2010-01-04 15:53:58 +08:00
|
|
|
//===- InstCombineCasts.cpp -----------------------------------------------===//
|
|
|
|
//
|
|
|
|
// The LLVM Compiler Infrastructure
|
|
|
|
//
|
|
|
|
// This file is distributed under the University of Illinois Open Source
|
|
|
|
// License. See LICENSE.TXT for details.
|
|
|
|
//
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
//
|
|
|
|
// This file implements the visit functions for cast operations.
|
|
|
|
//
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
|
|
|
|
#include "InstCombine.h"
|
2011-07-21 05:57:23 +08:00
|
|
|
#include "llvm/Analysis/ConstantFolding.h"
|
2013-01-02 19:36:10 +08:00
|
|
|
#include "llvm/IR/DataLayout.h"
|
2014-03-04 19:08:18 +08:00
|
|
|
#include "llvm/IR/PatternMatch.h"
|
2012-12-04 00:50:05 +08:00
|
|
|
#include "llvm/Target/TargetLibraryInfo.h"
|
2010-01-04 15:53:58 +08:00
|
|
|
using namespace llvm;
|
|
|
|
using namespace PatternMatch;
|
|
|
|
|
2014-04-22 10:55:47 +08:00
|
|
|
#define DEBUG_TYPE "instcombine"
|
|
|
|
|
2010-01-04 15:59:07 +08:00
|
|
|
/// DecomposeSimpleLinearExpr - Analyze 'Val', seeing if it is a simple linear
|
|
|
|
/// expression. If so, decompose it, returning some value X, such that Val is
|
|
|
|
/// X*Scale+Offset.
|
|
|
|
///
|
|
|
|
static Value *DecomposeSimpleLinearExpr(Value *Val, unsigned &Scale,
|
2010-05-28 12:33:04 +08:00
|
|
|
uint64_t &Offset) {
|
2010-01-04 15:59:07 +08:00
|
|
|
if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
|
|
|
|
Offset = CI->getZExtValue();
|
|
|
|
Scale = 0;
|
2010-05-28 12:33:04 +08:00
|
|
|
return ConstantInt::get(Val->getType(), 0);
|
2010-01-06 04:57:30 +08:00
|
|
|
}
|
2013-01-24 13:22:40 +08:00
|
|
|
|
2010-01-06 04:57:30 +08:00
|
|
|
if (BinaryOperator *I = dyn_cast<BinaryOperator>(Val)) {
|
2011-07-09 06:09:33 +08:00
|
|
|
// Cannot look past anything that might overflow.
|
|
|
|
OverflowingBinaryOperator *OBI = dyn_cast<OverflowingBinaryOperator>(Val);
|
2012-05-05 15:09:40 +08:00
|
|
|
if (OBI && !OBI->hasNoUnsignedWrap() && !OBI->hasNoSignedWrap()) {
|
2011-07-09 06:09:33 +08:00
|
|
|
Scale = 1;
|
|
|
|
Offset = 0;
|
|
|
|
return Val;
|
|
|
|
}
|
|
|
|
|
2010-01-04 15:59:07 +08:00
|
|
|
if (ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
|
|
|
|
if (I->getOpcode() == Instruction::Shl) {
|
|
|
|
// This is a value scaled by '1 << the shift amt'.
|
2010-05-28 12:33:04 +08:00
|
|
|
Scale = UINT64_C(1) << RHS->getZExtValue();
|
2010-01-04 15:59:07 +08:00
|
|
|
Offset = 0;
|
|
|
|
return I->getOperand(0);
|
2010-01-06 04:57:30 +08:00
|
|
|
}
|
2013-01-24 13:22:40 +08:00
|
|
|
|
2010-01-06 04:57:30 +08:00
|
|
|
if (I->getOpcode() == Instruction::Mul) {
|
2010-01-04 15:59:07 +08:00
|
|
|
// This value is scaled by 'RHS'.
|
|
|
|
Scale = RHS->getZExtValue();
|
|
|
|
Offset = 0;
|
|
|
|
return I->getOperand(0);
|
2010-01-06 04:57:30 +08:00
|
|
|
}
|
2013-01-24 13:22:40 +08:00
|
|
|
|
2010-01-06 04:57:30 +08:00
|
|
|
if (I->getOpcode() == Instruction::Add) {
|
2013-01-24 13:22:40 +08:00
|
|
|
// We have X+C. Check to see if we really have (X*C2)+C1,
|
2010-01-04 15:59:07 +08:00
|
|
|
// where C1 is divisible by C2.
|
|
|
|
unsigned SubScale;
|
2013-01-24 13:22:40 +08:00
|
|
|
Value *SubVal =
|
2010-01-04 15:59:07 +08:00
|
|
|
DecomposeSimpleLinearExpr(I->getOperand(0), SubScale, Offset);
|
|
|
|
Offset += RHS->getZExtValue();
|
|
|
|
Scale = SubScale;
|
|
|
|
return SubVal;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Otherwise, we can't look past this.
|
|
|
|
Scale = 1;
|
|
|
|
Offset = 0;
|
|
|
|
return Val;
|
|
|
|
}
|
|
|
|
|
|
|
|
/// PromoteCastOfAllocation - If we find a cast of an allocation instruction,
|
|
|
|
/// try to eliminate the cast by moving the type information into the alloc.
|
|
|
|
Instruction *InstCombiner::PromoteCastOfAllocation(BitCastInst &CI,
|
|
|
|
AllocaInst &AI) {
|
2012-10-09 00:38:25 +08:00
|
|
|
// This requires DataLayout to get the alloca alignment and size information.
|
2014-04-25 13:29:35 +08:00
|
|
|
if (!DL) return nullptr;
|
2010-01-04 15:59:07 +08:00
|
|
|
|
2011-07-18 12:54:35 +08:00
|
|
|
PointerType *PTy = cast<PointerType>(CI.getType());
|
2013-01-24 13:22:40 +08:00
|
|
|
|
2010-01-04 15:59:07 +08:00
|
|
|
BuilderTy AllocaBuilder(*Builder);
|
|
|
|
AllocaBuilder.SetInsertPoint(AI.getParent(), &AI);
|
|
|
|
|
|
|
|
// Get the type really allocated and the type casted to.
|
2011-07-18 12:54:35 +08:00
|
|
|
Type *AllocElTy = AI.getAllocatedType();
|
|
|
|
Type *CastElTy = PTy->getElementType();
|
2014-04-25 13:29:35 +08:00
|
|
|
if (!AllocElTy->isSized() || !CastElTy->isSized()) return nullptr;
|
2010-01-04 15:59:07 +08:00
|
|
|
|
2014-02-21 08:06:31 +08:00
|
|
|
unsigned AllocElTyAlign = DL->getABITypeAlignment(AllocElTy);
|
|
|
|
unsigned CastElTyAlign = DL->getABITypeAlignment(CastElTy);
|
2014-04-25 13:29:35 +08:00
|
|
|
if (CastElTyAlign < AllocElTyAlign) return nullptr;
|
2010-01-04 15:59:07 +08:00
|
|
|
|
|
|
|
// If the allocation has multiple uses, only promote it if we are strictly
|
|
|
|
// increasing the alignment of the resultant allocation. If we keep it the
|
2011-03-09 06:12:11 +08:00
|
|
|
// same, we open the door to infinite loops of various kinds.
|
2014-04-25 13:29:35 +08:00
|
|
|
if (!AI.hasOneUse() && CastElTyAlign == AllocElTyAlign) return nullptr;
|
2010-01-04 15:59:07 +08:00
|
|
|
|
2014-02-21 08:06:31 +08:00
|
|
|
uint64_t AllocElTySize = DL->getTypeAllocSize(AllocElTy);
|
|
|
|
uint64_t CastElTySize = DL->getTypeAllocSize(CastElTy);
|
2014-04-25 13:29:35 +08:00
|
|
|
if (CastElTySize == 0 || AllocElTySize == 0) return nullptr;
|
2010-01-04 15:59:07 +08:00
|
|
|
|
2013-03-06 13:44:53 +08:00
|
|
|
// If the allocation has multiple uses, only promote it if we're not
|
|
|
|
// shrinking the amount of memory being allocated.
|
2014-02-21 08:06:31 +08:00
|
|
|
uint64_t AllocElTyStoreSize = DL->getTypeStoreSize(AllocElTy);
|
|
|
|
uint64_t CastElTyStoreSize = DL->getTypeStoreSize(CastElTy);
|
2014-04-25 13:29:35 +08:00
|
|
|
if (!AI.hasOneUse() && CastElTyStoreSize < AllocElTyStoreSize) return nullptr;
|
2013-03-06 13:44:53 +08:00
|
|
|
|
2010-01-04 15:59:07 +08:00
|
|
|
// See if we can satisfy the modulus by pulling a scale out of the array
|
|
|
|
// size argument.
|
|
|
|
unsigned ArraySizeScale;
|
2010-05-28 12:33:04 +08:00
|
|
|
uint64_t ArrayOffset;
|
2010-01-04 15:59:07 +08:00
|
|
|
Value *NumElements = // See if the array size is a decomposable linear expr.
|
|
|
|
DecomposeSimpleLinearExpr(AI.getOperand(0), ArraySizeScale, ArrayOffset);
|
2013-01-24 13:22:40 +08:00
|
|
|
|
2010-01-04 15:59:07 +08:00
|
|
|
// If we can now satisfy the modulus, by using a non-1 scale, we really can
|
|
|
|
// do the xform.
|
|
|
|
if ((AllocElTySize*ArraySizeScale) % CastElTySize != 0 ||
|
2014-04-25 13:29:35 +08:00
|
|
|
(AllocElTySize*ArrayOffset ) % CastElTySize != 0) return nullptr;
|
2010-01-04 15:59:07 +08:00
|
|
|
|
|
|
|
unsigned Scale = (AllocElTySize*ArraySizeScale)/CastElTySize;
|
2014-04-25 13:29:35 +08:00
|
|
|
Value *Amt = nullptr;
|
2010-01-04 15:59:07 +08:00
|
|
|
if (Scale == 1) {
|
|
|
|
Amt = NumElements;
|
|
|
|
} else {
|
2010-05-28 12:33:04 +08:00
|
|
|
Amt = ConstantInt::get(AI.getArraySize()->getType(), Scale);
|
2010-01-04 15:59:07 +08:00
|
|
|
// Insert before the alloca, not before the cast.
|
2011-09-28 04:39:19 +08:00
|
|
|
Amt = AllocaBuilder.CreateMul(Amt, NumElements);
|
2010-01-04 15:59:07 +08:00
|
|
|
}
|
2013-01-24 13:22:40 +08:00
|
|
|
|
2010-05-28 12:33:04 +08:00
|
|
|
if (uint64_t Offset = (AllocElTySize*ArrayOffset)/CastElTySize) {
|
|
|
|
Value *Off = ConstantInt::get(AI.getArraySize()->getType(),
|
2010-01-04 15:59:07 +08:00
|
|
|
Offset, true);
|
2011-09-28 04:39:19 +08:00
|
|
|
Amt = AllocaBuilder.CreateAdd(Amt, Off);
|
2010-01-04 15:59:07 +08:00
|
|
|
}
|
2013-01-24 13:22:40 +08:00
|
|
|
|
2010-01-04 15:59:07 +08:00
|
|
|
AllocaInst *New = AllocaBuilder.CreateAlloca(CastElTy, Amt);
|
|
|
|
New->setAlignment(AI.getAlignment());
|
|
|
|
New->takeName(&AI);
|
2014-04-29 01:40:03 +08:00
|
|
|
New->setUsedWithInAlloca(AI.isUsedWithInAlloca());
|
2013-01-24 13:22:40 +08:00
|
|
|
|
2010-01-04 15:59:07 +08:00
|
|
|
// If the allocation has multiple real uses, insert a cast and change all
|
|
|
|
// things that used it to use the new cast. This will also hack on CI, but it
|
|
|
|
// will die soon.
|
2011-03-09 06:12:11 +08:00
|
|
|
if (!AI.hasOneUse()) {
|
2010-01-04 15:59:07 +08:00
|
|
|
// New is the allocation instruction, pointer typed. AI is the original
|
|
|
|
// allocation instruction, also pointer typed. Thus, cast to use is BitCast.
|
|
|
|
Value *NewCast = AllocaBuilder.CreateBitCast(New, AI.getType(), "tmpcast");
|
2011-05-18 08:32:01 +08:00
|
|
|
ReplaceInstUsesWith(AI, NewCast);
|
2010-01-04 15:59:07 +08:00
|
|
|
}
|
|
|
|
return ReplaceInstUsesWith(CI, New);
|
|
|
|
}
|
|
|
|
|
2013-01-24 13:22:40 +08:00
|
|
|
/// EvaluateInDifferentType - Given an expression that
|
2010-01-09 03:19:23 +08:00
|
|
|
/// CanEvaluateTruncated or CanEvaluateSExtd returns true for, actually
|
2010-01-06 09:56:21 +08:00
|
|
|
/// insert the code to evaluate the expression.
|
2013-01-24 13:22:40 +08:00
|
|
|
Value *InstCombiner::EvaluateInDifferentType(Value *V, Type *Ty,
|
2010-01-04 15:54:59 +08:00
|
|
|
bool isSigned) {
|
2010-01-09 03:28:47 +08:00
|
|
|
if (Constant *C = dyn_cast<Constant>(V)) {
|
|
|
|
C = ConstantExpr::getIntegerCast(C, Ty, isSigned /*Sext or ZExt*/);
|
2014-02-21 08:06:31 +08:00
|
|
|
// If we got a constantexpr back, try to simplify it with DL info.
|
2010-01-09 03:28:47 +08:00
|
|
|
if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
|
2014-02-21 08:06:31 +08:00
|
|
|
C = ConstantFoldConstantExpression(CE, DL, TLI);
|
2010-01-09 03:28:47 +08:00
|
|
|
return C;
|
|
|
|
}
|
2010-01-04 15:54:59 +08:00
|
|
|
|
|
|
|
// Otherwise, it must be an instruction.
|
|
|
|
Instruction *I = cast<Instruction>(V);
|
2014-04-25 13:29:35 +08:00
|
|
|
Instruction *Res = nullptr;
|
2010-01-04 15:54:59 +08:00
|
|
|
unsigned Opc = I->getOpcode();
|
|
|
|
switch (Opc) {
|
|
|
|
case Instruction::Add:
|
|
|
|
case Instruction::Sub:
|
|
|
|
case Instruction::Mul:
|
|
|
|
case Instruction::And:
|
|
|
|
case Instruction::Or:
|
|
|
|
case Instruction::Xor:
|
|
|
|
case Instruction::AShr:
|
|
|
|
case Instruction::LShr:
|
|
|
|
case Instruction::Shl:
|
|
|
|
case Instruction::UDiv:
|
|
|
|
case Instruction::URem: {
|
|
|
|
Value *LHS = EvaluateInDifferentType(I->getOperand(0), Ty, isSigned);
|
|
|
|
Value *RHS = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned);
|
|
|
|
Res = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
|
|
|
|
break;
|
2013-01-24 13:22:40 +08:00
|
|
|
}
|
2010-01-04 15:54:59 +08:00
|
|
|
case Instruction::Trunc:
|
|
|
|
case Instruction::ZExt:
|
|
|
|
case Instruction::SExt:
|
|
|
|
// If the source type of the cast is the type we're trying for then we can
|
|
|
|
// just return the source. There's no need to insert it because it is not
|
|
|
|
// new.
|
|
|
|
if (I->getOperand(0)->getType() == Ty)
|
|
|
|
return I->getOperand(0);
|
2013-01-24 13:22:40 +08:00
|
|
|
|
2010-01-04 15:54:59 +08:00
|
|
|
// Otherwise, must be the same type of cast, so just reinsert a new one.
|
2010-01-11 04:25:54 +08:00
|
|
|
// This also handles the case of zext(trunc(x)) -> zext(x).
|
|
|
|
Res = CastInst::CreateIntegerCast(I->getOperand(0), Ty,
|
|
|
|
Opc == Instruction::SExt);
|
2010-01-04 15:54:59 +08:00
|
|
|
break;
|
|
|
|
case Instruction::Select: {
|
|
|
|
Value *True = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned);
|
|
|
|
Value *False = EvaluateInDifferentType(I->getOperand(2), Ty, isSigned);
|
|
|
|
Res = SelectInst::Create(I->getOperand(0), True, False);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
case Instruction::PHI: {
|
|
|
|
PHINode *OPN = cast<PHINode>(I);
|
2011-03-30 19:28:46 +08:00
|
|
|
PHINode *NPN = PHINode::Create(Ty, OPN->getNumIncomingValues());
|
2010-01-04 15:54:59 +08:00
|
|
|
for (unsigned i = 0, e = OPN->getNumIncomingValues(); i != e; ++i) {
|
|
|
|
Value *V =EvaluateInDifferentType(OPN->getIncomingValue(i), Ty, isSigned);
|
|
|
|
NPN->addIncoming(V, OPN->getIncomingBlock(i));
|
|
|
|
}
|
|
|
|
Res = NPN;
|
|
|
|
break;
|
|
|
|
}
|
2013-01-24 13:22:40 +08:00
|
|
|
default:
|
2010-01-04 15:54:59 +08:00
|
|
|
// TODO: Can handle more cases here.
|
|
|
|
llvm_unreachable("Unreachable!");
|
|
|
|
}
|
2013-01-24 13:22:40 +08:00
|
|
|
|
2010-01-04 15:54:59 +08:00
|
|
|
Res->takeName(I);
|
2011-05-27 08:19:40 +08:00
|
|
|
return InsertNewInstWith(Res, *I);
|
2010-01-04 15:54:59 +08:00
|
|
|
}
|
2010-01-04 15:53:58 +08:00
|
|
|
|
|
|
|
|
|
|
|
/// This function is a wrapper around CastInst::isEliminableCastPair. It
|
|
|
|
/// simply extracts arguments and returns what that function returns.
|
2013-01-24 13:22:40 +08:00
|
|
|
static Instruction::CastOps
|
2010-01-04 15:53:58 +08:00
|
|
|
isEliminableCastPair(
|
|
|
|
const CastInst *CI, ///< The first cast instruction
|
|
|
|
unsigned opcode, ///< The opcode of the second cast instruction
|
2011-07-18 12:54:35 +08:00
|
|
|
Type *DstTy, ///< The target type for the second cast instruction
|
2014-02-25 07:12:18 +08:00
|
|
|
const DataLayout *DL ///< The target data for pointer size
|
2010-01-04 15:53:58 +08:00
|
|
|
) {
|
|
|
|
|
2011-07-18 12:54:35 +08:00
|
|
|
Type *SrcTy = CI->getOperand(0)->getType(); // A from above
|
|
|
|
Type *MidTy = CI->getType(); // B from above
|
2010-01-04 15:53:58 +08:00
|
|
|
|
|
|
|
// Get the opcodes of the two Cast instructions
|
|
|
|
Instruction::CastOps firstOp = Instruction::CastOps(CI->getOpcode());
|
|
|
|
Instruction::CastOps secondOp = Instruction::CastOps(opcode);
|
2014-02-21 08:06:31 +08:00
|
|
|
Type *SrcIntPtrTy = DL && SrcTy->isPtrOrPtrVectorTy() ?
|
2014-04-25 13:29:35 +08:00
|
|
|
DL->getIntPtrType(SrcTy) : nullptr;
|
2014-02-21 08:06:31 +08:00
|
|
|
Type *MidIntPtrTy = DL && MidTy->isPtrOrPtrVectorTy() ?
|
2014-04-25 13:29:35 +08:00
|
|
|
DL->getIntPtrType(MidTy) : nullptr;
|
2014-02-21 08:06:31 +08:00
|
|
|
Type *DstIntPtrTy = DL && DstTy->isPtrOrPtrVectorTy() ?
|
2014-04-25 13:29:35 +08:00
|
|
|
DL->getIntPtrType(DstTy) : nullptr;
|
2010-01-04 15:53:58 +08:00
|
|
|
unsigned Res = CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy,
|
2012-10-31 00:03:32 +08:00
|
|
|
DstTy, SrcIntPtrTy, MidIntPtrTy,
|
|
|
|
DstIntPtrTy);
|
2012-10-24 23:52:52 +08:00
|
|
|
|
2010-01-04 15:53:58 +08:00
|
|
|
// We don't want to form an inttoptr or ptrtoint that converts to an integer
|
|
|
|
// type that differs from the pointer size.
|
2012-10-31 00:03:32 +08:00
|
|
|
if ((Res == Instruction::IntToPtr && SrcTy != DstIntPtrTy) ||
|
|
|
|
(Res == Instruction::PtrToInt && DstTy != SrcIntPtrTy))
|
2010-01-04 15:53:58 +08:00
|
|
|
Res = 0;
|
2013-01-24 13:22:40 +08:00
|
|
|
|
2010-01-04 15:53:58 +08:00
|
|
|
return Instruction::CastOps(Res);
|
|
|
|
}
|
|
|
|
|
2010-02-11 14:26:33 +08:00
|
|
|
/// ShouldOptimizeCast - Return true if the cast from "V to Ty" actually
|
|
|
|
/// results in any code being generated and is interesting to optimize out. If
|
|
|
|
/// the cast can be eliminated by some other simple transformation, we prefer
|
|
|
|
/// to do the simplification first.
|
|
|
|
bool InstCombiner::ShouldOptimizeCast(Instruction::CastOps opc, const Value *V,
|
2011-07-18 12:54:35 +08:00
|
|
|
Type *Ty) {
|
2010-02-11 14:26:33 +08:00
|
|
|
// Noop casts and casts of constants should be eliminated trivially.
|
2010-01-04 15:53:58 +08:00
|
|
|
if (V->getType() == Ty || isa<Constant>(V)) return false;
|
2013-01-24 13:22:40 +08:00
|
|
|
|
2010-02-11 14:26:33 +08:00
|
|
|
// If this is another cast that can be eliminated, we prefer to have it
|
|
|
|
// eliminated.
|
2010-01-04 15:53:58 +08:00
|
|
|
if (const CastInst *CI = dyn_cast<CastInst>(V))
|
2014-02-21 08:06:31 +08:00
|
|
|
if (isEliminableCastPair(CI, opc, Ty, DL))
|
2010-01-04 15:53:58 +08:00
|
|
|
return false;
|
2013-01-24 13:22:40 +08:00
|
|
|
|
2010-02-11 14:26:33 +08:00
|
|
|
// If this is a vector sext from a compare, then we don't want to break the
|
|
|
|
// idiom where each element of the extended vector is either zero or all ones.
|
2010-02-16 19:11:14 +08:00
|
|
|
if (opc == Instruction::SExt && isa<CmpInst>(V) && Ty->isVectorTy())
|
2010-02-11 14:26:33 +08:00
|
|
|
return false;
|
2013-01-24 13:22:40 +08:00
|
|
|
|
2010-01-04 15:53:58 +08:00
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/// @brief Implement the transforms common to all CastInst visitors.
|
|
|
|
Instruction *InstCombiner::commonCastTransforms(CastInst &CI) {
|
|
|
|
Value *Src = CI.getOperand(0);
|
|
|
|
|
|
|
|
// Many cases of "cast of a cast" are eliminable. If it's eliminable we just
|
|
|
|
// eliminate it now.
|
|
|
|
if (CastInst *CSrc = dyn_cast<CastInst>(Src)) { // A->B->C cast
|
2013-01-24 13:22:40 +08:00
|
|
|
if (Instruction::CastOps opc =
|
2014-02-21 08:06:31 +08:00
|
|
|
isEliminableCastPair(CSrc, CI.getOpcode(), CI.getType(), DL)) {
|
2010-01-04 15:53:58 +08:00
|
|
|
// The first cast (CSrc) is eliminable so we need to fix up or replace
|
|
|
|
// the second cast (CI). CSrc will then have a good chance of being dead.
|
|
|
|
return CastInst::Create(opc, CSrc->getOperand(0), CI.getType());
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// If we are casting a select then fold the cast into the select
|
|
|
|
if (SelectInst *SI = dyn_cast<SelectInst>(Src))
|
|
|
|
if (Instruction *NV = FoldOpIntoSelect(CI, SI))
|
|
|
|
return NV;
|
|
|
|
|
|
|
|
// If we are casting a PHI then fold the cast into the PHI
|
|
|
|
if (isa<PHINode>(Src)) {
|
|
|
|
// We don't do this if this would create a PHI node with an illegal type if
|
|
|
|
// it is currently legal.
|
2010-02-16 19:11:14 +08:00
|
|
|
if (!Src->getType()->isIntegerTy() ||
|
|
|
|
!CI.getType()->isIntegerTy() ||
|
2010-01-04 15:53:58 +08:00
|
|
|
ShouldChangeType(CI.getType(), Src->getType()))
|
|
|
|
if (Instruction *NV = FoldOpIntoPhi(CI))
|
|
|
|
return NV;
|
|
|
|
}
|
2013-01-24 13:22:40 +08:00
|
|
|
|
2014-04-25 13:29:35 +08:00
|
|
|
return nullptr;
|
2010-01-04 15:53:58 +08:00
|
|
|
}
|
|
|
|
|
2010-01-10 08:58:42 +08:00
|
|
|
/// CanEvaluateTruncated - Return true if we can evaluate the specified
|
|
|
|
/// expression tree as type Ty instead of its larger type, and arrive with the
|
|
|
|
/// same value. This is used by code that tries to eliminate truncates.
|
|
|
|
///
|
|
|
|
/// Ty will always be a type smaller than V. We should return true if trunc(V)
|
|
|
|
/// can be computed by computing V in the smaller type. If V is an instruction,
|
|
|
|
/// then trunc(inst(x,y)) can be computed as inst(trunc(x),trunc(y)), which only
|
|
|
|
/// makes sense if x and y can be efficiently truncated.
|
|
|
|
///
|
2010-01-11 10:43:35 +08:00
|
|
|
/// This function works on both vectors and scalars.
|
|
|
|
///
|
Make use of @llvm.assume in ValueTracking (computeKnownBits, etc.)
This change, which allows @llvm.assume to be used from within computeKnownBits
(and other associated functions in ValueTracking), adds some (optional)
parameters to computeKnownBits and friends. These functions now (optionally)
take a "context" instruction pointer, an AssumptionTracker pointer, and also a
DomTree pointer, and most of the changes are just to pass this new information
when it is easily available from InstSimplify, InstCombine, etc.
As explained below, the significant conceptual change is that known properties
of a value might depend on the control-flow location of the use (because we
care that the @llvm.assume dominates the use because assumptions have
control-flow dependencies). This means that, when we ask if bits are known in a
value, we might get different answers for different uses.
The significant changes are all in ValueTracking. Two main changes: First, as
with the rest of the code, new parameters need to be passed around. To make
this easier, I grouped them into a structure, and I made internal static
versions of the relevant functions that take this structure as a parameter. The
new code does as you might expect, it looks for @llvm.assume calls that make
use of the value we're trying to learn something about (often indirectly),
attempts to pattern match that expression, and uses the result if successful.
By making use of the AssumptionTracker, the process of finding @llvm.assume
calls is not expensive.
Part of the structure being passed around inside ValueTracking is a set of
already-considered @llvm.assume calls. This is to prevent a query using, for
example, the assume(a == b), to recurse on itself. The context and DT params
are used to find applicable assumptions. An assumption needs to dominate the
context instruction, or come after it deterministically. In this latter case we
only handle the specific case where both the assumption and the context
instruction are in the same block, and we need to exclude assumptions from
being used to simplify their own ephemeral values (those which contribute only
to the assumption) because otherwise the assumption would prove its feeding
comparison trivial and would be removed.
This commit adds the plumbing and the logic for a simple masked-bit propagation
(just enough to write a regression test). Future commits add more patterns
(and, correspondingly, more regression tests).
llvm-svn: 217342
2014-09-08 02:57:58 +08:00
|
|
|
static bool CanEvaluateTruncated(Value *V, Type *Ty, InstCombiner &IC,
|
|
|
|
Instruction *CxtI) {
|
2010-01-10 08:58:42 +08:00
|
|
|
// We can always evaluate constants in another type.
|
|
|
|
if (isa<Constant>(V))
|
|
|
|
return true;
|
2013-01-24 13:22:40 +08:00
|
|
|
|
2010-01-10 08:58:42 +08:00
|
|
|
Instruction *I = dyn_cast<Instruction>(V);
|
|
|
|
if (!I) return false;
|
2013-01-24 13:22:40 +08:00
|
|
|
|
2011-07-18 12:54:35 +08:00
|
|
|
Type *OrigTy = V->getType();
|
2013-01-24 13:22:40 +08:00
|
|
|
|
2010-01-12 06:45:25 +08:00
|
|
|
// If this is an extension from the dest type, we can eliminate it, even if it
|
|
|
|
// has multiple uses.
|
2013-01-24 13:22:40 +08:00
|
|
|
if ((isa<ZExtInst>(I) || isa<SExtInst>(I)) &&
|
2010-01-10 08:58:42 +08:00
|
|
|
I->getOperand(0)->getType() == Ty)
|
|
|
|
return true;
|
2010-01-08 07:41:00 +08:00
|
|
|
|
2010-01-10 08:58:42 +08:00
|
|
|
// We can't extend or shrink something that has multiple uses: doing so would
|
|
|
|
// require duplicating the instruction in general, which isn't profitable.
|
|
|
|
if (!I->hasOneUse()) return false;
|
2010-01-08 07:41:00 +08:00
|
|
|
|
2010-01-10 08:58:42 +08:00
|
|
|
unsigned Opc = I->getOpcode();
|
|
|
|
switch (Opc) {
|
|
|
|
case Instruction::Add:
|
|
|
|
case Instruction::Sub:
|
|
|
|
case Instruction::Mul:
|
|
|
|
case Instruction::And:
|
|
|
|
case Instruction::Or:
|
|
|
|
case Instruction::Xor:
|
|
|
|
// These operators can all arbitrarily be extended or truncated.
|
Make use of @llvm.assume in ValueTracking (computeKnownBits, etc.)
This change, which allows @llvm.assume to be used from within computeKnownBits
(and other associated functions in ValueTracking), adds some (optional)
parameters to computeKnownBits and friends. These functions now (optionally)
take a "context" instruction pointer, an AssumptionTracker pointer, and also a
DomTree pointer, and most of the changes are just to pass this new information
when it is easily available from InstSimplify, InstCombine, etc.
As explained below, the significant conceptual change is that known properties
of a value might depend on the control-flow location of the use (because we
care that the @llvm.assume dominates the use because assumptions have
control-flow dependencies). This means that, when we ask if bits are known in a
value, we might get different answers for different uses.
The significant changes are all in ValueTracking. Two main changes: First, as
with the rest of the code, new parameters need to be passed around. To make
this easier, I grouped them into a structure, and I made internal static
versions of the relevant functions that take this structure as a parameter. The
new code does as you might expect, it looks for @llvm.assume calls that make
use of the value we're trying to learn something about (often indirectly),
attempts to pattern match that expression, and uses the result if successful.
By making use of the AssumptionTracker, the process of finding @llvm.assume
calls is not expensive.
Part of the structure being passed around inside ValueTracking is a set of
already-considered @llvm.assume calls. This is to prevent a query using, for
example, the assume(a == b), to recurse on itself. The context and DT params
are used to find applicable assumptions. An assumption needs to dominate the
context instruction, or come after it deterministically. In this latter case we
only handle the specific case where both the assumption and the context
instruction are in the same block, and we need to exclude assumptions from
being used to simplify their own ephemeral values (those which contribute only
to the assumption) because otherwise the assumption would prove its feeding
comparison trivial and would be removed.
This commit adds the plumbing and the logic for a simple masked-bit propagation
(just enough to write a regression test). Future commits add more patterns
(and, correspondingly, more regression tests).
llvm-svn: 217342
2014-09-08 02:57:58 +08:00
|
|
|
return CanEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) &&
|
|
|
|
CanEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI);
|
2010-01-08 07:41:00 +08:00
|
|
|
|
2010-01-10 08:58:42 +08:00
|
|
|
case Instruction::UDiv:
|
|
|
|
case Instruction::URem: {
|
|
|
|
// UDiv and URem can be truncated if all the truncated bits are zero.
|
|
|
|
uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
|
|
|
|
uint32_t BitWidth = Ty->getScalarSizeInBits();
|
|
|
|
if (BitWidth < OrigBitWidth) {
|
|
|
|
APInt Mask = APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth);
|
Make use of @llvm.assume in ValueTracking (computeKnownBits, etc.)
This change, which allows @llvm.assume to be used from within computeKnownBits
(and other associated functions in ValueTracking), adds some (optional)
parameters to computeKnownBits and friends. These functions now (optionally)
take a "context" instruction pointer, an AssumptionTracker pointer, and also a
DomTree pointer, and most of the changes are just to pass this new information
when it is easily available from InstSimplify, InstCombine, etc.
As explained below, the significant conceptual change is that known properties
of a value might depend on the control-flow location of the use (because we
care that the @llvm.assume dominates the use because assumptions have
control-flow dependencies). This means that, when we ask if bits are known in a
value, we might get different answers for different uses.
