Rp(_ArgTypes...)>::__clone() const
2010-05-12 03:42:16 +08:00
{
typedef allocator_traits<_Alloc> __alloc_traits;
typedef typename __rebind_alloc_helper<__alloc_traits, __func>::type _Ap;
_Ap __a(__f_.second());
typedef __allocator_destructor<_Ap> _Dp;
unique_ptr<__func, _Dp> __hold(__a.allocate(1), _Dp(__a, 1));
2010-05-12 03:42:16 +08:00
::new (__hold.get()) __func(__f_.first(), _Alloc(__a));
return __hold.release();
}
template<class _Fp, class _Alloc, class _Rp, class ..._ArgTypes>
2010-05-12 03:42:16 +08:00
void
__func<_Fp, _Alloc, _Rp(_ArgTypes...)>::__clone(__base<_Rp(_ArgTypes...)>* __p) const
2010-05-12 03:42:16 +08:00
{
::new (__p) __func(__f_.first(), __f_.second());
}
template<class _Fp, class _Alloc, class _Rp, class ..._ArgTypes>
2010-05-12 03:42:16 +08:00
void
__func<_Fp, _Alloc, _Rp(_ArgTypes...)>::destroy() _NOEXCEPT
2010-05-12 03:42:16 +08:00
{
__f_.~__compressed_pair<_Fp, _Alloc>();
2010-05-12 03:42:16 +08:00
}
template<class _Fp, class _Alloc, class _Rp, class ..._ArgTypes>
2010-05-12 03:42:16 +08:00
void
__func<_Fp, _Alloc, _Rp(_ArgTypes...)>::destroy_deallocate() _NOEXCEPT
2010-05-12 03:42:16 +08:00
{
typedef allocator_traits<_Alloc> __alloc_traits;
typedef typename __rebind_alloc_helper<__alloc_traits, __func>::type _Ap;
_Ap __a(__f_.second());
__f_.~__compressed_pair<_Fp, _Alloc>();
2010-05-12 03:42:16 +08:00
__a.deallocate(this, 1);
}
template<class _Fp, class _Alloc, class _Rp, class ..._ArgTypes>
_Rp
__func<_Fp, _Alloc, _Rp(_ArgTypes...)>::operator()(_ArgTypes&& ... __arg)
2010-05-12 03:42:16 +08:00
{
typedef __invoke_void_return_wrapper<_Rp> _Invoker;
return _Invoker::__call(__f_.first(), _VSTD::forward<_ArgTypes>(__arg)...);
2010-05-12 03:42:16 +08:00
}
#ifndef _LIBCPP_NO_RTTI
template<class _Fp, class _Alloc, class _Rp, class ..._ArgTypes>
2010-05-12 03:42:16 +08:00
const void*
__func<_Fp, _Alloc, _Rp(_ArgTypes...)>::target(const type_info& __ti) const _NOEXCEPT
2010-05-12 03:42:16 +08:00
{
if (__ti == typeid(_Fp))
2010-05-12 03:42:16 +08:00
return &__f_.first();
return (const void*)0;
}
template<class _Fp, class _Alloc, class _Rp, class ..._ArgTypes>
2010-05-12 03:42:16 +08:00
const std::type_info&
__func<_Fp, _Alloc, _Rp(_ArgTypes...)>::target_type() const _NOEXCEPT
2010-05-12 03:42:16 +08:00
{
return typeid(_Fp);
2010-05-12 03:42:16 +08:00
}
#endif // _LIBCPP_NO_RTTI
2010-05-12 03:42:16 +08:00
} // __function
template<class _Rp, class ..._ArgTypes>
class _LIBCPP_TYPE_VIS_ONLY function<_Rp(_ArgTypes...)>
: public __function::__maybe_derive_from_unary_function<_Rp(_ArgTypes...)>,
public __function::__maybe_derive_from_binary_function<_Rp(_ArgTypes...)>
2010-05-12 03:42:16 +08:00
{
typedef __function::__base<_Rp(_ArgTypes...)> __base;
typename aligned_storage<3*sizeof(void*)>::type __buf_;
2010-05-12 03:42:16 +08:00
__base* __f_;
_LIBCPP_NO_CFI static __base *__as_base(void *p) {
return reinterpret_cast<__base*>(p);
}
template <class _Fp, bool = !is_same<_Fp, function>::value &&
__invokable<_Fp&, _ArgTypes...>::value>
struct __callable;
template <class _Fp>
struct __callable<_Fp, true>
{
static const bool value = is_same<void, _Rp>::value ||
is_convertible<typename __invoke_of<_Fp&, _ArgTypes...>::type,
_Rp>::value;
};
template <class _Fp>
struct __callable<_Fp, false>
{
static const bool value = false;
};
2010-05-12 03:42:16 +08:00
public:
typedef _Rp result_type;
2010-05-12 03:42:16 +08:00
// construct/copy/destroy:
_LIBCPP_INLINE_VISIBILITY
function() _NOEXCEPT : __f_(0) {}
_LIBCPP_INLINE_VISIBILITY
function(nullptr_t) _NOEXCEPT : __f_(0) {}
2010-05-12 03:42:16 +08:00
function(const function&);
function(function&&) _NOEXCEPT;
template<class _Fp, class = typename enable_if<
__callable<_Fp>::value && !is_same<_Fp, function>::value
>::type>
function(_Fp);
2010-05-12 03:42:16 +08:00
#if _LIBCPP_STD_VER <= 14
template<class _Alloc>
_LIBCPP_INLINE_VISIBILITY
function(allocator_arg_t, const _Alloc&) _NOEXCEPT : __f_(0) {}
template<class _Alloc>
_LIBCPP_INLINE_VISIBILITY
function(allocator_arg_t, const _Alloc&, nullptr_t) _NOEXCEPT : __f_(0) {}
template<class _Alloc>
function(allocator_arg_t, const _Alloc&, const function&);
template<class _Alloc>
function(allocator_arg_t, const _Alloc&, function&&);
