llvm-project/clang/lib/CodeGen/CodeGenTBAA.cpp

394 lines
14 KiB
C++
Raw Normal View History

//===--- CodeGenTypes.cpp - TBAA information for LLVM CodeGen -------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This is the code that manages TBAA information and defines the TBAA policy
// for the optimizer to use. Relevant standards text includes:
//
// C99 6.5p7
// C++ [basic.lval] (p10 in n3126, p15 in some earlier versions)
//
//===----------------------------------------------------------------------===//
#include "CodeGenTBAA.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/Attr.h"
#include "clang/AST/Mangle.h"
#include "clang/AST/RecordLayout.h"
#include "clang/Frontend/CodeGenOptions.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Type.h"
using namespace clang;
using namespace CodeGen;
CodeGenTBAA::CodeGenTBAA(ASTContext &Ctx, llvm::Module &M,
const CodeGenOptions &CGO,
const LangOptions &Features, MangleContext &MContext)
: Context(Ctx), Module(M), CodeGenOpts(CGO),
Features(Features), MContext(MContext), MDHelper(M.getContext()),
Root(nullptr), Char(nullptr)
{}
CodeGenTBAA::~CodeGenTBAA() {
}
llvm::MDNode *CodeGenTBAA::getRoot() {
// Define the root of the tree. This identifies the tree, so that
// if our LLVM IR is linked with LLVM IR from a different front-end
// (or a different version of this front-end), their TBAA trees will
// remain distinct, and the optimizer will treat them conservatively.
if (!Root) {
if (Features.CPlusPlus)
Root = MDHelper.createTBAARoot("Simple C++ TBAA");
else
Root = MDHelper.createTBAARoot("Simple C/C++ TBAA");
}
return Root;
}
llvm::MDNode *CodeGenTBAA::createScalarTypeNode(StringRef Name,
llvm::MDNode *Parent,
uint64_t Size) {
if (CodeGenOpts.NewStructPathTBAA) {
llvm::Metadata *Id = MDHelper.createString(Name);
return MDHelper.createTBAATypeNode(Parent, Size, Id);
}
return MDHelper.createTBAAScalarTypeNode(Name, Parent);
}
llvm::MDNode *CodeGenTBAA::getChar() {
// Define the root of the tree for user-accessible memory. C and C++
// give special powers to char and certain similar types. However,
// these special powers only cover user-accessible memory, and doesn't
// include things like vtables.
if (!Char)
Char = createScalarTypeNode("omnipotent char", getRoot(), /* Size= */ 1);
return Char;
}
static bool TypeHasMayAlias(QualType QTy) {
// Tagged types have declarations, and therefore may have attributes.
if (const TagType *TTy = dyn_cast<TagType>(QTy))
return TTy->getDecl()->hasAttr<MayAliasAttr>();
// Typedef types have declarations, and therefore may have attributes.
if (const TypedefType *TTy = dyn_cast<TypedefType>(QTy)) {
if (TTy->getDecl()->hasAttr<MayAliasAttr>())
return true;
// Also, their underlying types may have relevant attributes.
return TypeHasMayAlias(TTy->desugar());
}
return false;
}
/// Check if the given type is a valid base type to be used in access tags.
static bool isValidBaseType(QualType QTy) {
if (QTy->isReferenceType())
return false;
if (const RecordType *TTy = QTy->getAs<RecordType>()) {
const RecordDecl *RD = TTy->getDecl()->getDefinition();
// Incomplete types are not valid base access types.
if (!RD)
return false;
if (RD->hasFlexibleArrayMember())
return false;
// RD can be struct, union, class, interface or enum.
// For now, we only handle struct and class.
if (RD->isStruct() || RD->isClass())
return true;
}
return false;
}
llvm::MDNode *CodeGenTBAA::getTypeInfoHelper(const Type *Ty) {
uint64_t Size = Context.getTypeSizeInChars(Ty).getQuantity();
// Handle builtin types.
if (const BuiltinType *BTy = dyn_cast<BuiltinType>(Ty)) {
switch (BTy->getKind()) {
// Character types are special and can alias anything.
// In C++, this technically only includes "char" and "unsigned char",
// and not "signed char". In C, it includes all three. For now,
// the risk of exploiting this detail in C++ seems likely to outweigh
// the benefit.
case BuiltinType::Char_U:
case BuiltinType::Char_S:
case BuiltinType::UChar:
case BuiltinType::SChar:
return getChar();
// Unsigned types can alias their corresponding signed types.
case BuiltinType::UShort:
return getTypeInfo(Context.ShortTy);
case BuiltinType::UInt:
return getTypeInfo(Context.IntTy);
case BuiltinType::ULong:
return getTypeInfo(Context.LongTy);
case BuiltinType::ULongLong:
return getTypeInfo(Context.LongLongTy);
case BuiltinType::UInt128:
return getTypeInfo(Context.Int128Ty);
2010-10-16 04:24:53 +08:00
// Treat all other builtin types as distinct types. This includes
// treating wchar_t, char16_t, and char32_t as distinct from their
// "underlying types".
default:
return createScalarTypeNode(BTy->getName(Features), getChar(), Size);
}
}
// C++1z [basic.lval]p10: "If a program attempts to access the stored value of
// an object through a glvalue of other than one of the following types the
// behavior is undefined: [...] a char, unsigned char, or std::byte type."
if (Ty->isStdByteType())
return getChar();
// Handle pointers and references.