The significant changes are all in ValueTracking. Two main changes: First, as
with the rest of the code, new parameters need to be passed around. To make
this easier, I grouped them into a structure, and I made internal static
versions of the relevant functions that take this structure as a parameter. The
new code does as you might expect, it looks for @llvm.assume calls that make
use of the value we're trying to learn something about (often indirectly),
attempts to pattern match that expression, and uses the result if successful.
By making use of the AssumptionTracker, the process of finding @llvm.assume
calls is not expensive.
Part of the structure being passed around inside ValueTracking is a set of
already-considered @llvm.assume calls. This is to prevent a query using, for
example, the assume(a == b), to recurse on itself. The context and DT params
are used to find applicable assumptions. An assumption needs to dominate the
context instruction, or come after it deterministically. In this latter case we
only handle the specific case where both the assumption and the context
instruction are in the same block, and we need to exclude assumptions from
being used to simplify their own ephemeral values (those which contribute only
to the assumption) because otherwise the assumption would prove its feeding
comparison trivial and would be removed.
This commit adds the plumbing and the logic for a simple masked-bit propagation
(just enough to write a regression test). Future commits add more patterns
(and, correspondingly, more regression tests).
llvm-svn: 217342
2014-09-08 02:57:58 +08:00
|
|
|
if (IC.MaskedValueIsZero(I->getOperand(0), Mask, 0, CxtI) &&
|
|
|
|
IC.MaskedValueIsZero(I->getOperand(1), Mask, 0, CxtI)) {
|
|
|
|
return CanEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) &&
|
|
|
|
CanEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI);
|
2010-01-10 08:58:42 +08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
break;
|
2010-01-08 07:41:00 +08:00
|
|
|
}
|
2010-01-10 08:58:42 +08:00
|
|
|
case Instruction::Shl:
|
|
|
|
// If we are truncating the result of this SHL, and if it's a shift of a
|
|
|
|
// constant amount, we can always perform a SHL in a smaller type.
|
|
|
|
if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
|
|
|
|
uint32_t BitWidth = Ty->getScalarSizeInBits();
|
|
|
|
if (CI->getLimitedValue(BitWidth) < BitWidth)
|
Make use of @llvm.assume in ValueTracking (computeKnownBits, etc.)
This change, which allows @llvm.assume to be used from within computeKnownBits
(and other associated functions in ValueTracking), adds some (optional)
parameters to computeKnownBits and friends. These functions now (optionally)
take a "context" instruction pointer, an AssumptionTracker pointer, and also a
DomTree pointer, and most of the changes are just to pass this new information
when it is easily available from InstSimplify, InstCombine, etc.
As explained below, the significant conceptual change is that known properties
of a value might depend on the control-flow location of the use (because we
care that the @llvm.assume dominates the use because assumptions have
control-flow dependencies). This means that, when we ask if bits are known in a
value, we might get different answers for different uses.
The significant changes are all in ValueTracking. Two main changes: First, as
with the rest of the code, new parameters need to be passed around. To make
this easier, I grouped them into a structure, and I made internal static
versions of the relevant functions that take this structure as a parameter. The
new code does as you might expect, it looks for @llvm.assume calls that make
use of the value we're trying to learn something about (often indirectly),
attempts to pattern match that expression, and uses the result if successful.
By making use of the AssumptionTracker, the process of finding @llvm.assume
calls is not expensive.
Part of the structure being passed around inside ValueTracking is a set of
already-considered @llvm.assume calls. This is to prevent a query using, for
example, the assume(a == b), to recurse on itself. The context and DT params
are used to find applicable assumptions. An assumption needs to dominate the
context instruction, or come after it deterministically. In this latter case we
only handle the specific case where both the assumption and the context
instruction are in the same block, and we need to exclude assumptions from
being used to simplify their own ephemeral values (those which contribute only
to the assumption) because otherwise the assumption would prove its feeding
comparison trivial and would be removed.
This commit adds the plumbing and the logic for a simple masked-bit propagation
(just enough to write a regression test). Future commits add more patterns
(and, correspondingly, more regression tests).
llvm-svn: 217342
2014-09-08 02:57:58 +08:00
|
|
|
return CanEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI);
|
2010-01-10 08:58:42 +08:00
|
|
|
}
|
|
|
|
break;
|
|
|
|
case Instruction::LShr:
|
|
|
|
// If this is a truncate of a logical shr, we can truncate it to a smaller
|
2012-09-27 18:14:43 +08:00
|
|
|
// lshr iff we know that the bits we would otherwise be shifting in are
|
2010-01-10 08:58:42 +08:00
|
|
|
// already zeros.
|
|
|
|
if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
|
|
|
|
uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
|
|
|
|
uint32_t BitWidth = Ty->getScalarSizeInBits();
|
Make use of @llvm.assume in ValueTracking (computeKnownBits, etc.)
This change, which allows @llvm.assume to be used from within computeKnownBits
(and other associated functions in ValueTracking), adds some (optional)
parameters to computeKnownBits and friends. These functions now (optionally)
take a "context" instruction pointer, an AssumptionTracker pointer, and also a
DomTree pointer, and most of the changes are just to pass this new information
when it is easily available from InstSimplify, InstCombine, etc.
As explained below, the significant conceptual change is that known properties
of a value might depend on the control-flow location of the use (because we
care that the @llvm.assume dominates the use because assumptions have
control-flow dependencies). This means that, when we ask if bits are known in a
value, we might get different answers for different uses.
The significant changes are all in ValueTracking. Two main changes: First, as
with the rest of the code, new parameters need to be passed around. To make
this easier, I grouped them into a structure, and I made internal static
versions of the relevant functions that take this structure as a parameter. The
new code does as you might expect, it looks for @llvm.assume calls that make
use of the value we're trying to learn something about (often indirectly),
attempts to pattern match that expression, and uses the result if successful.
By making use of the AssumptionTracker, the process of finding @llvm.assume
calls is not expensive.
Part of the structure being passed around inside ValueTracking is a set of
already-considered @llvm.assume calls. This is to prevent a query using, for
example, the assume(a == b), to recurse on itself. The context and DT params
are used to find applicable assumptions. An assumption needs to dominate the
context instruction, or come after it deterministically. In this latter case we
only handle the specific case where both the assumption and the context
instruction are in the same block, and we need to exclude assumptions from
being used to simplify their own ephemeral values (those which contribute only
to the assumption) because otherwise the assumption would prove its feeding
comparison trivial and would be removed.
This commit adds the plumbing and the logic for a simple masked-bit propagation
(just enough to write a regression test). Future commits add more patterns
(and, correspondingly, more regression tests).
llvm-svn: 217342
2014-09-08 02:57:58 +08:00
|
|
|
if (IC.MaskedValueIsZero(I->getOperand(0),
|
|
|
|
APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth), 0, CxtI) &&
|
2010-01-10 08:58:42 +08:00
|
|
|
CI->getLimitedValue(BitWidth) < BitWidth) {
|
Make use of @llvm.assume in ValueTracking (computeKnownBits, etc.)
This change, which allows @llvm.assume to be used from within computeKnownBits
(and other associated functions in ValueTracking), adds some (optional)
parameters to computeKnownBits and friends. These functions now (optionally)
take a "context" instruction pointer, an AssumptionTracker pointer, and also a
DomTree pointer, and most of the changes are just to pass this new information
when it is easily available from InstSimplify, InstCombine, etc.
As explained below, the significant conceptual change is that known properties
of a value might depend on the control-flow location of the use (because we
care that the @llvm.assume dominates the use because assumptions have
control-flow dependencies). This means that, when we ask if bits are known in a
value, we might get different answers for different uses.
The significant changes are all in ValueTracking. Two main changes: First, as
with the rest of the code, new parameters need to be passed around. To make
this easier, I grouped them into a structure, and I made internal static
versions of the relevant functions that take this structure as a parameter. The
new code does as you might expect, it looks for @llvm.assume calls that make
use of the value we're trying to learn something about (often indirectly),
attempts to pattern match that expression, and uses the result if successful.
By making use of the AssumptionTracker, the process of finding @llvm.assume
calls is not expensive.
Part of the structure being passed around inside ValueTracking is a set of
already-considered @llvm.assume calls. This is to prevent a query using, for
example, the assume(a == b), to recurse on itself. The context and DT params
are used to find applicable assumptions. An assumption needs to dominate the
context instruction, or come after it deterministically. In this latter case we
only handle the specific case where both the assumption and the context
instruction are in the same block, and we need to exclude assumptions from
being used to simplify their own ephemeral values (those which contribute only
to the assumption) because otherwise the assumption would prove its feeding
comparison trivial and would be removed.
This commit adds the plumbing and the logic for a simple masked-bit propagation
(just enough to write a regression test). Future commits add more patterns
(and, correspondingly, more regression tests).
llvm-svn: 217342
2014-09-08 02:57:58 +08:00
|
|
|
return CanEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI);
|
2010-01-10 08:58:42 +08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
case Instruction::Trunc:
|
|
|
|
// trunc(trunc(x)) -> trunc(x)
|
|
|
|
return true;
|
2010-08-28 04:32:06 +08:00
|
|
|
case Instruction::ZExt:
|
|
|
|
case Instruction::SExt:
|
|
|
|
// trunc(ext(x)) -> ext(x) if the source type is smaller than the new dest
|
|
|
|
// trunc(ext(x)) -> trunc(x) if the source type is larger than the new dest
|
|
|
|
return true;
|
2010-01-10 08:58:42 +08:00
|
|
|
case Instruction::Select: {
|
|
|
|
SelectInst *SI = cast<SelectInst>(I);
|
Make use of @llvm.assume in ValueTracking (computeKnownBits, etc.)
This change, which allows @llvm.assume to be used from within computeKnownBits
(and other associated functions in ValueTracking), adds some (optional)
parameters to computeKnownBits and friends. These functions now (optionally)
take a "context" instruction pointer, an AssumptionTracker pointer, and also a
DomTree pointer, and most of the changes are just to pass this new information
when it is easily available from InstSimplify, InstCombine, etc.
As explained below, the significant conceptual change is that known properties
of a value might depend on the control-flow location of the use (because we
care that the @llvm.assume dominates the use because assumptions have
control-flow dependencies). This means that, when we ask if bits are known in a
value, we might get different answers for different uses.
The significant changes are all in ValueTracking. Two main changes: First, as
with the rest of the code, new parameters need to be passed around. To make
this easier, I grouped them into a structure, and I made internal static
versions of the relevant functions that take this structure as a parameter. The
new code does as you might expect, it looks for @llvm.assume calls that make
use of the value we're trying to learn something about (often indirectly),
attempts to pattern match that expression, and uses the result if successful.
By making use of the AssumptionTracker, the process of finding @llvm.assume
calls is not expensive.
Part of the structure being passed around inside ValueTracking is a set of
already-considered @llvm.assume calls. This is to prevent a query using, for
example, the assume(a == b), to recurse on itself. The context and DT params
are used to find applicable assumptions. An assumption needs to dominate the
context instruction, or come after it deterministically. In this latter case we
only handle the specific case where both the assumption and the context
instruction are in the same block, and we need to exclude assumptions from
being used to simplify their own ephemeral values (those which contribute only
to the assumption) because otherwise the assumption would prove its feeding
comparison trivial and would be removed.
This commit adds the plumbing and the logic for a simple masked-bit propagation
(just enough to write a regression test). Future commits add more patterns
(and, correspondingly, more regression tests).
llvm-svn: 217342
2014-09-08 02:57:58 +08:00
|
|
|
return CanEvaluateTruncated(SI->getTrueValue(), Ty, IC, CxtI) &&
|
|
|
|
CanEvaluateTruncated(SI->getFalseValue(), Ty, IC, CxtI);
|
2010-01-10 08:58:42 +08:00
|
|
|
}
|
|
|
|
case Instruction::PHI: {
|
|
|
|
// We can change a phi if we can change all operands. Note that we never
|
|
|
|
// get into trouble with cyclic PHIs here because we only consider
|
|
|
|
// instructions with a single use.
|
|
|
|
PHINode *PN = cast<PHINode>(I);
|
|
|
|
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
|
Make use of @llvm.assume in ValueTracking (computeKnownBits, etc.)
This change, which allows @llvm.assume to be used from within computeKnownBits
(and other associated functions in ValueTracking), adds some (optional)
parameters to computeKnownBits and friends. These functions now (optionally)
take a "context" instruction pointer, an AssumptionTracker pointer, and also a
DomTree pointer, and most of the changes are just to pass this new information
when it is easily available from InstSimplify, InstCombine, etc.
As explained below, the significant conceptual change is that known properties
of a value might depend on the control-flow location of the use (because we
care that the @llvm.assume dominates the use because assumptions have
control-flow dependencies). This means that, when we ask if bits are known in a
value, we might get different answers for different uses.
The significant changes are all in ValueTracking. Two main changes: First, as
with the rest of the code, new parameters need to be passed around. To make
this easier, I grouped them into a structure, and I made internal static
versions of the relevant functions that take this structure as a parameter. The
new code does as you might expect, it looks for @llvm.assume calls that make
use of the value we're trying to learn something about (often indirectly),
attempts to pattern match that expression, and uses the result if successful.
By making use of the AssumptionTracker, the process of finding @llvm.assume
calls is not expensive.
Part of the structure being passed around inside ValueTracking is a set of
already-considered @llvm.assume calls. This is to prevent a query using, for
example, the assume(a == b), to recurse on itself. The context and DT params
are used to find applicable assumptions. An assumption needs to dominate the
context instruction, or come after it deterministically. In this latter case we
only handle the specific case where both the assumption and the context
instruction are in the same block, and we need to exclude assumptions from
being used to simplify their own ephemeral values (those which contribute only
to the assumption) because otherwise the assumption would prove its feeding
comparison trivial and would be removed.
This commit adds the plumbing and the logic for a simple masked-bit propagation
(just enough to write a regression test). Future commits add more patterns
(and, correspondingly, more regression tests).
llvm-svn: 217342
2014-09-08 02:57:58 +08:00
|
|
|
if (!CanEvaluateTruncated(PN->getIncomingValue(i), Ty, IC, CxtI))
|
2010-01-10 08:58:42 +08:00
|
|
|
return false;
|
|
|
|
return true;
|
2010-01-06 09:56:21 +08:00
|
|
|
}
|
2010-01-10 08:58:42 +08:00
|
|
|
default:
|
|
|
|
// TODO: Can handle more cases here.
|
|
|
|
break;
|
2010-01-04 15:53:58 +08:00
|
|
|
}
|
2013-01-24 13:22:40 +08:00
|
|
|
|
2010-01-10 08:58:42 +08:00
|
|
|
return false;
|
2010-01-04 15:53:58 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
Instruction *InstCombiner::visitTrunc(TruncInst &CI) {
|
2010-01-10 09:00:46 +08:00
|
|
|
if (Instruction *Result = commonCastTransforms(CI))
|
2010-01-04 15:53:58 +08:00
|
|
|
return Result;
|
2013-01-24 13:22:40 +08:00
|
|
|
|
|
|
|
// See if we can simplify any instructions used by the input whose sole
|
2010-01-10 09:00:46 +08:00
|
|
|
// purpose is to compute bits we don't care about.
|
|
|
|
if (SimplifyDemandedInstructionBits(CI))
|
|
|
|
return &CI;
|
2013-01-24 13:22:40 +08:00
|
|
|
|
2010-01-04 15:53:58 +08:00
|
|
|
Value *Src = CI.getOperand(0);
|
2011-07-18 12:54:35 +08:00
|
|
|
Type *DestTy = CI.getType(), *SrcTy = Src->getType();
|
2013-01-24 13:22:40 +08:00
|
|
|
|
2010-01-10 08:58:42 +08:00
|
|
|
// Attempt to truncate the entire input expression tree to the destination
|
|
|
|
// type. Only do this if the dest type is a simple type, don't convert the
|
|
|
|
// expression tree to something weird like i93 unless the source is also
|
|
|
|
// strange.
|
2010-02-16 19:11:14 +08:00
|
|
|
if ((DestTy->isVectorTy() || ShouldChangeType(SrcTy, DestTy)) &&
|
Make use of @llvm.assume in ValueTracking (computeKnownBits, etc.)
This change, which allows @llvm.assume to be used from within computeKnownBits
(and other associated functions in ValueTracking), adds some (optional)
parameters to computeKnownBits and friends. These functions now (optionally)
take a "context" instruction pointer, an AssumptionTracker pointer, and also a
DomTree pointer, and most of the changes are just to pass this new information
when it is easily available from InstSimplify, InstCombine, etc.
As explained below, the significant conceptual change is that known properties
of a value might depend on the control-flow location of the use (because we
care that the @llvm.assume dominates the use because assumptions have
control-flow dependencies). This means that, when we ask if bits are known in a
value, we might get different answers for different uses.
The significant changes are all in ValueTracking. Two main changes: First, as
with the rest of the code, new parameters need to be passed around. To make
this easier, I grouped them into a structure, and I made internal static
versions of the relevant functions that take this structure as a parameter. The
new code does as you might expect, it looks for @llvm.assume calls that make
use of the value we're trying to learn something about (often indirectly),
attempts to pattern match that expression, and uses the result if successful.
By making use of the AssumptionTracker, the process of finding @llvm.assume
calls is not expensive.
Part of the structure being passed around inside ValueTracking is a set of
already-considered @llvm.assume calls. This is to prevent a query using, for
example, the assume(a == b), to recurse on itself. The context and DT params
are used to find applicable assumptions. An assumption needs to dominate the
context instruction, or come after it deterministically. In this latter case we
only handle the specific case where both the assumption and the context
instruction are in the same block, and we need to exclude assumptions from
being used to simplify their own ephemeral values (those which contribute only
to the assumption) because otherwise the assumption would prove its feeding
comparison trivial and would be removed.
This commit adds the plumbing and the logic for a simple masked-bit propagation
(just enough to write a regression test). Future commits add more patterns
(and, correspondingly, more regression tests).
llvm-svn: 217342
2014-09-08 02:57:58 +08:00
|
|
|
CanEvaluateTruncated(Src, DestTy, *this, &CI)) {
|
2013-01-24 13:22:40 +08:00
|
|
|
|
2010-01-10 08:58:42 +08:00
|
|
|
// If this cast is a truncate, evaluting in a different type always
|
|
|
|
// eliminates the cast, so it is always a win.
|
|
|
|
DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type"
|
2010-05-26 05:50:35 +08:00
|
|
|
" to avoid cast: " << CI << '\n');
|
2010-01-10 08:58:42 +08:00
|
|
|
Value *Res = EvaluateInDifferentType(Src, DestTy, false);
|
|
|
|
assert(Res->getType() == DestTy);
|
|
|
|
return ReplaceInstUsesWith(CI, Res);
|
|
|
|
}
|
2010-01-04 15:53:58 +08:00
|
|
|
|
2010-01-06 06:21:18 +08:00
|
|
|
// Canonicalize trunc x to i1 -> (icmp ne (and x, 1), 0), likewise for vector.
|
|
|
|
if (DestTy->getScalarSizeInBits() == 1) {
|
2010-01-04 15:53:58 +08:00
|
|
|
Constant *One = ConstantInt::get(Src->getType(), 1);
|
2011-09-28 04:39:19 +08:00
|
|
|
Src = Builder->CreateAnd(Src, One);
|
2010-01-04 15:53:58 +08:00
|
|
|
Value *Zero = Constant::getNullValue(Src->getType());
|
|
|
|
return new ICmpInst(ICmpInst::ICMP_NE, Src, Zero);
|
|
|
|
}
|
2013-01-24 13:22:40 +08:00
|
|
|
|
Add an instcombine to clean up a common pattern produced
by the SRoA "promote to large integer" code, eliminating
some type conversions like this:
%94 = zext i16 %93 to i32 ; <i32> [#uses=2]
%96 = lshr i32 %94, 8 ; <i32> [#uses=1]
%101 = trunc i32 %96 to i8 ; <i8> [#uses=1]
This also unblocks other xforms from happening, now clang is able to compile:
struct S { float A, B, C, D; };
float foo(struct S A) { return A.A + A.B+A.C+A.D; }
into:
_foo: ## @foo
## BB#0: ## %entry
pshufd $1, %xmm0, %xmm2
addss %xmm0, %xmm2
movdqa %xmm1, %xmm3
addss %xmm2, %xmm3
pshufd $1, %xmm1, %xmm0
addss %xmm3, %xmm0
ret
on x86-64, instead of:
_foo: ## @foo
## BB#0: ## %entry
movd %xmm0, %rax
shrq $32, %rax
movd %eax, %xmm2
addss %xmm0, %xmm2
movapd %xmm1, %xmm3
addss %xmm2, %xmm3
movd %xmm1, %rax
shrq $32, %rax
movd %eax, %xmm0
addss %xmm3, %xmm0
ret
This seems pretty close to optimal to me, at least without
using horizontal adds. This also triggers in lots of other
code, including SPEC.
llvm-svn: 112278
2010-08-28 02:31:05 +08:00
|
|
|
// Transform trunc(lshr (zext A), Cst) to eliminate one type conversion.
|
2014-04-25 13:29:35 +08:00
|
|
|
Value *A = nullptr; ConstantInt *Cst = nullptr;
|
implement an instcombine xform that canonicalizes casts outside of and-with-constant operations.
This fixes rdar://8808586 which observed that we used to compile:
union xy {
struct x { _Bool b[15]; } x;
__attribute__((packed))
struct y {
__attribute__((packed)) unsigned long b0to7;
__attribute__((packed)) unsigned int b8to11;
__attribute__((packed)) unsigned short b12to13;
__attribute__((packed)) unsigned char b14;
} y;
};
struct x
foo(union xy *xy)
{
return xy->x;
}
into:
_foo: ## @foo
movq (%rdi), %rax
movabsq $1095216660480, %rcx ## imm = 0xFF00000000
andq %rax, %rcx
movabsq $-72057594037927936, %rdx ## imm = 0xFF00000000000000
andq %rax, %rdx
movzbl %al, %esi
orq %rdx, %rsi
movq %rax, %rdx
andq $65280, %rdx ## imm = 0xFF00
orq %rsi, %rdx
movq %rax, %rsi
andq $16711680, %rsi ## imm = 0xFF0000
orq %rdx, %rsi
movl %eax, %edx
andl $-16777216, %edx ## imm = 0xFFFFFFFFFF000000
orq %rsi, %rdx
orq %rcx, %rdx
movabsq $280375465082880, %rcx ## imm = 0xFF0000000000
movq %rax, %rsi
andq %rcx, %rsi
orq %rdx, %rsi
movabsq $71776119061217280, %r8 ## imm = 0xFF000000000000
andq %r8, %rax
orq %rsi, %rax
movzwl 12(%rdi), %edx
movzbl 14(%rdi), %esi
shlq $16, %rsi
orl %edx, %esi
movq %rsi, %r9
shlq $32, %r9
movl 8(%rdi), %edx
orq %r9, %rdx
andq %rdx, %rcx
movzbl %sil, %esi
shlq $32, %rsi
orq %rcx, %rsi
movl %edx, %ecx
andl $-16777216, %ecx ## imm = 0xFFFFFFFFFF000000
orq %rsi, %rcx
movq %rdx, %rsi
andq $16711680, %rsi ## imm = 0xFF0000
orq %rcx, %rsi
movq %rdx, %rcx
andq $65280, %rcx ## imm = 0xFF00
orq %rsi, %rcx
movzbl %dl, %esi
orq %rcx, %rsi
andq %r8, %rdx
orq %rsi, %rdx
ret
We now compile this into:
_foo: ## @foo
## BB#0: ## %entry
movzwl 12(%rdi), %eax
movzbl 14(%rdi), %ecx
shlq $16, %rcx
orl %eax, %ecx
shlq $32, %rcx
movl 8(%rdi), %edx
orq %rcx, %rdx
movq (%rdi), %rax
ret
A small improvement :-)
llvm-svn: 123520
2011-01-15 14:32:33 +08:00
|
|
|
if (Src->hasOneUse() &&
|
|
|
|
match(Src, m_LShr(m_ZExt(m_Value(A)), m_ConstantInt(Cst)))) {
|
Add an instcombine to clean up a common pattern produced
by the SRoA "promote to large integer" code, eliminating
some type conversions like this:
%94 = zext i16 %93 to i32 ; <i32> [#uses=2]
%96 = lshr i32 %94, 8 ; <i32> [#uses=1]
%101 = trunc i32 %96 to i8 ; <i8> [#uses=1]
This also unblocks other xforms from happening, now clang is able to compile:
struct S { float A, B, C, D; };
float foo(struct S A) { return A.A + A.B+A.C+A.D; }
into:
_foo: ## @foo
## BB#0: ## %entry
pshufd $1, %xmm0, %xmm2
addss %xmm0, %xmm2
movdqa %xmm1, %xmm3
addss %xmm2, %xmm3
pshufd $1, %xmm1, %xmm0
addss %xmm3, %xmm0
ret
on x86-64, instead of:
_foo: ## @foo
## BB#0: ## %entry
movd %xmm0, %rax
shrq $32, %rax
movd %eax, %xmm2
addss %xmm0, %xmm2
movapd %xmm1, %xmm3
addss %xmm2, %xmm3
movd %xmm1, %rax
shrq $32, %rax
movd %eax, %xmm0
addss %xmm3, %xmm0
ret
This seems pretty close to optimal to me, at least without
using horizontal adds. This also triggers in lots of other
code, including SPEC.
llvm-svn: 112278
2010-08-28 02:31:05 +08:00
|
|
|
// We have three types to worry about here, the type of A, the source of
|
|
|
|
// the truncate (MidSize), and the destination of the truncate. We know that
|
|
|
|
// ASize < MidSize and MidSize > ResultSize, but don't know the relation
|
|
|
|
// between ASize and ResultSize.
|
|
|
|
unsigned ASize = A->getType()->getPrimitiveSizeInBits();
|
2013-01-24 13:22:40 +08:00
|
|
|
|
Add an instcombine to clean up a common pattern produced
by the SRoA "promote to large integer" code, eliminating
some type conversions like this:
%94 = zext i16 %93 to i32 ; <i32> [#uses=2]
%96 = lshr i32 %94, 8 ; <i32> [#uses=1]
%101 = trunc i32 %96 to i8 ; <i8> [#uses=1]
This also unblocks other xforms from happening, now clang is able to compile:
struct S { float A, B, C, D; };
float foo(struct S A) { return A.A + A.B+A.C+A.D; }
into:
_foo: ## @foo
## BB#0: ## %entry
pshufd $1, %xmm0, %xmm2
addss %xmm0, %xmm2
movdqa %xmm1, %xmm3
addss %xmm2, %xmm3
pshufd $1, %xmm1, %xmm0
addss %xmm3, %xmm0
ret
on x86-64, instead of:
_foo: ## @foo
## BB#0: ## %entry
movd %xmm0, %rax
shrq $32, %rax
movd %eax, %xmm2
addss %xmm0, %xmm2
movapd %xmm1, %xmm3
addss %xmm2, %xmm3
movd %xmm1, %rax
shrq $32, %rax
movd %eax, %xmm0
addss %xmm3, %xmm0
ret
This seems pretty close to optimal to me, at least without
using horizontal adds. This also triggers in lots of other
code, including SPEC.
llvm-svn: 112278
2010-08-28 02:31:05 +08:00
|
|
|
// If the shift amount is larger than the size of A, then the result is
|
|
|
|
// known to be zero because all the input bits got shifted out.
|
|
|
|
if (Cst->getZExtValue() >= ASize)
|
|
|
|
return ReplaceInstUsesWith(CI, Constant::getNullValue(CI.getType()));
|
|
|
|
|
|
|
|
// Since we're doing an lshr and a zero extend, and know that the shift
|
|
|
|
// amount is smaller than ASize, it is always safe to do the shift in A's
|
|
|
|
// type, then zero extend or truncate to the result.
|
|
|
|
Value *Shift = Builder->CreateLShr(A, Cst->getZExtValue());
|
|
|
|
Shift->takeName(Src);
|
|
|
|
return CastInst::CreateIntegerCast(Shift, CI.getType(), false);
|
|
|
|
}
|
2013-01-24 13:22:40 +08:00
|
|
|
|
implement an instcombine xform that canonicalizes casts outside of and-with-constant operations.
This fixes rdar://8808586 which observed that we used to compile:
union xy {
struct x { _Bool b[15]; } x;
__attribute__((packed))
struct y {
__attribute__((packed)) unsigned long b0to7;
__attribute__((packed)) unsigned int b8to11;
__attribute__((packed)) unsigned short b12to13;
__attribute__((packed)) unsigned char b14;
} y;
};
struct x
foo(union xy *xy)
{
return xy->x;
}
into:
_foo: ## @foo
movq (%rdi), %rax
movabsq $1095216660480, %rcx ## imm = 0xFF00000000
andq %rax, %rcx
movabsq $-72057594037927936, %rdx ## imm = 0xFF00000000000000
andq %rax, %rdx
movzbl %al, %esi
orq %rdx, %rsi
movq %rax, %rdx
andq $65280, %rdx ## imm = 0xFF00
orq %rsi, %rdx
movq %rax, %rsi
andq $16711680, %rsi ## imm = 0xFF0000
orq %rdx, %rsi
movl %eax, %edx
andl $-16777216, %edx ## imm = 0xFFFFFFFFFF000000
orq %rsi, %rdx
orq %rcx, %rdx
movabsq $280375465082880, %rcx ## imm = 0xFF0000000000
movq %rax, %rsi
andq %rcx, %rsi
orq %rdx, %rsi
movabsq $71776119061217280, %r8 ## imm = 0xFF000000000000
andq %r8, %rax
orq %rsi, %rax
movzwl 12(%rdi), %edx
movzbl 14(%rdi), %esi
shlq $16, %rsi
orl %edx, %esi
movq %rsi, %r9
shlq $32, %r9
movl 8(%rdi), %edx
orq %r9, %rdx
andq %rdx, %rcx
movzbl %sil, %esi
shlq $32, %rsi
orq %rcx, %rsi
movl %edx, %ecx
andl $-16777216, %ecx ## imm = 0xFFFFFFFFFF000000
orq %rsi, %rcx
movq %rdx, %rsi
andq $16711680, %rsi ## imm = 0xFF0000
orq %rcx, %rsi
movq %rdx, %rcx
andq $65280, %rcx ## imm = 0xFF00
orq %rsi, %rcx
movzbl %dl, %esi
orq %rcx, %rsi
andq %r8, %rdx
orq %rsi, %rdx
ret
We now compile this into:
_foo: ## @foo
## BB#0: ## %entry
movzwl 12(%rdi), %eax
movzbl 14(%rdi), %ecx
shlq $16, %rcx
orl %eax, %ecx
shlq $32, %rcx
movl 8(%rdi), %edx
orq %rcx, %rdx
movq (%rdi), %rax
ret
A small improvement :-)
llvm-svn: 123520
2011-01-15 14:32:33 +08:00
|
|
|
// Transform "trunc (and X, cst)" -> "and (trunc X), cst" so long as the dest
|
|
|
|
// type isn't non-native.
|
|
|
|
if (Src->hasOneUse() && isa<IntegerType>(Src->getType()) &&
|
|
|
|
ShouldChangeType(Src->getType(), CI.getType()) &&
|
|
|
|
match(Src, m_And(m_Value(A), m_ConstantInt(Cst)))) {
|
|
|
|
Value *NewTrunc = Builder->CreateTrunc(A, CI.getType(), A->getName()+".tr");
|
|
|
|
return BinaryOperator::CreateAnd(NewTrunc,
|
|
|
|
ConstantExpr::getTrunc(Cst, CI.getType()));
|
|
|
|
}
|
2010-01-04 15:53:58 +08:00
|
|
|
|
2014-04-25 13:29:35 +08:00
|
|
|
return nullptr;
|
2010-01-04 15:53:58 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
/// transformZExtICmp - Transform (zext icmp) to bitwise / integer operations
|
|
|
|
/// in order to eliminate the icmp.
|
|
|
|
Instruction *InstCombiner::transformZExtICmp(ICmpInst *ICI, Instruction &CI,
|
|
|
|
bool DoXform) {
|
|
|
|
// If we are just checking for a icmp eq of a single bit and zext'ing it
|
|
|
|
// to an integer, then shift the bit to the appropriate place and then
|
|
|
|
// cast to integer to avoid the comparison.
|
|
|
|
if (ConstantInt *Op1C = dyn_cast<ConstantInt>(ICI->getOperand(1))) {
|
|
|
|
const APInt &Op1CV = Op1C->getValue();
|
2013-01-24 13:22:40 +08:00
|
|
|
|
2010-01-04 15:53:58 +08:00
|
|
|
// zext (x <s 0) to i32 --> x>>u31 true if signbit set.
|
|
|
|
// zext (x >s -1) to i32 --> (x>>u31)^1 true if signbit clear.
|
|
|
|
if ((ICI->getPredicate() == ICmpInst::ICMP_SLT && Op1CV == 0) ||
|
|
|
|
(ICI->getPredicate() == ICmpInst::ICMP_SGT &&Op1CV.isAllOnesValue())) {
|
|
|
|
if (!DoXform) return ICI;
|
|
|
|
|
|
|
|
Value *In = ICI->getOperand(0);
|
|
|
|
Value *Sh = ConstantInt::get(In->getType(),
|
|
|
|
In->getType()->getScalarSizeInBits()-1);
|
|
|
|
In = Builder->CreateLShr(In, Sh, In->getName()+".lobit");
|
|
|
|
if (In->getType() != CI.getType())
|
2011-09-28 04:39:19 +08:00
|
|
|
In = Builder->CreateIntCast(In, CI.getType(), false/*ZExt*/);
|
2010-01-04 15:53:58 +08:00
|
|
|
|
|
|
|
if (ICI->getPredicate() == ICmpInst::ICMP_SGT) {
|
|
|
|
Constant *One = ConstantInt::get(In->getType(), 1);
|
|
|
|
In = Builder->CreateXor(In, One, In->getName()+".not");
|
|
|
|
}
|
|
|
|
|
|
|
|
return ReplaceInstUsesWith(CI, In);
|
|
|
|
}
|
2011-11-30 09:59:59 +08:00
|
|
|
|
2012-09-27 18:14:43 +08:00
|
|
|
// zext (X == 0) to i32 --> X^1 iff X has only the low bit set.
|
|
|
|
// zext (X == 0) to i32 --> (X>>1)^1 iff X has only the 2nd bit set.
|
|
|
|
// zext (X == 1) to i32 --> X iff X has only the low bit set.
|
|
|
|
// zext (X == 2) to i32 --> X>>1 iff X has only the 2nd bit set.
|
|
|
|
// zext (X != 0) to i32 --> X iff X has only the low bit set.
|
|
|
|
// zext (X != 0) to i32 --> X>>1 iff X has only the 2nd bit set.
|
|
|
|
// zext (X != 1) to i32 --> X^1 iff X has only the low bit set.
|
|
|
|
// zext (X != 2) to i32 --> (X>>1)^1 iff X has only the 2nd bit set.
|
2013-01-24 13:22:40 +08:00
|
|
|
if ((Op1CV == 0 || Op1CV.isPowerOf2()) &&
|
2010-01-04 15:53:58 +08:00
|
|
|
// This only works for EQ and NE
|
|
|
|
ICI->isEquality()) {
|
|
|
|
// If Op1C some other power of two, convert:
|
|
|
|
uint32_t BitWidth = Op1C->getType()->getBitWidth();
|
|
|
|
APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
|
Make use of @llvm.assume in ValueTracking (computeKnownBits, etc.)