template<class _Fp, class _Alloc, class = typename enable_if<__callable<_Fp>::value>::type>
function(allocator_arg_t, const _Alloc& __a, _Fp __f);
#endif
2010-05-12 03:42:16 +08:00
function& operator=(const function&);
function& operator=(function&&) _NOEXCEPT;
function& operator=(nullptr_t) _NOEXCEPT;
template<class _Fp>
2010-05-12 03:42:16 +08:00
typename enable_if
<
__callable<typename decay<_Fp>::type>::value &&
!is_same<typename remove_reference<_Fp>::type, function>::value,
2010-05-12 03:42:16 +08:00
function&
>::type
operator=(_Fp&&);
2010-05-12 03:42:16 +08:00
~function();
// function modifiers:
void swap(function&) _NOEXCEPT;
#if _LIBCPP_STD_VER <= 14
template<class _Fp, class _Alloc>
_LIBCPP_INLINE_VISIBILITY
void assign(_Fp&& __f, const _Alloc& __a)
{function(allocator_arg, __a, _VSTD::forward<_Fp>(__f)).swap(*this);}
#endif
2010-05-12 03:42:16 +08:00
// function capacity:
_LIBCPP_INLINE_VISIBILITY
_LIBCPP_EXPLICIT operator bool() const _NOEXCEPT {return __f_;}
2010-05-12 03:42:16 +08:00
// deleted overloads close possible hole in the type system
template<class _R2, class... _ArgTypes2>
bool operator==(const function<_R2(_ArgTypes2...)>&) const = delete;
2010-05-12 03:42:16 +08:00
template<class _R2, class... _ArgTypes2>
bool operator!=(const function<_R2(_ArgTypes2...)>&) const = delete;
2010-05-12 03:42:16 +08:00
public:
// function invocation:
_Rp operator()(_ArgTypes...) const;
2010-05-12 03:42:16 +08:00
#ifndef _LIBCPP_NO_RTTI
// function target access:
const std::type_info& target_type() const _NOEXCEPT;
template <typename _Tp> _Tp* target() _NOEXCEPT;
template <typename _Tp> const _Tp* target() const _NOEXCEPT;
#endif // _LIBCPP_NO_RTTI
2010-05-12 03:42:16 +08:00
};
template<class _Rp, class ..._ArgTypes>
function<_Rp(_ArgTypes...)>::function(const function& __f)
2010-05-12 03:42:16 +08:00
{
if (__f.__f_ == 0)
__f_ = 0;
else if ((void *)__f.__f_ == &__f.__buf_)
2010-05-12 03:42:16 +08:00
{
__f_ = __as_base(&__buf_);
2010-05-12 03:42:16 +08:00
__f.__f_->__clone(__f_);
}
else
__f_ = __f.__f_->__clone();
}
#if _LIBCPP_STD_VER <= 14
template<class _Rp, class ..._ArgTypes>
template <class _Alloc>
function<_Rp(_ArgTypes...)>::function(allocator_arg_t, const _Alloc&,
const function& __f)
{
if (__f.__f_ == 0)
__f_ = 0;
else if ((void *)__f.__f_ == &__f.__buf_)
{
__f_ = __as_base(&__buf_);
__f.__f_->__clone(__f_);
}
else
__f_ = __f.__f_->__clone();
}
#endif
template<class _Rp, class ..._ArgTypes>
function<_Rp(_ArgTypes...)>::function(function&& __f) _NOEXCEPT
2010-05-12 03:42:16 +08:00
{
if (__f.__f_ == 0)
__f_ = 0;
else if ((void *)__f.__f_ == &__f.__buf_)
2010-05-12 03:42:16 +08:00
{
__f_ = __as_base(&__buf_);
2010-05-12 03:42:16 +08:00
__f.__f_->__clone(__f_);
}
else
{
__f_ = __f.__f_;
__f.__f_ = 0;
}
}
#if _LIBCPP_STD_VER <= 14
template<class _Rp, class ..._ArgTypes>
template <class _Alloc>
function<_Rp(_ArgTypes...)>::function(allocator_arg_t, const _Alloc&,
function&& __f)
{
if (__f.__f_ == 0)
__f_ = 0;
else if ((void *)__f.__f_ == &__f.__buf_)
{
__f_ = __as_base(&__buf_);
__f.__f_->__clone(__f_);
}
else
{
__f_ = __f.__f_;
__f.__f_ = 0;
}
}
#endif
template<class _Rp, class ..._ArgTypes>
template <class _Fp, class>
function<_Rp(_ArgTypes...)>::function(_Fp __f)
2010-05-12 03:42:16 +08:00
: __f_(0)
{
if (__function::__not_null(__f))
2010-05-12 03:42:16 +08:00
{
typedef __function::__func<_Fp, allocator<_Fp>, _Rp(_ArgTypes...)> _FF;
if (sizeof(_FF) <= sizeof(__buf_) && is_nothrow_copy_constructible<_Fp>::value)
2010-05-12 03:42:16 +08:00
{
__f_ = ::new((void*)&__buf_) _FF(_VSTD::move(__f));
2010-05-12 03:42:16 +08:00
}
else
{
typedef allocator<_FF> _Ap;
_Ap __a;
typedef __allocator_destructor<_Ap> _Dp;
unique_ptr<__base, _Dp> __hold(__a.allocate(1), _Dp(__a, 1));
::new (__hold.get()) _FF(_VSTD::move(__f), allocator<_Fp>(__a));
2010-05-12 03:42:16 +08:00
__f_ = __hold.release();
}
}
}
#if _LIBCPP_STD_VER <= 14
template<class _Rp, class ..._ArgTypes>
template <class _Fp, class _Alloc, class>
function<_Rp(_ArgTypes...)>::function(allocator_arg_t, const _Alloc& __a0, _Fp __f)
: __f_(0)
{
typedef allocator_traits<_Alloc> __alloc_traits;
if (__function::__not_null(__f))
{
