llvm-project/clang/lib/Lex/PTHLexer.cpp

483 lines
15 KiB
C++
Raw Normal View History

//===--- PTHLexer.cpp - Lex from a token stream ---------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the PTHLexer interface.
//
//===----------------------------------------------------------------------===//
#include "clang/Basic/TokenKinds.h"
#include "clang/Basic/FileManager.h"
#include "clang/Basic/IdentifierTable.h"
#include "clang/Lex/PTHLexer.h"
#include "clang/Lex/Preprocessor.h"
#include "clang/Lex/PTHManager.h"
#include "clang/Lex/Token.h"
#include "clang/Lex/Preprocessor.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/ADT/OwningPtr.h"
using namespace clang;
#define DISK_TOKEN_SIZE (2+3*4)
PTHLexer::PTHLexer(Preprocessor& pp, SourceLocation fileloc, const char* D,
const char* ppcond, PTHManager& PM)
: PreprocessorLexer(&pp, fileloc), TokBuf(D), CurPtr(D), LastHashTokPtr(0),
PPCond(ppcond), CurPPCondPtr(ppcond), PTHMgr(PM), NeedsFetching(true) {
// Make sure the EofToken is completely clean.
EofToken.startToken();
}
Token PTHLexer::GetToken() {
// Read the next token, or if we haven't advanced yet, get the last
// token read.
if (NeedsFetching) {
NeedsFetching = false;
ReadToken(LastFetched);
}
Token Tok = LastFetched;
// If we are in raw mode, zero out identifier pointers. This is
// needed for 'pragma poison'. Note that this requires that the Preprocessor
// can go back to the original source when it calls getSpelling().
if (LexingRawMode && Tok.is(tok::identifier))
Tok.setIdentifierInfo(0);
return Tok;
}
void PTHLexer::Lex(Token& Tok) {
LexNextToken:
Tok = GetToken();
if (AtLastToken()) {
Preprocessor *PPCache = PP;
if (LexEndOfFile(Tok))
return;
assert(PPCache && "Raw buffer::LexEndOfFile should return a token");
return PPCache->Lex(Tok);
}
// Don't advance to the next token yet. Check if we are at the
// start of a new line and we're processing a directive. If so, we
// consume this token twice, once as an tok::eom.
if (Tok.isAtStartOfLine() && ParsingPreprocessorDirective) {
ParsingPreprocessorDirective = false;
Tok.setKind(tok::eom);
MIOpt.ReadToken();
return;
}
// Advance to the next token.
AdvanceToken();
if (Tok.is(tok::hash)) {
if (Tok.isAtStartOfLine()) {
LastHashTokPtr = CurPtr - DISK_TOKEN_SIZE;
if (!LexingRawMode) {
PP->HandleDirective(Tok);
if (PP->isCurrentLexer(this))
goto LexNextToken;
return PP->Lex(Tok);
}
}
}
MIOpt.ReadToken();
if (Tok.is(tok::identifier)) {
if (LexingRawMode) return;
return PP->HandleIdentifier(Tok);
}
}
bool PTHLexer::LexEndOfFile(Token &Tok) {
if (ParsingPreprocessorDirective) {
ParsingPreprocessorDirective = false;
Tok.setKind(tok::eom);
MIOpt.ReadToken();
return true; // Have a token.
}
if (LexingRawMode) {
MIOpt.ReadToken();
return true; // Have an eof token.
}
// FIXME: Issue diagnostics similar to Lexer.
return PP->HandleEndOfFile(Tok, false);
}
void PTHLexer::setEOF(Token& Tok) {
assert(!EofToken.is(tok::eof));
Tok = EofToken;
}
void PTHLexer::DiscardToEndOfLine() {
assert(ParsingPreprocessorDirective && ParsingFilename == false &&
"Must be in a preprocessing directive!");
// Already at end-of-file?
if (AtLastToken())
return;
// Find the first token that is not the start of the *current* line.