This change, which allows @llvm.assume to be used from within computeKnownBits
(and other associated functions in ValueTracking), adds some (optional)
parameters to computeKnownBits and friends. These functions now (optionally)
take a "context" instruction pointer, an AssumptionTracker pointer, and also a
DomTree pointer, and most of the changes are just to pass this new information
when it is easily available from InstSimplify, InstCombine, etc.
As explained below, the significant conceptual change is that known properties
of a value might depend on the control-flow location of the use (because we
care that the @llvm.assume dominates the use because assumptions have
control-flow dependencies). This means that, when we ask if bits are known in a
value, we might get different answers for different uses.
The significant changes are all in ValueTracking. Two main changes: First, as
with the rest of the code, new parameters need to be passed around. To make
this easier, I grouped them into a structure, and I made internal static
versions of the relevant functions that take this structure as a parameter. The
new code does as you might expect, it looks for @llvm.assume calls that make
use of the value we're trying to learn something about (often indirectly),
attempts to pattern match that expression, and uses the result if successful.
By making use of the AssumptionTracker, the process of finding @llvm.assume
calls is not expensive.
Part of the structure being passed around inside ValueTracking is a set of
already-considered @llvm.assume calls. This is to prevent a query using, for
example, the assume(a == b), to recurse on itself. The context and DT params
are used to find applicable assumptions. An assumption needs to dominate the
context instruction, or come after it deterministically. In this latter case we
only handle the specific case where both the assumption and the context
instruction are in the same block, and we need to exclude assumptions from
being used to simplify their own ephemeral values (those which contribute only
to the assumption) because otherwise the assumption would prove its feeding
comparison trivial and would be removed.
This commit adds the plumbing and the logic for a simple masked-bit propagation
(just enough to write a regression test). Future commits add more patterns
(and, correspondingly, more regression tests).
llvm-svn: 217342
2014-09-08 02:57:58 +08:00
|
|
|
computeKnownBits(ICI->getOperand(0), KnownZero, KnownOne, 0, &CI);
|
2013-01-24 13:22:40 +08:00
|
|
|
|
2010-01-04 15:53:58 +08:00
|
|
|
APInt KnownZeroMask(~KnownZero);
|
|
|
|
if (KnownZeroMask.isPowerOf2()) { // Exactly 1 possible 1?
|
|
|
|
if (!DoXform) return ICI;
|
|
|
|
|
|
|
|
bool isNE = ICI->getPredicate() == ICmpInst::ICMP_NE;
|
|
|
|
if (Op1CV != 0 && (Op1CV != KnownZeroMask)) {
|
|
|
|
// (X&4) == 2 --> false
|
|
|
|
// (X&4) != 2 --> true
|
|
|
|
Constant *Res = ConstantInt::get(Type::getInt1Ty(CI.getContext()),
|
|
|
|
isNE);
|
|
|
|
Res = ConstantExpr::getZExt(Res, CI.getType());
|
|
|
|
return ReplaceInstUsesWith(CI, Res);
|
|
|
|
}
|
2013-01-24 13:22:40 +08:00
|
|
|
|
2010-01-04 15:53:58 +08:00
|
|
|
uint32_t ShiftAmt = KnownZeroMask.logBase2();
|
|
|
|
Value *In = ICI->getOperand(0);
|
|
|
|
if (ShiftAmt) {
|
|
|
|
// Perform a logical shr by shiftamt.
|
|
|
|
// Insert the shift to put the result in the low bit.
|
|
|
|
In = Builder->CreateLShr(In, ConstantInt::get(In->getType(),ShiftAmt),
|
|
|
|
In->getName()+".lobit");
|
|
|
|
}
|
2013-01-24 13:22:40 +08:00
|
|
|
|
2010-01-04 15:53:58 +08:00
|
|
|
if ((Op1CV != 0) == isNE) { // Toggle the low bit.
|
|
|
|
Constant *One = ConstantInt::get(In->getType(), 1);
|
2011-09-28 04:39:19 +08:00
|
|
|
In = Builder->CreateXor(In, One);
|
2010-01-04 15:53:58 +08:00
|
|
|
}
|
2013-01-24 13:22:40 +08:00
|
|
|
|
2010-01-04 15:53:58 +08:00
|
|
|
if (CI.getType() == In->getType())
|
|
|
|
return ReplaceInstUsesWith(CI, In);
|
2010-08-28 06:24:38 +08:00
|
|
|
return CastInst::CreateIntegerCast(In, CI.getType(), false/*ZExt*/);
|
2010-01-04 15:53:58 +08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// icmp ne A, B is equal to xor A, B when A and B only really have one bit.
|
|
|
|
// It is also profitable to transform icmp eq into not(xor(A, B)) because that
|
|
|
|
// may lead to additional simplifications.
|
|
|
|
if (ICI->isEquality() && CI.getType() == ICI->getOperand(0)->getType()) {
|
2011-07-18 12:54:35 +08:00
|
|
|
if (IntegerType *ITy = dyn_cast<IntegerType>(CI.getType())) {
|
2010-01-04 15:53:58 +08:00
|
|
|
uint32_t BitWidth = ITy->getBitWidth();
|
|
|
|
Value *LHS = ICI->getOperand(0);
|
|
|
|
Value *RHS = ICI->getOperand(1);
|
|
|
|
|
|
|
|
APInt KnownZeroLHS(BitWidth, 0), KnownOneLHS(BitWidth, 0);
|
|
|
|
APInt KnownZeroRHS(BitWidth, 0), KnownOneRHS(BitWidth, 0);
|
Make use of @llvm.assume in ValueTracking (computeKnownBits, etc.)
This change, which allows @llvm.assume to be used from within computeKnownBits
(and other associated functions in ValueTracking), adds some (optional)
parameters to computeKnownBits and friends. These functions now (optionally)
take a "context" instruction pointer, an AssumptionTracker pointer, and also a
DomTree pointer, and most of the changes are just to pass this new information
when it is easily available from InstSimplify, InstCombine, etc.
As explained below, the significant conceptual change is that known properties
of a value might depend on the control-flow location of the use (because we
care that the @llvm.assume dominates the use because assumptions have
control-flow dependencies). This means that, when we ask if bits are known in a
value, we might get different answers for different uses.
The significant changes are all in ValueTracking. Two main changes: First, as
with the rest of the code, new parameters need to be passed around. To make
this easier, I grouped them into a structure, and I made internal static
versions of the relevant functions that take this structure as a parameter. The
new code does as you might expect, it looks for @llvm.assume calls that make
use of the value we're trying to learn something about (often indirectly),
attempts to pattern match that expression, and uses the result if successful.
By making use of the AssumptionTracker, the process of finding @llvm.assume
calls is not expensive.
Part of the structure being passed around inside ValueTracking is a set of
already-considered @llvm.assume calls. This is to prevent a query using, for
example, the assume(a == b), to recurse on itself. The context and DT params
are used to find applicable assumptions. An assumption needs to dominate the
context instruction, or come after it deterministically. In this latter case we
only handle the specific case where both the assumption and the context
instruction are in the same block, and we need to exclude assumptions from
being used to simplify their own ephemeral values (those which contribute only
to the assumption) because otherwise the assumption would prove its feeding
comparison trivial and would be removed.
This commit adds the plumbing and the logic for a simple masked-bit propagation
(just enough to write a regression test). Future commits add more patterns
(and, correspondingly, more regression tests).
llvm-svn: 217342
2014-09-08 02:57:58 +08:00
|
|
|
computeKnownBits(LHS, KnownZeroLHS, KnownOneLHS, 0, &CI);
|
|
|
|
computeKnownBits(RHS, KnownZeroRHS, KnownOneRHS, 0, &CI);
|
2010-01-04 15:53:58 +08:00
|
|
|
|
|
|
|
if (KnownZeroLHS == KnownZeroRHS && KnownOneLHS == KnownOneRHS) {
|
|
|
|
APInt KnownBits = KnownZeroLHS | KnownOneLHS;
|
|
|
|
APInt UnknownBit = ~KnownBits;
|
|
|
|
if (UnknownBit.countPopulation() == 1) {
|
|
|
|
if (!DoXform) return ICI;
|
|
|
|
|
|
|
|
Value *Result = Builder->CreateXor(LHS, RHS);
|
|
|
|
|
2010-01-10 08:58:42 +08:00
|
|
|
// Mask off any bits that are set and won't be shifted away.
|
|
|
|
if (KnownOneLHS.uge(UnknownBit))
|
|
|
|
Result = Builder->CreateAnd(Result,
|
|
|
|
ConstantInt::get(ITy, UnknownBit));
|
|
|
|
|
|
|
|
// Shift the bit we're testing down to the lsb.
|
|
|
|
Result = Builder->CreateLShr(
|
|
|
|
Result, ConstantInt::get(ITy, UnknownBit.countTrailingZeros()));
|
|
|
|
|
|
|
|
if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
|
|
|
|
Result = Builder->CreateXor(Result, ConstantInt::get(ITy, 1));
|
|
|
|
Result->takeName(ICI);
|
|
|
|
return ReplaceInstUsesWith(CI, Result);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2014-04-25 13:29:35 +08:00
|
|
|
return nullptr;
|
2010-01-10 08:58:42 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
/// CanEvaluateZExtd - Determine if the specified value can be computed in the
|
2010-01-11 10:43:35 +08:00
|
|
|
/// specified wider type and produce the same low bits. If not, return false.
|
|
|
|
///
|
2010-01-11 11:32:00 +08:00
|
|
|
/// If this function returns true, it can also return a non-zero number of bits
|
|
|
|
/// (in BitsToClear) which indicates that the value it computes is correct for
|
|
|
|
/// the zero extend, but that the additional BitsToClear bits need to be zero'd
|
|
|
|
/// out. For example, to promote something like:
|
|
|
|
///
|
|
|
|
/// %B = trunc i64 %A to i32
|
|
|
|
/// %C = lshr i32 %B, 8
|
|
|
|
/// %E = zext i32 %C to i64
|
|
|
|
///
|
|
|
|
/// CanEvaluateZExtd for the 'lshr' will return true, and BitsToClear will be
|
|
|
|
/// set to 8 to indicate that the promoted value needs to have bits 24-31
|
|
|
|
/// cleared in addition to bits 32-63. Since an 'and' will be generated to
|
|
|
|
/// clear the top bits anyway, doing this has no extra cost.
|
|
|
|
///
|
2010-01-11 10:43:35 +08:00
|
|
|
/// This function works on both vectors and scalars.
|
Make use of @llvm.assume in ValueTracking (computeKnownBits, etc.)
This change, which allows @llvm.assume to be used from within computeKnownBits
(and other associated functions in ValueTracking), adds some (optional)
parameters to computeKnownBits and friends. These functions now (optionally)
take a "context" instruction pointer, an AssumptionTracker pointer, and also a
DomTree pointer, and most of the changes are just to pass this new information
when it is easily available from InstSimplify, InstCombine, etc.
As explained below, the significant conceptual change is that known properties
of a value might depend on the control-flow location of the use (because we
care that the @llvm.assume dominates the use because assumptions have
control-flow dependencies). This means that, when we ask if bits are known in a
value, we might get different answers for different uses.
The significant changes are all in ValueTracking. Two main changes: First, as
with the rest of the code, new parameters need to be passed around. To make
this easier, I grouped them into a structure, and I made internal static
versions of the relevant functions that take this structure as a parameter. The
new code does as you might expect, it looks for @llvm.assume calls that make
use of the value we're trying to learn something about (often indirectly),
attempts to pattern match that expression, and uses the result if successful.
By making use of the AssumptionTracker, the process of finding @llvm.assume
calls is not expensive.
Part of the structure being passed around inside ValueTracking is a set of
already-considered @llvm.assume calls. This is to prevent a query using, for
example, the assume(a == b), to recurse on itself. The context and DT params
are used to find applicable assumptions. An assumption needs to dominate the
context instruction, or come after it deterministically. In this latter case we
only handle the specific case where both the assumption and the context
instruction are in the same block, and we need to exclude assumptions from
being used to simplify their own ephemeral values (those which contribute only
to the assumption) because otherwise the assumption would prove its feeding
comparison trivial and would be removed.
This commit adds the plumbing and the logic for a simple masked-bit propagation
(just enough to write a regression test). Future commits add more patterns
(and, correspondingly, more regression tests).
llvm-svn: 217342
2014-09-08 02:57:58 +08:00
|
|
|
static bool CanEvaluateZExtd(Value *V, Type *Ty, unsigned &BitsToClear,
|
|
|
|
InstCombiner &IC, Instruction *CxtI) {
|
2010-01-11 11:32:00 +08:00
|
|
|
BitsToClear = 0;
|
2010-01-10 10:50:04 +08:00
|
|
|
if (isa<Constant>(V))
|
|
|
|
return true;
|
2013-01-24 13:22:40 +08:00
|
|
|
|
2010-01-10 08:58:42 +08:00
|
|
|
Instruction *I = dyn_cast<Instruction>(V);
|
2010-01-10 10:50:04 +08:00
|
|
|
if (!I) return false;
|
2013-01-24 13:22:40 +08:00
|
|
|
|
2010-01-10 08:58:42 +08:00
|
|
|
// If the input is a truncate from the destination type, we can trivially
|
2012-06-23 00:36:43 +08:00
|
|
|
// eliminate it.
|
|
|
|
if (isa<TruncInst>(I) && I->getOperand(0)->getType() == Ty)
|
2010-01-10 10:50:04 +08:00
|
|
|
return true;
|
2013-01-24 13:22:40 +08:00
|
|
|
|
2010-01-10 08:58:42 +08:00
|
|
|
// We can't extend or shrink something that has multiple uses: doing so would
|
|
|
|
// require duplicating the instruction in general, which isn't profitable.
|
2010-01-10 10:50:04 +08:00
|
|
|
if (!I->hasOneUse()) return false;
|
2013-01-24 13:22:40 +08:00
|
|
|
|
2010-01-11 11:32:00 +08:00
|
|
|
unsigned Opc = I->getOpcode(), Tmp;
|
2010-01-10 08:58:42 +08:00
|
|
|
switch (Opc) {
|
2010-01-11 04:25:54 +08:00
|
|
|
case Instruction::ZExt: // zext(zext(x)) -> zext(x).
|
|
|
|
case Instruction::SExt: // zext(sext(x)) -> sext(x).
|
|
|
|
case Instruction::Trunc: // zext(trunc(x)) -> trunc(x) or zext(x)
|
|
|
|
return true;
|
2010-01-10 08:58:42 +08:00
|
|
|
case Instruction::And:
|
|
|
|
case Instruction::Or:
|
|
|
|
case Instruction::Xor:
|
|
|
|
case Instruction::Add:
|
|
|
|
case Instruction::Sub:
|
|
|
|
case Instruction::Mul:
|
Make use of @llvm.assume in ValueTracking (computeKnownBits, etc.)
This change, which allows @llvm.assume to be used from within computeKnownBits
(and other associated functions in ValueTracking), adds some (optional)
parameters to computeKnownBits and friends. These functions now (optionally)
take a "context" instruction pointer, an AssumptionTracker pointer, and also a
DomTree pointer, and most of the changes are just to pass this new information
when it is easily available from InstSimplify, InstCombine, etc.
As explained below, the significant conceptual change is that known properties
of a value might depend on the control-flow location of the use (because we
care that the @llvm.assume dominates the use because assumptions have
control-flow dependencies). This means that, when we ask if bits are known in a
value, we might get different answers for different uses.
The significant changes are all in ValueTracking. Two main changes: First, as
with the rest of the code, new parameters need to be passed around. To make
this easier, I grouped them into a structure, and I made internal static
versions of the relevant functions that take this structure as a parameter. The
new code does as you might expect, it looks for @llvm.assume calls that make
use of the value we're trying to learn something about (often indirectly),
attempts to pattern match that expression, and uses the result if successful.
By making use of the AssumptionTracker, the process of finding @llvm.assume
calls is not expensive.
Part of the structure being passed around inside ValueTracking is a set of
already-considered @llvm.assume calls. This is to prevent a query using, for
example, the assume(a == b), to recurse on itself. The context and DT params
are used to find applicable assumptions. An assumption needs to dominate the
context instruction, or come after it deterministically. In this latter case we
only handle the specific case where both the assumption and the context
instruction are in the same block, and we need to exclude assumptions from
being used to simplify their own ephemeral values (those which contribute only
to the assumption) because otherwise the assumption would prove its feeding
comparison trivial and would be removed.
This commit adds the plumbing and the logic for a simple masked-bit propagation
(just enough to write a regression test). Future commits add more patterns
(and, correspondingly, more regression tests).
llvm-svn: 217342
2014-09-08 02:57:58 +08:00
|
|
|
if (!CanEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI) ||
|
|
|
|
!CanEvaluateZExtd(I->getOperand(1), Ty, Tmp, IC, CxtI))
|
2010-01-11 11:32:00 +08:00
|
|
|
return false;
|
|
|
|
// These can all be promoted if neither operand has 'bits to clear'.
|
|
|
|
if (BitsToClear == 0 && Tmp == 0)
|
|
|
|
return true;
|
2013-01-24 13:22:40 +08:00
|
|
|
|
Extend CanEvaluateZExtd to handle and/or/xor more aggressively in the
BitsToClear case. This allows it to promote expressions which have an
and/or/xor after the lshr, promoting cases like test2 (from PR4216)
and test3 (random extample extracted from a spec benchmark).
clang now compiles the code in PR4216 into:
_test_bitfield: ## @test_bitfield
movl %edi, %eax
orl $194, %eax
movl $4294902010, %ecx
andq %rax, %rcx
orl $32768, %edi
andq $39936, %rdi
movq %rdi, %rax
orq %rcx, %rax
ret
instead of:
_test_bitfield: ## @test_bitfield
movl %edi, %eax
orl $194, %eax
movl $4294902010, %ecx
andq %rax, %rcx
shrl $8, %edi
orl $128, %edi
shlq $8, %rdi
andq $39936, %rdi
movq %rdi, %rax
orq %rcx, %rax
ret
which is still not great, but is progress.
llvm-svn: 93145
2010-01-11 12:05:13 +08:00
|
|
|
// If the operation is an AND/OR/XOR and the bits to clear are zero in the
|
|
|
|
// other side, BitsToClear is ok.
|
|
|
|
if (Tmp == 0 &&
|
|
|
|
(Opc == Instruction::And || Opc == Instruction::Or ||
|
|
|
|
Opc == Instruction::Xor)) {
|
|
|
|
// We use MaskedValueIsZero here for generality, but the case we care
|
|
|
|
// about the most is constant RHS.
|
|
|
|
unsigned VSize = V->getType()->getScalarSizeInBits();
|
Make use of @llvm.assume in ValueTracking (computeKnownBits, etc.)
This change, which allows @llvm.assume to be used from within computeKnownBits
(and other associated functions in ValueTracking), adds some (optional)
parameters to computeKnownBits and friends. These functions now (optionally)
take a "context" instruction pointer, an AssumptionTracker pointer, and also a
DomTree pointer, and most of the changes are just to pass this new information
when it is easily available from InstSimplify, InstCombine, etc.
As explained below, the significant conceptual change is that known properties
of a value might depend on the control-flow location of the use (because we
care that the @llvm.assume dominates the use because assumptions have
control-flow dependencies). This means that, when we ask if bits are known in a
value, we might get different answers for different uses.
The significant changes are all in ValueTracking. Two main changes: First, as
with the rest of the code, new parameters need to be passed around. To make
this easier, I grouped them into a structure, and I made internal static
versions of the relevant functions that take this structure as a parameter. The
new code does as you might expect, it looks for @llvm.assume calls that make
use of the value we're trying to learn something about (often indirectly),
attempts to pattern match that expression, and uses the result if successful.
By making use of the AssumptionTracker, the process of finding @llvm.assume
calls is not expensive.
Part of the structure being passed around inside ValueTracking is a set of
already-considered @llvm.assume calls. This is to prevent a query using, for
example, the assume(a == b), to recurse on itself. The context and DT params
are used to find applicable assumptions. An assumption needs to dominate the
context instruction, or come after it deterministically. In this latter case we
only handle the specific case where both the assumption and the context
instruction are in the same block, and we need to exclude assumptions from
being used to simplify their own ephemeral values (those which contribute only
to the assumption) because otherwise the assumption would prove its feeding
comparison trivial and would be removed.
This commit adds the plumbing and the logic for a simple masked-bit propagation
(just enough to write a regression test). Future commits add more patterns
(and, correspondingly, more regression tests).
llvm-svn: 217342
2014-09-08 02:57:58 +08:00
|
|
|
if (IC.MaskedValueIsZero(I->getOperand(1),
|
|
|
|
APInt::getHighBitsSet(VSize, BitsToClear),
|
|
|
|
0, CxtI))
|
Extend CanEvaluateZExtd to handle and/or/xor more aggressively in the
BitsToClear case. This allows it to promote expressions which have an
and/or/xor after the lshr, promoting cases like test2 (from PR4216)
and test3 (random extample extracted from a spec benchmark).
clang now compiles the code in PR4216 into:
_test_bitfield: ## @test_bitfield
movl %edi, %eax
orl $194, %eax
movl $4294902010, %ecx
andq %rax, %rcx
orl $32768, %edi
andq $39936, %rdi
movq %rdi, %rax
orq %rcx, %rax
ret
instead of:
_test_bitfield: ## @test_bitfield
movl %edi, %eax
orl $194, %eax
movl $4294902010, %ecx
andq %rax, %rcx
shrl $8, %edi
orl $128, %edi
shlq $8, %rdi
andq $39936, %rdi
movq %rdi, %rax
orq %rcx, %rax
ret
which is still not great, but is progress.
llvm-svn: 93145
2010-01-11 12:05:13 +08:00
|
|
|
return true;
|
|
|
|
}
|
2013-01-24 13:22:40 +08:00
|
|
|
|
Extend CanEvaluateZExtd to handle and/or/xor more aggressively in the
BitsToClear case. This allows it to promote expressions which have an
and/or/xor after the lshr, promoting cases like test2 (from PR4216)
and test3 (random extample extracted from a spec benchmark).
clang now compiles the code in PR4216 into:
_test_bitfield: ## @test_bitfield
movl %edi, %eax
orl $194, %eax
movl $4294902010, %ecx
andq %rax, %rcx
orl $32768, %edi
andq $39936, %rdi
movq %rdi, %rax
orq %rcx, %rax
ret
instead of:
_test_bitfield: ## @test_bitfield
movl %edi, %eax
orl $194, %eax
movl $4294902010, %ecx
andq %rax, %rcx
shrl $8, %edi
orl $128, %edi
shlq $8, %rdi
andq $39936, %rdi
movq %rdi, %rax
orq %rcx, %rax
ret
which is still not great, but is progress.
llvm-svn: 93145
2010-01-11 12:05:13 +08:00
|
|
|
// Otherwise, we don't know how to analyze this BitsToClear case yet.
|
2010-01-11 11:32:00 +08:00
|
|
|
return false;
|
2013-01-24 13:22:40 +08:00
|
|
|
|
2013-05-11 00:26:37 +08:00
|
|
|
case Instruction::Shl:
|
|
|
|
// We can promote shl(x, cst) if we can promote x. Since shl overwrites the
|
|
|
|
// upper bits we can reduce BitsToClear by the shift amount.
|
|
|
|
if (ConstantInt *Amt = dyn_cast<ConstantInt>(I->getOperand(1))) {
|
Make use of @llvm.assume in ValueTracking (computeKnownBits, etc.)
This change, which allows @llvm.assume to be used from within computeKnownBits
(and other associated functions in ValueTracking), adds some (optional)
parameters to computeKnownBits and friends. These functions now (optionally)
take a "context" instruction pointer, an AssumptionTracker pointer, and also a
DomTree pointer, and most of the changes are just to pass this new information
when it is easily available from InstSimplify, InstCombine, etc.
As explained below, the significant conceptual change is that known properties
of a value might depend on the control-flow location of the use (because we
care that the @llvm.assume dominates the use because assumptions have
control-flow dependencies). This means that, when we ask if bits are known in a
value, we might get different answers for different uses.
The significant changes are all in ValueTracking. Two main changes: First, as
with the rest of the code, new parameters need to be passed around. To make
this easier, I grouped them into a structure, and I made internal static
versions of the relevant functions that take this structure as a parameter. The
new code does as you might expect, it looks for @llvm.assume calls that make
use of the value we're trying to learn something about (often indirectly),
attempts to pattern match that expression, and uses the result if successful.
By making use of the AssumptionTracker, the process of finding @llvm.assume
calls is not expensive.
Part of the structure being passed around inside ValueTracking is a set of
already-considered @llvm.assume calls. This is to prevent a query using, for
example, the assume(a == b), to recurse on itself. The context and DT params
are used to find applicable assumptions. An assumption needs to dominate the
context instruction, or come after it deterministically. In this latter case we
only handle the specific case where both the assumption and the context
instruction are in the same block, and we need to exclude assumptions from
being used to simplify their own ephemeral values (those which contribute only
to the assumption) because otherwise the assumption would prove its feeding
comparison trivial and would be removed.
This commit adds the plumbing and the logic for a simple masked-bit propagation
(just enough to write a regression test). Future commits add more patterns
(and, correspondingly, more regression tests).
llvm-svn: 217342
2014-09-08 02:57:58 +08:00
|
|
|
if (!CanEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI))
|
2013-05-11 00:26:37 +08:00
|
|
|
return false;
|
|
|
|
uint64_t ShiftAmt = Amt->getZExtValue();
|
|
|
|
BitsToClear = ShiftAmt < BitsToClear ? BitsToClear - ShiftAmt : 0;
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
return false;
|
2010-01-11 11:32:00 +08:00
|
|
|
case Instruction::LShr:
|
|
|
|
// We can promote lshr(x, cst) if we can promote x. This requires the
|
|
|
|
// ultimate 'and' to clear out the high zero bits we're clearing out though.
|
|
|
|
if (ConstantInt *Amt = dyn_cast<ConstantInt>(I->getOperand(1))) {
|
Make use of @llvm.assume in ValueTracking (computeKnownBits, etc.)
This change, which allows @llvm.assume to be used from within computeKnownBits
(and other associated functions in ValueTracking), adds some (optional)
parameters to computeKnownBits and friends. These functions now (optionally)
take a "context" instruction pointer, an AssumptionTracker pointer, and also a
DomTree pointer, and most of the changes are just to pass this new information
when it is easily available from InstSimplify, InstCombine, etc.
As explained below, the significant conceptual change is that known properties
of a value might depend on the control-flow location of the use (because we
care that the @llvm.assume dominates the use because assumptions have
control-flow dependencies). This means that, when we ask if bits are known in a
value, we might get different answers for different uses.
The significant changes are all in ValueTracking. Two main changes: First, as
with the rest of the code, new parameters need to be passed around. To make
this easier, I grouped them into a structure, and I made internal static
versions of the relevant functions that take this structure as a parameter. The
new code does as you might expect, it looks for @llvm.assume calls that make
use of the value we're trying to learn something about (often indirectly),
attempts to pattern match that expression, and uses the result if successful.
By making use of the AssumptionTracker, the process of finding @llvm.assume
calls is not expensive.
Part of the structure being passed around inside ValueTracking is a set of
already-considered @llvm.assume calls. This is to prevent a query using, for
example, the assume(a == b), to recurse on itself. The context and DT params
are used to find applicable assumptions. An assumption needs to dominate the
context instruction, or come after it deterministically. In this latter case we
only handle the specific case where both the assumption and the context
instruction are in the same block, and we need to exclude assumptions from
being used to simplify their own ephemeral values (those which contribute only
to the assumption) because otherwise the assumption would prove its feeding
comparison trivial and would be removed.
This commit adds the plumbing and the logic for a simple masked-bit propagation
(just enough to write a regression test). Future commits add more patterns
(and, correspondingly, more regression tests).
llvm-svn: 217342
2014-09-08 02:57:58 +08:00
|
|
|
if (!CanEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI))
|
2010-01-11 11:32:00 +08:00
|
|
|
return false;
|
|
|
|
BitsToClear += Amt->getZExtValue();
|
|
|
|
if (BitsToClear > V->getType()->getScalarSizeInBits())
|
|
|
|
BitsToClear = V->getType()->getScalarSizeInBits();
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
// Cannot promote variable LSHR.
|
|
|
|
return false;
|
2010-01-10 08:58:42 +08:00
|
|
|
case Instruction::Select:
|
Make use of @llvm.assume in ValueTracking (computeKnownBits, etc.)
This change, which allows @llvm.assume to be used from within computeKnownBits
(and other associated functions in ValueTracking), adds some (optional)
parameters to computeKnownBits and friends. These functions now (optionally)
take a "context" instruction pointer, an AssumptionTracker pointer, and also a
DomTree pointer, and most of the changes are just to pass this new information
when it is easily available from InstSimplify, InstCombine, etc.
As explained below, the significant conceptual change is that known properties
of a value might depend on the control-flow location of the use (because we
care that the @llvm.assume dominates the use because assumptions have
control-flow dependencies). This means that, when we ask if bits are known in a
value, we might get different answers for different uses.
The significant changes are all in ValueTracking. Two main changes: First, as
with the rest of the code, new parameters need to be passed around. To make
this easier, I grouped them into a structure, and I made internal static
versions of the relevant functions that take this structure as a parameter. The
new code does as you might expect, it looks for @llvm.assume calls that make
use of the value we're trying to learn something about (often indirectly),
attempts to pattern match that expression, and uses the result if successful.
By making use of the AssumptionTracker, the process of finding @llvm.assume
calls is not expensive.
Part of the structure being passed around inside ValueTracking is a set of
already-considered @llvm.assume calls. This is to prevent a query using, for
example, the assume(a == b), to recurse on itself. The context and DT params
are used to find applicable assumptions. An assumption needs to dominate the
context instruction, or come after it deterministically. In this latter case we
only handle the specific case where both the assumption and the context
instruction are in the same block, and we need to exclude assumptions from
being used to simplify their own ephemeral values (those which contribute only
to the assumption) because otherwise the assumption would prove its feeding
comparison trivial and would be removed.