typedef __function::__func<_Fp, _Alloc, _Rp(_ArgTypes...)> _FF;
typedef typename __rebind_alloc_helper<__alloc_traits, _FF>::type _Ap;
_Ap __a(__a0);
if (sizeof(_FF) <= sizeof(__buf_) &&
is_nothrow_copy_constructible<_Fp>::value && is_nothrow_copy_constructible<_Ap>::value)
{
__f_ = ::new((void*)&__buf_) _FF(_VSTD::move(__f), _Alloc(__a));
}
else
{
typedef __allocator_destructor<_Ap> _Dp;
unique_ptr<__base, _Dp> __hold(__a.allocate(1), _Dp(__a, 1));
::new (__hold.get()) _FF(_VSTD::move(__f), _Alloc(__a));
__f_ = __hold.release();
}
}
}
#endif
template<class _Rp, class ..._ArgTypes>
function<_Rp(_ArgTypes...)>&
function<_Rp(_ArgTypes...)>::operator=(const function& __f)
2010-05-12 03:42:16 +08:00
{
function(__f).swap(*this);
return *this;
}
template<class _Rp, class ..._ArgTypes>
function<_Rp(_ArgTypes...)>&
function<_Rp(_ArgTypes...)>::operator=(function&& __f) _NOEXCEPT
2010-05-12 03:42:16 +08:00
{
if ((void *)__f_ == &__buf_)
2010-05-12 03:42:16 +08:00
__f_->destroy();
else if (__f_)
__f_->destroy_deallocate();
__f_ = 0;
if (__f.__f_ == 0)
__f_ = 0;
else if ((void *)__f.__f_ == &__f.__buf_)
2010-05-12 03:42:16 +08:00
{
__f_ = __as_base(&__buf_);
2010-05-12 03:42:16 +08:00
__f.__f_->__clone(__f_);
}
else
{
__f_ = __f.__f_;
__f.__f_ = 0;
}
return *this;
2010-05-12 03:42:16 +08:00
}
template<class _Rp, class ..._ArgTypes>
function<_Rp(_ArgTypes...)>&
function<_Rp(_ArgTypes...)>::operator=(nullptr_t) _NOEXCEPT
2010-05-12 03:42:16 +08:00
{
if ((void *)__f_ == &__buf_)
2010-05-12 03:42:16 +08:00
__f_->destroy();
else if (__f_)
__f_->destroy_deallocate();
__f_ = 0;
return *this;
2010-05-12 03:42:16 +08:00
}
template<class _Rp, class ..._ArgTypes>
template <class _Fp>
2010-05-12 03:42:16 +08:00
typename enable_if
<
function<_Rp(_ArgTypes...)>::template __callable<typename decay<_Fp>::type>::value &&
!is_same<typename remove_reference<_Fp>::type, function<_Rp(_ArgTypes...)>>::value,
function<_Rp(_ArgTypes...)>&
2010-05-12 03:42:16 +08:00
>::type
function<_Rp(_ArgTypes...)>::operator=(_Fp&& __f)
2010-05-12 03:42:16 +08:00
{
function(_VSTD::forward<_Fp>(__f)).swap(*this);
2010-05-12 03:42:16 +08:00
return *this;
}
template<class _Rp, class ..._ArgTypes>
function<_Rp(_ArgTypes...)>::~function()
2010-05-12 03:42:16 +08:00
{
if ((void *)__f_ == &__buf_)
2010-05-12 03:42:16 +08:00
__f_->destroy();
else if (__f_)
__f_->destroy_deallocate();
}
template<class _Rp, class ..._ArgTypes>
2010-05-12 03:42:16 +08:00
void
function<_Rp(_ArgTypes...)>::swap(function& __f) _NOEXCEPT
2010-05-12 03:42:16 +08:00
{
if ((void *)__f_ == &__buf_ && (void *)__f.__f_ == &__f.__buf_)
2010-05-12 03:42:16 +08:00
{
typename aligned_storage<sizeof(__buf_)>::type __tempbuf;
__base* __t = __as_base(&__tempbuf);
2010-05-12 03:42:16 +08:00
__f_->__clone(__t);
__f_->destroy();
__f_ = 0;
__f.__f_->__clone(__as_base(&__buf_));
2010-05-12 03:42:16 +08:00
__f.__f_->destroy();
__f.__f_ = 0;
__f_ = __as_base(&__buf_);
__t->__clone(__as_base(&__f.__buf_));
2010-05-12 03:42:16 +08:00
__t->destroy();
__f.__f_ = __as_base(&__f.__buf_);
2010-05-12 03:42:16 +08:00
}
else if ((void *)__f_ == &__buf_)
2010-05-12 03:42:16 +08:00
{
__f_->__clone(__as_base(&__f.__buf_));
2010-05-12 03:42:16 +08:00
__f_->destroy();
__f_ = __f.__f_;
__f.__f_ = __as_base(&__f.__buf_);
2010-05-12 03:42:16 +08:00
}
else if ((void *)__f.__f_ == &__f.__buf_)
2010-05-12 03:42:16 +08:00
{
__f.__f_->__clone(__as_base(&__buf_));
2010-05-12 03:42:16 +08:00
__f.__f_->destroy();
__f.__f_ = __f_;
__f_ = __as_base(&__buf_);
2010-05-12 03:42:16 +08:00
}
else
_VSTD::swap(__f_, __f.__f_);
2010-05-12 03:42:16 +08:00
}
template<class _Rp, class ..._ArgTypes>
_Rp
function<_Rp(_ArgTypes...)>::operator()(_ArgTypes... __arg) const
2010-05-12 03:42:16 +08:00
{
if (__f_ == 0)
__throw_bad_function_call();
return (*__f_)(_VSTD::forward<_ArgTypes>(__arg)...);
2010-05-12 03:42:16 +08:00
}
#ifndef _LIBCPP_NO_RTTI
template<class _Rp, class ..._ArgTypes>
2010-05-12 03:42:16 +08:00
const std::type_info&
function<_Rp(_ArgTypes...)>::target_type() const _NOEXCEPT
2010-05-12 03:42:16 +08:00
{
if (__f_ == 0)
return typeid(void);
return __f_->target_type();
}
template<class _Rp, class ..._ArgTypes>
template <typename _Tp>
_Tp*