Token T;
for (Lex(T); !AtLastToken(); Lex(T))
if (GetToken().isAtStartOfLine())
return;
}
//===----------------------------------------------------------------------===//
// Utility methods for reading from the mmap'ed PTH file.
//===----------------------------------------------------------------------===//
static inline uint8_t Read8(const char*& data) {
return (uint8_t) *(data++);
}
static inline uint32_t Read32(const char*& data) {
uint32_t V = (uint32_t) Read8(data);
V |= (((uint32_t) Read8(data)) << 8);
V |= (((uint32_t) Read8(data)) << 16);
V |= (((uint32_t) Read8(data)) << 24);
return V;
}
/// SkipBlock - Used by Preprocessor to skip the current conditional block.
bool PTHLexer::SkipBlock() {
assert(CurPPCondPtr && "No cached PP conditional information.");
assert(LastHashTokPtr && "No known '#' token.");
const char* HashEntryI = 0;
uint32_t Offset;
uint32_t TableIdx;
do {
// Read the token offset from the side-table.
Offset = Read32(CurPPCondPtr);
// Read the target table index from the side-table.
TableIdx = Read32(CurPPCondPtr);
// Compute the actual memory address of the '#' token data for this entry.
HashEntryI = TokBuf + Offset;
// Optmization: "Sibling jumping". #if...#else...#endif blocks can
// contain nested blocks. In the side-table we can jump over these
// nested blocks instead of doing a linear search if the next "sibling"
// entry is not at a location greater than LastHashTokPtr.
if (HashEntryI < LastHashTokPtr && TableIdx) {
// In the side-table we are still at an entry for a '#' token that
// is earlier than the last one we saw. Check if the location we would
// stride gets us closer.
const char* NextPPCondPtr = PPCond + TableIdx*(sizeof(uint32_t)*2);
assert(NextPPCondPtr >= CurPPCondPtr);
// Read where we should jump to.
uint32_t TmpOffset = Read32(NextPPCondPtr);
const char* HashEntryJ = TokBuf + TmpOffset;
if (HashEntryJ <= LastHashTokPtr) {
// Jump directly to the next entry in the side table.
HashEntryI = HashEntryJ;
Offset = TmpOffset;
TableIdx = Read32(NextPPCondPtr);
CurPPCondPtr = NextPPCondPtr;
}
}
}
while (HashEntryI < LastHashTokPtr);
assert(HashEntryI == LastHashTokPtr && "No PP-cond entry found for '#'");
assert(TableIdx && "No jumping from #endifs.");
// Update our side-table iterator.
const char* NextPPCondPtr = PPCond + TableIdx*(sizeof(uint32_t)*2);
assert(NextPPCondPtr >= CurPPCondPtr);
CurPPCondPtr = NextPPCondPtr;
// Read where we should jump to.
HashEntryI = TokBuf + Read32(NextPPCondPtr);
uint32_t NextIdx = Read32(NextPPCondPtr);
// By construction NextIdx will be zero if this is a #endif. This is useful
// to know to obviate lexing another token.
bool isEndif = NextIdx == 0;
NeedsFetching = true;
// This case can occur when we see something like this:
//
// #if ...
// /* a comment or nothing */
// #elif
//
// If we are skipping the first #if block it will be the case that CurPtr
// already points 'elif'. Just return.
if (CurPtr > HashEntryI) {
assert(CurPtr == HashEntryI + DISK_TOKEN_SIZE);
// Did we reach a #endif? If so, go ahead and consume that token as well.
if (isEndif)
CurPtr += DISK_TOKEN_SIZE;
else
LastHashTokPtr = HashEntryI;
return isEndif;
}
// Otherwise, we need to advance. Update CurPtr to point to the '#' token.
CurPtr = HashEntryI;
// Update the location of the last observed '#'. This is useful if we
// are skipping multiple blocks.
LastHashTokPtr = CurPtr;
#ifndef DEBUG
// In a debug build we should verify that the token is really a '#' that
// appears at the start of the line.