This commit adds the plumbing and the logic for a simple masked-bit propagation
(just enough to write a regression test). Future commits add more patterns
(and, correspondingly, more regression tests).
llvm-svn: 217342
2014-09-08 02:57:58 +08:00
|
|
|
if (!CanEvaluateZExtd(I->getOperand(1), Ty, Tmp, IC, CxtI) ||
|
|
|
|
!CanEvaluateZExtd(I->getOperand(2), Ty, BitsToClear, IC, CxtI) ||
|
Extend CanEvaluateZExtd to handle and/or/xor more aggressively in the
BitsToClear case. This allows it to promote expressions which have an
and/or/xor after the lshr, promoting cases like test2 (from PR4216)
and test3 (random extample extracted from a spec benchmark).
clang now compiles the code in PR4216 into:
_test_bitfield: ## @test_bitfield
movl %edi, %eax
orl $194, %eax
movl $4294902010, %ecx
andq %rax, %rcx
orl $32768, %edi
andq $39936, %rdi
movq %rdi, %rax
orq %rcx, %rax
ret
instead of:
_test_bitfield: ## @test_bitfield
movl %edi, %eax
orl $194, %eax
movl $4294902010, %ecx
andq %rax, %rcx
shrl $8, %edi
orl $128, %edi
shlq $8, %rdi
andq $39936, %rdi
movq %rdi, %rax
orq %rcx, %rax
ret
which is still not great, but is progress.
llvm-svn: 93145
2010-01-11 12:05:13 +08:00
|
|
|
// TODO: If important, we could handle the case when the BitsToClear are
|
|
|
|
// known zero in the disagreeing side.
|
2010-01-11 11:32:00 +08:00
|
|
|
Tmp != BitsToClear)
|
|
|
|
return false;
|
|
|
|
return true;
|
2013-01-24 13:22:40 +08:00
|
|
|
|
2010-01-10 08:58:42 +08:00
|
|
|
case Instruction::PHI: {
|
|
|
|
// We can change a phi if we can change all operands. Note that we never
|
|
|
|
// get into trouble with cyclic PHIs here because we only consider
|
|
|
|
// instructions with a single use.
|
|
|
|
PHINode *PN = cast<PHINode>(I);
|
Make use of @llvm.assume in ValueTracking (computeKnownBits, etc.)
This change, which allows @llvm.assume to be used from within computeKnownBits
(and other associated functions in ValueTracking), adds some (optional)
parameters to computeKnownBits and friends. These functions now (optionally)
take a "context" instruction pointer, an AssumptionTracker pointer, and also a
DomTree pointer, and most of the changes are just to pass this new information
when it is easily available from InstSimplify, InstCombine, etc.
As explained below, the significant conceptual change is that known properties
of a value might depend on the control-flow location of the use (because we
care that the @llvm.assume dominates the use because assumptions have
control-flow dependencies). This means that, when we ask if bits are known in a
value, we might get different answers for different uses.
The significant changes are all in ValueTracking. Two main changes: First, as
with the rest of the code, new parameters need to be passed around. To make
this easier, I grouped them into a structure, and I made internal static
versions of the relevant functions that take this structure as a parameter. The
new code does as you might expect, it looks for @llvm.assume calls that make
use of the value we're trying to learn something about (often indirectly),
attempts to pattern match that expression, and uses the result if successful.
By making use of the AssumptionTracker, the process of finding @llvm.assume
calls is not expensive.
Part of the structure being passed around inside ValueTracking is a set of
already-considered @llvm.assume calls. This is to prevent a query using, for
example, the assume(a == b), to recurse on itself. The context and DT params
are used to find applicable assumptions. An assumption needs to dominate the
context instruction, or come after it deterministically. In this latter case we
only handle the specific case where both the assumption and the context
instruction are in the same block, and we need to exclude assumptions from
being used to simplify their own ephemeral values (those which contribute only
to the assumption) because otherwise the assumption would prove its feeding
comparison trivial and would be removed.
This commit adds the plumbing and the logic for a simple masked-bit propagation
(just enough to write a regression test). Future commits add more patterns
(and, correspondingly, more regression tests).
llvm-svn: 217342
2014-09-08 02:57:58 +08:00
|
|
|
if (!CanEvaluateZExtd(PN->getIncomingValue(0), Ty, BitsToClear, IC, CxtI))
|
2010-01-11 11:32:00 +08:00
|
|
|
return false;
|
2010-01-10 10:50:04 +08:00
|
|
|
for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i)
|
Make use of @llvm.assume in ValueTracking (computeKnownBits, etc.)
This change, which allows @llvm.assume to be used from within computeKnownBits
(and other associated functions in ValueTracking), adds some (optional)
parameters to computeKnownBits and friends. These functions now (optionally)
take a "context" instruction pointer, an AssumptionTracker pointer, and also a
DomTree pointer, and most of the changes are just to pass this new information
when it is easily available from InstSimplify, InstCombine, etc.
As explained below, the significant conceptual change is that known properties
of a value might depend on the control-flow location of the use (because we
care that the @llvm.assume dominates the use because assumptions have
control-flow dependencies). This means that, when we ask if bits are known in a
value, we might get different answers for different uses.
The significant changes are all in ValueTracking. Two main changes: First, as
with the rest of the code, new parameters need to be passed around. To make
this easier, I grouped them into a structure, and I made internal static
versions of the relevant functions that take this structure as a parameter. The
new code does as you might expect, it looks for @llvm.assume calls that make
use of the value we're trying to learn something about (often indirectly),
attempts to pattern match that expression, and uses the result if successful.
By making use of the AssumptionTracker, the process of finding @llvm.assume
calls is not expensive.
Part of the structure being passed around inside ValueTracking is a set of
already-considered @llvm.assume calls. This is to prevent a query using, for
example, the assume(a == b), to recurse on itself. The context and DT params
are used to find applicable assumptions. An assumption needs to dominate the
context instruction, or come after it deterministically. In this latter case we
only handle the specific case where both the assumption and the context
instruction are in the same block, and we need to exclude assumptions from
being used to simplify their own ephemeral values (those which contribute only
to the assumption) because otherwise the assumption would prove its feeding
comparison trivial and would be removed.
This commit adds the plumbing and the logic for a simple masked-bit propagation
(just enough to write a regression test). Future commits add more patterns
(and, correspondingly, more regression tests).
llvm-svn: 217342
2014-09-08 02:57:58 +08:00
|
|
|
if (!CanEvaluateZExtd(PN->getIncomingValue(i), Ty, Tmp, IC, CxtI) ||
|
Extend CanEvaluateZExtd to handle and/or/xor more aggressively in the
BitsToClear case. This allows it to promote expressions which have an
and/or/xor after the lshr, promoting cases like test2 (from PR4216)
and test3 (random extample extracted from a spec benchmark).
clang now compiles the code in PR4216 into:
_test_bitfield: ## @test_bitfield
movl %edi, %eax
orl $194, %eax
movl $4294902010, %ecx
andq %rax, %rcx
orl $32768, %edi
andq $39936, %rdi
movq %rdi, %rax
orq %rcx, %rax
ret
instead of:
_test_bitfield: ## @test_bitfield
movl %edi, %eax
orl $194, %eax
movl $4294902010, %ecx
andq %rax, %rcx
shrl $8, %edi
orl $128, %edi
shlq $8, %rdi
andq $39936, %rdi
movq %rdi, %rax
orq %rcx, %rax
ret
which is still not great, but is progress.
llvm-svn: 93145
2010-01-11 12:05:13 +08:00
|
|
|
// TODO: If important, we could handle the case when the BitsToClear
|
|
|
|
// are known zero in the disagreeing input.
|
2010-01-11 11:32:00 +08:00
|
|
|
Tmp != BitsToClear)
|
|
|
|
return false;
|
2010-01-10 10:50:04 +08:00
|
|
|
return true;
|
2010-01-10 08:58:42 +08:00
|
|
|
}
|
|
|
|
default:
|
|
|
|
// TODO: Can handle more cases here.
|
2010-01-10 10:50:04 +08:00
|
|
|
return false;
|
2010-01-04 15:53:58 +08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
Instruction *InstCombiner::visitZExt(ZExtInst &CI) {
|
2013-01-15 04:56:10 +08:00
|
|
|
// If this zero extend is only used by a truncate, let the truncate be
|
2010-01-10 10:39:31 +08:00
|
|
|
// eliminated before we try to optimize this zext.
|
2014-03-09 11:16:01 +08:00
|
|
|
if (CI.hasOneUse() && isa<TruncInst>(CI.user_back()))
|
2014-04-25 13:29:35 +08:00
|
|
|
return nullptr;
|
2013-01-24 13:22:40 +08:00
|
|
|
|
2010-01-04 15:53:58 +08:00
|
|
|
// If one of the common conversion will work, do it.
|
2010-01-10 09:00:46 +08:00
|
|
|
if (Instruction *Result = commonCastTransforms(CI))
|
2010-01-04 15:53:58 +08:00
|
|
|
return Result;
|
|
|
|
|
2013-01-24 13:22:40 +08:00
|
|
|
// See if we can simplify any instructions used by the input whose sole
|
2010-01-10 09:00:46 +08:00
|
|
|
// purpose is to compute bits we don't care about.
|
|
|
|
if (SimplifyDemandedInstructionBits(CI))
|
|
|
|
return &CI;
|
2013-01-24 13:22:40 +08:00
|
|
|
|
2010-01-10 09:00:46 +08:00
|
|
|
Value *Src = CI.getOperand(0);
|
2011-07-18 12:54:35 +08:00
|
|
|
Type *SrcTy = Src->getType(), *DestTy = CI.getType();
|
2013-01-24 13:22:40 +08:00
|
|
|
|
2010-01-10 08:58:42 +08:00
|
|
|
// Attempt to extend the entire input expression tree to the destination
|
|
|
|
// type. Only do this if the dest type is a simple type, don't convert the
|
|
|
|
// expression tree to something weird like i93 unless the source is also
|
|
|
|
// strange.
|
2010-01-11 11:32:00 +08:00
|
|
|
unsigned BitsToClear;
|
2010-02-16 19:11:14 +08:00
|
|
|
if ((DestTy->isVectorTy() || ShouldChangeType(SrcTy, DestTy)) &&
|
Make use of @llvm.assume in ValueTracking (computeKnownBits, etc.)
This change, which allows @llvm.assume to be used from within computeKnownBits
(and other associated functions in ValueTracking), adds some (optional)
parameters to computeKnownBits and friends. These functions now (optionally)
take a "context" instruction pointer, an AssumptionTracker pointer, and also a
DomTree pointer, and most of the changes are just to pass this new information
when it is easily available from InstSimplify, InstCombine, etc.
As explained below, the significant conceptual change is that known properties
of a value might depend on the control-flow location of the use (because we
care that the @llvm.assume dominates the use because assumptions have
control-flow dependencies). This means that, when we ask if bits are known in a
value, we might get different answers for different uses.
The significant changes are all in ValueTracking. Two main changes: First, as
with the rest of the code, new parameters need to be passed around. To make
this easier, I grouped them into a structure, and I made internal static
versions of the relevant functions that take this structure as a parameter. The
new code does as you might expect, it looks for @llvm.assume calls that make
use of the value we're trying to learn something about (often indirectly),
attempts to pattern match that expression, and uses the result if successful.
By making use of the AssumptionTracker, the process of finding @llvm.assume
calls is not expensive.
Part of the structure being passed around inside ValueTracking is a set of
already-considered @llvm.assume calls. This is to prevent a query using, for
example, the assume(a == b), to recurse on itself. The context and DT params
are used to find applicable assumptions. An assumption needs to dominate the
context instruction, or come after it deterministically. In this latter case we
only handle the specific case where both the assumption and the context
instruction are in the same block, and we need to exclude assumptions from
being used to simplify their own ephemeral values (those which contribute only
to the assumption) because otherwise the assumption would prove its feeding
comparison trivial and would be removed.
This commit adds the plumbing and the logic for a simple masked-bit propagation
(just enough to write a regression test). Future commits add more patterns
(and, correspondingly, more regression tests).
llvm-svn: 217342
2014-09-08 02:57:58 +08:00
|
|
|
CanEvaluateZExtd(Src, DestTy, BitsToClear, *this, &CI)) {
|
2010-01-11 11:32:00 +08:00
|
|
|
assert(BitsToClear < SrcTy->getScalarSizeInBits() &&
|
|
|
|
"Unreasonable BitsToClear");
|
2013-01-24 13:22:40 +08:00
|
|
|
|
2010-01-10 10:39:31 +08:00
|
|
|
// Okay, we can transform this! Insert the new expression now.
|
|
|
|
DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type"
|
|
|
|
" to avoid zero extend: " << CI);
|
|
|
|
Value *Res = EvaluateInDifferentType(Src, DestTy, false);
|
|
|
|
assert(Res->getType() == DestTy);
|
2013-01-24 13:22:40 +08:00
|
|
|
|
2010-01-11 11:32:00 +08:00
|
|
|
uint32_t SrcBitsKept = SrcTy->getScalarSizeInBits()-BitsToClear;
|
|
|
|
uint32_t DestBitSize = DestTy->getScalarSizeInBits();
|
2013-01-24 13:22:40 +08:00
|
|
|
|
2010-01-10 10:39:31 +08:00
|
|
|
// If the high bits are already filled with zeros, just replace this
|
|
|
|
// cast with the result.
|
Make use of @llvm.assume in ValueTracking (computeKnownBits, etc.)
This change, which allows @llvm.assume to be used from within computeKnownBits
(and other associated functions in ValueTracking), adds some (optional)
parameters to computeKnownBits and friends. These functions now (optionally)
take a "context" instruction pointer, an AssumptionTracker pointer, and also a
DomTree pointer, and most of the changes are just to pass this new information
when it is easily available from InstSimplify, InstCombine, etc.
As explained below, the significant conceptual change is that known properties
of a value might depend on the control-flow location of the use (because we
care that the @llvm.assume dominates the use because assumptions have
control-flow dependencies). This means that, when we ask if bits are known in a
value, we might get different answers for different uses.
The significant changes are all in ValueTracking. Two main changes: First, as
with the rest of the code, new parameters need to be passed around. To make
this easier, I grouped them into a structure, and I made internal static
versions of the relevant functions that take this structure as a parameter. The
new code does as you might expect, it looks for @llvm.assume calls that make
use of the value we're trying to learn something about (often indirectly),
attempts to pattern match that expression, and uses the result if successful.
By making use of the AssumptionTracker, the process of finding @llvm.assume
calls is not expensive.
Part of the structure being passed around inside ValueTracking is a set of
already-considered @llvm.assume calls. This is to prevent a query using, for
example, the assume(a == b), to recurse on itself. The context and DT params
are used to find applicable assumptions. An assumption needs to dominate the
context instruction, or come after it deterministically. In this latter case we
only handle the specific case where both the assumption and the context
instruction are in the same block, and we need to exclude assumptions from
being used to simplify their own ephemeral values (those which contribute only
to the assumption) because otherwise the assumption would prove its feeding
comparison trivial and would be removed.
This commit adds the plumbing and the logic for a simple masked-bit propagation
(just enough to write a regression test). Future commits add more patterns
(and, correspondingly, more regression tests).
llvm-svn: 217342
2014-09-08 02:57:58 +08:00
|
|
|
if (MaskedValueIsZero(Res,
|
|
|
|
APInt::getHighBitsSet(DestBitSize,
|
|
|
|
DestBitSize-SrcBitsKept),
|
|
|
|
0, &CI))
|
2010-01-10 10:39:31 +08:00
|
|
|
return ReplaceInstUsesWith(CI, Res);
|
2013-01-24 13:22:40 +08:00
|
|
|
|
2010-01-10 10:39:31 +08:00
|
|
|
// We need to emit an AND to clear the high bits.
|
2010-01-11 04:25:54 +08:00
|
|
|
Constant *C = ConstantInt::get(Res->getType(),
|
2010-01-11 11:32:00 +08:00
|
|
|
APInt::getLowBitsSet(DestBitSize, SrcBitsKept));
|
2010-01-10 10:39:31 +08:00
|
|
|
return BinaryOperator::CreateAnd(Res, C);
|
2010-01-10 08:58:42 +08:00
|
|
|
}
|
2010-01-04 15:53:58 +08:00
|
|
|
|
|
|
|
// If this is a TRUNC followed by a ZEXT then we are dealing with integral
|
|
|
|
// types and if the sizes are just right we can convert this into a logical
|
|
|
|
// 'and' which will be much cheaper than the pair of casts.
|
|
|
|
if (TruncInst *CSrc = dyn_cast<TruncInst>(Src)) { // A->B->C cast
|
2010-01-10 15:08:30 +08:00
|
|
|
// TODO: Subsume this into EvaluateInDifferentType.
|
2013-01-24 13:22:40 +08:00
|
|
|
|
2010-01-04 15:53:58 +08:00
|
|
|
// Get the sizes of the types involved. We know that the intermediate type
|
|
|
|
// will be smaller than A or C, but don't know the relation between A and C.
|
|
|
|
Value *A = CSrc->getOperand(0);
|
|
|
|
unsigned SrcSize = A->getType()->getScalarSizeInBits();
|
|
|
|
unsigned MidSize = CSrc->getType()->getScalarSizeInBits();
|
|
|
|
unsigned DstSize = CI.getType()->getScalarSizeInBits();
|
|
|
|
// If we're actually extending zero bits, then if
|
|
|
|
// SrcSize < DstSize: zext(a & mask)
|
|
|
|
// SrcSize == DstSize: a & mask
|
|
|
|
// SrcSize > DstSize: trunc(a) & mask
|
|
|
|
if (SrcSize < DstSize) {
|
|
|
|
APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize));
|
|
|
|
Constant *AndConst = ConstantInt::get(A->getType(), AndValue);
|
|
|
|
Value *And = Builder->CreateAnd(A, AndConst, CSrc->getName()+".mask");
|
|
|
|
return new ZExtInst(And, CI.getType());
|
|
|
|
}
|
2013-01-24 13:22:40 +08:00
|
|
|
|
2010-01-04 15:53:58 +08:00
|
|
|
if (SrcSize == DstSize) {
|
|
|
|
APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize));
|
|
|
|
return BinaryOperator::CreateAnd(A, ConstantInt::get(A->getType(),
|
|
|
|
AndValue));
|
|
|
|
}
|
|
|
|
if (SrcSize > DstSize) {
|
2011-09-28 04:39:19 +08:00
|
|
|
Value *Trunc = Builder->CreateTrunc(A, CI.getType());
|
2010-01-04 15:53:58 +08:00
|
|
|
APInt AndValue(APInt::getLowBitsSet(DstSize, MidSize));
|
2013-01-24 13:22:40 +08:00
|
|
|
return BinaryOperator::CreateAnd(Trunc,
|
2010-01-04 15:53:58 +08:00
|
|
|
ConstantInt::get(Trunc->getType(),
|
2010-01-10 15:08:30 +08:00
|
|
|
AndValue));
|
2010-01-04 15:53:58 +08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if (ICmpInst *ICI = dyn_cast<ICmpInst>(Src))
|
|
|
|
return transformZExtICmp(ICI, CI);
|
|
|
|
|
|
|
|
BinaryOperator *SrcI = dyn_cast<BinaryOperator>(Src);
|
|
|
|
if (SrcI && SrcI->getOpcode() == Instruction::Or) {
|
|
|
|
// zext (or icmp, icmp) --> or (zext icmp), (zext icmp) if at least one
|
|
|
|
// of the (zext icmp) will be transformed.
|
|
|
|
ICmpInst *LHS = dyn_cast<ICmpInst>(SrcI->getOperand(0));
|
|
|
|
ICmpInst *RHS = dyn_cast<ICmpInst>(SrcI->getOperand(1));
|
|
|
|
if (LHS && RHS && LHS->hasOneUse() && RHS->hasOneUse() &&
|
|
|
|
(transformZExtICmp(LHS, CI, false) ||
|
|
|
|
transformZExtICmp(RHS, CI, false))) {
|
|
|
|
Value *LCast = Builder->CreateZExt(LHS, CI.getType(), LHS->getName());
|
|
|
|
Value *RCast = Builder->CreateZExt(RHS, CI.getType(), RHS->getName());
|
|
|
|
return BinaryOperator::Create(Instruction::Or, LCast, RCast);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2014-01-20 04:05:13 +08:00
|
|
|
// zext(trunc(X) & C) -> (X & zext(C)).
|
|
|
|
Constant *C;
|
|
|
|
Value *X;
|
|
|
|
if (SrcI &&
|
|
|
|
match(SrcI, m_OneUse(m_And(m_Trunc(m_Value(X)), m_Constant(C)))) &&
|
|
|
|
X->getType() == CI.getType())
|
|
|
|
return BinaryOperator::CreateAnd(X, ConstantExpr::getZExt(C, CI.getType()));
|
|
|
|
|
|
|
|
// zext((trunc(X) & C) ^ C) -> ((X & zext(C)) ^ zext(C)).
|
|
|
|
Value *And;
|
|
|
|
if (SrcI && match(SrcI, m_OneUse(m_Xor(m_Value(And), m_Constant(C)))) &&
|
|
|
|
match(And, m_OneUse(m_And(m_Trunc(m_Value(X)), m_Specific(C)))) &&
|
|
|
|
X->getType() == CI.getType()) {
|
|
|
|
Constant *ZC = ConstantExpr::getZExt(C, CI.getType());
|
|
|
|
return BinaryOperator::CreateXor(Builder->CreateAnd(X, ZC), ZC);
|
|
|
|
}
|
2010-01-04 15:53:58 +08:00
|
|
|
|
2010-01-06 05:04:47 +08:00
|
|
|
// zext (xor i1 X, true) to i32 --> xor (zext i1 X to i32), 1
|
2014-01-20 04:05:13 +08:00
|
|
|
if (SrcI && SrcI->hasOneUse() &&
|
|
|
|
SrcI->getType()->getScalarType()->isIntegerTy(1) &&
|
|
|
|
match(SrcI, m_Not(m_Value(X))) && (!X->hasOneUse() || !isa<CmpInst>(X))) {
|
2010-01-06 05:04:47 +08:00
|
|
|
Value *New = Builder->CreateZExt(X, CI.getType());
|
|
|
|
return BinaryOperator::CreateXor(New, ConstantInt::get(CI.getType(), 1));
|
|
|
|
}
|
2013-01-24 13:22:40 +08:00
|
|
|
|
2014-04-25 13:29:35 +08:00
|
|
|
return nullptr;
|
2010-01-04 15:53:58 +08:00
|
|
|
}
|
|
|
|
|
2011-04-02 04:09:03 +08:00
|
|
|
/// transformSExtICmp - Transform (sext icmp) to bitwise / integer operations
|
|
|
|
/// in order to eliminate the icmp.
|
|
|
|
Instruction *InstCombiner::transformSExtICmp(ICmpInst *ICI, Instruction &CI) {
|
|
|
|
Value *Op0 = ICI->getOperand(0), *Op1 = ICI->getOperand(1);
|
|
|
|
ICmpInst::Predicate Pred = ICI->getPredicate();
|
|
|
|
|
2014-10-27 13:47:49 +08:00
|
|
|
// Don't bother if Op1 isn't of vector or integer type.
|
|
|
|
if (!Op1->getType()->isIntOrIntVectorTy())
|
|
|
|
return nullptr;
|
|
|
|
|
2014-01-20 04:05:13 +08:00
|
|
|
if (Constant *Op1C = dyn_cast<Constant>(Op1)) {
|
2011-04-02 06:29:18 +08:00
|
|
|
// (x <s 0) ? -1 : 0 -> ashr x, 31 -> all ones if negative
|
|
|
|
// (x >s -1) ? -1 : 0 -> not (ashr x, 31) -> all ones if positive
|
2014-01-20 04:05:13 +08:00
|
|
|
if ((Pred == ICmpInst::ICMP_SLT && Op1C->isNullValue()) ||
|
2011-04-02 04:09:03 +08:00
|
|
|
(Pred == ICmpInst::ICMP_SGT && Op1C->isAllOnesValue())) {
|
|
|
|
|
|
|
|
Value *Sh = ConstantInt::get(Op0->getType(),
|
|
|
|
Op0->getType()->getScalarSizeInBits()-1);
|
|
|
|
Value *In = Builder->CreateAShr(Op0, Sh, Op0->getName()+".lobit");
|
|
|
|
if (In->getType() != CI.getType())
|
2011-09-28 04:39:19 +08:00
|
|
|
In = Builder->CreateIntCast(In, CI.getType(), true/*SExt*/);
|
2011-04-02 04:09:03 +08:00
|
|
|
|
|
|
|
if (Pred == ICmpInst::ICMP_SGT)
|
|
|
|
In = Builder->CreateNot(In, In->getName()+".not");
|
|
|
|
return ReplaceInstUsesWith(CI, In);
|
|
|
|
}
|
2014-01-20 04:05:13 +08:00
|
|
|
}
|
InstCombine: Turn icmp + sext into bitwise/integer ops when the input has only one unknown bit.
int test1(unsigned x) { return (x&8) ? 0 : -1; }
int test3(unsigned x) { return (x&8) ? -1 : 0; }
before (x86_64):
_test1:
andl $8, %edi
cmpl $1, %edi
sbbl %eax, %eax
ret
_test3:
andl $8, %edi
cmpl $1, %edi
sbbl %eax, %eax
notl %eax
ret
after:
_test1:
shrl $3, %edi
andl $1, %edi
leal -1(%rdi), %eax
ret
_test3:
shll $28, %edi
movl %edi, %eax
sarl $31, %eax
ret
llvm-svn: 128732
2011-04-02 04:09:10 +08:00
|
|
|
|
2014-01-20 04:05:13 +08:00
|
|
|
if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
|
InstCombine: Turn icmp + sext into bitwise/integer ops when the input has only one unknown bit.
int test1(unsigned x) { return (x&8) ? 0 : -1; }
int test3(unsigned x) { return (x&8) ? -1 : 0; }
before (x86_64):
_test1:
andl $8, %edi
cmpl $1, %edi
sbbl %eax, %eax
ret
_test3:
andl $8, %edi
cmpl $1, %edi
sbbl %eax, %eax
notl %eax
ret
after:
_test1:
shrl $3, %edi
andl $1, %edi
leal -1(%rdi), %eax
ret
_test3:
shll $28, %edi
movl %edi, %eax
sarl $31, %eax
ret
llvm-svn: 128732
2011-04-02 04:09:10 +08:00
|
|
|
// If we know that only one bit of the LHS of the icmp can be set and we
|
|
|
|
// have an equality comparison with zero or a power of 2, we can transform
|
|
|
|
// the icmp and sext into bitwise/integer operations.
|
2011-04-02 06:22:11 +08:00
|
|
|
if (ICI->hasOneUse() &&
|
|
|
|
ICI->isEquality() && (Op1C->isZero() || Op1C->getValue().isPowerOf2())){
|
InstCombine: Turn icmp + sext into bitwise/integer ops when the input has only one unknown bit.
int test1(unsigned x) { return (x&8) ? 0 : -1; }
int test3(unsigned x) { return (x&8) ? -1 : 0; }
before (x86_64):
_test1:
andl $8, %edi
cmpl $1, %edi
sbbl %eax, %eax
ret
_test3:
andl $8, %edi
cmpl $1, %edi
sbbl %eax, %eax
notl %eax
ret
after:
_test1:
shrl $3, %edi
andl $1, %edi
leal -1(%rdi), %eax
ret
_test3:
shll $28, %edi
movl %edi, %eax
sarl $31, %eax
ret
llvm-svn: 128732
2011-04-02 04:09:10 +08:00
|
|
|
unsigned BitWidth = Op1C->getType()->getBitWidth();
|
|
|
|
APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
|
Make use of @llvm.assume in ValueTracking (computeKnownBits, etc.)
This change, which allows @llvm.assume to be used from within computeKnownBits
(and other associated functions in ValueTracking), adds some (optional)
parameters to computeKnownBits and friends. These functions now (optionally)
take a "context" instruction pointer, an AssumptionTracker pointer, and also a
DomTree pointer, and most of the changes are just to pass this new information
when it is easily available from InstSimplify, InstCombine, etc.
As explained below, the significant conceptual change is that known properties
of a value might depend on the control-flow location of the use (because we
care that the @llvm.assume dominates the use because assumptions have
control-flow dependencies). This means that, when we ask if bits are known in a
value, we might get different answers for different uses.
The significant changes are all in ValueTracking. Two main changes: First, as
with the rest of the code, new parameters need to be passed around. To make
this easier, I grouped them into a structure, and I made internal static
versions of the relevant functions that take this structure as a parameter. The
new code does as you might expect, it looks for @llvm.assume calls that make
use of the value we're trying to learn something about (often indirectly),
attempts to pattern match that expression, and uses the result if successful.
By making use of the AssumptionTracker, the process of finding @llvm.assume
calls is not expensive.
Part of the structure being passed around inside ValueTracking is a set of
already-considered @llvm.assume calls. This is to prevent a query using, for
example, the assume(a == b), to recurse on itself. The context and DT params
are used to find applicable assumptions. An assumption needs to dominate the
context instruction, or come after it deterministically. In this latter case we
only handle the specific case where both the assumption and the context
instruction are in the same block, and we need to exclude assumptions from
being used to simplify their own ephemeral values (those which contribute only
to the assumption) because otherwise the assumption would prove its feeding
comparison trivial and would be removed.