function<_Rp(_ArgTypes...)>::target() _NOEXCEPT
2010-05-12 03:42:16 +08:00
{
if (__f_ == 0)
return (_Tp*)0;
return (_Tp*)__f_->target(typeid(_Tp));
2010-05-12 03:42:16 +08:00
}
template<class _Rp, class ..._ArgTypes>
template <typename _Tp>
const _Tp*
function<_Rp(_ArgTypes...)>::target() const _NOEXCEPT
2010-05-12 03:42:16 +08:00
{
if (__f_ == 0)
return (const _Tp*)0;
return (const _Tp*)__f_->target(typeid(_Tp));
2010-05-12 03:42:16 +08:00
}
#endif // _LIBCPP_NO_RTTI
template <class _Rp, class... _ArgTypes>
2010-05-12 03:42:16 +08:00
inline _LIBCPP_INLINE_VISIBILITY
bool
operator==(const function<_Rp(_ArgTypes...)>& __f, nullptr_t) _NOEXCEPT {return !__f;}
2010-05-12 03:42:16 +08:00
template <class _Rp, class... _ArgTypes>
2010-05-12 03:42:16 +08:00
inline _LIBCPP_INLINE_VISIBILITY
bool
operator==(nullptr_t, const function<_Rp(_ArgTypes...)>& __f) _NOEXCEPT {return !__f;}
2010-05-12 03:42:16 +08:00
template <class _Rp, class... _ArgTypes>
2010-05-12 03:42:16 +08:00
inline _LIBCPP_INLINE_VISIBILITY
bool
operator!=(const function<_Rp(_ArgTypes...)>& __f, nullptr_t) _NOEXCEPT {return (bool)__f;}
2010-05-12 03:42:16 +08:00
template <class _Rp, class... _ArgTypes>
2010-05-12 03:42:16 +08:00
inline _LIBCPP_INLINE_VISIBILITY
bool
operator!=(nullptr_t, const function<_Rp(_ArgTypes...)>& __f) _NOEXCEPT {return (bool)__f;}
2010-05-12 03:42:16 +08:00
template <class _Rp, class... _ArgTypes>
2010-05-12 03:42:16 +08:00
inline _LIBCPP_INLINE_VISIBILITY
void
swap(function<_Rp(_ArgTypes...)>& __x, function<_Rp(_ArgTypes...)>& __y) _NOEXCEPT
2010-05-12 03:42:16 +08:00
{return __x.swap(__y);}
#else // _LIBCPP_HAS_NO_VARIADICS
#include <__functional_03>
#endif
////////////////////////////////////////////////////////////////////////////////
// BIND
//==============================================================================
2010-05-12 03:42:16 +08:00
template<class _Tp> struct __is_bind_expression : public false_type {};
template<class _Tp> struct _LIBCPP_TYPE_VIS_ONLY is_bind_expression
2010-05-12 03:42:16 +08:00
: public __is_bind_expression<typename remove_cv<_Tp>::type> {};
#if _LIBCPP_STD_VER > 14
template <class _Tp>
constexpr size_t is_bind_expression_v = is_bind_expression<_Tp>::value;
#endif
2010-05-12 03:42:16 +08:00
template<class _Tp> struct __is_placeholder : public integral_constant<int, 0> {};
template<class _Tp> struct _LIBCPP_TYPE_VIS_ONLY is_placeholder
2010-05-12 03:42:16 +08:00
: public __is_placeholder<typename remove_cv<_Tp>::type> {};
#if _LIBCPP_STD_VER > 14
template <class _Tp>
constexpr size_t is_placeholder_v = is_placeholder<_Tp>::value;
#endif
2010-05-12 03:42:16 +08:00
namespace placeholders
{
template <int _Np> struct __ph {};
2010-05-12 03:42:16 +08:00
#if defined(_LIBCPP_CXX03_LANG) || defined(_LIBCPP_BUILDING_BIND)
_LIBCPP_FUNC_VIS extern const __ph<1> _1;
_LIBCPP_FUNC_VIS extern const __ph<2> _2;
_LIBCPP_FUNC_VIS extern const __ph<3> _3;
_LIBCPP_FUNC_VIS extern const __ph<4> _4;
_LIBCPP_FUNC_VIS extern const __ph<5> _5;
_LIBCPP_FUNC_VIS extern const __ph<6> _6;
_LIBCPP_FUNC_VIS extern const __ph<7> _7;
_LIBCPP_FUNC_VIS extern const __ph<8> _8;
_LIBCPP_FUNC_VIS extern const __ph<9> _9;
_LIBCPP_FUNC_VIS extern const __ph<10> _10;
#else
constexpr __ph<1> _1{};
constexpr __ph<2> _2{};
constexpr __ph<3> _3{};
constexpr __ph<4> _4{};
constexpr __ph<5> _5{};
constexpr __ph<6> _6{};
constexpr __ph<7> _7{};
constexpr __ph<8> _8{};
constexpr __ph<9> _9{};
constexpr __ph<10> _10{};
#endif // defined(_LIBCPP_CXX03_LANG) || defined(_LIBCPP_BUILDING_BIND)
2010-05-12 03:42:16 +08:00
} // placeholders
template<int _Np>
struct __is_placeholder<placeholders::__ph<_Np> >
: public integral_constant<int, _Np> {};
2010-05-12 03:42:16 +08:00
#ifndef _LIBCPP_HAS_NO_VARIADICS
2010-05-12 03:42:16 +08:00
template <class _Tp, class _Uj>
inline _LIBCPP_INLINE_VISIBILITY
_Tp&
__mu(reference_wrapper<_Tp> __t, _Uj&)
{
return __t.get();
}
template <class _Ti, class ..._Uj, size_t ..._Indx>
inline _LIBCPP_INLINE_VISIBILITY
typename __invoke_of<_Ti&, _Uj...>::type
__mu_expand(_Ti& __ti, tuple<_Uj...>& __uj, __tuple_indices<_Indx...>)
2010-05-12 03:42:16 +08:00
{
return __ti(_VSTD::forward<_Uj>(_VSTD::get<_Indx>(__uj))...);