Token Tok;
ReadToken(Tok);
assert(Tok.isAtStartOfLine() && Tok.is(tok::hash));
#else
// In a full release build we can just skip the token entirely.
CurPtr += DISK_TOKEN_SIZE;
#endif
// Did we reach a #endif? If so, go ahead and consume that token as well.
if (isEndif) { CurPtr += DISK_TOKEN_SIZE; }
return isEndif;
}
//===----------------------------------------------------------------------===//
// Token reconstruction from the PTH file.
//===----------------------------------------------------------------------===//
void PTHLexer::ReadToken(Token& T) {
// Clear the token.
// FIXME: Setting the flags directly should obviate this step.
T.startToken();
// Read the type of the token.
T.setKind((tok::TokenKind) Read8(CurPtr));
// Set flags. This is gross, since we are really setting multiple flags.
T.setFlag((Token::TokenFlags) Read8(CurPtr));
// Set the IdentifierInfo* (if any).
T.setIdentifierInfo(PTHMgr.ReadIdentifierInfo(CurPtr));
// Set the SourceLocation. Since all tokens are constructed using a
// raw lexer, they will all be offseted from the same FileID.
T.setLocation(SourceLocation::getFileLoc(FileID, Read32(CurPtr)));
// Finally, read and set the length of the token.
T.setLength(Read32(CurPtr));
}
//===----------------------------------------------------------------------===//
// Internal Data Structures for PTH file lookup and resolving identifiers.
//===----------------------------------------------------------------------===//
/// PTHFileLookup - This internal data structure is used by the PTHManager
/// to map from FileEntry objects managed by FileManager to offsets within
/// the PTH file.
namespace {
class VISIBILITY_HIDDEN PTHFileLookup {
public:
class Val {
uint32_t TokenOff;
uint32_t PPCondOff;
public:
Val() : TokenOff(~0) {}
Val(uint32_t toff, uint32_t poff) : TokenOff(toff), PPCondOff(poff) {}
uint32_t getTokenOffset() const {
assert(TokenOff != ~((uint32_t)0) && "PTHFileLookup entry initialized.");
return TokenOff;
}
uint32_t gettPPCondOffset() const {
assert(TokenOff != ~((uint32_t)0) && "PTHFileLookup entry initialized.");
return PPCondOff;
}
bool isValid() const { return TokenOff != ~((uint32_t)0); }
};
private:
llvm::StringMap<Val> FileMap;
public:
PTHFileLookup() {};
Val Lookup(const FileEntry* FE) {
const char* s = FE->getName();
unsigned size = strlen(s);
return FileMap.GetOrCreateValue(s, s+size).getValue();
}
void ReadTable(const char* D) {
uint32_t N = Read32(D); // Read the length of the table.
for ( ; N > 0; --N) { // The rest of the data is the table itself.
uint32_t len = Read32(D);
const char* s = D;
D += len;
uint32_t TokenOff = Read32(D);
FileMap.GetOrCreateValue(s, s+len).getValue() = Val(TokenOff, Read32(D));
}
}
};
} // end anonymous namespace
//===----------------------------------------------------------------------===//
// PTHManager methods.
//===----------------------------------------------------------------------===//
PTHManager::PTHManager(const llvm::MemoryBuffer* buf, void* fileLookup,
const char* idDataTable, IdentifierInfo** perIDCache,
Preprocessor& pp)
: Buf(buf), PerIDCache(perIDCache), FileLookup(fileLookup),
IdDataTable(idDataTable), ITable(pp.getIdentifierTable()), PP(pp) {}
PTHManager::~PTHManager() {
delete Buf;
delete (PTHFileLookup*) FileLookup;
free(PerIDCache);
}
PTHManager* PTHManager::Create(const std::string& file, Preprocessor& PP) {
// Memory map the PTH file.
llvm::OwningPtr<llvm::MemoryBuffer>
File(llvm::MemoryBuffer::getFile(file.c_str()));
if (!File)
return 0;
// Get the buffer ranges and check if there are at least three 32-bit
// words at the end of the file.
const char* BufBeg = File->getBufferStart();
const char* BufEnd = File->getBufferEnd();
if(!(BufEnd > BufBeg + sizeof(uint32_t)*3)) {
assert(false && "Invalid PTH file.");
return 0; // FIXME: Proper error diagnostic?