// TODO: Implement C++'s type "similarity" and consider dis-"similar"
// pointers distinct.
if (Ty->isPointerType() || Ty->isReferenceType())
return createScalarTypeNode("any pointer", getChar(), Size);
// Accesses to arrays are accesses to objects of their element types.
if (CodeGenOpts.NewStructPathTBAA && Ty->isArrayType())
return getTypeInfo(cast<ArrayType>(Ty)->getElementType());
// Enum types are distinct types. In C++ they have "underlying types",
// however they aren't related for TBAA.
if (const EnumType *ETy = dyn_cast<EnumType>(Ty)) {
// In C++ mode, types have linkage, so we can rely on the ODR and
// on their mangled names, if they're external.
// TODO: Is there a way to get a program-wide unique name for a
// decl with local linkage or no linkage?
if (!Features.CPlusPlus || !ETy->getDecl()->isExternallyVisible())
return getChar();
SmallString<256> OutName;
llvm::raw_svector_ostream Out(OutName);
MContext.mangleTypeName(QualType(ETy, 0), Out);
return createScalarTypeNode(OutName, getChar(), Size);
}
// For now, handle any other kind of type conservatively.
return getChar();
}
llvm::MDNode *CodeGenTBAA::getTypeInfo(QualType QTy) {
// At -O0 or relaxed aliasing, TBAA is not emitted for regular types.
if (CodeGenOpts.OptimizationLevel == 0 || CodeGenOpts.RelaxedAliasing)
return nullptr;
// If the type has the may_alias attribute (even on a typedef), it is
// effectively in the general char alias class.
if (TypeHasMayAlias(QTy))
return getChar();
// We need this function to not fall back to returning the "omnipotent char"
// type node for aggregate and union types. Otherwise, any dereference of an
// aggregate will result into the may-alias access descriptor, meaning all
// subsequent accesses to direct and indirect members of that aggregate will
// be considered may-alias too.
// TODO: Combine getTypeInfo() and getBaseTypeInfo() into a single function.
if (isValidBaseType(QTy))
return getBaseTypeInfo(QTy);
const Type *Ty = Context.getCanonicalType(QTy).getTypePtr();
if (llvm::MDNode *N = MetadataCache[Ty])
return N;
// Note that the following helper call is allowed to add new nodes to the
// cache, which invalidates all its previously obtained iterators. So we
// first generate the node for the type and then add that node to the cache.
llvm::MDNode *TypeNode = getTypeInfoHelper(Ty);
return MetadataCache[Ty] = TypeNode;
}
TBAAAccessInfo CodeGenTBAA::getVTablePtrAccessInfo(llvm::Type *VTablePtrType) {
llvm::DataLayout DL(&Module);
unsigned Size = DL.getPointerTypeSize(VTablePtrType);
return TBAAAccessInfo(createScalarTypeNode("vtable pointer", getRoot(), Size),
Size);
}
bool
CodeGenTBAA::CollectFields(uint64_t BaseOffset,
QualType QTy,
SmallVectorImpl<llvm::MDBuilder::TBAAStructField> &
Fields,
bool MayAlias) {
/* Things not handled yet include: C++ base classes, bitfields, */
if (const RecordType *TTy = QTy->getAs<RecordType>()) {
const RecordDecl *RD = TTy->getDecl()->getDefinition();
if (RD->hasFlexibleArrayMember())
return false;
// TODO: Handle C++ base classes.