2010-05-12 03:42:16 +08:00
}
template <class _Ti, class ..._Uj>
inline _LIBCPP_INLINE_VISIBILITY
typename __lazy_enable_if
2010-05-12 03:42:16 +08:00
<
is_bind_expression<_Ti>::value,
__invoke_of<_Ti&, _Uj...>
2010-05-12 03:42:16 +08:00
>::type
__mu(_Ti& __ti, tuple<_Uj...>& __uj)
{
typedef typename __make_tuple_indices<sizeof...(_Uj)>::type __indices;
return __mu_expand(__ti, __uj, __indices());
}
template <bool IsPh, class _Ti, class _Uj>
struct __mu_return2 {};
template <class _Ti, class _Uj>
struct __mu_return2<true, _Ti, _Uj>
{
typedef typename tuple_element<is_placeholder<_Ti>::value - 1, _Uj>::type type;
};
template <class _Ti, class _Uj>
inline _LIBCPP_INLINE_VISIBILITY
typename enable_if
<
0 < is_placeholder<_Ti>::value,
typename __mu_return2<0 < is_placeholder<_Ti>::value, _Ti, _Uj>::type
>::type
__mu(_Ti&, _Uj& __uj)
{
const size_t _Indx = is_placeholder<_Ti>::value - 1;
return _VSTD::forward<typename tuple_element<_Indx, _Uj>::type>(_VSTD::get<_Indx>(__uj));
2010-05-12 03:42:16 +08:00
}
template <class _Ti, class _Uj>
inline _LIBCPP_INLINE_VISIBILITY
typename enable_if
<
!is_bind_expression<_Ti>::value &&
is_placeholder<_Ti>::value == 0 &&
!__is_reference_wrapper<_Ti>::value,
_Ti&
>::type
__mu(_Ti& __ti, _Uj&)
2010-05-12 03:42:16 +08:00
{
return __ti;
}
template <class _Ti, bool IsReferenceWrapper, bool IsBindEx, bool IsPh,
class _TupleUj>
2010-05-12 03:42:16 +08:00
struct ____mu_return;
template <bool _Invokable, class _Ti, class ..._Uj>
struct ____mu_return_invokable // false
{
typedef __nat type;
};
2010-05-12 03:42:16 +08:00
template <class _Ti, class ..._Uj>
struct ____mu_return_invokable<true, _Ti, _Uj...>
2010-05-12 03:42:16 +08:00
{
typedef typename __invoke_of<_Ti&, _Uj...>::type type;
2010-05-12 03:42:16 +08:00
};
template <class _Ti, class ..._Uj>
struct ____mu_return<_Ti, false, true, false, tuple<_Uj...> >
: public ____mu_return_invokable<__invokable<_Ti&, _Uj...>::value, _Ti, _Uj...>
{
};
2010-05-12 03:42:16 +08:00
template <class _Ti, class _TupleUj>
struct ____mu_return<_Ti, false, false, true, _TupleUj>
2010-05-12 03:42:16 +08:00
{
typedef typename tuple_element<is_placeholder<_Ti>::value - 1,
_TupleUj>::type&& type;
};
template <class _Ti, class _TupleUj>
struct ____mu_return<_Ti, true, false, false, _TupleUj>
{
typedef typename _Ti::type& type;
};
template <class _Ti, class _TupleUj>
struct ____mu_return<_Ti, false, false, false, _TupleUj>
2010-05-12 03:42:16 +08:00
{
typedef _Ti& type;
};
template <class _Ti, class _TupleUj>
struct __mu_return
: public ____mu_return<_Ti,
__is_reference_wrapper<_Ti>::value,
2010-05-12 03:42:16 +08:00
is_bind_expression<_Ti>::value,
0 < is_placeholder<_Ti>::value &&
is_placeholder<_Ti>::value <= tuple_size<_TupleUj>::value,
2010-05-12 03:42:16 +08:00
_TupleUj>
{
};
template <class _Fp, class _BoundArgs, class _TupleUj>
struct __is_valid_bind_return
{
static const bool value = false;
};
template <class _Fp, class ..._BoundArgs, class _TupleUj>
struct __is_valid_bind_return<_Fp, tuple<_BoundArgs...>, _TupleUj>
{
static const bool value = __invokable<_Fp,
typename __mu_return<_BoundArgs, _TupleUj>::type...>::value;
};
template <class _Fp, class ..._BoundArgs, class _TupleUj>
struct __is_valid_bind_return<_Fp, const tuple<_BoundArgs...>, _TupleUj>
{
static const bool value = __invokable<_Fp,
typename __mu_return<const _BoundArgs, _TupleUj>::type...>::value;
};
template <class _Fp, class _BoundArgs, class _TupleUj,
bool = __is_valid_bind_return<_Fp, _BoundArgs, _TupleUj>::value>
2010-05-12 03:42:16 +08:00
struct __bind_return;
template <class _Fp, class ..._BoundArgs, class _TupleUj>
struct __bind_return<_Fp, tuple<_BoundArgs...>, _TupleUj, true>
2010-05-12 03:42:16 +08:00
{
typedef typename __invoke_of
2010-05-12 03:42:16 +08:00
<
_Fp&,
2010-05-12 03:42:16 +08:00
typename __mu_return
<
_BoundArgs,
_TupleUj
>::type...
>::type type;
};
template <class _Fp, class ..._BoundArgs, class _TupleUj>
struct __bind_return<_Fp, const tuple<_BoundArgs...>, _TupleUj, true>
2010-05-12 03:42:16 +08:00
{
typedef typename __invoke_of
2010-05-12 03:42:16 +08:00
<
_Fp&,
2010-05-12 03:42:16 +08:00
typename __mu_return
<
const _BoundArgs,
_TupleUj
>::type...