This commit adds the plumbing and the logic for a simple masked-bit propagation
(just enough to write a regression test). Future commits add more patterns
(and, correspondingly, more regression tests).
llvm-svn: 217342
2014-09-08 02:57:58 +08:00
|
|
|
computeKnownBits(Op0, KnownZero, KnownOne, 0, &CI);
|
InstCombine: Turn icmp + sext into bitwise/integer ops when the input has only one unknown bit.
int test1(unsigned x) { return (x&8) ? 0 : -1; }
int test3(unsigned x) { return (x&8) ? -1 : 0; }
before (x86_64):
_test1:
andl $8, %edi
cmpl $1, %edi
sbbl %eax, %eax
ret
_test3:
andl $8, %edi
cmpl $1, %edi
sbbl %eax, %eax
notl %eax
ret
after:
_test1:
shrl $3, %edi
andl $1, %edi
leal -1(%rdi), %eax
ret
_test3:
shll $28, %edi
movl %edi, %eax
sarl $31, %eax
ret
llvm-svn: 128732
2011-04-02 04:09:10 +08:00
|
|
|
|
2011-04-02 04:15:16 +08:00
|
|
|
APInt KnownZeroMask(~KnownZero);
|
|
|
|
if (KnownZeroMask.isPowerOf2()) {
|
InstCombine: Turn icmp + sext into bitwise/integer ops when the input has only one unknown bit.
int test1(unsigned x) { return (x&8) ? 0 : -1; }
int test3(unsigned x) { return (x&8) ? -1 : 0; }
before (x86_64):
_test1:
andl $8, %edi
cmpl $1, %edi
sbbl %eax, %eax
ret
_test3:
andl $8, %edi
cmpl $1, %edi
sbbl %eax, %eax
notl %eax
ret
after:
_test1:
shrl $3, %edi
andl $1, %edi
leal -1(%rdi), %eax
ret
_test3:
shll $28, %edi
movl %edi, %eax
sarl $31, %eax
ret
llvm-svn: 128732
2011-04-02 04:09:10 +08:00
|
|
|
Value *In = ICI->getOperand(0);
|
|
|
|
|
2011-04-03 02:50:58 +08:00
|
|
|
// If the icmp tests for a known zero bit we can constant fold it.
|
|
|
|
if (!Op1C->isZero() && Op1C->getValue() != KnownZeroMask) {
|
|
|
|
Value *V = Pred == ICmpInst::ICMP_NE ?
|
|
|
|
ConstantInt::getAllOnesValue(CI.getType()) :
|
|
|
|
ConstantInt::getNullValue(CI.getType());
|
|
|
|
return ReplaceInstUsesWith(CI, V);
|
|
|
|
}
|
2011-04-02 06:22:11 +08:00
|
|
|
|
InstCombine: Turn icmp + sext into bitwise/integer ops when the input has only one unknown bit.
int test1(unsigned x) { return (x&8) ? 0 : -1; }
int test3(unsigned x) { return (x&8) ? -1 : 0; }
before (x86_64):
_test1:
andl $8, %edi
cmpl $1, %edi
sbbl %eax, %eax
ret
_test3:
andl $8, %edi
cmpl $1, %edi
sbbl %eax, %eax
notl %eax
ret
after:
_test1:
shrl $3, %edi
andl $1, %edi
leal -1(%rdi), %eax
ret
_test3:
shll $28, %edi
movl %edi, %eax
sarl $31, %eax
ret
llvm-svn: 128732
2011-04-02 04:09:10 +08:00
|
|
|
if (!Op1C->isZero() == (Pred == ICmpInst::ICMP_NE)) {
|
|
|
|
// sext ((x & 2^n) == 0) -> (x >> n) - 1
|
|
|
|
// sext ((x & 2^n) != 2^n) -> (x >> n) - 1
|
|
|
|
unsigned ShiftAmt = KnownZeroMask.countTrailingZeros();
|
|
|
|
// Perform a right shift to place the desired bit in the LSB.
|
|
|
|
if (ShiftAmt)
|
|
|
|
In = Builder->CreateLShr(In,
|
|
|
|
ConstantInt::get(In->getType(), ShiftAmt));
|
|
|
|
|
|
|
|
// At this point "In" is either 1 or 0. Subtract 1 to turn
|
|
|
|
// {1, 0} -> {0, -1}.
|
|
|
|
In = Builder->CreateAdd(In,
|
|
|
|
ConstantInt::getAllOnesValue(In->getType()),
|
|
|
|
"sext");
|
|
|
|
} else {
|
|
|
|
// sext ((x & 2^n) != 0) -> (x << bitwidth-n) a>> bitwidth-1
|
2011-04-02 06:22:11 +08:00
|
|
|
// sext ((x & 2^n) == 2^n) -> (x << bitwidth-n) a>> bitwidth-1
|
InstCombine: Turn icmp + sext into bitwise/integer ops when the input has only one unknown bit.
int test1(unsigned x) { return (x&8) ? 0 : -1; }
int test3(unsigned x) { return (x&8) ? -1 : 0; }
before (x86_64):
_test1:
andl $8, %edi
cmpl $1, %edi
sbbl %eax, %eax
ret
_test3:
andl $8, %edi
cmpl $1, %edi
sbbl %eax, %eax
notl %eax
ret
after:
_test1:
shrl $3, %edi
andl $1, %edi
leal -1(%rdi), %eax
ret
_test3:
shll $28, %edi
movl %edi, %eax
sarl $31, %eax
ret
llvm-svn: 128732
2011-04-02 04:09:10 +08:00
|
|
|
unsigned ShiftAmt = KnownZeroMask.countLeadingZeros();
|
|
|
|
// Perform a left shift to place the desired bit in the MSB.
|
|
|
|
if (ShiftAmt)
|
|
|
|
In = Builder->CreateShl(In,
|
|
|
|
ConstantInt::get(In->getType(), ShiftAmt));
|
|
|
|
|
|
|
|
// Distribute the bit over the whole bit width.
|
|
|
|
In = Builder->CreateAShr(In, ConstantInt::get(In->getType(),
|
|
|
|
BitWidth - 1), "sext");
|
|
|
|
}
|
|
|
|
|
|
|
|
if (CI.getType() == In->getType())
|
|
|
|
return ReplaceInstUsesWith(CI, In);
|
|
|
|
return CastInst::CreateIntegerCast(In, CI.getType(), true/*SExt*/);
|
|
|
|
}
|
|
|
|
}
|
2011-04-02 04:09:03 +08:00
|
|
|
}
|
|
|
|
|
2014-04-25 13:29:35 +08:00
|
|
|
return nullptr;
|
2011-04-02 04:09:03 +08:00
|
|
|
}
|
|
|
|
|
2010-01-10 08:58:42 +08:00
|
|
|
/// CanEvaluateSExtd - Return true if we can take the specified value
|
|
|
|
/// and return it as type Ty without inserting any new casts and without
|
|
|
|
/// changing the value of the common low bits. This is used by code that tries
|
|
|
|
/// to promote integer operations to a wider types will allow us to eliminate
|
|
|
|
/// the extension.
|
|
|
|
///
|
2010-01-10 15:57:20 +08:00
|
|
|
/// This function works on both vectors and scalars.
|
2010-01-10 08:58:42 +08:00
|
|
|
///
|
2011-07-18 12:54:35 +08:00
|
|
|
static bool CanEvaluateSExtd(Value *V, Type *Ty) {
|
2010-01-10 08:58:42 +08:00
|
|
|
assert(V->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits() &&
|
|
|
|
"Can't sign extend type to a smaller type");
|
2010-01-10 15:57:20 +08:00
|
|
|
// If this is a constant, it can be trivially promoted.
|
|
|
|
if (isa<Constant>(V))
|
|
|
|
return true;
|
2013-01-24 13:22:40 +08:00
|
|
|
|
2010-01-10 08:58:42 +08:00
|
|
|
Instruction *I = dyn_cast<Instruction>(V);
|
2010-01-10 15:57:20 +08:00
|
|
|
if (!I) return false;
|
2013-01-24 13:22:40 +08:00
|
|
|
|
2012-06-23 00:36:43 +08:00
|
|
|
// If this is a truncate from the dest type, we can trivially eliminate it.
|
|
|
|
if (isa<TruncInst>(I) && I->getOperand(0)->getType() == Ty)
|
2010-01-10 15:57:20 +08:00
|
|
|
return true;
|
2013-01-24 13:22:40 +08:00
|
|
|
|
2010-01-10 08:58:42 +08:00
|
|
|
// We can't extend or shrink something that has multiple uses: doing so would
|
|
|
|
// require duplicating the instruction in general, which isn't profitable.
|
2010-01-10 15:57:20 +08:00
|
|
|
if (!I->hasOneUse()) return false;
|
2010-01-10 08:58:42 +08:00
|
|
|
|
2010-01-10 15:57:20 +08:00
|
|
|
switch (I->getOpcode()) {
|
2010-01-11 04:30:41 +08:00
|
|
|
case Instruction::SExt: // sext(sext(x)) -> sext(x)
|
|
|
|
case Instruction::ZExt: // sext(zext(x)) -> zext(x)
|
|
|
|
case Instruction::Trunc: // sext(trunc(x)) -> trunc(x) or sext(x)
|
|
|
|
return true;
|
2010-01-10 08:58:42 +08:00
|
|
|
case Instruction::And:
|
|
|
|
case Instruction::Or:
|
|
|
|
case Instruction::Xor:
|
|
|
|
case Instruction::Add:
|
|
|
|
case Instruction::Sub:
|
|
|
|
case Instruction::Mul:
|
2010-01-10 15:57:20 +08:00
|
|
|
// These operators can all arbitrarily be extended if their inputs can.
|
2010-01-11 10:43:35 +08:00
|
|
|
return CanEvaluateSExtd(I->getOperand(0), Ty) &&
|
|
|
|
CanEvaluateSExtd(I->getOperand(1), Ty);
|
2013-01-24 13:22:40 +08:00
|
|
|
|
2010-01-10 08:58:42 +08:00
|
|
|
//case Instruction::Shl: TODO
|
|
|
|
//case Instruction::LShr: TODO
|
2013-01-24 13:22:40 +08:00
|
|
|
|
2010-01-10 15:57:20 +08:00
|
|
|
case Instruction::Select:
|
2010-01-11 10:43:35 +08:00
|
|
|
return CanEvaluateSExtd(I->getOperand(1), Ty) &&
|
|
|
|
CanEvaluateSExtd(I->getOperand(2), Ty);
|
2013-01-24 13:22:40 +08:00
|
|
|
|
2010-01-10 08:58:42 +08:00
|
|
|
case Instruction::PHI: {
|
|
|
|
// We can change a phi if we can change all operands. Note that we never
|
|
|
|
// get into trouble with cyclic PHIs here because we only consider
|
|
|
|
// instructions with a single use.
|
|
|
|
PHINode *PN = cast<PHINode>(I);
|
2010-01-11 04:25:54 +08:00
|
|
|
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
|
2010-01-11 10:43:35 +08:00
|
|
|
if (!CanEvaluateSExtd(PN->getIncomingValue(i), Ty)) return false;
|
2010-01-10 15:57:20 +08:00
|
|
|
return true;
|
2010-01-10 08:58:42 +08:00
|
|
|
}
|
|
|
|
default:
|
|
|
|
// TODO: Can handle more cases here.
|
|
|
|
break;
|
|
|
|
}
|
2013-01-24 13:22:40 +08:00
|
|
|
|
2010-01-10 15:57:20 +08:00
|
|
|
return false;
|
2010-01-10 08:58:42 +08:00
|
|
|
}
|
|
|
|
|
2010-01-04 15:53:58 +08:00
|
|
|
Instruction *InstCombiner::visitSExt(SExtInst &CI) {
|
2013-02-13 08:19:19 +08:00
|
|
|
// If this sign extend is only used by a truncate, let the truncate be
|
|
|
|
// eliminated before we try to optimize this sext.
|
2014-03-09 11:16:01 +08:00
|
|
|
if (CI.hasOneUse() && isa<TruncInst>(CI.user_back()))
|
2014-04-25 13:29:35 +08:00
|
|
|
return nullptr;
|
2013-01-24 13:22:40 +08:00
|
|
|
|
2010-01-10 09:00:46 +08:00
|
|
|
if (Instruction *I = commonCastTransforms(CI))
|
2010-01-04 15:53:58 +08:00
|
|
|
return I;
|
2013-01-24 13:22:40 +08:00
|
|
|
|
|
|
|
// See if we can simplify any instructions used by the input whose sole
|
2010-01-10 09:00:46 +08:00
|
|
|
// purpose is to compute bits we don't care about.
|
|
|
|
if (SimplifyDemandedInstructionBits(CI))
|
|
|
|
return &CI;
|
2013-01-24 13:22:40 +08:00
|
|
|
|
2010-01-04 15:53:58 +08:00
|
|
|
Value *Src = CI.getOperand(0);
|
2011-07-18 12:54:35 +08:00
|
|
|
Type *SrcTy = Src->getType(), *DestTy = CI.getType();
|
2010-01-10 08:58:42 +08:00
|
|
|
|
|
|
|
// Attempt to extend the entire input expression tree to the destination
|
|
|
|
// type. Only do this if the dest type is a simple type, don't convert the
|
|
|
|
// expression tree to something weird like i93 unless the source is also
|
|
|
|
// strange.
|
2010-02-16 19:11:14 +08:00
|
|
|
if ((DestTy->isVectorTy() || ShouldChangeType(SrcTy, DestTy)) &&
|
2010-01-11 10:43:35 +08:00
|
|
|
CanEvaluateSExtd(Src, DestTy)) {
|
2010-01-10 15:40:50 +08:00
|
|
|
// Okay, we can transform this! Insert the new expression now.
|
|
|
|
DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type"
|
|
|
|
" to avoid sign extend: " << CI);
|
|
|
|
Value *Res = EvaluateInDifferentType(Src, DestTy, true);
|
|
|
|
assert(Res->getType() == DestTy);
|
|
|
|
|
2010-01-10 08:58:42 +08:00
|
|
|
uint32_t SrcBitSize = SrcTy->getScalarSizeInBits();
|
|
|
|
uint32_t DestBitSize = DestTy->getScalarSizeInBits();
|
2010-01-10 15:40:50 +08:00
|
|
|
|
|
|
|
// If the high bits are already filled with sign bit, just replace this
|
|
|
|
// cast with the result.
|
Make use of @llvm.assume in ValueTracking (computeKnownBits, etc.)
This change, which allows @llvm.assume to be used from within computeKnownBits
(and other associated functions in ValueTracking), adds some (optional)
parameters to computeKnownBits and friends. These functions now (optionally)
take a "context" instruction pointer, an AssumptionTracker pointer, and also a
DomTree pointer, and most of the changes are just to pass this new information
when it is easily available from InstSimplify, InstCombine, etc.
As explained below, the significant conceptual change is that known properties
of a value might depend on the control-flow location of the use (because we
care that the @llvm.assume dominates the use because assumptions have
control-flow dependencies). This means that, when we ask if bits are known in a
value, we might get different answers for different uses.
The significant changes are all in ValueTracking. Two main changes: First, as
with the rest of the code, new parameters need to be passed around. To make
this easier, I grouped them into a structure, and I made internal static
versions of the relevant functions that take this structure as a parameter. The
new code does as you might expect, it looks for @llvm.assume calls that make
use of the value we're trying to learn something about (often indirectly),
attempts to pattern match that expression, and uses the result if successful.
By making use of the AssumptionTracker, the process of finding @llvm.assume
calls is not expensive.
Part of the structure being passed around inside ValueTracking is a set of
already-considered @llvm.assume calls. This is to prevent a query using, for
example, the assume(a == b), to recurse on itself. The context and DT params
are used to find applicable assumptions. An assumption needs to dominate the
context instruction, or come after it deterministically. In this latter case we
only handle the specific case where both the assumption and the context
instruction are in the same block, and we need to exclude assumptions from
being used to simplify their own ephemeral values (those which contribute only
to the assumption) because otherwise the assumption would prove its feeding
comparison trivial and would be removed.
This commit adds the plumbing and the logic for a simple masked-bit propagation
(just enough to write a regression test). Future commits add more patterns
(and, correspondingly, more regression tests).
llvm-svn: 217342
2014-09-08 02:57:58 +08:00
|
|
|
if (ComputeNumSignBits(Res, 0, &CI) > DestBitSize - SrcBitSize)
|
2010-01-10 15:40:50 +08:00
|
|
|
return ReplaceInstUsesWith(CI, Res);
|
2013-01-24 13:22:40 +08:00
|
|
|
|
2010-01-10 15:40:50 +08:00
|
|
|
// We need to emit a shl + ashr to do the sign extend.
|
|
|
|
Value *ShAmt = ConstantInt::get(DestTy, DestBitSize-SrcBitSize);
|
|
|
|
return BinaryOperator::CreateAShr(Builder->CreateShl(Res, ShAmt, "sext"),
|
|
|
|
ShAmt);
|
2010-01-10 08:58:42 +08:00
|
|
|
}
|
2010-01-04 15:53:58 +08:00
|
|
|
|
2010-01-19 06:19:16 +08:00
|
|
|
// If this input is a trunc from our destination, then turn sext(trunc(x))
|
|
|
|
// into shifts.
|
|
|
|
if (TruncInst *TI = dyn_cast<TruncInst>(Src))
|
|
|
|
if (TI->hasOneUse() && TI->getOperand(0)->getType() == DestTy) {
|
|
|
|
uint32_t SrcBitSize = SrcTy->getScalarSizeInBits();
|
|
|
|
uint32_t DestBitSize = DestTy->getScalarSizeInBits();
|
2013-01-24 13:22:40 +08:00
|
|
|
|
2010-01-19 06:19:16 +08:00
|
|
|
// We need to emit a shl + ashr to do the sign extend.
|
|
|
|
Value *ShAmt = ConstantInt::get(DestTy, DestBitSize-SrcBitSize);
|
|
|
|
Value *Res = Builder->CreateShl(TI->getOperand(0), ShAmt, "sext");
|
|
|
|
return BinaryOperator::CreateAShr(Res, ShAmt);
|
|
|
|
}
|
2010-12-18 07:27:41 +08:00
|
|
|
|
2011-04-02 04:09:03 +08:00
|
|
|
if (ICmpInst *ICI = dyn_cast<ICmpInst>(Src))
|
|
|
|
return transformSExtICmp(ICI, CI);
|
2010-12-18 07:27:41 +08:00
|
|
|
|
2010-01-04 15:53:58 +08:00
|
|
|
// If the input is a shl/ashr pair of a same constant, then this is a sign
|
|
|
|
// extension from a smaller value. If we could trust arbitrary bitwidth
|
|
|
|
// integers, we could turn this into a truncate to the smaller bit and then
|
|
|
|
// use a sext for the whole extension. Since we don't, look deeper and check
|
|
|
|
// for a truncate. If the source and dest are the same type, eliminate the
|
|
|
|
// trunc and extend and just do shifts. For example, turn:
|
|
|
|
// %a = trunc i32 %i to i8
|
|
|
|
// %b = shl i8 %a, 6
|
|
|
|
// %c = ashr i8 %b, 6
|
|
|
|
// %d = sext i8 %c to i32
|
|
|
|
// into:
|
|
|
|
// %a = shl i32 %i, 30
|
|
|
|
// %d = ashr i32 %a, 30
|
2014-04-25 13:29:35 +08:00
|
|
|
Value *A = nullptr;
|
2010-01-10 09:04:31 +08:00
|
|
|
// TODO: Eventually this could be subsumed by EvaluateInDifferentType.
|
2014-04-25 13:29:35 +08:00
|
|
|
ConstantInt *BA = nullptr, *CA = nullptr;
|
2010-01-10 09:04:31 +08:00
|
|
|
if (match(Src, m_AShr(m_Shl(m_Trunc(m_Value(A)), m_ConstantInt(BA)),
|
2010-01-04 15:53:58 +08:00
|
|
|
m_ConstantInt(CA))) &&
|
2010-01-10 09:04:31 +08:00
|
|
|
BA == CA && A->getType() == CI.getType()) {
|
|
|
|
unsigned MidSize = Src->getType()->getScalarSizeInBits();
|
|
|
|
unsigned SrcDstSize = CI.getType()->getScalarSizeInBits();
|
|
|
|
unsigned ShAmt = CA->getZExtValue()+SrcDstSize-MidSize;
|
|
|
|
Constant *ShAmtV = ConstantInt::get(CI.getType(), ShAmt);
|
|
|
|
A = Builder->CreateShl(A, ShAmtV, CI.getName());
|
|
|
|
return BinaryOperator::CreateAShr(A, ShAmtV);
|
2010-01-04 15:53:58 +08:00
|
|
|
}
|
2013-01-24 13:22:40 +08:00
|
|
|
|
2014-04-25 13:29:35 +08:00
|
|
|
return nullptr;
|
2010-01-04 15:53:58 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/// FitsInFPType - Return a Constant* for the specified FP constant if it fits
|
|
|
|
/// in the specified FP type without changing its value.
|
|
|
|
static Constant *FitsInFPType(ConstantFP *CFP, const fltSemantics &Sem) {
|
|
|
|
bool losesInfo;
|
|
|
|
APFloat F = CFP->getValueAPF();
|
|
|
|
(void)F.convert(Sem, APFloat::rmNearestTiesToEven, &losesInfo);
|
|
|
|
if (!losesInfo)
|
|
|
|
return ConstantFP::get(CFP->getContext(), F);
|
2014-04-25 13:29:35 +08:00
|
|
|
return nullptr;
|
2010-01-04 15:53:58 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
/// LookThroughFPExtensions - If this is an fp extension instruction, look
|
|
|
|
/// through it until we get the source value.
|
|
|
|
static Value *LookThroughFPExtensions(Value *V) {
|
|
|
|
if (Instruction *I = dyn_cast<Instruction>(V))
|
|
|
|
if (I->getOpcode() == Instruction::FPExt)
|
|
|
|
return LookThroughFPExtensions(I->getOperand(0));
|
2013-01-24 13:22:40 +08:00
|
|
|
|
2010-01-04 15:53:58 +08:00
|
|
|
// If this value is a constant, return the constant in the smallest FP type
|
|
|
|
// that can accurately represent it. This allows us to turn
|
|
|
|
// (float)((double)X+2.0) into x+2.0f.
|
|
|
|
if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
|
|
|
|
if (CFP->getType() == Type::getPPC_FP128Ty(V->getContext()))
|
|
|
|
return V; // No constant folding of this.
|
2011-12-17 08:04:22 +08:00
|
|
|
// See if the value can be truncated to half and then reextended.
|
|
|
|
if (Value *V = FitsInFPType(CFP, APFloat::IEEEhalf))
|
|
|
|
return V;
|
2010-01-04 15:53:58 +08:00
|
|
|
// See if the value can be truncated to float and then reextended.
|
|
|
|
if (Value *V = FitsInFPType(CFP, APFloat::IEEEsingle))
|
|
|
|
return V;
|
2010-01-05 21:12:22 +08:00
|
|
|
if (CFP->getType()->isDoubleTy())
|
2010-01-04 15:53:58 +08:00
|
|
|
return V; // Won't shrink.
|
|
|
|
if (Value *V = FitsInFPType(CFP, APFloat::IEEEdouble))
|
|
|
|
return V;
|
|
|
|
// Don't try to shrink to various long double types.
|
|
|
|
}
|
2013-01-24 13:22:40 +08:00
|
|
|
|
2010-01-04 15:53:58 +08:00
|
|
|
return V;
|
|
|
|
}
|
|
|
|
|
|
|
|
Instruction *InstCombiner::visitFPTrunc(FPTruncInst &CI) {
|
|
|
|
if (Instruction *I = commonCastTransforms(CI))
|
|
|
|
return I;
|
2013-11-29 05:38:05 +08:00
|
|
|
// If we have fptrunc(OpI (fpextend x), (fpextend y)), we would like to
|
|
|
|
// simpilify this expression to avoid one or more of the trunc/extend
|
|
|
|
// operations if we can do so without changing the numerical results.
|
|
|
|
//
|
|
|
|
// The exact manner in which the widths of the operands interact to limit
|
|
|
|
// what we can and cannot do safely varies from operation to operation, and
|
|
|
|
// is explained below in the various case statements.
|
2010-01-04 15:53:58 +08:00
|
|
|
BinaryOperator *OpI = dyn_cast<BinaryOperator>(CI.getOperand(0));
|
|
|
|
if (OpI && OpI->hasOneUse()) {
|
2013-11-29 05:38:05 +08:00
|
|
|
Value *LHSOrig = LookThroughFPExtensions(OpI->getOperand(0));
|
|
|
|
Value *RHSOrig = LookThroughFPExtensions(OpI->getOperand(1));
|
|
|
|
unsigned OpWidth = OpI->getType()->getFPMantissaWidth();
|
|
|
|
unsigned LHSWidth = LHSOrig->getType()->getFPMantissaWidth();
|
|
|
|
unsigned RHSWidth = RHSOrig->getType()->getFPMantissaWidth();
|
|
|
|
unsigned SrcWidth = std::max(LHSWidth, RHSWidth);
|
|
|
|
unsigned DstWidth = CI.getType()->getFPMantissaWidth();
|
2010-01-04 15:53:58 +08:00
|
|
|
switch (OpI->getOpcode()) {
|
2013-11-29 05:38:05 +08:00
|
|
|
default: break;
|
|
|
|
case Instruction::FAdd:
|
|
|
|
case Instruction::FSub:
|
|
|
|
// For addition and subtraction, the infinitely precise result can
|
|
|
|
// essentially be arbitrarily wide; proving that double rounding
|
|
|
|
// will not occur because the result of OpI is exact (as we will for
|
|
|
|
// FMul, for example) is hopeless. However, we *can* nonetheless
|
|
|
|
// frequently know that double rounding cannot occur (or that it is
|
2014-01-25 01:20:08 +08:00
|
|
|
// innocuous) by taking advantage of the specific structure of
|
2013-11-29 05:38:05 +08:00
|
|
|
// infinitely-precise results that admit double rounding.
|
|
|
|
//
|
2014-01-25 01:20:08 +08:00
|
|
|
// Specifically, if OpWidth >= 2*DstWdith+1 and DstWidth is sufficient
|
2013-11-29 05:38:05 +08:00
|
|
|
// to represent both sources, we can guarantee that the double
|
|
|
|
// rounding is innocuous (See p50 of Figueroa's 2000 PhD thesis,
|
|
|
|
// "A Rigorous Framework for Fully Supporting the IEEE Standard ..."
|
|
|
|
// for proof of this fact).
|
|
|
|
//
|
|
|
|
// Note: Figueroa does not consider the case where DstFormat !=
|
|
|
|
// SrcFormat. It's possible (likely even!) that this analysis
|
|
|
|
// could be tightened for those cases, but they are rare (the main
|
|
|
|
// case of interest here is (float)((double)float + float)).
|
|
|
|
if (OpWidth >= 2*DstWidth+1 && DstWidth >= SrcWidth) {
|
|
|
|
if (LHSOrig->getType() != CI.getType())
|
|
|
|
LHSOrig = Builder->CreateFPExt(LHSOrig, CI.getType());
|
|
|
|
if (RHSOrig->getType() != CI.getType())
|
|
|
|
RHSOrig = Builder->CreateFPExt(RHSOrig, CI.getType());
|
2014-01-18 08:48:14 +08:00
|
|
|
Instruction *RI =
|
|
|
|
BinaryOperator::Create(OpI->getOpcode(), LHSOrig, RHSOrig);
|
|
|
|
RI->copyFastMathFlags(OpI);
|
|
|
|
return RI;
|
2010-01-04 15:53:58 +08:00
|
|
|
}
|
2013-11-29 05:38:05 +08:00
|
|
|
break;
|
|
|
|
case Instruction::FMul:
|
|
|
|
// For multiplication, the infinitely precise result has at most
|
|
|
|
// LHSWidth + RHSWidth significant bits; if OpWidth is sufficient
|
|
|
|
// that such a value can be exactly represented, then no double
|
|
|
|
// rounding can possibly occur; we can safely perform the operation
|
|
|
|
// in the destination format if it can represent both sources.
|
|
|
|
if (OpWidth >= LHSWidth + RHSWidth && DstWidth >= SrcWidth) {
|
|
|
|
if (LHSOrig->getType() != CI.getType())
|
|
|
|
LHSOrig = Builder->CreateFPExt(LHSOrig, CI.getType());
|
|
|
|
if (RHSOrig->getType() != CI.getType())
|
|
|
|
RHSOrig = Builder->CreateFPExt(RHSOrig, CI.getType());
|
2014-01-18 08:48:14 +08:00
|
|
|
Instruction *RI =
|
|
|
|
BinaryOperator::CreateFMul(LHSOrig, RHSOrig);
|
|
|
|
RI->copyFastMathFlags(OpI);
|
|
|
|
return RI;
|
2013-11-29 05:38:05 +08:00
|
|
|
}
|
|
|
|
break;
|
|
|
|
case Instruction::FDiv:
|
|
|
|
// For division, we use again use the bound from Figueroa's
|
|
|
|
// dissertation. I am entirely certain that this bound can be
|
|
|
|
// tightened in the unbalanced operand case by an analysis based on
|
|
|
|
// the diophantine rational approximation bound, but the well-known
|
|
|
|
// condition used here is a good conservative first pass.
|
|
|
|
// TODO: Tighten bound via rigorous analysis of the unbalanced case.
|
|
|
|
if (OpWidth >= 2*DstWidth && DstWidth >= SrcWidth) {
|
|
|
|
if (LHSOrig->getType() != CI.getType())
|
|
|
|
LHSOrig = Builder->CreateFPExt(LHSOrig, CI.getType());
|
|
|
|
if (RHSOrig->getType() != CI.getType())
|
|
|
|
RHSOrig = Builder->CreateFPExt(RHSOrig, CI.getType());
|
2014-01-18 08:48:14 +08:00
|
|
|
Instruction *RI =
|
|
|
|
BinaryOperator::CreateFDiv(LHSOrig, RHSOrig);
|
|
|
|
RI->copyFastMathFlags(OpI);
|
|
|
|
return RI;
|
2013-11-29 05:38:05 +08:00
|
|
|
}
|
|
|
|
break;
|
|
|
|
case Instruction::FRem:
|
|
|
|
// Remainder is straightforward. Remainder is always exact, so the
|
|
|
|
// type of OpI doesn't enter into things at all. We simply evaluate
|
|
|
|
// in whichever source type is larger, then convert to the
|
|
|
|
// destination type.
|
2014-12-13 02:48:37 +08:00
|
|
|
if (SrcWidth == OpWidth)
|
2014-12-13 01:21:54 +08:00
|
|
|
break;
|
|
|
|
if (LHSWidth < SrcWidth)
|
|
|
|
LHSOrig = Builder->CreateFPExt(LHSOrig, RHSOrig->getType());
|
|
|
|
else if (RHSWidth <= SrcWidth)
|
|
|
|
RHSOrig = Builder->CreateFPExt(RHSOrig, LHSOrig->getType());
|
|
|
|
if (LHSOrig != OpI->getOperand(0) || RHSOrig != OpI->getOperand(1)) {
|
|
|
|
Value *ExactResult = Builder->CreateFRem(LHSOrig, RHSOrig);
|
|
|
|
if (Instruction *RI = dyn_cast<Instruction>(ExactResult))
|
|
|
|
RI->copyFastMathFlags(OpI);
|
|
|
|
return CastInst::CreateFPCast(ExactResult, CI.getType());
|
2014-11-19 05:30:02 +08:00
|
|
|
}
|
2010-01-04 15:53:58 +08:00
|
|
|
}
|
2013-01-11 06:06:52 +08:00
|
|
|
|
|
|
|
// (fptrunc (fneg x)) -> (fneg (fptrunc x))
|
|
|
|
if (BinaryOperator::isFNeg(OpI)) {
|
|
|
|
Value *InnerTrunc = Builder->CreateFPTrunc(OpI->getOperand(1),
|
|
|
|
CI.getType());
|
2014-01-18 08:48:14 +08:00
|
|
|
Instruction *RI = BinaryOperator::CreateFNeg(InnerTrunc);
|
|
|
|
RI->copyFastMathFlags(OpI);
|
|
|
|
return RI;
|
2013-01-11 06:06:52 +08:00
|
|
|
}
|
2010-01-04 15:53:58 +08:00
|
|
|
}
|
2013-01-11 06:06:52 +08:00
|
|
|
|
2013-10-04 05:08:05 +08:00
|
|
|
// (fptrunc (select cond, R1, Cst)) -->
|
|
|
|
// (select cond, (fptrunc R1), (fptrunc Cst))
|
|
|
|
SelectInst *SI = dyn_cast<SelectInst>(CI.getOperand(0));
|
|
|
|
if (SI &&
|
|
|
|
(isa<ConstantFP>(SI->getOperand(1)) ||
|
|
|
|
isa<ConstantFP>(SI->getOperand(2)))) {
|
|
|
|
Value *LHSTrunc = Builder->CreateFPTrunc(SI->getOperand(1),
|
|
|
|
CI.getType());
|
|
|
|
Value *RHSTrunc = Builder->CreateFPTrunc(SI->getOperand(2),
|
|
|
|
CI.getType());
|
|
|
|
return SelectInst::Create(SI->getOperand(0), LHSTrunc, RHSTrunc);
|
|
|
|
}
|
|
|
|
|
2013-01-11 06:06:52 +08:00
|
|
|
IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI.getOperand(0));
|
|
|
|
if (II) {
|
|
|
|
switch (II->getIntrinsicID()) {
|
|
|
|
default: break;
|
|
|
|
case Intrinsic::fabs: {
|
|
|
|
// (fptrunc (fabs x)) -> (fabs (fptrunc x))
|
|
|
|
Value *InnerTrunc = Builder->CreateFPTrunc(II->getArgOperand(0),
|
|
|
|
CI.getType());
|
|
|
|
Type *IntrinsicType[] = { CI.getType() };
|
|
|
|
Function *Overload =
|
|
|
|
Intrinsic::getDeclaration(CI.getParent()->getParent()->getParent(),
|
|
|
|
II->getIntrinsicID(), IntrinsicType);
|
|
|
|
|
|
|
|
Value *Args[] = { InnerTrunc };
|
|
|
|
return CallInst::Create(Overload, Args, II->getName());
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2014-04-25 13:29:35 +08:00
|
|
|
return nullptr;
|
2010-01-04 15:53:58 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
Instruction *InstCombiner::visitFPExt(CastInst &CI) {
|
|
|
|
return commonCastTransforms(CI);
|
|
|
|
}
|
|
|
|
|
|
|
|
Instruction *InstCombiner::visitFPToUI(FPToUIInst &FI) {
|
|
|
|
Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0));
|
2014-04-25 13:29:35 +08:00
|
|
|
if (!OpI)
|
2010-01-04 15:53:58 +08:00
|
|
|
return commonCastTransforms(FI);
|
|
|
|
|
|
|
|
// fptoui(uitofp(X)) --> X
|
|
|
|
// fptoui(sitofp(X)) --> X
|
|
|
|
// This is safe if the intermediate type has enough bits in its mantissa to
|
|
|
|
// accurately represent all values of X. For example, do not do this with
|
|
|
|
// i64->float->i64. This is also safe for sitofp case, because any negative
|
2013-01-24 13:22:40 +08:00
|
|
|
// 'X' value would cause an undefined result for the fptoui.
|
2010-01-04 15:53:58 +08:00
|
|
|
if ((isa<UIToFPInst>(OpI) || isa<SIToFPInst>(OpI)) &&
|
|
|
|
OpI->getOperand(0)->getType() == FI.getType() &&
|
|
|
|
(int)FI.getType()->getScalarSizeInBits() < /*extra bit for sign */
|
|
|
|
OpI->getType()->getFPMantissaWidth())
|
|
|
|
return ReplaceInstUsesWith(FI, OpI->getOperand(0));
|
|
|
|
|
|
|
|
return commonCastTransforms(FI);
|
|
|
|
}
|
|
|
|
|
|
|
|
Instruction *InstCombiner::visitFPToSI(FPToSIInst &FI) {
|
|
|
|
Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0));
|
2014-04-25 13:29:35 +08:00
|
|
|
if (!OpI)
|
2010-01-04 15:53:58 +08:00
|
|
|
return commonCastTransforms(FI);
|
2013-01-24 13:22:40 +08:00
|
|
|
|
2010-01-04 15:53:58 +08:00
|
|
|
// fptosi(sitofp(X)) --> X
|
|
|
|
// fptosi(uitofp(X)) --> X
|
|
|
|
// This is safe if the intermediate type has enough bits in its mantissa to
|
|
|
|
// accurately represent all values of X. For example, do not do this with
|
|
|
|
// i64->float->i64. This is also safe for sitofp case, because any negative
|
2013-01-24 13:22:40 +08:00
|
|
|
// 'X' value would cause an undefined result for the fptoui.