}
// Compute the address of the index table at the end of the PTH file.
// This table contains the offset of the file lookup table, the
// persistent ID -> identifer data table.
const char* EndTable = BufEnd - sizeof(uint32_t)*3;
// Construct the file lookup table. This will be used for mapping from
// FileEntry*'s to cached tokens.
const char* FileTableOffset = EndTable + sizeof(uint32_t)*2;
const char* FileTable = BufBeg + Read32(FileTableOffset);
if (!(FileTable > BufBeg && FileTable < BufEnd)) {
assert(false && "Invalid PTH file.");
return 0; // FIXME: Proper error diagnostic?
}
llvm::OwningPtr<PTHFileLookup> FL(new PTHFileLookup());
FL->ReadTable(FileTable);
// Get the location of the table mapping from persistent ids to the
// data needed to reconstruct identifiers.
const char* IDTableOffset = EndTable + sizeof(uint32_t)*1;
const char* IData = BufBeg + Read32(IDTableOffset);
if (!(IData > BufBeg && IData < BufEnd)) {
assert(false && "Invalid PTH file.");
return 0; // FIXME: Proper error diagnostic?
}
// Get the number of IdentifierInfos and pre-allocate the identifier cache.
uint32_t NumIds = Read32(IData);
// Pre-allocate the peristent ID -> IdentifierInfo* cache. We use calloc()
// so that we in the best case only zero out memory once when the OS returns
// us new pages.
IdentifierInfo** PerIDCache =
(IdentifierInfo**) calloc(NumIds, sizeof(*PerIDCache));
if (!PerIDCache) {
assert(false && "Could not allocate Persistent ID cache.");
return 0;
}
// Create the new lexer.
return new PTHManager(File.take(), FL.take(), IData, PerIDCache, PP);
}
IdentifierInfo* PTHManager::ReadIdentifierInfo(const char*& D) {
// Read the persistent ID from the PTH file.
uint32_t persistentID = Read32(D);
// A persistent ID of '0' always maps to NULL.
if (!persistentID)
return 0;
// Adjust the persistent ID by subtracting '1' so that it can be used
// as an index within a table in the PTH file.
--persistentID;
// Check if the IdentifierInfo has already been resolved.
IdentifierInfo*& II = PerIDCache[persistentID];
if (II) return II;
// Look in the PTH file for the string data for the IdentifierInfo object.
const char* TableEntry = IdDataTable + sizeof(uint32_t) * persistentID;
const char* IDData = Buf->getBufferStart() + Read32(TableEntry);
assert(IDData < Buf->getBufferEnd());
// Read the length of the string.
uint32_t len = Read32(IDData);
// Get the IdentifierInfo* with the specified string.
II = &ITable.get(IDData, IDData+len);
return II;
}
PTHLexer* PTHManager::CreateLexer(unsigned FileID, const FileEntry* FE) {
if (!FE)
return 0;
// Lookup the FileEntry object in our file lookup data structure. It will
// return a variant that indicates whether or not there is an offset within
// the PTH file that contains cached tokens.
PTHFileLookup::Val FileData = ((PTHFileLookup*) FileLookup)->Lookup(FE);
if (!FileData.isValid()) // No tokens available.
return 0;
// Compute the offset of the token data within the buffer.
const char* data = Buf->getBufferStart() + FileData.getTokenOffset();
// Get the location of pp-conditional table.
const char* ppcond = Buf->getBufferStart() + FileData.gettPPCondOffset();
uint32_t len = Read32(ppcond);
if (len == 0) ppcond = 0;
assert(data < Buf->getBufferEnd());
return new PTHLexer(PP, SourceLocation::getFileLoc(FileID, 0), data, ppcond,
*this);
}