>::type type;
};
template <class _Fp, class _BoundArgs, size_t ..._Indx, class _Args>
2010-05-12 03:42:16 +08:00
inline _LIBCPP_INLINE_VISIBILITY
typename __bind_return<_Fp, _BoundArgs, _Args>::type
__apply_functor(_Fp& __f, _BoundArgs& __bound_args, __tuple_indices<_Indx...>,
2010-05-12 03:42:16 +08:00
_Args&& __args)
{
return __invoke(__f, __mu(_VSTD::get<_Indx>(__bound_args), __args)...);
2010-05-12 03:42:16 +08:00
}
template<class _Fp, class ..._BoundArgs>
2010-05-12 03:42:16 +08:00
class __bind
: public __weak_result_type<typename decay<_Fp>::type>
2010-05-12 03:42:16 +08:00
{
protected:
typedef typename decay<_Fp>::type _Fd;
typedef tuple<typename decay<_BoundArgs>::type...> _Td;
private:
_Fd __f_;
_Td __bound_args_;
2010-05-12 03:42:16 +08:00
typedef typename __make_tuple_indices<sizeof...(_BoundArgs)>::type __indices;
public:
template <class _Gp, class ..._BA,
class = typename enable_if
<
is_constructible<_Fd, _Gp>::value &&
!is_same<typename remove_reference<_Gp>::type,
__bind>::value
>::type>
_LIBCPP_INLINE_VISIBILITY
explicit __bind(_Gp&& __f, _BA&& ...__bound_args)
: __f_(_VSTD::forward<_Gp>(__f)),
__bound_args_(_VSTD::forward<_BA>(__bound_args)...) {}
2010-05-12 03:42:16 +08:00
template <class ..._Args>
_LIBCPP_INLINE_VISIBILITY
typename __bind_return<_Fd, _Td, tuple<_Args&&...> >::type
2010-05-12 03:42:16 +08:00
operator()(_Args&& ...__args)
{
return __apply_functor(__f_, __bound_args_, __indices(),
tuple<_Args&&...>(_VSTD::forward<_Args>(__args)...));
2010-05-12 03:42:16 +08:00
}
template <class ..._Args>
_LIBCPP_INLINE_VISIBILITY
typename __bind_return<const _Fd, const _Td, tuple<_Args&&...> >::type
2010-05-12 03:42:16 +08:00
operator()(_Args&& ...__args) const
{
return __apply_functor(__f_, __bound_args_, __indices(),
tuple<_Args&&...>(_VSTD::forward<_Args>(__args)...));
2010-05-12 03:42:16 +08:00
}
};
template<class _Fp, class ..._BoundArgs>
struct __is_bind_expression<__bind<_Fp, _BoundArgs...> > : public true_type {};
2010-05-12 03:42:16 +08:00
template<class _Rp, class _Fp, class ..._BoundArgs>
2010-05-12 03:42:16 +08:00
class __bind_r
: public __bind<_Fp, _BoundArgs...>
2010-05-12 03:42:16 +08:00
{
typedef __bind<_Fp, _BoundArgs...> base;
typedef typename base::_Fd _Fd;
typedef typename base::_Td _Td;
2010-05-12 03:42:16 +08:00
public:
typedef _Rp result_type;
2010-05-12 03:42:16 +08:00
template <class _Gp, class ..._BA,
class = typename enable_if
<
is_constructible<_Fd, _Gp>::value &&
!is_same<typename remove_reference<_Gp>::type,
__bind_r>::value
>::type>
_LIBCPP_INLINE_VISIBILITY
explicit __bind_r(_Gp&& __f, _BA&& ...__bound_args)
: base(_VSTD::forward<_Gp>(__f),
_VSTD::forward<_BA>(__bound_args)...) {}
2010-05-12 03:42:16 +08:00
template <class ..._Args>
_LIBCPP_INLINE_VISIBILITY
typename enable_if
<
is_convertible<typename __bind_return<_Fd, _Td, tuple<_Args&&...> >::type,
result_type>::value || is_void<_Rp>::value,
result_type
>::type
2010-05-12 03:42:16 +08:00
operator()(_Args&& ...__args)
{
typedef __invoke_void_return_wrapper<_Rp> _Invoker;
return _Invoker::__call(static_cast<base&>(*this), _VSTD::forward<_Args>(__args)...);
2010-05-12 03:42:16 +08:00
}
template <class ..._Args>
_LIBCPP_INLINE_VISIBILITY
typename enable_if
<
is_convertible<typename __bind_return<const _Fd, const _Td, tuple<_Args&&...> >::type,
result_type>::value || is_void<_Rp>::value,
result_type
>::type
2010-05-12 03:42:16 +08:00
operator()(_Args&& ...__args) const
{
typedef __invoke_void_return_wrapper<_Rp> _Invoker;
return _Invoker::__call(static_cast<base const&>(*this), _VSTD::forward<_Args>(__args)...);
2010-05-12 03:42:16 +08:00
}
};
template<class _Rp, class _Fp, class ..._BoundArgs>
struct __is_bind_expression<__bind_r<_Rp, _Fp, _BoundArgs...> > : public true_type {};
2010-05-12 03:42:16 +08:00
template<class _Fp, class ..._BoundArgs>
2010-05-12 03:42:16 +08:00
inline _LIBCPP_INLINE_VISIBILITY
__bind<_Fp, _BoundArgs...>
bind(_Fp&& __f, _BoundArgs&&... __bound_args)
2010-05-12 03:42:16 +08:00
{
typedef __bind<_Fp, _BoundArgs...> type;
return type(_VSTD::forward<_Fp>(__f), _VSTD::forward<_BoundArgs>(__bound_args)...);
2010-05-12 03:42:16 +08:00
}
template<class _Rp, class _Fp, class ..._BoundArgs>
2010-05-12 03:42:16 +08:00
inline _LIBCPP_INLINE_VISIBILITY
__bind_r<_Rp, _Fp, _BoundArgs...>
bind(_Fp&& __f, _BoundArgs&&... __bound_args)
2010-05-12 03:42:16 +08:00
{
typedef __bind_r<_Rp, _Fp, _BoundArgs...> type;