|
2010-01-04 15:53:58 +08:00
|
|
|
if ((isa<UIToFPInst>(OpI) || isa<SIToFPInst>(OpI)) &&
|
|
|
|
OpI->getOperand(0)->getType() == FI.getType() &&
|
|
|
|
(int)FI.getType()->getScalarSizeInBits() <=
|
|
|
|
OpI->getType()->getFPMantissaWidth())
|
|
|
|
return ReplaceInstUsesWith(FI, OpI->getOperand(0));
|
2013-01-24 13:22:40 +08:00
|
|
|
|
2010-01-04 15:53:58 +08:00
|
|
|
return commonCastTransforms(FI);
|
|
|
|
}
|
|
|
|
|
|
|
|
Instruction *InstCombiner::visitUIToFP(CastInst &CI) {
|
|
|
|
return commonCastTransforms(CI);
|
|
|
|
}
|
|
|
|
|
|
|
|
Instruction *InstCombiner::visitSIToFP(CastInst &CI) {
|
|
|
|
return commonCastTransforms(CI);
|
|
|
|
}
|
|
|
|
|
|
|
|
Instruction *InstCombiner::visitIntToPtr(IntToPtrInst &CI) {
|
2010-02-02 09:44:02 +08:00
|
|
|
// If the source integer type is not the intptr_t type for this target, do a
|
|
|
|
// trunc or zext to the intptr_t type, then inttoptr of it. This allows the
|
|
|
|
// cast to be exposed to other transforms.
|
2013-08-22 03:53:10 +08:00
|
|
|
|
2014-02-21 08:06:31 +08:00
|
|
|
if (DL) {
|
2013-08-22 03:53:10 +08:00
|
|
|
unsigned AS = CI.getAddressSpace();
|
|
|
|
if (CI.getOperand(0)->getType()->getScalarSizeInBits() !=
|
2014-02-21 08:06:31 +08:00
|
|
|
DL->getPointerSizeInBits(AS)) {
|
|
|
|
Type *Ty = DL->getIntPtrType(CI.getContext(), AS);
|
2013-08-22 03:53:10 +08:00
|
|
|
if (CI.getType()->isVectorTy()) // Handle vectors of pointers.
|
|
|
|
Ty = VectorType::get(Ty, CI.getType()->getVectorNumElements());
|
|
|
|
|
|
|
|
Value *P = Builder->CreateZExtOrTrunc(CI.getOperand(0), Ty);
|
|
|
|
return new IntToPtrInst(P, CI.getType());
|
|
|
|
}
|
2010-01-04 15:53:58 +08:00
|
|
|
}
|
2013-01-24 13:22:40 +08:00
|
|
|
|
2010-01-04 15:53:58 +08:00
|
|
|
if (Instruction *I = commonCastTransforms(CI))
|
|
|
|
return I;
|
|
|
|
|
2014-04-25 13:29:35 +08:00
|
|
|
return nullptr;
|
2010-01-04 15:53:58 +08:00
|
|
|
}
|
|
|
|
|
2010-01-06 06:21:18 +08:00
|
|
|
/// @brief Implement the transforms for cast of pointer (bitcast/ptrtoint)
|
|
|
|
Instruction *InstCombiner::commonPointerCastTransforms(CastInst &CI) {
|
|
|
|
Value *Src = CI.getOperand(0);
|
2013-01-24 13:22:40 +08:00
|
|
|
|
2010-01-06 06:21:18 +08:00
|
|
|
if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Src)) {
|
|
|
|
// If casting the result of a getelementptr instruction with no offset, turn
|
|
|
|
// this into a cast of the original pointer!
|
2014-06-07 05:52:55 +08:00
|
|
|
if (GEP->hasAllZeroIndices() &&
|
|
|
|
// If CI is an addrspacecast and GEP changes the poiner type, merging
|
|
|
|
// GEP into CI would undo canonicalizing addrspacecast with different
|
|
|
|
// pointer types, causing infinite loops.
|
|
|
|
(!isa<AddrSpaceCastInst>(CI) ||
|
|
|
|
GEP->getType() == GEP->getPointerOperand()->getType())) {
|
2010-01-06 06:21:18 +08:00
|
|
|
// Changing the cast operand is usually not a good idea but it is safe
|
2013-01-24 13:22:40 +08:00
|
|
|
// here because the pointer operand is being replaced with another
|
2010-01-06 06:21:18 +08:00
|
|
|
// pointer operand so the opcode doesn't need to change.
|
|
|
|
Worklist.Add(GEP);
|
|
|
|
CI.setOperand(0, GEP->getOperand(0));
|
|
|
|
return &CI;
|
|
|
|
}
|
2013-01-24 13:22:40 +08:00
|
|
|
|
2014-02-21 08:06:31 +08:00
|
|
|
if (!DL)
|
2013-08-20 06:17:18 +08:00
|
|
|
return commonCastTransforms(CI);
|
|
|
|
|
2010-01-06 06:21:18 +08:00
|
|
|
// If the GEP has a single use, and the base pointer is a bitcast, and the
|
|
|
|
// GEP computes a constant offset, see if we can convert these three
|
|
|
|
// instructions into fewer. This typically happens with unions and other
|
|
|
|
// non-type-safe code.
|
2013-08-22 03:53:10 +08:00
|
|
|
unsigned AS = GEP->getPointerAddressSpace();
|
2014-02-21 08:06:31 +08:00
|
|
|
unsigned OffsetBits = DL->getPointerSizeInBits(AS);
|
2013-08-20 06:17:18 +08:00
|
|
|
APInt Offset(OffsetBits, 0);
|
|
|
|
BitCastInst *BCI = dyn_cast<BitCastInst>(GEP->getOperand(0));
|
|
|
|
if (GEP->hasOneUse() &&
|
|
|
|
BCI &&
|
2014-02-21 08:06:31 +08:00
|
|
|
GEP->accumulateConstantOffset(*DL, Offset)) {
|
2010-01-06 06:21:18 +08:00
|
|
|
// Get the base pointer input of the bitcast, and the type it points to.
|
2013-08-20 06:17:18 +08:00
|
|
|
Value *OrigBase = BCI->getOperand(0);
|
2010-01-06 06:21:18 +08:00
|
|
|
SmallVector<Value*, 8> NewIndices;
|
2013-08-20 06:17:40 +08:00
|
|
|
if (FindElementAtOffset(OrigBase->getType(),
|
|
|
|
Offset.getSExtValue(),
|
|
|
|
NewIndices)) {
|
2010-01-06 06:21:18 +08:00
|
|
|
// If we were able to index down into an element, create the GEP
|
|
|
|
// and bitcast the result. This eliminates one bitcast, potentially
|
|
|
|
// two.
|
|
|
|
Value *NGEP = cast<GEPOperator>(GEP)->isInBounds() ?
|
2013-08-20 06:17:18 +08:00
|
|
|
Builder->CreateInBoundsGEP(OrigBase, NewIndices) :
|
|
|
|
Builder->CreateGEP(OrigBase, NewIndices);
|
2010-01-06 06:21:18 +08:00
|
|
|
NGEP->takeName(GEP);
|
2013-01-24 13:22:40 +08:00
|
|
|
|
2010-01-06 06:21:18 +08:00
|
|
|
if (isa<BitCastInst>(CI))
|
|
|
|
return new BitCastInst(NGEP, CI.getType());
|
|
|
|
assert(isa<PtrToIntInst>(CI));
|
|
|
|
return new PtrToIntInst(NGEP, CI.getType());
|
2013-01-24 13:22:40 +08:00
|
|
|
}
|
2010-01-06 06:21:18 +08:00
|
|
|
}
|
|
|
|
}
|
2013-01-24 13:22:40 +08:00
|
|
|
|
2010-01-06 06:21:18 +08:00
|
|
|
return commonCastTransforms(CI);
|
|
|
|
}
|
|
|
|
|
|
|
|
Instruction *InstCombiner::visitPtrToInt(PtrToIntInst &CI) {
|
2010-02-02 09:44:02 +08:00
|
|
|
// If the destination integer type is not the intptr_t type for this target,
|
|
|
|
// do a ptrtoint to intptr_t then do a trunc or zext. This allows the cast
|
|
|
|
// to be exposed to other transforms.
|
2013-02-06 03:21:56 +08:00
|
|
|
|
2014-02-21 08:06:31 +08:00
|
|
|
if (!DL)
|
2013-08-22 03:53:10 +08:00
|
|
|
return commonPointerCastTransforms(CI);
|
|
|
|
|
|
|
|
Type *Ty = CI.getType();
|
|
|
|
unsigned AS = CI.getPointerAddressSpace();
|
|
|
|
|
2014-02-21 08:06:31 +08:00
|
|
|
if (Ty->getScalarSizeInBits() == DL->getPointerSizeInBits(AS))
|
2013-08-22 03:53:10 +08:00
|
|
|
return commonPointerCastTransforms(CI);
|
|
|
|
|
2014-02-21 08:06:31 +08:00
|
|
|
Type *PtrTy = DL->getIntPtrType(CI.getContext(), AS);
|
2013-08-22 03:53:10 +08:00
|
|
|
if (Ty->isVectorTy()) // Handle vectors of pointers.
|
|
|
|
PtrTy = VectorType::get(PtrTy, Ty->getVectorNumElements());
|
2013-01-24 13:22:40 +08:00
|
|
|
|
2013-08-22 03:53:10 +08:00
|
|
|
Value *P = Builder->CreatePtrToInt(CI.getOperand(0), PtrTy);
|
|
|
|
return CastInst::CreateIntegerCast(P, Ty, /*isSigned=*/false);
|
2010-01-06 06:21:18 +08:00
|
|
|
}
|
|
|
|
|
2010-05-09 05:50:26 +08:00
|
|
|
/// OptimizeVectorResize - This input value (which is known to have vector type)
|
|
|
|
/// is being zero extended or truncated to the specified vector type. Try to
|
|
|
|
/// replace it with a shuffle (and vector/vector bitcast) if possible.
|
|
|
|
///
|
|
|
|
/// The source and destination vector types may have different element types.
|
2011-07-18 12:54:35 +08:00
|
|
|
static Instruction *OptimizeVectorResize(Value *InVal, VectorType *DestTy,
|
2010-05-09 05:50:26 +08:00
|
|
|
InstCombiner &IC) {
|
|
|
|
// We can only do this optimization if the output is a multiple of the input
|
|
|
|
// element size, or the input is a multiple of the output element size.
|
|
|
|
// Convert the input type to have the same element type as the output.
|
2011-07-18 12:54:35 +08:00
|
|
|
VectorType *SrcTy = cast<VectorType>(InVal->getType());
|
2013-01-24 13:22:40 +08:00
|
|
|
|
2010-05-09 05:50:26 +08:00
|
|
|
if (SrcTy->getElementType() != DestTy->getElementType()) {
|
|
|
|
// The input types don't need to be identical, but for now they must be the
|
|
|
|
// same size. There is no specific reason we couldn't handle things like
|
|
|
|
// <4 x i16> -> <4 x i32> by bitcasting to <2 x i32> but haven't gotten
|
2013-01-24 13:22:40 +08:00
|
|
|
// there yet.
|
2010-05-09 05:50:26 +08:00
|
|
|
if (SrcTy->getElementType()->getPrimitiveSizeInBits() !=
|
|
|
|
DestTy->getElementType()->getPrimitiveSizeInBits())
|
2014-04-25 13:29:35 +08:00
|
|
|
return nullptr;
|
2013-01-24 13:22:40 +08:00
|
|
|
|
2010-05-09 05:50:26 +08:00
|
|
|
SrcTy = VectorType::get(DestTy->getElementType(), SrcTy->getNumElements());
|
|
|
|
InVal = IC.Builder->CreateBitCast(InVal, SrcTy);
|
|
|
|
}
|
2013-01-24 13:22:40 +08:00
|
|
|
|
2010-05-09 05:50:26 +08:00
|
|
|
// Now that the element types match, get the shuffle mask and RHS of the
|
|
|
|
// shuffle to use, which depends on whether we're increasing or decreasing the
|
|
|
|
// size of the input.
|
2012-02-07 05:56:39 +08:00
|
|
|
SmallVector<uint32_t, 16> ShuffleMask;
|
2010-05-09 05:50:26 +08:00
|
|
|
Value *V2;
|
2013-01-24 13:22:40 +08:00
|
|
|
|
2010-05-09 05:50:26 +08:00
|
|
|
if (SrcTy->getNumElements() > DestTy->getNumElements()) {
|
|
|
|
// If we're shrinking the number of elements, just shuffle in the low
|
|
|
|
// elements from the input and use undef as the second shuffle input.
|
|
|
|
V2 = UndefValue::get(SrcTy);
|
|
|
|
for (unsigned i = 0, e = DestTy->getNumElements(); i != e; ++i)
|
2012-02-07 05:56:39 +08:00
|
|
|
ShuffleMask.push_back(i);
|
2013-01-24 13:22:40 +08:00
|
|
|
|
2010-05-09 05:50:26 +08:00
|
|
|
} else {
|
|
|
|
// If we're increasing the number of elements, shuffle in all of the
|
|
|
|
// elements from InVal and fill the rest of the result elements with zeros
|
|
|
|
// from a constant zero.
|
|
|
|
V2 = Constant::getNullValue(SrcTy);
|
|
|
|
unsigned SrcElts = SrcTy->getNumElements();
|
|
|
|
for (unsigned i = 0, e = SrcElts; i != e; ++i)
|
2012-02-07 05:56:39 +08:00
|
|
|
ShuffleMask.push_back(i);
|
2010-05-09 05:50:26 +08:00
|
|
|
|
|
|
|
// The excess elements reference the first element of the zero input.
|
2012-02-07 05:56:39 +08:00
|
|
|
for (unsigned i = 0, e = DestTy->getNumElements()-SrcElts; i != e; ++i)
|
|
|
|
ShuffleMask.push_back(SrcElts);
|
2010-05-09 05:50:26 +08:00
|
|
|
}
|
2013-01-24 13:22:40 +08:00
|
|
|
|
2012-02-07 05:56:39 +08:00
|
|
|
return new ShuffleVectorInst(InVal, V2,
|
|
|
|
ConstantDataVector::get(V2->getContext(),
|
|
|
|
ShuffleMask));
|
2010-05-09 05:50:26 +08:00
|
|
|
}
|
|
|
|
|
2011-07-18 12:54:35 +08:00
|
|
|
static bool isMultipleOfTypeSize(unsigned Value, Type *Ty) {
|
optimize bitcasts from large integers to vector into vector
element insertion from the pieces that feed into the vector.
This handles a pattern that occurs frequently due to code
generated for the x86-64 abi. We now compile something like
this:
struct S { float A, B, C, D; };
struct S g;
struct S bar() {
struct S A = g;
++A.A;
++A.C;
return A;
}
into all nice vector operations:
_bar: ## @bar
## BB#0: ## %entry
movq _g@GOTPCREL(%rip), %rax
movss LCPI1_0(%rip), %xmm1
movss (%rax), %xmm0
addss %xmm1, %xmm0
pshufd $16, %xmm0, %xmm0
movss 4(%rax), %xmm2
movss 12(%rax), %xmm3
pshufd $16, %xmm2, %xmm2
unpcklps %xmm2, %xmm0
addss 8(%rax), %xmm1
pshufd $16, %xmm1, %xmm1
pshufd $16, %xmm3, %xmm2
unpcklps %xmm2, %xmm1
ret
instead of icky integer operations:
_bar: ## @bar
movq _g@GOTPCREL(%rip), %rax
movss LCPI1_0(%rip), %xmm1
movss (%rax), %xmm0
addss %xmm1, %xmm0
movd %xmm0, %ecx
movl 4(%rax), %edx
movl 12(%rax), %esi
shlq $32, %rdx
addq %rcx, %rdx
movd %rdx, %xmm0
addss 8(%rax), %xmm1
movd %xmm1, %eax
shlq $32, %rsi
addq %rax, %rsi
movd %rsi, %xmm1
ret
This resolves rdar://8360454
llvm-svn: 112343
2010-08-28 09:20:38 +08:00
|
|
|
return Value % Ty->getPrimitiveSizeInBits() == 0;
|
|
|
|
}
|
|
|
|
|
2011-07-18 12:54:35 +08:00
|
|
|
static unsigned getTypeSizeIndex(unsigned Value, Type *Ty) {
|
optimize bitcasts from large integers to vector into vector
element insertion from the pieces that feed into the vector.
This handles a pattern that occurs frequently due to code
generated for the x86-64 abi. We now compile something like
this:
struct S { float A, B, C, D; };
struct S g;
struct S bar() {
struct S A = g;
++A.A;
++A.C;
return A;
}
into all nice vector operations:
_bar: ## @bar
## BB#0: ## %entry
movq _g@GOTPCREL(%rip), %rax
movss LCPI1_0(%rip), %xmm1
movss (%rax), %xmm0
addss %xmm1, %xmm0
pshufd $16, %xmm0, %xmm0
movss 4(%rax), %xmm2
movss 12(%rax), %xmm3
pshufd $16, %xmm2, %xmm2
unpcklps %xmm2, %xmm0
addss 8(%rax), %xmm1
pshufd $16, %xmm1, %xmm1
pshufd $16, %xmm3, %xmm2
unpcklps %xmm2, %xmm1
ret
instead of icky integer operations:
_bar: ## @bar
movq _g@GOTPCREL(%rip), %rax
movss LCPI1_0(%rip), %xmm1
movss (%rax), %xmm0
addss %xmm1, %xmm0
movd %xmm0, %ecx
movl 4(%rax), %edx
movl 12(%rax), %esi
shlq $32, %rdx
addq %rcx, %rdx
movd %rdx, %xmm0
addss 8(%rax), %xmm1
movd %xmm1, %eax
shlq $32, %rsi
addq %rax, %rsi
movd %rsi, %xmm1
ret
This resolves rdar://8360454
llvm-svn: 112343
2010-08-28 09:20:38 +08:00
|
|
|
return Value / Ty->getPrimitiveSizeInBits();
|
|
|
|
}
|
|
|
|
|
|
|
|
/// CollectInsertionElements - V is a value which is inserted into a vector of
|
|
|
|
/// VecEltTy. Look through the value to see if we can decompose it into
|
|
|
|
/// insertions into the vector. See the example in the comment for
|
|
|
|
/// OptimizeIntegerToVectorInsertions for the pattern this handles.
|
|
|
|
/// The type of V is always a non-zero multiple of VecEltTy's size.
|
2013-08-12 15:26:09 +08:00
|
|
|
/// Shift is the number of bits between the lsb of V and the lsb of
|
|
|
|
/// the vector.
|
optimize bitcasts from large integers to vector into vector
element insertion from the pieces that feed into the vector.
This handles a pattern that occurs frequently due to code
generated for the x86-64 abi. We now compile something like
this:
struct S { float A, B, C, D; };
struct S g;
struct S bar() {
struct S A = g;
++A.A;
++A.C;
return A;
}
into all nice vector operations:
_bar: ## @bar
## BB#0: ## %entry
movq _g@GOTPCREL(%rip), %rax
movss LCPI1_0(%rip), %xmm1
movss (%rax), %xmm0
addss %xmm1, %xmm0
pshufd $16, %xmm0, %xmm0
movss 4(%rax), %xmm2
movss 12(%rax), %xmm3
pshufd $16, %xmm2, %xmm2
unpcklps %xmm2, %xmm0
addss 8(%rax), %xmm1
pshufd $16, %xmm1, %xmm1
pshufd $16, %xmm3, %xmm2
unpcklps %xmm2, %xmm1
ret
instead of icky integer operations:
_bar: ## @bar
movq _g@GOTPCREL(%rip), %rax
movss LCPI1_0(%rip), %xmm1
movss (%rax), %xmm0
addss %xmm1, %xmm0
movd %xmm0, %ecx
movl 4(%rax), %edx
movl 12(%rax), %esi
shlq $32, %rdx
addq %rcx, %rdx
movd %rdx, %xmm0
addss 8(%rax), %xmm1
movd %xmm1, %eax
shlq $32, %rsi
addq %rax, %rsi
movd %rsi, %xmm1
ret
This resolves rdar://8360454
llvm-svn: 112343
2010-08-28 09:20:38 +08:00
|
|
|
///
|
|
|
|
/// This returns false if the pattern can't be matched or true if it can,
|
|
|
|
/// filling in Elements with the elements found here.
|
2013-08-12 15:26:09 +08:00
|
|
|
static bool CollectInsertionElements(Value *V, unsigned Shift,
|
optimize bitcasts from large integers to vector into vector
element insertion from the pieces that feed into the vector.
This handles a pattern that occurs frequently due to code
generated for the x86-64 abi. We now compile something like
this:
struct S { float A, B, C, D; };
struct S g;
struct S bar() {
struct S A = g;
++A.A;
++A.C;
return A;
}
into all nice vector operations:
_bar: ## @bar
## BB#0: ## %entry
movq _g@GOTPCREL(%rip), %rax
movss LCPI1_0(%rip), %xmm1
movss (%rax), %xmm0
addss %xmm1, %xmm0
pshufd $16, %xmm0, %xmm0
movss 4(%rax), %xmm2
movss 12(%rax), %xmm3
pshufd $16, %xmm2, %xmm2
unpcklps %xmm2, %xmm0
addss 8(%rax), %xmm1
pshufd $16, %xmm1, %xmm1
pshufd $16, %xmm3, %xmm2
unpcklps %xmm2, %xmm1
ret
instead of icky integer operations:
_bar: ## @bar
movq _g@GOTPCREL(%rip), %rax
movss LCPI1_0(%rip), %xmm1
movss (%rax), %xmm0
addss %xmm1, %xmm0
movd %xmm0, %ecx
movl 4(%rax), %edx
movl 12(%rax), %esi
shlq $32, %rdx
addq %rcx, %rdx
movd %rdx, %xmm0
addss 8(%rax), %xmm1
movd %xmm1, %eax
shlq $32, %rsi
addq %rax, %rsi
movd %rsi, %xmm1
ret
This resolves rdar://8360454
llvm-svn: 112343
2010-08-28 09:20:38 +08:00
|
|
|
SmallVectorImpl<Value*> &Elements,
|
2013-08-12 15:26:09 +08:00
|
|
|
Type *VecEltTy, InstCombiner &IC) {
|
|
|
|
assert(isMultipleOfTypeSize(Shift, VecEltTy) &&
|
|
|
|
"Shift should be a multiple of the element type size");
|
|
|
|
|
2010-08-28 11:36:51 +08:00
|
|
|
// Undef values never contribute useful bits to the result.
|
|
|
|
if (isa<UndefValue>(V)) return true;
|
2013-01-24 13:22:40 +08:00
|
|
|
|
optimize bitcasts from large integers to vector into vector
element insertion from the pieces that feed into the vector.
This handles a pattern that occurs frequently due to code
generated for the x86-64 abi. We now compile something like
this:
struct S { float A, B, C, D; };
struct S g;
struct S bar() {
struct S A = g;
++A.A;
++A.C;
return A;
}
into all nice vector operations:
_bar: ## @bar
## BB#0: ## %entry
movq _g@GOTPCREL(%rip), %rax
movss LCPI1_0(%rip), %xmm1
movss (%rax), %xmm0
addss %xmm1, %xmm0
pshufd $16, %xmm0, %xmm0
movss 4(%rax), %xmm2
movss 12(%rax), %xmm3
pshufd $16, %xmm2, %xmm2
unpcklps %xmm2, %xmm0
addss 8(%rax), %xmm1
pshufd $16, %xmm1, %xmm1
pshufd $16, %xmm3, %xmm2
unpcklps %xmm2, %xmm1
ret
instead of icky integer operations:
_bar: ## @bar
movq _g@GOTPCREL(%rip), %rax
movss LCPI1_0(%rip), %xmm1
movss (%rax), %xmm0
addss %xmm1, %xmm0
movd %xmm0, %ecx
movl 4(%rax), %edx
movl 12(%rax), %esi
shlq $32, %rdx
addq %rcx, %rdx
movd %rdx, %xmm0
addss 8(%rax), %xmm1
movd %xmm1, %eax
shlq $32, %rsi
addq %rax, %rsi
movd %rsi, %xmm1
ret
This resolves rdar://8360454
llvm-svn: 112343
2010-08-28 09:20:38 +08:00
|
|
|
// If we got down to a value of the right type, we win, try inserting into the
|
|
|
|
// right element.
|
|
|
|
if (V->getType() == VecEltTy) {
|
handle the constant case of vector insertion. For something
like this:
struct S { float A, B, C, D; };
struct S g;
struct S bar() {
struct S A = g;
++A.B;
A.A = 42;
return A;
}
we now generate:
_bar: ## @bar
## BB#0: ## %entry
movq _g@GOTPCREL(%rip), %rax
movss 12(%rax), %xmm0
pshufd $16, %xmm0, %xmm0
movss 4(%rax), %xmm2
movss 8(%rax), %xmm1
pshufd $16, %xmm1, %xmm1
unpcklps %xmm0, %xmm1
addss LCPI1_0(%rip), %xmm2
pshufd $16, %xmm2, %xmm2
movss LCPI1_1(%rip), %xmm0
pshufd $16, %xmm0, %xmm0
unpcklps %xmm2, %xmm0
ret
instead of:
_bar: ## @bar
## BB#0: ## %entry
movq _g@GOTPCREL(%rip), %rax
movss 12(%rax), %xmm0
pshufd $16, %xmm0, %xmm0
movss 4(%rax), %xmm2
movss 8(%rax), %xmm1
pshufd $16, %xmm1, %xmm1
unpcklps %xmm0, %xmm1
addss LCPI1_0(%rip), %xmm2
movd %xmm2, %eax
shlq $32, %rax
addq $1109917696, %rax ## imm = 0x42280000
movd %rax, %xmm0
ret
llvm-svn: 112345
2010-08-28 09:50:57 +08:00
|
|
|
// Inserting null doesn't actually insert any elements.
|
|
|
|
if (Constant *C = dyn_cast<Constant>(V))
|
|
|
|
if (C->isNullValue())
|
|
|
|
return true;
|
2013-01-24 13:22:40 +08:00
|
|
|
|
2013-08-12 15:26:09 +08:00
|
|
|
unsigned ElementIndex = getTypeSizeIndex(Shift, VecEltTy);
|
|
|
|
if (IC.getDataLayout()->isBigEndian())
|
|
|
|
ElementIndex = Elements.size() - ElementIndex - 1;
|
|
|
|
|
optimize bitcasts from large integers to vector into vector
element insertion from the pieces that feed into the vector.
This handles a pattern that occurs frequently due to code
generated for the x86-64 abi. We now compile something like
this:
struct S { float A, B, C, D; };
struct S g;
struct S bar() {
struct S A = g;
++A.A;
++A.C;
return A;
}
into all nice vector operations:
_bar: ## @bar
## BB#0: ## %entry
movq _g@GOTPCREL(%rip), %rax
movss LCPI1_0(%rip), %xmm1
movss (%rax), %xmm0
addss %xmm1, %xmm0
pshufd $16, %xmm0, %xmm0
movss 4(%rax), %xmm2
movss 12(%rax), %xmm3
pshufd $16, %xmm2, %xmm2
unpcklps %xmm2, %xmm0
addss 8(%rax), %xmm1
pshufd $16, %xmm1, %xmm1
pshufd $16, %xmm3, %xmm2
unpcklps %xmm2, %xmm1
ret
instead of icky integer operations:
_bar: ## @bar
movq _g@GOTPCREL(%rip), %rax
movss LCPI1_0(%rip), %xmm1
movss (%rax), %xmm0
addss %xmm1, %xmm0
movd %xmm0, %ecx
movl 4(%rax), %edx
movl 12(%rax), %esi
shlq $32, %rdx
addq %rcx, %rdx
movd %rdx, %xmm0
addss 8(%rax), %xmm1
movd %xmm1, %eax
shlq $32, %rsi
addq %rax, %rsi
movd %rsi, %xmm1
ret
This resolves rdar://8360454
llvm-svn: 112343
2010-08-28 09:20:38 +08:00
|
|
|
// Fail if multiple elements are inserted into this slot.
|
2014-04-25 13:29:35 +08:00
|
|
|
if (Elements[ElementIndex])
|
optimize bitcasts from large integers to vector into vector
element insertion from the pieces that feed into the vector.
This handles a pattern that occurs frequently due to code
generated for the x86-64 abi. We now compile something like
this:
struct S { float A, B, C, D; };
struct S g;
struct S bar() {
struct S A = g;
++A.A;
++A.C;
return A;
}
into all nice vector operations:
_bar: ## @bar
## BB#0: ## %entry
movq _g@GOTPCREL(%rip), %rax
movss LCPI1_0(%rip), %xmm1
movss (%rax), %xmm0
addss %xmm1, %xmm0
pshufd $16, %xmm0, %xmm0
movss 4(%rax), %xmm2
movss 12(%rax), %xmm3
pshufd $16, %xmm2, %xmm2
unpcklps %xmm2, %xmm0
addss 8(%rax), %xmm1
pshufd $16, %xmm1, %xmm1
pshufd $16, %xmm3, %xmm2
unpcklps %xmm2, %xmm1
ret
instead of icky integer operations:
_bar: ## @bar
movq _g@GOTPCREL(%rip), %rax
movss LCPI1_0(%rip), %xmm1
movss (%rax), %xmm0
addss %xmm1, %xmm0
movd %xmm0, %ecx
movl 4(%rax), %edx
movl 12(%rax), %esi
shlq $32, %rdx
addq %rcx, %rdx
movd %rdx, %xmm0
addss 8(%rax), %xmm1
movd %xmm1, %eax
shlq $32, %rsi
addq %rax, %rsi
movd %rsi, %xmm1
ret
This resolves rdar://8360454
llvm-svn: 112343
2010-08-28 09:20:38 +08:00
|
|
|
return false;
|
2013-01-24 13:22:40 +08:00
|
|
|
|
optimize bitcasts from large integers to vector into vector
element insertion from the pieces that feed into the vector.
This handles a pattern that occurs frequently due to code
generated for the x86-64 abi. We now compile something like
this:
struct S { float A, B, C, D; };
struct S g;
struct S bar() {
struct S A = g;
++A.A;
++A.C;
return A;
}
into all nice vector operations:
_bar: ## @bar
## BB#0: ## %entry
movq _g@GOTPCREL(%rip), %rax
movss LCPI1_0(%rip), %xmm1
movss (%rax), %xmm0
addss %xmm1, %xmm0
pshufd $16, %xmm0, %xmm0
movss 4(%rax), %xmm2
movss 12(%rax), %xmm3
pshufd $16, %xmm2, %xmm2
unpcklps %xmm2, %xmm0
addss 8(%rax), %xmm1
pshufd $16, %xmm1, %xmm1
pshufd $16, %xmm3, %xmm2
unpcklps %xmm2, %xmm1
ret
instead of icky integer operations:
_bar: ## @bar
movq _g@GOTPCREL(%rip), %rax
movss LCPI1_0(%rip), %xmm1
movss (%rax), %xmm0
addss %xmm1, %xmm0
movd %xmm0, %ecx
movl 4(%rax), %edx
movl 12(%rax), %esi
shlq $32, %rdx
addq %rcx, %rdx
movd %rdx, %xmm0
addss 8(%rax), %xmm1
movd %xmm1, %eax
shlq $32, %rsi
addq %rax, %rsi
movd %rsi, %xmm1
ret
This resolves rdar://8360454
llvm-svn: 112343
2010-08-28 09:20:38 +08:00
|
|
|
Elements[ElementIndex] = V;
|
|
|
|
return true;
|
|
|
|
}
|
2013-01-24 13:22:40 +08:00
|
|
|
|
handle the constant case of vector insertion. For something
like this:
struct S { float A, B, C, D; };
struct S g;
struct S bar() {
struct S A = g;
++A.B;
A.A = 42;
return A;
}
we now generate:
_bar: ## @bar
## BB#0: ## %entry
movq _g@GOTPCREL(%rip), %rax
movss 12(%rax), %xmm0
pshufd $16, %xmm0, %xmm0
movss 4(%rax), %xmm2
movss 8(%rax), %xmm1
pshufd $16, %xmm1, %xmm1
unpcklps %xmm0, %xmm1
addss LCPI1_0(%rip), %xmm2
pshufd $16, %xmm2, %xmm2
movss LCPI1_1(%rip), %xmm0
pshufd $16, %xmm0, %xmm0
unpcklps %xmm2, %xmm0
ret
instead of:
_bar: ## @bar
## BB#0: ## %entry
movq _g@GOTPCREL(%rip), %rax
movss 12(%rax), %xmm0
pshufd $16, %xmm0, %xmm0
movss 4(%rax), %xmm2
movss 8(%rax), %xmm1
pshufd $16, %xmm1, %xmm1
unpcklps %xmm0, %xmm1
addss LCPI1_0(%rip), %xmm2
movd %xmm2, %eax
shlq $32, %rax
addq $1109917696, %rax ## imm = 0x42280000
movd %rax, %xmm0
ret
llvm-svn: 112345
2010-08-28 09:50:57 +08:00
|
|
|
if (Constant *C = dyn_cast<Constant>(V)) {
|
optimize bitcasts from large integers to vector into vector
element insertion from the pieces that feed into the vector.