return type(_VSTD::forward<_Fp>(__f), _VSTD::forward<_BoundArgs>(__bound_args)...);
2010-05-12 03:42:16 +08:00
}
#endif // _LIBCPP_HAS_NO_VARIADICS
template <>
struct _LIBCPP_TYPE_VIS_ONLY hash<bool>
2010-05-12 03:42:16 +08:00
: public unary_function<bool, size_t>
{
_LIBCPP_INLINE_VISIBILITY
size_t operator()(bool __v) const _NOEXCEPT {return static_cast<size_t>(__v);}
2010-05-12 03:42:16 +08:00
};
template <>
struct _LIBCPP_TYPE_VIS_ONLY hash<char>
2010-05-12 03:42:16 +08:00
: public unary_function<char, size_t>
{
_LIBCPP_INLINE_VISIBILITY
size_t operator()(char __v) const _NOEXCEPT {return static_cast<size_t>(__v);}
2010-05-12 03:42:16 +08:00
};
template <>
struct _LIBCPP_TYPE_VIS_ONLY hash<signed char>
2010-05-12 03:42:16 +08:00
: public unary_function<signed char, size_t>
{
_LIBCPP_INLINE_VISIBILITY
size_t operator()(signed char __v) const _NOEXCEPT {return static_cast<size_t>(__v);}
2010-05-12 03:42:16 +08:00
};
template <>
struct _LIBCPP_TYPE_VIS_ONLY hash<unsigned char>
2010-05-12 03:42:16 +08:00
: public unary_function<unsigned char, size_t>
{
_LIBCPP_INLINE_VISIBILITY
size_t operator()(unsigned char __v) const _NOEXCEPT {return static_cast<size_t>(__v);}
2010-05-12 03:42:16 +08:00
};
#ifndef _LIBCPP_HAS_NO_UNICODE_CHARS
template <>
struct _LIBCPP_TYPE_VIS_ONLY hash<char16_t>
2010-05-12 03:42:16 +08:00
: public unary_function<char16_t, size_t>
{
_LIBCPP_INLINE_VISIBILITY
size_t operator()(char16_t __v) const _NOEXCEPT {return static_cast<size_t>(__v);}
2010-05-12 03:42:16 +08:00
};
template <>
struct _LIBCPP_TYPE_VIS_ONLY hash<char32_t>
2010-05-12 03:42:16 +08:00
: public unary_function<char32_t, size_t>
{
_LIBCPP_INLINE_VISIBILITY
size_t operator()(char32_t __v) const _NOEXCEPT {return static_cast<size_t>(__v);}
2010-05-12 03:42:16 +08:00
};
#endif // _LIBCPP_HAS_NO_UNICODE_CHARS
2010-05-12 03:42:16 +08:00
template <>
struct _LIBCPP_TYPE_VIS_ONLY hash<wchar_t>
2010-05-12 03:42:16 +08:00
: public unary_function<wchar_t, size_t>
{
_LIBCPP_INLINE_VISIBILITY
size_t operator()(wchar_t __v) const _NOEXCEPT {return static_cast<size_t>(__v);}
2010-05-12 03:42:16 +08:00
};
template <>
struct _LIBCPP_TYPE_VIS_ONLY hash<short>
2010-05-12 03:42:16 +08:00
: public unary_function<short, size_t>
{
_LIBCPP_INLINE_VISIBILITY
size_t operator()(short __v) const _NOEXCEPT {return static_cast<size_t>(__v);}
2010-05-12 03:42:16 +08:00
};
template <>
struct _LIBCPP_TYPE_VIS_ONLY hash<unsigned short>
2010-05-12 03:42:16 +08:00
: public unary_function<unsigned short, size_t>
{
_LIBCPP_INLINE_VISIBILITY
size_t operator()(unsigned short __v) const _NOEXCEPT {return static_cast<size_t>(__v);}
2010-05-12 03:42:16 +08:00
};
template <>
struct _LIBCPP_TYPE_VIS_ONLY hash<int>
2010-05-12 03:42:16 +08:00
: public unary_function<int, size_t>
{
_LIBCPP_INLINE_VISIBILITY
size_t operator()(int __v) const _NOEXCEPT {return static_cast<size_t>(__v);}
2010-05-12 03:42:16 +08:00
};
template <>
struct _LIBCPP_TYPE_VIS_ONLY hash<unsigned int>
2010-05-12 03:42:16 +08:00
: public unary_function<unsigned int, size_t>
{
_LIBCPP_INLINE_VISIBILITY
size_t operator()(unsigned int __v) const _NOEXCEPT {return static_cast<size_t>(__v);}
2010-05-12 03:42:16 +08:00
};
template <>
struct _LIBCPP_TYPE_VIS_ONLY hash<long>
2010-05-12 03:42:16 +08:00
: public unary_function<long, size_t>
{
_LIBCPP_INLINE_VISIBILITY
size_t operator()(long __v) const _NOEXCEPT {return static_cast<size_t>(__v);}
2010-05-12 03:42:16 +08:00
};
template <>
struct _LIBCPP_TYPE_VIS_ONLY hash<unsigned long>
2010-05-12 03:42:16 +08:00
: public unary_function<unsigned long, size_t>
{
_LIBCPP_INLINE_VISIBILITY
size_t operator()(unsigned long __v) const _NOEXCEPT {return static_cast<size_t>(__v);}
2010-05-12 03:42:16 +08:00
};
template <>
struct _LIBCPP_TYPE_VIS_ONLY hash<long long>
: public __scalar_hash<long long>
2010-05-12 03:42:16 +08:00
{
};
template <>
struct _LIBCPP_TYPE_VIS_ONLY hash<unsigned long long>
: public __scalar_hash<unsigned long long>
2010-05-12 03:42:16 +08:00
{
};
#ifndef _LIBCPP_HAS_NO_INT128
template <>
struct _LIBCPP_TYPE_VIS_ONLY hash<__int128_t>
: public __scalar_hash<__int128_t>
{
};
template <>
struct _LIBCPP_TYPE_VIS_ONLY hash<__uint128_t>
: public __scalar_hash<__uint128_t>
{
};
#endif
2010-05-12 03:42:16 +08:00
template <>
struct _LIBCPP_TYPE_VIS_ONLY hash<float>
: public __scalar_hash<float>
2010-05-12 03:42:16 +08:00
{
_LIBCPP_INLINE_VISIBILITY
size_t operator()(float __v) const _NOEXCEPT
2010-05-12 03:42:16 +08:00
{
// -0.0 and 0.0 should return same hash
if (__v == 0)
return 0;
return __scalar_hash<float>::operator()(__v);
2010-05-12 03:42:16 +08:00
}
};
template <>
struct _LIBCPP_TYPE_VIS_ONLY hash<double>
: public __scalar_hash<double>
2010-05-12 03:42:16 +08:00
{
_LIBCPP_INLINE_VISIBILITY
size_t operator()(double __v) const _NOEXCEPT
2010-05-12 03:42:16 +08:00
{
// -0.0 and 0.0 should return same hash
if (__v == 0)
return 0;
return __scalar_hash<double>::operator()(__v);
2010-05-12 03:42:16 +08:00
}
};
template <>
struct _LIBCPP_TYPE_VIS_ONLY hash<long double>
: public __scalar_hash<long double>
2010-05-12 03:42:16 +08:00
{
_LIBCPP_INLINE_VISIBILITY
size_t operator()(long double __v) const _NOEXCEPT
2010-05-12 03:42:16 +08:00
{
// -0.0 and 0.0 should return same hash
if (__v == 0)
return 0;
#if defined(__i386__)
// Zero out padding bits
union
{
long double __t;
struct
{
size_t __a;
size_t __b;
size_t __c;
size_t __d;
} __s;
} __u;
__u.__s.__a = 0;
__u.__s.__b = 0;
__u.__s.__c = 0;
__u.__s.__d = 0;
__u.__t = __v;
return __u.__s.__a ^ __u.__s.__b ^ __u.__s.__c ^ __u.__s.__d;
#elif defined(__x86_64__)
// Zero out padding bits
union
{
long double __t;
struct
{
size_t __a;
size_t __b;
} __s;
} __u;
__u.__s.__a = 0;
__u.__s.__b = 0;
__u.__t = __v;
return __u.__s.__a ^ __u.__s.__b;
#else
return __scalar_hash<long double>::operator()(__v);
#endif
2010-05-12 03:42:16 +08:00
}
};
#if _LIBCPP_STD_VER > 11
template <class _Tp, bool = is_enum<_Tp>::value>
struct _LIBCPP_TYPE_VIS_ONLY __enum_hash
: public unary_function<_Tp, size_t>
{
_LIBCPP_INLINE_VISIBILITY
size_t operator()(_Tp __v) const _NOEXCEPT
{
typedef typename underlying_type<_Tp>::type type;
return hash<type>{}(static_cast<type>(__v));
}
};
template <class _Tp>
struct _LIBCPP_TYPE_VIS_ONLY __enum_hash<_Tp, false> {
__enum_hash() = delete;
__enum_hash(__enum_hash const&) = delete;
__enum_hash& operator=(__enum_hash const&) = delete;
};
template <class _Tp>
struct _LIBCPP_TYPE_VIS_ONLY hash : public __enum_hash<_Tp>
{
};
#endif
#if _LIBCPP_STD_VER > 14
#define __cpp_lib_invoke 201411
template <class _Fn, class ..._Args>
result_of_t<_Fn&&(_Args&&...)>
invoke(_Fn&& __f, _Args&&... __args)
noexcept(noexcept(_VSTD::__invoke(_VSTD::forward<_Fn>(__f), _VSTD::forward<_Args>(__args)...)))
{
return _VSTD::__invoke(_VSTD::forward<_Fn>(__f), _VSTD::forward<_Args>(__args)...);
}
template <class _DecayFunc>
class _LIBCPP_TYPE_VIS_ONLY __not_fn_imp {
_DecayFunc __fd;
public:
__not_fn_imp() = delete;
template <class ..._Args>
_LIBCPP_INLINE_VISIBILITY
auto operator()(_Args&& ...__args) &
noexcept(noexcept(!_VSTD::invoke(__fd, _VSTD::forward<_Args>(__args)...)))
-> decltype( !_VSTD::invoke(__fd, _VSTD::forward<_Args>(__args)...))
{ return !_VSTD::invoke(__fd, _VSTD::forward<_Args>(__args)...); }
template <class ..._Args>
_LIBCPP_INLINE_VISIBILITY
auto operator()(_Args&& ...__args) &&
noexcept(noexcept(!_VSTD::invoke(_VSTD::move(__fd), _VSTD::forward<_Args>(__args)...)))
-> decltype( !_VSTD::invoke(_VSTD::move(__fd), _VSTD::forward<_Args>(__args)...))
{ return !_VSTD::invoke(_VSTD::move(__fd), _VSTD::forward<_Args>(__args)...); }
template <class ..._Args>
_LIBCPP_INLINE_VISIBILITY
auto operator()(_Args&& ...__args) const&
noexcept(noexcept(!_VSTD::invoke(__fd, _VSTD::forward<_Args>(__args)...)))
-> decltype( !_VSTD::invoke(__fd, _VSTD::forward<_Args>(__args)...))
{ return !_VSTD::invoke(__fd, _VSTD::forward<_Args>(__args)...); }
template <class ..._Args>
_LIBCPP_INLINE_VISIBILITY
auto operator()(_Args&& ...__args) const&&
noexcept(noexcept(!_VSTD::invoke(_VSTD::move(__fd), _VSTD::forward<_Args>(__args)...)))
-> decltype( !_VSTD::invoke(_VSTD::move(__fd), _VSTD::forward<_Args>(__args)...))
{ return !_VSTD::invoke(_VSTD::move(__fd), _VSTD::forward<_Args>(__args)...); }
private:
template <class _RawFunc,
class = enable_if_t<!is_same<decay_t<_RawFunc>, __not_fn_imp>::value>>
_LIBCPP_INLINE_VISIBILITY
explicit __not_fn_imp(_RawFunc&& __rf)
: __fd(_VSTD::forward<_RawFunc>(__rf)) {}
template <class _RawFunc>
friend inline _LIBCPP_INLINE_VISIBILITY
__not_fn_imp<decay_t<_RawFunc>> not_fn(_RawFunc&&);
};
template <class _RawFunc>
inline _LIBCPP_INLINE_VISIBILITY
__not_fn_imp<decay_t<_RawFunc>> not_fn(_RawFunc&& __fn) {
return __not_fn_imp<decay_t<_RawFunc>>(_VSTD::forward<_RawFunc>(__fn));
}
#endif
2010-06-04 00:42:57 +08:00
// struct hash<T*> in <memory>
2010-05-12 03:42:16 +08:00
_LIBCPP_END_NAMESPACE_STD
#endif // _LIBCPP_FUNCTIONAL