This handles a pattern that occurs frequently due to code
generated for the x86-64 abi. We now compile something like
this:
struct S { float A, B, C, D; };
struct S g;
struct S bar() {
struct S A = g;
++A.A;
++A.C;
return A;
}
into all nice vector operations:
_bar: ## @bar
## BB#0: ## %entry
movq _g@GOTPCREL(%rip), %rax
movss LCPI1_0(%rip), %xmm1
movss (%rax), %xmm0
addss %xmm1, %xmm0
pshufd $16, %xmm0, %xmm0
movss 4(%rax), %xmm2
movss 12(%rax), %xmm3
pshufd $16, %xmm2, %xmm2
unpcklps %xmm2, %xmm0
addss 8(%rax), %xmm1
pshufd $16, %xmm1, %xmm1
pshufd $16, %xmm3, %xmm2
unpcklps %xmm2, %xmm1
ret
instead of icky integer operations:
_bar: ## @bar
movq _g@GOTPCREL(%rip), %rax
movss LCPI1_0(%rip), %xmm1
movss (%rax), %xmm0
addss %xmm1, %xmm0
movd %xmm0, %ecx
movl 4(%rax), %edx
movl 12(%rax), %esi
shlq $32, %rdx
addq %rcx, %rdx
movd %rdx, %xmm0
addss 8(%rax), %xmm1
movd %xmm1, %eax
shlq $32, %rsi
addq %rax, %rsi
movd %rsi, %xmm1
ret
This resolves rdar://8360454
llvm-svn: 112343
2010-08-28 09:20:38 +08:00
|
|
|
// Figure out the # elements this provides, and bitcast it or slice it up
|
|
|
|
// as required.
|
handle the constant case of vector insertion. For something
like this:
struct S { float A, B, C, D; };
struct S g;
struct S bar() {
struct S A = g;
++A.B;
A.A = 42;
return A;
}
we now generate:
_bar: ## @bar
## BB#0: ## %entry
movq _g@GOTPCREL(%rip), %rax
movss 12(%rax), %xmm0
pshufd $16, %xmm0, %xmm0
movss 4(%rax), %xmm2
movss 8(%rax), %xmm1
pshufd $16, %xmm1, %xmm1
unpcklps %xmm0, %xmm1
addss LCPI1_0(%rip), %xmm2
pshufd $16, %xmm2, %xmm2
movss LCPI1_1(%rip), %xmm0
pshufd $16, %xmm0, %xmm0
unpcklps %xmm2, %xmm0
ret
instead of:
_bar: ## @bar
## BB#0: ## %entry
movq _g@GOTPCREL(%rip), %rax
movss 12(%rax), %xmm0
pshufd $16, %xmm0, %xmm0
movss 4(%rax), %xmm2
movss 8(%rax), %xmm1
pshufd $16, %xmm1, %xmm1
unpcklps %xmm0, %xmm1
addss LCPI1_0(%rip), %xmm2
movd %xmm2, %eax
shlq $32, %rax
addq $1109917696, %rax ## imm = 0x42280000
movd %rax, %xmm0
ret
llvm-svn: 112345
2010-08-28 09:50:57 +08:00
|
|
|
unsigned NumElts = getTypeSizeIndex(C->getType()->getPrimitiveSizeInBits(),
|
|
|
|
VecEltTy);
|
|
|
|
// If the constant is the size of a vector element, we just need to bitcast
|
|
|
|
// it to the right type so it gets properly inserted.
|
|
|
|
if (NumElts == 1)
|
|
|
|
return CollectInsertionElements(ConstantExpr::getBitCast(C, VecEltTy),
|
2013-08-12 15:26:09 +08:00
|
|
|
Shift, Elements, VecEltTy, IC);
|
2013-01-24 13:22:40 +08:00
|
|
|
|
handle the constant case of vector insertion. For something
like this:
struct S { float A, B, C, D; };
struct S g;
struct S bar() {
struct S A = g;
++A.B;
A.A = 42;
return A;
}
we now generate:
_bar: ## @bar
## BB#0: ## %entry
movq _g@GOTPCREL(%rip), %rax
movss 12(%rax), %xmm0
pshufd $16, %xmm0, %xmm0
movss 4(%rax), %xmm2
movss 8(%rax), %xmm1
pshufd $16, %xmm1, %xmm1
unpcklps %xmm0, %xmm1
addss LCPI1_0(%rip), %xmm2
pshufd $16, %xmm2, %xmm2
movss LCPI1_1(%rip), %xmm0
pshufd $16, %xmm0, %xmm0
unpcklps %xmm2, %xmm0
ret
instead of:
_bar: ## @bar
## BB#0: ## %entry
movq _g@GOTPCREL(%rip), %rax
movss 12(%rax), %xmm0
pshufd $16, %xmm0, %xmm0
movss 4(%rax), %xmm2
movss 8(%rax), %xmm1
pshufd $16, %xmm1, %xmm1
unpcklps %xmm0, %xmm1
addss LCPI1_0(%rip), %xmm2
movd %xmm2, %eax
shlq $32, %rax
addq $1109917696, %rax ## imm = 0x42280000
movd %rax, %xmm0
ret
llvm-svn: 112345
2010-08-28 09:50:57 +08:00
|
|
|
// Okay, this is a constant that covers multiple elements. Slice it up into
|
|
|
|
// pieces and insert each element-sized piece into the vector.
|
|
|
|
if (!isa<IntegerType>(C->getType()))
|
|
|
|
C = ConstantExpr::getBitCast(C, IntegerType::get(V->getContext(),
|
|
|
|
C->getType()->getPrimitiveSizeInBits()));
|
|
|
|
unsigned ElementSize = VecEltTy->getPrimitiveSizeInBits();
|
2011-07-18 12:54:35 +08:00
|
|
|
Type *ElementIntTy = IntegerType::get(C->getContext(), ElementSize);
|
2013-01-24 13:22:40 +08:00
|
|
|
|
handle the constant case of vector insertion. For something
like this:
struct S { float A, B, C, D; };
struct S g;
struct S bar() {
struct S A = g;
++A.B;
A.A = 42;
return A;
}
we now generate:
_bar: ## @bar
## BB#0: ## %entry
movq _g@GOTPCREL(%rip), %rax
movss 12(%rax), %xmm0
pshufd $16, %xmm0, %xmm0
movss 4(%rax), %xmm2
movss 8(%rax), %xmm1
pshufd $16, %xmm1, %xmm1
unpcklps %xmm0, %xmm1
addss LCPI1_0(%rip), %xmm2
pshufd $16, %xmm2, %xmm2
movss LCPI1_1(%rip), %xmm0
pshufd $16, %xmm0, %xmm0
unpcklps %xmm2, %xmm0
ret
instead of:
_bar: ## @bar
## BB#0: ## %entry
movq _g@GOTPCREL(%rip), %rax
movss 12(%rax), %xmm0
pshufd $16, %xmm0, %xmm0
movss 4(%rax), %xmm2
movss 8(%rax), %xmm1
pshufd $16, %xmm1, %xmm1
unpcklps %xmm0, %xmm1
addss LCPI1_0(%rip), %xmm2
movd %xmm2, %eax
shlq $32, %rax
addq $1109917696, %rax ## imm = 0x42280000
movd %rax, %xmm0
ret
llvm-svn: 112345
2010-08-28 09:50:57 +08:00
|
|
|
for (unsigned i = 0; i != NumElts; ++i) {
|
2013-08-12 15:26:09 +08:00
|
|
|
unsigned ShiftI = Shift+i*ElementSize;
|
handle the constant case of vector insertion. For something
like this:
struct S { float A, B, C, D; };
struct S g;
struct S bar() {
struct S A = g;
++A.B;
A.A = 42;
return A;
}
we now generate:
_bar: ## @bar
## BB#0: ## %entry
movq _g@GOTPCREL(%rip), %rax
movss 12(%rax), %xmm0
pshufd $16, %xmm0, %xmm0
movss 4(%rax), %xmm2
movss 8(%rax), %xmm1
pshufd $16, %xmm1, %xmm1
unpcklps %xmm0, %xmm1
addss LCPI1_0(%rip), %xmm2
pshufd $16, %xmm2, %xmm2
movss LCPI1_1(%rip), %xmm0
pshufd $16, %xmm0, %xmm0
unpcklps %xmm2, %xmm0
ret
instead of:
_bar: ## @bar
## BB#0: ## %entry
movq _g@GOTPCREL(%rip), %rax
movss 12(%rax), %xmm0
pshufd $16, %xmm0, %xmm0
movss 4(%rax), %xmm2
movss 8(%rax), %xmm1
pshufd $16, %xmm1, %xmm1
unpcklps %xmm0, %xmm1
addss LCPI1_0(%rip), %xmm2
movd %xmm2, %eax
shlq $32, %rax
addq $1109917696, %rax ## imm = 0x42280000
movd %rax, %xmm0
ret
llvm-svn: 112345
2010-08-28 09:50:57 +08:00
|
|
|
Constant *Piece = ConstantExpr::getLShr(C, ConstantInt::get(C->getType(),
|
2013-08-12 15:26:09 +08:00
|
|
|
ShiftI));
|
handle the constant case of vector insertion. For something
like this:
struct S { float A, B, C, D; };
struct S g;
struct S bar() {
struct S A = g;
++A.B;
A.A = 42;
return A;
}
we now generate:
_bar: ## @bar
## BB#0: ## %entry
movq _g@GOTPCREL(%rip), %rax
movss 12(%rax), %xmm0
pshufd $16, %xmm0, %xmm0
movss 4(%rax), %xmm2
movss 8(%rax), %xmm1
pshufd $16, %xmm1, %xmm1
unpcklps %xmm0, %xmm1
addss LCPI1_0(%rip), %xmm2
pshufd $16, %xmm2, %xmm2
movss LCPI1_1(%rip), %xmm0
pshufd $16, %xmm0, %xmm0
unpcklps %xmm2, %xmm0
ret
instead of:
_bar: ## @bar
## BB#0: ## %entry
movq _g@GOTPCREL(%rip), %rax
movss 12(%rax), %xmm0
pshufd $16, %xmm0, %xmm0
movss 4(%rax), %xmm2
movss 8(%rax), %xmm1
pshufd $16, %xmm1, %xmm1
unpcklps %xmm0, %xmm1
addss LCPI1_0(%rip), %xmm2
movd %xmm2, %eax
shlq $32, %rax
addq $1109917696, %rax ## imm = 0x42280000
movd %rax, %xmm0
ret
llvm-svn: 112345
2010-08-28 09:50:57 +08:00
|
|
|
Piece = ConstantExpr::getTrunc(Piece, ElementIntTy);
|
2013-08-12 15:26:09 +08:00
|
|
|
if (!CollectInsertionElements(Piece, ShiftI, Elements, VecEltTy, IC))
|
handle the constant case of vector insertion. For something
like this:
struct S { float A, B, C, D; };
struct S g;
struct S bar() {
struct S A = g;
++A.B;
A.A = 42;
return A;
}
we now generate:
_bar: ## @bar
## BB#0: ## %entry
movq _g@GOTPCREL(%rip), %rax
movss 12(%rax), %xmm0
pshufd $16, %xmm0, %xmm0
movss 4(%rax), %xmm2
movss 8(%rax), %xmm1
pshufd $16, %xmm1, %xmm1
unpcklps %xmm0, %xmm1
addss LCPI1_0(%rip), %xmm2
pshufd $16, %xmm2, %xmm2
movss LCPI1_1(%rip), %xmm0
pshufd $16, %xmm0, %xmm0
unpcklps %xmm2, %xmm0
ret
instead of:
_bar: ## @bar
## BB#0: ## %entry
movq _g@GOTPCREL(%rip), %rax
movss 12(%rax), %xmm0
pshufd $16, %xmm0, %xmm0
movss 4(%rax), %xmm2
movss 8(%rax), %xmm1
pshufd $16, %xmm1, %xmm1
unpcklps %xmm0, %xmm1
addss LCPI1_0(%rip), %xmm2
movd %xmm2, %eax
shlq $32, %rax
addq $1109917696, %rax ## imm = 0x42280000
movd %rax, %xmm0
ret
llvm-svn: 112345
2010-08-28 09:50:57 +08:00
|
|
|
return false;
|
|
|
|
}
|
|
|
|
return true;
|
|
|
|
}
|
2013-01-24 13:22:40 +08:00
|
|
|
|
optimize bitcasts from large integers to vector into vector
element insertion from the pieces that feed into the vector.
This handles a pattern that occurs frequently due to code
generated for the x86-64 abi. We now compile something like
this:
struct S { float A, B, C, D; };
struct S g;
struct S bar() {
struct S A = g;
++A.A;
++A.C;
return A;
}
into all nice vector operations:
_bar: ## @bar
## BB#0: ## %entry
movq _g@GOTPCREL(%rip), %rax
movss LCPI1_0(%rip), %xmm1
movss (%rax), %xmm0
addss %xmm1, %xmm0
pshufd $16, %xmm0, %xmm0
movss 4(%rax), %xmm2
movss 12(%rax), %xmm3
pshufd $16, %xmm2, %xmm2
unpcklps %xmm2, %xmm0
addss 8(%rax), %xmm1
pshufd $16, %xmm1, %xmm1
pshufd $16, %xmm3, %xmm2
unpcklps %xmm2, %xmm1
ret
instead of icky integer operations:
_bar: ## @bar
movq _g@GOTPCREL(%rip), %rax
movss LCPI1_0(%rip), %xmm1
movss (%rax), %xmm0
addss %xmm1, %xmm0
movd %xmm0, %ecx
movl 4(%rax), %edx
movl 12(%rax), %esi
shlq $32, %rdx
addq %rcx, %rdx
movd %rdx, %xmm0
addss 8(%rax), %xmm1
movd %xmm1, %eax
shlq $32, %rsi
addq %rax, %rsi
movd %rsi, %xmm1
ret
This resolves rdar://8360454
llvm-svn: 112343
2010-08-28 09:20:38 +08:00
|
|
|
if (!V->hasOneUse()) return false;
|
2013-01-24 13:22:40 +08:00
|
|
|
|
optimize bitcasts from large integers to vector into vector
element insertion from the pieces that feed into the vector.
This handles a pattern that occurs frequently due to code
generated for the x86-64 abi. We now compile something like
this:
struct S { float A, B, C, D; };
struct S g;
struct S bar() {
struct S A = g;
++A.A;
++A.C;
return A;
}
into all nice vector operations:
_bar: ## @bar
## BB#0: ## %entry
movq _g@GOTPCREL(%rip), %rax
movss LCPI1_0(%rip), %xmm1
movss (%rax), %xmm0
addss %xmm1, %xmm0
pshufd $16, %xmm0, %xmm0
movss 4(%rax), %xmm2
movss 12(%rax), %xmm3
pshufd $16, %xmm2, %xmm2
unpcklps %xmm2, %xmm0
addss 8(%rax), %xmm1
pshufd $16, %xmm1, %xmm1
pshufd $16, %xmm3, %xmm2
unpcklps %xmm2, %xmm1
ret
instead of icky integer operations:
_bar: ## @bar
movq _g@GOTPCREL(%rip), %rax
movss LCPI1_0(%rip), %xmm1
movss (%rax), %xmm0
addss %xmm1, %xmm0
movd %xmm0, %ecx
movl 4(%rax), %edx
movl 12(%rax), %esi
shlq $32, %rdx
addq %rcx, %rdx
movd %rdx, %xmm0
addss 8(%rax), %xmm1
movd %xmm1, %eax
shlq $32, %rsi
addq %rax, %rsi
movd %rsi, %xmm1
ret
This resolves rdar://8360454
llvm-svn: 112343
2010-08-28 09:20:38 +08:00
|
|
|
Instruction *I = dyn_cast<Instruction>(V);
|
2014-04-25 13:29:35 +08:00
|
|
|
if (!I) return false;
|
optimize bitcasts from large integers to vector into vector
element insertion from the pieces that feed into the vector.
This handles a pattern that occurs frequently due to code
generated for the x86-64 abi. We now compile something like
this:
struct S { float A, B, C, D; };
struct S g;
struct S bar() {
struct S A = g;
++A.A;
++A.C;
return A;
}
into all nice vector operations:
_bar: ## @bar
## BB#0: ## %entry
movq _g@GOTPCREL(%rip), %rax
movss LCPI1_0(%rip), %xmm1
movss (%rax), %xmm0
addss %xmm1, %xmm0
pshufd $16, %xmm0, %xmm0
movss 4(%rax), %xmm2
movss 12(%rax), %xmm3
pshufd $16, %xmm2, %xmm2
unpcklps %xmm2, %xmm0
addss 8(%rax), %xmm1
pshufd $16, %xmm1, %xmm1
pshufd $16, %xmm3, %xmm2
unpcklps %xmm2, %xmm1
ret
instead of icky integer operations:
_bar: ## @bar
movq _g@GOTPCREL(%rip), %rax
movss LCPI1_0(%rip), %xmm1
movss (%rax), %xmm0
addss %xmm1, %xmm0
movd %xmm0, %ecx
movl 4(%rax), %edx
movl 12(%rax), %esi
shlq $32, %rdx
addq %rcx, %rdx
movd %rdx, %xmm0
addss 8(%rax), %xmm1
movd %xmm1, %eax
shlq $32, %rsi
addq %rax, %rsi
movd %rsi, %xmm1
ret
This resolves rdar://8360454
llvm-svn: 112343
2010-08-28 09:20:38 +08:00
|
|
|
switch (I->getOpcode()) {
|
|
|
|
default: return false; // Unhandled case.
|
|
|
|
case Instruction::BitCast:
|
2013-08-12 15:26:09 +08:00
|
|
|
return CollectInsertionElements(I->getOperand(0), Shift,
|
|
|
|
Elements, VecEltTy, IC);
|
optimize bitcasts from large integers to vector into vector
element insertion from the pieces that feed into the vector.
This handles a pattern that occurs frequently due to code
generated for the x86-64 abi. We now compile something like
this:
struct S { float A, B, C, D; };
struct S g;
struct S bar() {
struct S A = g;
++A.A;
++A.C;
return A;
}
into all nice vector operations:
_bar: ## @bar
## BB#0: ## %entry
movq _g@GOTPCREL(%rip), %rax
movss LCPI1_0(%rip), %xmm1
movss (%rax), %xmm0
addss %xmm1, %xmm0
pshufd $16, %xmm0, %xmm0
movss 4(%rax), %xmm2
movss 12(%rax), %xmm3
pshufd $16, %xmm2, %xmm2
unpcklps %xmm2, %xmm0
addss 8(%rax), %xmm1
pshufd $16, %xmm1, %xmm1
pshufd $16, %xmm3, %xmm2
unpcklps %xmm2, %xmm1
ret
instead of icky integer operations:
_bar: ## @bar
movq _g@GOTPCREL(%rip), %rax
movss LCPI1_0(%rip), %xmm1
movss (%rax), %xmm0
addss %xmm1, %xmm0
movd %xmm0, %ecx
movl 4(%rax), %edx
movl 12(%rax), %esi
shlq $32, %rdx
addq %rcx, %rdx
movd %rdx, %xmm0
addss 8(%rax), %xmm1
movd %xmm1, %eax
shlq $32, %rsi
addq %rax, %rsi
movd %rsi, %xmm1
ret
This resolves rdar://8360454
llvm-svn: 112343
2010-08-28 09:20:38 +08:00
|
|
|
case Instruction::ZExt:
|
|
|
|
if (!isMultipleOfTypeSize(
|
|
|
|
I->getOperand(0)->getType()->getPrimitiveSizeInBits(),
|
|
|
|
VecEltTy))
|
|
|
|
return false;
|
2013-08-12 15:26:09 +08:00
|
|
|
return CollectInsertionElements(I->getOperand(0), Shift,
|
|
|
|
Elements, VecEltTy, IC);
|
optimize bitcasts from large integers to vector into vector
element insertion from the pieces that feed into the vector.
This handles a pattern that occurs frequently due to code
generated for the x86-64 abi. We now compile something like
this:
struct S { float A, B, C, D; };
struct S g;
struct S bar() {
struct S A = g;
++A.A;
++A.C;
return A;
}
into all nice vector operations:
_bar: ## @bar
## BB#0: ## %entry
movq _g@GOTPCREL(%rip), %rax
movss LCPI1_0(%rip), %xmm1
movss (%rax), %xmm0
addss %xmm1, %xmm0
pshufd $16, %xmm0, %xmm0
movss 4(%rax), %xmm2
movss 12(%rax), %xmm3
pshufd $16, %xmm2, %xmm2
unpcklps %xmm2, %xmm0
addss 8(%rax), %xmm1
pshufd $16, %xmm1, %xmm1
pshufd $16, %xmm3, %xmm2
unpcklps %xmm2, %xmm1
ret
instead of icky integer operations:
_bar: ## @bar
movq _g@GOTPCREL(%rip), %rax
movss LCPI1_0(%rip), %xmm1
movss (%rax), %xmm0
addss %xmm1, %xmm0
movd %xmm0, %ecx
movl 4(%rax), %edx
movl 12(%rax), %esi
shlq $32, %rdx
addq %rcx, %rdx
movd %rdx, %xmm0
addss 8(%rax), %xmm1
movd %xmm1, %eax
shlq $32, %rsi
addq %rax, %rsi
movd %rsi, %xmm1
ret
This resolves rdar://8360454
llvm-svn: 112343
2010-08-28 09:20:38 +08:00
|
|
|
case Instruction::Or:
|
2013-08-12 15:26:09 +08:00
|
|
|
return CollectInsertionElements(I->getOperand(0), Shift,
|
|
|
|
Elements, VecEltTy, IC) &&
|
|
|
|
CollectInsertionElements(I->getOperand(1), Shift,
|
|
|
|
Elements, VecEltTy, IC);
|
optimize bitcasts from large integers to vector into vector
element insertion from the pieces that feed into the vector.
This handles a pattern that occurs frequently due to code
generated for the x86-64 abi. We now compile something like
this:
struct S { float A, B, C, D; };
struct S g;
struct S bar() {
struct S A = g;
++A.A;
++A.C;
return A;
}
into all nice vector operations:
_bar: ## @bar
## BB#0: ## %entry
movq _g@GOTPCREL(%rip), %rax
movss LCPI1_0(%rip), %xmm1
movss (%rax), %xmm0
addss %xmm1, %xmm0
pshufd $16, %xmm0, %xmm0
movss 4(%rax), %xmm2
movss 12(%rax), %xmm3
pshufd $16, %xmm2, %xmm2
unpcklps %xmm2, %xmm0
addss 8(%rax), %xmm1
pshufd $16, %xmm1, %xmm1
pshufd $16, %xmm3, %xmm2
unpcklps %xmm2, %xmm1
ret
instead of icky integer operations:
_bar: ## @bar
movq _g@GOTPCREL(%rip), %rax
movss LCPI1_0(%rip), %xmm1
movss (%rax), %xmm0
addss %xmm1, %xmm0
movd %xmm0, %ecx
movl 4(%rax), %edx
movl 12(%rax), %esi
shlq $32, %rdx
addq %rcx, %rdx
movd %rdx, %xmm0
addss 8(%rax), %xmm1
movd %xmm1, %eax
shlq $32, %rsi
addq %rax, %rsi
movd %rsi, %xmm1
ret
This resolves rdar://8360454
llvm-svn: 112343
2010-08-28 09:20:38 +08:00
|
|
|
case Instruction::Shl: {
|
|
|
|
// Must be shifting by a constant that is a multiple of the element size.
|
|
|
|
ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1));
|
2014-04-25 13:29:35 +08:00
|
|
|
if (!CI) return false;
|
2013-08-12 15:26:09 +08:00
|
|
|
Shift += CI->getZExtValue();
|
|
|
|
if (!isMultipleOfTypeSize(Shift, VecEltTy)) return false;
|
|
|
|
return CollectInsertionElements(I->getOperand(0), Shift,
|
|
|
|
Elements, VecEltTy, IC);
|
optimize bitcasts from large integers to vector into vector
element insertion from the pieces that feed into the vector.
This handles a pattern that occurs frequently due to code
generated for the x86-64 abi. We now compile something like
this:
struct S { float A, B, C, D; };
struct S g;
struct S bar() {
struct S A = g;
++A.A;
++A.C;
return A;
}
into all nice vector operations:
_bar: ## @bar
## BB#0: ## %entry
movq _g@GOTPCREL(%rip), %rax
movss LCPI1_0(%rip), %xmm1
movss (%rax), %xmm0
addss %xmm1, %xmm0
pshufd $16, %xmm0, %xmm0
movss 4(%rax), %xmm2
movss 12(%rax), %xmm3
pshufd $16, %xmm2, %xmm2
unpcklps %xmm2, %xmm0
addss 8(%rax), %xmm1
pshufd $16, %xmm1, %xmm1
pshufd $16, %xmm3, %xmm2
unpcklps %xmm2, %xmm1
ret
instead of icky integer operations:
_bar: ## @bar
movq _g@GOTPCREL(%rip), %rax
movss LCPI1_0(%rip), %xmm1
movss (%rax), %xmm0
addss %xmm1, %xmm0
movd %xmm0, %ecx
movl 4(%rax), %edx
movl 12(%rax), %esi
shlq $32, %rdx
addq %rcx, %rdx
movd %rdx, %xmm0
addss 8(%rax), %xmm1
movd %xmm1, %eax
shlq $32, %rsi
addq %rax, %rsi
movd %rsi, %xmm1
ret
This resolves rdar://8360454
llvm-svn: 112343
2010-08-28 09:20:38 +08:00
|
|
|
}
|
2013-01-24 13:22:40 +08:00
|
|
|
|
optimize bitcasts from large integers to vector into vector
element insertion from the pieces that feed into the vector.
This handles a pattern that occurs frequently due to code
generated for the x86-64 abi. We now compile something like
this:
struct S { float A, B, C, D; };
struct S g;
struct S bar() {
struct S A = g;
++A.A;
++A.C;
return A;
}
into all nice vector operations:
_bar: ## @bar
## BB#0: ## %entry
movq _g@GOTPCREL(%rip), %rax
movss LCPI1_0(%rip), %xmm1
movss (%rax), %xmm0
addss %xmm1, %xmm0
pshufd $16, %xmm0, %xmm0
movss 4(%rax), %xmm2
movss 12(%rax), %xmm3
pshufd $16, %xmm2, %xmm2
unpcklps %xmm2, %xmm0
addss 8(%rax), %xmm1
pshufd $16, %xmm1, %xmm1
pshufd $16, %xmm3, %xmm2
unpcklps %xmm2, %xmm1
ret
instead of icky integer operations:
_bar: ## @bar
movq _g@GOTPCREL(%rip), %rax
movss LCPI1_0(%rip), %xmm1
movss (%rax), %xmm0
addss %xmm1, %xmm0
movd %xmm0, %ecx
movl 4(%rax), %edx
movl 12(%rax), %esi
shlq $32, %rdx
addq %rcx, %rdx
movd %rdx, %xmm0
addss 8(%rax), %xmm1
movd %xmm1, %eax
shlq $32, %rsi
addq %rax, %rsi
movd %rsi, %xmm1
ret
This resolves rdar://8360454
llvm-svn: 112343
2010-08-28 09:20:38 +08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/// OptimizeIntegerToVectorInsertions - If the input is an 'or' instruction, we
|
|
|
|
/// may be doing shifts and ors to assemble the elements of the vector manually.
|
|
|
|
/// Try to rip the code out and replace it with insertelements. This is to
|
|
|
|
/// optimize code like this:
|
|
|
|
///
|
|
|
|
/// %tmp37 = bitcast float %inc to i32
|
|
|
|
/// %tmp38 = zext i32 %tmp37 to i64
|
|
|
|
/// %tmp31 = bitcast float %inc5 to i32
|
|
|
|
/// %tmp32 = zext i32 %tmp31 to i64
|
|
|
|
/// %tmp33 = shl i64 %tmp32, 32
|
|
|
|
/// %ins35 = or i64 %tmp33, %tmp38
|
|
|
|
/// %tmp43 = bitcast i64 %ins35 to <2 x float>
|
|
|
|
///
|
|
|
|
/// Into two insertelements that do "buildvector{%inc, %inc5}".
|
|
|
|
static Value *OptimizeIntegerToVectorInsertions(BitCastInst &CI,
|
|
|
|
InstCombiner &IC) {
|
2013-08-12 15:26:09 +08:00
|
|
|
// We need to know the target byte order to perform this optimization.
|
2014-04-25 13:29:35 +08:00
|
|
|
if (!IC.getDataLayout()) return nullptr;
|
2013-08-12 15:26:09 +08:00
|
|
|
|
2011-07-18 12:54:35 +08:00
|
|
|
VectorType *DestVecTy = cast<VectorType>(CI.getType());
|
optimize bitcasts from large integers to vector into vector
element insertion from the pieces that feed into the vector.
This handles a pattern that occurs frequently due to code
generated for the x86-64 abi. We now compile something like
this:
struct S { float A, B, C, D; };
struct S g;
struct S bar() {
struct S A = g;
++A.A;
++A.C;
return A;
}
into all nice vector operations:
_bar: ## @bar
## BB#0: ## %entry
movq _g@GOTPCREL(%rip), %rax
movss LCPI1_0(%rip), %xmm1
movss (%rax), %xmm0
addss %xmm1, %xmm0
pshufd $16, %xmm0, %xmm0
movss 4(%rax), %xmm2
movss 12(%rax), %xmm3
pshufd $16, %xmm2, %xmm2
unpcklps %xmm2, %xmm0
addss 8(%rax), %xmm1
pshufd $16, %xmm1, %xmm1
pshufd $16, %xmm3, %xmm2
unpcklps %xmm2, %xmm1
ret
instead of icky integer operations:
_bar: ## @bar
movq _g@GOTPCREL(%rip), %rax
movss LCPI1_0(%rip), %xmm1
movss (%rax), %xmm0
addss %xmm1, %xmm0
movd %xmm0, %ecx
movl 4(%rax), %edx
movl 12(%rax), %esi
shlq $32, %rdx
addq %rcx, %rdx
movd %rdx, %xmm0
addss 8(%rax), %xmm1
movd %xmm1, %eax
shlq $32, %rsi
addq %rax, %rsi
movd %rsi, %xmm1
ret
This resolves rdar://8360454
llvm-svn: 112343
2010-08-28 09:20:38 +08:00
|
|
|
Value *IntInput = CI.getOperand(0);
|
|
|
|
|
|
|
|
SmallVector<Value*, 8> Elements(DestVecTy->getNumElements());
|
|
|
|
if (!CollectInsertionElements(IntInput, 0, Elements,
|
2013-08-12 15:26:09 +08:00
|
|
|
DestVecTy->getElementType(), IC))
|
2014-04-25 13:29:35 +08:00
|
|
|
return nullptr;
|
optimize bitcasts from large integers to vector into vector
element insertion from the pieces that feed into the vector.
This handles a pattern that occurs frequently due to code
generated for the x86-64 abi. We now compile something like
this:
struct S { float A, B, C, D; };
struct S g;
struct S bar() {
struct S A = g;
++A.A;
++A.C;
return A;
}
into all nice vector operations:
_bar: ## @bar
## BB#0: ## %entry
movq _g@GOTPCREL(%rip), %rax
movss LCPI1_0(%rip), %xmm1
movss (%rax), %xmm0
addss %xmm1, %xmm0
pshufd $16, %xmm0, %xmm0
movss 4(%rax), %xmm2
movss 12(%rax), %xmm3
pshufd $16, %xmm2, %xmm2
unpcklps %xmm2, %xmm0
addss 8(%rax), %xmm1
pshufd $16, %xmm1, %xmm1
pshufd $16, %xmm3, %xmm2
unpcklps %xmm2, %xmm1
ret
instead of icky integer operations:
_bar: ## @bar
movq _g@GOTPCREL(%rip), %rax
movss LCPI1_0(%rip), %xmm1
movss (%rax), %xmm0
addss %xmm1, %xmm0
movd %xmm0, %ecx
movl 4(%rax), %edx
movl 12(%rax), %esi
shlq $32, %rdx
addq %rcx, %rdx
movd %rdx, %xmm0
addss 8(%rax), %xmm1
movd %xmm1, %eax
shlq $32, %rsi
addq %rax, %rsi
movd %rsi, %xmm1
ret
This resolves rdar://8360454
llvm-svn: 112343
2010-08-28 09:20:38 +08:00
|
|
|
|
|
|
|
// If we succeeded, we know that all of the element are specified by Elements
|
|
|
|
// or are zero if Elements has a null entry. Recast this as a set of
|
|
|
|
// insertions.
|
|
|
|
Value *Result = Constant::getNullValue(CI.getType());
|
|
|
|
for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
|
2014-04-25 13:29:35 +08:00
|
|
|
if (!Elements[i]) continue; // Unset element.
|
2013-01-24 13:22:40 +08:00
|
|
|
|
optimize bitcasts from large integers to vector into vector
element insertion from the pieces that feed into the vector.
This handles a pattern that occurs frequently due to code
generated for the x86-64 abi. We now compile something like
this:
struct S { float A, B, C, D; };
struct S g;
struct S bar() {
struct S A = g;
++A.A;
++A.C;
return A;
}
into all nice vector operations:
_bar: ## @bar
## BB#0: ## %entry
movq _g@GOTPCREL(%rip), %rax
movss LCPI1_0(%rip), %xmm1
movss (%rax), %xmm0
addss %xmm1, %xmm0
pshufd $16, %xmm0, %xmm0
movss 4(%rax), %xmm2
movss 12(%rax), %xmm3
pshufd $16, %xmm2, %xmm2
unpcklps %xmm2, %xmm0
addss 8(%rax), %xmm1
pshufd $16, %xmm1, %xmm1
pshufd $16, %xmm3, %xmm2
unpcklps %xmm2, %xmm1
ret
instead of icky integer operations:
_bar: ## @bar
movq _g@GOTPCREL(%rip), %rax
movss LCPI1_0(%rip), %xmm1
movss (%rax), %xmm0
addss %xmm1, %xmm0
movd %xmm0, %ecx
movl 4(%rax), %edx
movl 12(%rax), %esi
shlq $32, %rdx
addq %rcx, %rdx
movd %rdx, %xmm0
addss 8(%rax), %xmm1
movd %xmm1, %eax
shlq $32, %rsi
addq %rax, %rsi
movd %rsi, %xmm1
ret
This resolves rdar://8360454
llvm-svn: 112343
2010-08-28 09:20:38 +08:00
|
|
|
Result = IC.Builder->CreateInsertElement(Result, Elements[i],
|
|
|
|
IC.Builder->getInt32(i));
|
|
|
|
}
|
2013-01-24 13:22:40 +08:00
|
|
|
|
optimize bitcasts from large integers to vector into vector
element insertion from the pieces that feed into the vector.
This handles a pattern that occurs frequently due to code
generated for the x86-64 abi. We now compile something like
this:
struct S { float A, B, C, D; };
struct S g;
struct S bar() {
struct S A = g;
++A.A;
++A.C;
return A;
}
into all nice vector operations:
_bar: ## @bar
## BB#0: ## %entry
movq _g@GOTPCREL(%rip), %rax
movss LCPI1_0(%rip), %xmm1
movss (%rax), %xmm0
addss %xmm1, %xmm0
pshufd $16, %xmm0, %xmm0
movss 4(%rax), %xmm2
movss 12(%rax), %xmm3
pshufd $16, %xmm2, %xmm2
unpcklps %xmm2, %xmm0
addss 8(%rax), %xmm1
pshufd $16, %xmm1, %xmm1
pshufd $16, %xmm3, %xmm2
unpcklps %xmm2, %xmm1
ret
instead of icky integer operations:
_bar: ## @bar
movq _g@GOTPCREL(%rip), %rax
movss LCPI1_0(%rip), %xmm1
movss (%rax), %xmm0
addss %xmm1, %xmm0
movd %xmm0, %ecx
movl 4(%rax), %edx
movl 12(%rax), %esi
shlq $32, %rdx
addq %rcx, %rdx
movd %rdx, %xmm0
addss 8(%rax), %xmm1
movd %xmm1, %eax
shlq $32, %rsi
addq %rax, %rsi
movd %rsi, %xmm1
ret
This resolves rdar://8360454
llvm-svn: 112343
2010-08-28 09:20:38 +08:00
|
|
|
return Result;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
optimize bitcast(trunc(bitcast(x))) where the result is a float and 'x'
is a vector to be a vector element extraction. This allows clang to
compile:
struct S { float A, B, C, D; };
float foo(struct S A) { return A.A + A.B+A.C+A.D; }
into:
_foo: ## @foo
## BB#0: ## %entry
movd %xmm0, %rax
shrq $32, %rax
movd %eax, %xmm2
addss %xmm0, %xmm2
movapd %xmm1, %xmm3
addss %xmm2, %xmm3
movd %xmm1, %rax
shrq $32, %rax
movd %eax, %xmm0
addss %xmm3, %xmm0
ret
instead of:
_foo: ## @foo
## BB#0: ## %entry
movd %xmm0, %rax
movd %eax, %xmm0
shrq $32, %rax
movd %eax, %xmm2
addss %xmm0, %xmm2
movd %xmm1, %rax
movd %eax, %xmm1
addss %xmm2, %xmm1
shrq $32, %rax
movd %eax, %xmm0
addss %xmm1, %xmm0
ret
... eliminating half of the horribleness.
llvm-svn: 112227
2010-08-27 05:55:42 +08:00
|
|
|
/// OptimizeIntToFloatBitCast - See if we can optimize an integer->float/double
|
|
|
|
/// bitcast. The various long double bitcasts can't get in here.
|
2010-08-27 06:14:59 +08:00
|
|
|
static Instruction *OptimizeIntToFloatBitCast(BitCastInst &CI,InstCombiner &IC){
|
2013-03-26 23:36:14 +08:00
|
|
|
// We need to know the target byte order to perform this optimization.
|
2014-04-25 13:29:35 +08:00
|
|
|
if (!IC.getDataLayout()) return nullptr;
|
2013-03-26 23:36:14 +08:00
|
|
|
|
optimize bitcast(trunc(bitcast(x))) where the result is a float and 'x'
is a vector to be a vector element extraction. This allows clang to
compile:
struct S { float A, B, C, D; };
float foo(struct S A) { return A.A + A.B+A.C+A.D; }
into:
_foo: ## @foo
## BB#0: ## %entry
movd %xmm0, %rax
shrq $32, %rax
movd %eax, %xmm2
addss %xmm0, %xmm2
movapd %xmm1, %xmm3
addss %xmm2, %xmm3
movd %xmm1, %rax
shrq $32, %rax
movd %eax, %xmm0
addss %xmm3, %xmm0
ret
instead of:
_foo: ## @foo
## BB#0: ## %entry
movd %xmm0, %rax
movd %eax, %xmm0
shrq $32, %rax
movd %eax, %xmm2
addss %xmm0, %xmm2
movd %xmm1, %rax
movd %eax, %xmm1
addss %xmm2, %xmm1
shrq $32, %rax
movd %eax, %xmm0
addss %xmm1, %xmm0
ret
... eliminating half of the horribleness.
llvm-svn: 112227
2010-08-27 05:55:42 +08:00
|
|
|
Value *Src = CI.getOperand(0);
|
2011-07-18 12:54:35 +08:00
|
|
|
Type *DestTy = CI.getType();
|
optimize bitcast(trunc(bitcast(x))) where the result is a float and 'x'
is a vector to be a vector element extraction. This allows clang to
compile:
struct S { float A, B, C, D; };
float foo(struct S A) { return A.A + A.B+A.C+A.D; }
into:
_foo: ## @foo
## BB#0: ## %entry
movd %xmm0, %rax
shrq $32, %rax
movd %eax, %xmm2
addss %xmm0, %xmm2
movapd %xmm1, %xmm3
addss %xmm2, %xmm3
movd %xmm1, %rax
shrq $32, %rax
movd %eax, %xmm0
addss %xmm3, %xmm0
ret
instead of:
_foo: ## @foo
## BB#0: ## %entry
movd %xmm0, %rax
movd %eax, %xmm0
shrq $32, %rax
movd %eax, %xmm2
addss %xmm0, %xmm2
movd %xmm1, %rax
movd %eax, %xmm1
addss %xmm2, %xmm1
shrq $32, %rax
movd %eax, %xmm0
addss %xmm1, %xmm0
ret
... eliminating half of the horribleness.
llvm-svn: 112227
2010-08-27 05:55:42 +08:00
|
|
|
|
|
|
|
// If this is a bitcast from int to float, check to see if the int is an
|
|
|
|
// extraction from a vector.
|
2014-04-25 13:29:35 +08:00
|
|
|
Value *VecInput = nullptr;
|
2010-08-27 06:14:59 +08:00
|
|
|
// bitcast(trunc(bitcast(somevector)))
|
optimize bitcast(trunc(bitcast(x))) where the result is a float and 'x'
is a vector to be a vector element extraction. This allows clang to
compile:
struct S { float A, B, C, D; };
float foo(struct S A) { return A.A + A.B+A.C+A.D; }
into:
_foo: ## @foo
## BB#0: ## %entry
movd %xmm0, %rax
shrq $32, %rax
movd %eax, %xmm2
addss %xmm0, %xmm2
movapd %xmm1, %xmm3
addss %xmm2, %xmm3
movd %xmm1, %rax
shrq $32, %rax
movd %eax, %xmm0
addss %xmm3, %xmm0
ret
instead of:
_foo: ## @foo
## BB#0: ## %entry
movd %xmm0, %rax
movd %eax, %xmm0
shrq $32, %rax
movd %eax, %xmm2
addss %xmm0, %xmm2
movd %xmm1, %rax
movd %eax, %xmm1
addss %xmm2, %xmm1
shrq $32, %rax
movd %eax, %xmm0
addss %xmm1, %xmm0
ret
... eliminating half of the horribleness.
llvm-svn: 112227
2010-08-27 05:55:42 +08:00
|
|
|
if (match(Src, m_Trunc(m_BitCast(m_Value(VecInput)))) &&
|
|
|
|
isa<VectorType>(VecInput->getType())) {
|
2011-07-18 12:54:35 +08:00
|
|
|
VectorType *VecTy = cast<VectorType>(VecInput->getType());
|
2010-08-27 06:14:59 +08:00
|
|
|
unsigned DestWidth = DestTy->getPrimitiveSizeInBits();
|
|
|
|
|
|
|
|
if (VecTy->getPrimitiveSizeInBits() % DestWidth == 0) {
|
|
|
|
// If the element type of the vector doesn't match the result type,
|
|
|
|
// bitcast it to be a vector type we can extract from.
|
|
|
|
if (VecTy->getElementType() != DestTy) {
|
|
|
|
VecTy = VectorType::get(DestTy,
|
|
|
|
VecTy->getPrimitiveSizeInBits() / DestWidth);
|
|
|
|
VecInput = IC.Builder->CreateBitCast(VecInput, VecTy);
|
|
|
|
}
|
2013-01-24 13:22:40 +08:00
|
|
|
|
2013-03-26 23:36:14 +08:00
|
|
|
unsigned Elt = 0;
|
|
|
|
if (IC.getDataLayout()->isBigEndian())
|
|
|
|
Elt = VecTy->getPrimitiveSizeInBits() / DestWidth - 1;
|
|
|
|
return ExtractElementInst::Create(VecInput, IC.Builder->getInt32(Elt));
|
2010-08-27 06:14:59 +08:00
|
|
|
}
|
optimize bitcast(trunc(bitcast(x))) where the result is a float and 'x'
is a vector to be a vector element extraction. This allows clang to
compile:
struct S { float A, B, C, D; };
float foo(struct S A) { return A.A + A.B+A.C+A.D; }
into:
_foo: ## @foo
## BB#0: ## %entry
movd %xmm0, %rax
shrq $32, %rax
movd %eax, %xmm2
addss %xmm0, %xmm2
movapd %xmm1, %xmm3
addss %xmm2, %xmm3
movd %xmm1, %rax
shrq $32, %rax
movd %eax, %xmm0
addss %xmm3, %xmm0
ret
instead of:
_foo: ## @foo
## BB#0: ## %entry
movd %xmm0, %rax
movd %eax, %xmm0
shrq $32, %rax
movd %eax, %xmm2
addss %xmm0, %xmm2
movd %xmm1, %rax
movd %eax, %xmm1
addss %xmm2, %xmm1
shrq $32, %rax
movd %eax, %xmm0
addss %xmm1, %xmm0
ret
... eliminating half of the horribleness.
llvm-svn: 112227
2010-08-27 05:55:42 +08:00
|
|
|
}
|
2013-01-24 13:22:40 +08:00
|
|
|
|
2010-08-27 06:14:59 +08:00
|
|
|
// bitcast(trunc(lshr(bitcast(somevector), cst))
|
2014-04-25 13:29:35 +08:00
|
|
|
ConstantInt *ShAmt = nullptr;
|
2010-08-27 06:14:59 +08:00
|
|
|
if (match(Src, m_Trunc(m_LShr(m_BitCast(m_Value(VecInput)),
|
|
|
|
m_ConstantInt(ShAmt)))) &&
|
|
|
|
isa<VectorType>(VecInput->getType())) {
|
2011-07-18 12:54:35 +08:00
|
|
|
VectorType *VecTy = cast<VectorType>(VecInput->getType());
|
2010-08-27 06:14:59 +08:00
|
|
|
unsigned DestWidth = DestTy->getPrimitiveSizeInBits();
|
|
|
|
if (VecTy->getPrimitiveSizeInBits() % DestWidth == 0 &&
|
|
|
|
ShAmt->getZExtValue() % DestWidth == 0) {
|
|
|
|
// If the element type of the vector doesn't match the result type,
|
|
|
|
// bitcast it to be a vector type we can extract from.
|
|
|
|
if (VecTy->getElementType() != DestTy) {
|
|
|
|
VecTy = VectorType::get(DestTy,
|
|
|
|
VecTy->getPrimitiveSizeInBits() / DestWidth);
|
|
|
|
VecInput = IC.Builder->CreateBitCast(VecInput, VecTy);
|
|
|
|
}
|
2013-01-24 13:22:40 +08:00
|
|
|
|
2010-08-27 06:14:59 +08:00
|
|
|
unsigned Elt = ShAmt->getZExtValue() / DestWidth;
|
2013-03-26 23:36:14 +08:00
|
|
|
if (IC.getDataLayout()->isBigEndian())
|
|
|
|
Elt = VecTy->getPrimitiveSizeInBits() / DestWidth - 1 - Elt;
|
2010-08-27 06:14:59 +08:00
|
|
|
return ExtractElementInst::Create(VecInput, IC.Builder->getInt32(Elt));
|
|
|
|
}
|
|
|
|
}
|
2014-04-25 13:29:35 +08:00
|
|
|
return nullptr;
|
optimize bitcast(trunc(bitcast(x))) where the result is a float and 'x'
is a vector to be a vector element extraction. This allows clang to
compile:
struct S { float A, B, C, D; };
float foo(struct S A) { return A.A + A.B+A.C+A.D; }
into:
_foo: ## @foo
## BB#0: ## %entry
movd %xmm0, %rax
shrq $32, %rax
movd %eax, %xmm2
addss %xmm0, %xmm2
movapd %xmm1, %xmm3
addss %xmm2, %xmm3
movd %xmm1, %rax
shrq $32, %rax
movd %eax, %xmm0
addss %xmm3, %xmm0
ret
instead of:
_foo: ## @foo
## BB#0: ## %entry
movd %xmm0, %rax
movd %eax, %xmm0
shrq $32, %rax
movd %eax, %xmm2
addss %xmm0, %xmm2
movd %xmm1, %rax
movd %eax, %xmm1
addss %xmm2, %xmm1
shrq $32, %rax
movd %eax, %xmm0
addss %xmm1, %xmm0
ret
... eliminating half of the horribleness.
llvm-svn: 112227
2010-08-27 05:55:42 +08:00
|
|
|
}
|
2010-05-09 05:50:26 +08:00
|
|
|
|
2010-01-04 15:53:58 +08:00
|
|
|
Instruction *InstCombiner::visitBitCast(BitCastInst &CI) {
|
|
|
|
// If the operands are integer typed then apply the integer transforms,
|
|
|
|
// otherwise just apply the common ones.
|
|
|
|
Value *Src = CI.getOperand(0);
|
2011-07-18 12:54:35 +08:00
|
|
|
Type *SrcTy = Src->getType();
|
|
|
|
Type *DestTy = CI.getType();
|
2010-01-04 15:53:58 +08:00
|
|
|
|
|
|
|
// Get rid of casts from one type to the same type. These are useless and can
|
|
|
|
// be replaced by the operand.
|
|
|
|
if (DestTy == Src->getType())
|
|
|
|
return ReplaceInstUsesWith(CI, Src);
|
|
|
|
|
2011-07-18 12:54:35 +08:00
|
|
|
if (PointerType *DstPTy = dyn_cast<PointerType>(DestTy)) {
|
|
|
|
PointerType *SrcPTy = cast<PointerType>(SrcTy);
|
|
|
|
Type *DstElTy = DstPTy->getElementType();
|
|
|
|
Type *SrcElTy = SrcPTy->getElementType();
|
2013-01-24 13:22:40 +08:00
|
|
|
|
2010-01-04 15:53:58 +08:00
|
|
|
// If we are casting a alloca to a pointer to a type of the same
|
|
|
|
// size, rewrite the allocation instruction to allocate the "right" type.
|
|
|
|
// There is no need to modify malloc calls because it is their bitcast that
|
|
|
|
// needs to be cleaned up.
|
|
|
|
if (AllocaInst *AI = dyn_cast<AllocaInst>(Src))
|
|
|
|
if (Instruction *V = PromoteCastOfAllocation(CI, *AI))
|
|
|
|
return V;
|
2013-01-24 13:22:40 +08:00
|
|
|
|
2010-01-04 15:53:58 +08:00
|
|
|
// If the source and destination are pointers, and this cast is equivalent
|
|
|
|
// to a getelementptr X, 0, 0, 0... turn it into the appropriate gep.
|
|
|
|
// This can enhance SROA and other transforms that want type-safe pointers.
|
|
|
|
Constant *ZeroUInt =
|
|
|
|
Constant::getNullValue(Type::getInt32Ty(CI.getContext()));
|
|
|
|
unsigned NumZeros = 0;
|
2013-01-24 13:22:40 +08:00
|
|
|
while (SrcElTy != DstElTy &&
|
2010-02-16 19:11:14 +08:00
|
|
|
isa<CompositeType>(SrcElTy) && !SrcElTy->isPointerTy() &&
|
2010-01-04 15:53:58 +08:00
|
|
|
SrcElTy->getNumContainedTypes() /* not "{}" */) {
|
|
|
|
SrcElTy = cast<CompositeType>(SrcElTy)->getTypeAtIndex(ZeroUInt);
|
|
|
|
++NumZeros;
|
|
|
|
}
|
|
|
|
|
|
|
|
// If we found a path from the src to dest, create the getelementptr now.
|
|
|
|
if (SrcElTy == DstElTy) {
|
|
|
|
SmallVector<Value*, 8> Idxs(NumZeros+1, ZeroUInt);
|
2011-07-25 17:48:08 +08:00
|
|
|
return GetElementPtrInst::CreateInBounds(Src, Idxs);
|
2010-01-04 15:53:58 +08:00
|
|
|
}
|
|
|
|
}
|
2013-01-24 13:22:40 +08:00
|
|
|
|
optimize bitcast(trunc(bitcast(x))) where the result is a float and 'x'
is a vector to be a vector element extraction. This allows clang to
compile:
struct S { float A, B, C, D; };
float foo(struct S A) { return A.A + A.B+A.C+A.D; }
into:
_foo: ## @foo
## BB#0: ## %entry
movd %xmm0, %rax
shrq $32, %rax
movd %eax, %xmm2
addss %xmm0, %xmm2
movapd %xmm1, %xmm3
addss %xmm2, %xmm3
movd %xmm1, %rax
shrq $32, %rax
movd %eax, %xmm0
addss %xmm3, %xmm0
ret
instead of:
_foo: ## @foo
## BB#0: ## %entry
movd %xmm0, %rax
movd %eax, %xmm0
shrq $32, %rax
movd %eax, %xmm2
addss %xmm0, %xmm2
movd %xmm1, %rax
movd %eax, %xmm1
addss %xmm2, %xmm1
shrq $32, %rax
movd %eax, %xmm0
addss %xmm1, %xmm0
ret
... eliminating half of the horribleness.
llvm-svn: 112227
2010-08-27 05:55:42 +08:00
|
|
|
// Try to optimize int -> float bitcasts.
|
|
|
|
if ((DestTy->isFloatTy() || DestTy->isDoubleTy()) && isa<IntegerType>(SrcTy))
|
|
|
|
if (Instruction *I = OptimizeIntToFloatBitCast(CI, *this))
|
|
|
|
return I;
|
2010-01-04 15:53:58 +08:00
|
|
|
|
2011-07-18 12:54:35 +08:00
|
|
|
if (VectorType *DestVTy = dyn_cast<VectorType>(DestTy)) {
|
2010-02-16 19:11:14 +08:00
|
|
|
if (DestVTy->getNumElements() == 1 && !SrcTy->isVectorTy()) {
|
2010-01-06 06:21:18 +08:00
|
|
|
Value *Elem = Builder->CreateBitCast(Src, DestVTy->getElementType());
|
|
|
|
return InsertElementInst::Create(UndefValue::get(DestTy), Elem,
|
2010-01-04 15:53:58 +08:00
|
|
|
Constant::getNullValue(Type::getInt32Ty(CI.getContext())));
|
|
|
|
// FIXME: Canonicalize bitcast(insertelement) -> insertelement(bitcast)
|
|
|
|
}
|
2013-01-24 13:22:40 +08:00
|
|
|
|
optimize bitcasts from large integers to vector into vector
element insertion from the pieces that feed into the vector.
This handles a pattern that occurs frequently due to code
generated for the x86-64 abi. We now compile something like
this:
struct S { float A, B, C, D; };
struct S g;
struct S bar() {
struct S A = g;
++A.A;
++A.C;
return A;
}
into all nice vector operations:
_bar: ## @bar
## BB#0: ## %entry
movq _g@GOTPCREL(%rip), %rax
movss LCPI1_0(%rip), %xmm1
movss (%rax), %xmm0
addss %xmm1, %xmm0
pshufd $16, %xmm0, %xmm0
movss 4(%rax), %xmm2
movss 12(%rax), %xmm3
pshufd $16, %xmm2, %xmm2
unpcklps %xmm2, %xmm0
addss 8(%rax), %xmm1
pshufd $16, %xmm1, %xmm1
pshufd $16, %xmm3, %xmm2
unpcklps %xmm2, %xmm1
ret
instead of icky integer operations:
_bar: ## @bar
movq _g@GOTPCREL(%rip), %rax
movss LCPI1_0(%rip), %xmm1
movss (%rax), %xmm0
addss %xmm1, %xmm0
movd %xmm0, %ecx
movl 4(%rax), %edx
movl 12(%rax), %esi
shlq $32, %rdx
addq %rcx, %rdx
movd %rdx, %xmm0
addss 8(%rax), %xmm1
movd %xmm1, %eax
shlq $32, %rsi
addq %rax, %rsi
movd %rsi, %xmm1
ret
This resolves rdar://8360454
llvm-svn: 112343
2010-08-28 09:20:38 +08:00
|
|
|
if (isa<IntegerType>(SrcTy)) {
|
|
|
|
// If this is a cast from an integer to vector, check to see if the input
|
|
|
|
// is a trunc or zext of a bitcast from vector. If so, we can replace all
|
|
|
|
// the casts with a shuffle and (potentially) a bitcast.
|
|
|
|
if (isa<TruncInst>(Src) || isa<ZExtInst>(Src)) {
|
|
|
|
CastInst *SrcCast = cast<CastInst>(Src);
|
|
|
|
if (BitCastInst *BCIn = dyn_cast<BitCastInst>(SrcCast->getOperand(0)))
|
|
|
|
if (isa<VectorType>(BCIn->getOperand(0)->getType()))
|
|
|
|
if (Instruction *I = OptimizeVectorResize(BCIn->getOperand(0),
|
2010-05-09 05:50:26 +08:00
|
|
|
cast<VectorType>(DestTy), *this))
|
optimize bitcasts from large integers to vector into vector
element insertion from the pieces that feed into the vector.
This handles a pattern that occurs frequently due to code
generated for the x86-64 abi. We now compile something like
this:
struct S { float A, B, C, D; };
struct S g;
struct S bar() {
struct S A = g;
++A.A;
++A.C;
return A;
}
into all nice vector operations:
_bar: ## @bar
## BB#0: ## %entry
movq _g@GOTPCREL(%rip), %rax
movss LCPI1_0(%rip), %xmm1
movss (%rax), %xmm0
addss %xmm1, %xmm0
pshufd $16, %xmm0, %xmm0
movss 4(%rax), %xmm2
movss 12(%rax), %xmm3
pshufd $16, %xmm2, %xmm2
unpcklps %xmm2, %xmm0
addss 8(%rax), %xmm1
pshufd $16, %xmm1, %xmm1
pshufd $16, %xmm3, %xmm2
unpcklps %xmm2, %xmm1
ret
instead of icky integer operations:
_bar: ## @bar
movq _g@GOTPCREL(%rip), %rax
movss LCPI1_0(%rip), %xmm1
movss (%rax), %xmm0
addss %xmm1, %xmm0
movd %xmm0, %ecx
movl 4(%rax), %edx
movl 12(%rax), %esi
shlq $32, %rdx
addq %rcx, %rdx
movd %rdx, %xmm0
addss 8(%rax), %xmm1
movd %xmm1, %eax
shlq $32, %rsi
addq %rax, %rsi
movd %rsi, %xmm1
ret
This resolves rdar://8360454
llvm-svn: 112343
2010-08-28 09:20:38 +08:00
|
|
|
return I;
|
|
|
|
}
|
2013-01-24 13:22:40 +08:00
|
|
|
|
optimize bitcasts from large integers to vector into vector
element insertion from the pieces that feed into the vector.
This handles a pattern that occurs frequently due to code
generated for the x86-64 abi. We now compile something like
this:
struct S { float A, B, C, D; };
struct S g;
struct S bar() {
struct S A = g;
++A.A;
++A.C;
return A;
}
into all nice vector operations:
_bar: ## @bar
## BB#0: ## %entry
movq _g@GOTPCREL(%rip), %rax
movss LCPI1_0(%rip), %xmm1
movss (%rax), %xmm0
addss %xmm1, %xmm0
pshufd $16, %xmm0, %xmm0
movss 4(%rax), %xmm2
movss 12(%rax), %xmm3
pshufd $16, %xmm2, %xmm2
unpcklps %xmm2, %xmm0
addss 8(%rax), %xmm1
pshufd $16, %xmm1, %xmm1
pshufd $16, %xmm3, %xmm2
unpcklps %xmm2, %xmm1
ret
instead of icky integer operations:
_bar: ## @bar
movq _g@GOTPCREL(%rip), %rax
movss LCPI1_0(%rip), %xmm1
movss (%rax), %xmm0
addss %xmm1, %xmm0
movd %xmm0, %ecx
movl 4(%rax), %edx
movl 12(%rax), %esi
shlq $32, %rdx
addq %rcx, %rdx
movd %rdx, %xmm0
addss 8(%rax), %xmm1
movd %xmm1, %eax
shlq $32, %rsi
addq %rax, %rsi
movd %rsi, %xmm1
ret
This resolves rdar://8360454
llvm-svn: 112343
2010-08-28 09:20:38 +08:00
|
|
|
// If the input is an 'or' instruction, we may be doing shifts and ors to
|
|
|
|
// assemble the elements of the vector manually. Try to rip the code out
|
|
|
|
// and replace it with insertelements.
|
|
|
|
if (Value *V = OptimizeIntegerToVectorInsertions(CI, *this))
|
|
|
|
return ReplaceInstUsesWith(CI, V);
|
2010-05-09 05:50:26 +08:00
|
|
|
}
|
2010-01-04 15:53:58 +08:00
|
|
|
}
|
|
|
|
|
2011-07-18 12:54:35 +08:00
|
|
|
if (VectorType *SrcVTy = dyn_cast<VectorType>(SrcTy)) {
|
2013-02-12 05:41:44 +08:00
|
|
|
if (SrcVTy->getNumElements() == 1) {
|
|
|
|
// If our destination is not a vector, then make this a straight
|
|
|
|
// scalar-scalar cast.
|
|
|
|
if (!DestTy->isVectorTy()) {
|
|
|
|
Value *Elem =
|
|
|
|
Builder->CreateExtractElement(Src,
|
|
|
|
Constant::getNullValue(Type::getInt32Ty(CI.getContext())));
|
|
|
|
return CastInst::Create(Instruction::BitCast, Elem, DestTy);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Otherwise, see if our source is an insert. If so, then use the scalar
|
|
|
|
// component directly.
|
|
|
|
if (InsertElementInst *IEI =
|
|
|
|
dyn_cast<InsertElementInst>(CI.getOperand(0)))
|
|
|
|
return CastInst::Create(Instruction::BitCast, IEI->getOperand(1),
|
|
|
|
DestTy);
|
2010-01-04 15:53:58 +08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(Src)) {
|
2010-01-06 06:21:18 +08:00
|
|
|
// Okay, we have (bitcast (shuffle ..)). Check to see if this is
|
2010-04-08 07:22:42 +08:00
|
|
|
// a bitcast to a vector with the same # elts.
|
2013-01-24 13:22:40 +08:00
|
|
|
if (SVI->hasOneUse() && DestTy->isVectorTy() &&
|
2013-08-14 08:24:34 +08:00
|
|
|
DestTy->getVectorNumElements() == SVI->getType()->getNumElements() &&
|
2010-01-06 06:21:18 +08:00
|
|
|
SVI->getType()->getNumElements() ==
|
2013-08-14 08:24:34 +08:00
|
|
|
SVI->getOperand(0)->getType()->getVectorNumElements()) {
|
2010-01-06 06:21:18 +08:00
|
|
|
BitCastInst *Tmp;
|
|
|
|
// If either of the operands is a cast from CI.getType(), then
|
|
|
|
// evaluating the shuffle in the casted destination's type will allow
|
|
|
|
// us to eliminate at least one cast.
|
2013-01-24 13:22:40 +08:00
|
|
|
if (((Tmp = dyn_cast<BitCastInst>(SVI->getOperand(0))) &&
|
2010-01-06 06:21:18 +08:00
|
|
|
Tmp->getOperand(0)->getType() == DestTy) ||
|
2013-01-24 13:22:40 +08:00
|
|
|
((Tmp = dyn_cast<BitCastInst>(SVI->getOperand(1))) &&
|
2010-01-06 06:21:18 +08:00
|
|
|
Tmp->getOperand(0)->getType() == DestTy)) {
|
|
|
|
Value *LHS = Builder->CreateBitCast(SVI->getOperand(0), DestTy);
|
|
|
|
Value *RHS = Builder->CreateBitCast(SVI->getOperand(1), DestTy);
|
|
|
|
// Return a new shuffle vector. Use the same element ID's, as we
|
|
|
|
// know the vector types match #elts.
|
|
|
|
return new ShuffleVectorInst(LHS, RHS, SVI->getOperand(2));
|
2010-01-04 15:53:58 +08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
2013-01-24 13:22:40 +08:00
|
|
|
|
2010-02-16 19:11:14 +08:00
|
|
|
if (SrcTy->isPointerTy())
|
2010-01-06 06:21:18 +08:00
|
|
|
return commonPointerCastTransforms(CI);
|
|
|
|
return commonCastTransforms(CI);
|
2010-01-04 15:53:58 +08:00
|
|
|
}
|
2013-11-15 13:45:08 +08:00
|
|
|
|
|
|
|
Instruction *InstCombiner::visitAddrSpaceCast(AddrSpaceCastInst &CI) {
|
2014-07-16 09:34:21 +08:00
|
|
|
// If the destination pointer element type is not the same as the source's
|
|
|
|
// first do a bitcast to the destination type, and then the addrspacecast.
|
|
|
|
// This allows the cast to be exposed to other transforms.
|
2014-06-07 05:52:55 +08:00
|
|
|
Value *Src = CI.getOperand(0);
|
|
|
|
PointerType *SrcTy = cast<PointerType>(Src->getType()->getScalarType());
|
|
|
|
PointerType *DestTy = cast<PointerType>(CI.getType()->getScalarType());
|
|
|
|
|
|
|
|
Type *DestElemTy = DestTy->getElementType();
|
|
|
|
if (SrcTy->getElementType() != DestElemTy) {
|
|
|
|
Type *MidTy = PointerType::get(DestElemTy, SrcTy->getAddressSpace());
|
2014-06-16 05:40:57 +08:00
|
|
|
if (VectorType *VT = dyn_cast<VectorType>(CI.getType())) {
|
|
|
|
// Handle vectors of pointers.
|
|
|
|
MidTy = VectorType::get(MidTy, VT->getNumElements());
|
|
|
|
}
|
2014-06-07 05:52:55 +08:00
|
|
|
|
|
|
|
Value *NewBitCast = Builder->CreateBitCast(Src, MidTy);
|
|
|
|
return new AddrSpaceCastInst(NewBitCast, CI.getType());
|
|
|
|
}
|
|
|
|
|
2014-01-15 04:00:45 +08:00
|
|
|
return commonPointerCastTransforms(CI);
|
2013-11-15 13:45:08 +08:00
|
|
|
}
|