if (const CXXRecordDecl *Decl = dyn_cast<CXXRecordDecl>(RD))
if (Decl->bases_begin() != Decl->bases_end())
return false;
const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
unsigned idx = 0;
for (RecordDecl::field_iterator i = RD->field_begin(),
e = RD->field_end(); i != e; ++i, ++idx) {
uint64_t Offset = BaseOffset +
Layout.getFieldOffset(idx) / Context.getCharWidth();
QualType FieldQTy = i->getType();
if (!CollectFields(Offset, FieldQTy, Fields,
MayAlias || TypeHasMayAlias(FieldQTy)))
return false;
}
return true;
}
/* Otherwise, treat whatever it is as a field. */
uint64_t Offset = BaseOffset;
uint64_t Size = Context.getTypeSizeInChars(QTy).getQuantity();
[CodeGen] Unify generation of scalar and struct-path TBAA tags This patch makes it possible to produce access tags in a uniform manner regardless whether the resulting tag will be a scalar or a struct-path one. getAccessTagInfo() now takes care of the actual translation of access descriptors to tags and can handle all kinds of accesses. Facilities that specific to scalar accesses are eliminated. Some more details: * DecorateInstructionWithTBAA() is not responsible for conversion of types to access tags anymore. Instead, it takes an access descriptor (TBAAAccessInfo) and generates corresponding access tag from it. * getTBAAInfoForVTablePtr() reworked to getTBAAVTablePtrAccessInfo() that now returns the virtual-pointer access descriptor and not the virtual-point type metadata. * Added function getTBAAMayAliasAccessInfo() that returns the descriptor for may-alias accesses. * getTBAAStructTagInfo() renamed to getTBAAAccessTagInfo() as now it is the only way to generate access tag by a given access descriptor. It is capable of producing both scalar and struct-path tags, depending on options and availability of the base access type. getTBAAScalarTagInfo() and its cache ScalarTagMetadataCache are eliminated. * Now that we do not need to care about whether the resulting access tag should be a scalar or struct-path one, getTBAAStructTypeInfo() is renamed to getBaseTypeInfo(). * Added function getTBAAAccessInfo() that constructs access descriptor by a given QualType access type. This is part of D37826 reworked to be a separate patch to simplify review. Differential Revision: https://reviews.llvm.org/D38503 llvm-svn: 314979
2017-10-05 19:08:17 +08:00
llvm::MDNode *TBAAType = MayAlias ? getChar() : getTypeInfo(QTy);
llvm::MDNode *TBAATag = getAccessTagInfo(TBAAAccessInfo(TBAAType, Size));
Fields.push_back(llvm::MDBuilder::TBAAStructField(Offset, Size, TBAATag));
return true;
}
llvm::MDNode *
CodeGenTBAA::getTBAAStructInfo(QualType QTy) {
const Type *Ty = Context.getCanonicalType(QTy).getTypePtr();
if (llvm::MDNode *N = StructMetadataCache[Ty])
return N;
SmallVector<llvm::MDBuilder::TBAAStructField, 4> Fields;
if (CollectFields(0, QTy, Fields, TypeHasMayAlias(QTy)))
return MDHelper.createTBAAStructNode(Fields);
// For now, handle any other kind of type conservatively.
return StructMetadataCache[Ty] = nullptr;
}
llvm::MDNode *CodeGenTBAA::getBaseTypeInfoHelper(const Type *Ty) {
if (auto *TTy = dyn_cast<RecordType>(Ty)) {
const RecordDecl *RD = TTy->getDecl()->getDefinition();
const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
SmallVector<llvm::MDBuilder::TBAAStructField, 4> Fields;
for (FieldDecl *Field : RD->fields()) {
QualType FieldQTy = Field->getType();
llvm::MDNode *TypeNode = isValidBaseType(FieldQTy) ?
getBaseTypeInfo(FieldQTy) : getTypeInfo(FieldQTy);
if (!TypeNode)
return BaseTypeMetadataCache[Ty] = nullptr;
uint64_t BitOffset = Layout.getFieldOffset(Field->getFieldIndex());
uint64_t Offset = Context.toCharUnitsFromBits(BitOffset).getQuantity();
uint64_t Size = Context.getTypeSizeInChars(FieldQTy).getQuantity();
Fields.push_back(llvm::MDBuilder::TBAAStructField(Offset, Size,
TypeNode));
}
SmallString<256> OutName;
if (Features.CPlusPlus) {
// Don't use the mangler for C code.
llvm::raw_svector_ostream Out(OutName);
MContext.mangleTypeName(QualType(Ty, 0), Out);
} else {
OutName = RD->getName();
}
if (CodeGenOpts.NewStructPathTBAA) {
llvm::MDNode *Parent = getChar();
uint64_t Size = Context.getTypeSizeInChars(Ty).getQuantity();
llvm::Metadata *Id = MDHelper.createString(OutName);
return MDHelper.createTBAATypeNode(Parent, Size, Id, Fields);
}
// Create the struct type node with a vector of pairs (offset, type).
SmallVector<std::pair<llvm::MDNode*, uint64_t>, 4> OffsetsAndTypes;
for (const auto &Field : Fields)
OffsetsAndTypes.push_back(std::make_pair(Field.Type, Field.Offset));
return MDHelper.createTBAAStructTypeNode(OutName, OffsetsAndTypes);
}
return nullptr;
}
llvm::MDNode *CodeGenTBAA::getBaseTypeInfo(QualType QTy) {
if (!isValidBaseType(QTy))
return nullptr;
const Type *Ty = Context.getCanonicalType(QTy).getTypePtr();
if (llvm::MDNode *N = BaseTypeMetadataCache[Ty])
return N;
// Note that the following helper call is allowed to add new nodes to the
// cache, which invalidates all its previously obtained iterators. So we
// first generate the node for the type and then add that node to the cache.
llvm::MDNode *TypeNode = getBaseTypeInfoHelper(Ty);
return BaseTypeMetadataCache[Ty] = TypeNode;
}
[CodeGen] Unify generation of scalar and struct-path TBAA tags This patch makes it possible to produce access tags in a uniform manner regardless whether the resulting tag will be a scalar or a struct-path one. getAccessTagInfo() now takes care of the actual translation of access descriptors to tags and can handle all kinds of accesses. Facilities that specific to scalar accesses are eliminated. Some more details: * DecorateInstructionWithTBAA() is not responsible for conversion of types to access tags anymore. Instead, it takes an access descriptor (TBAAAccessInfo) and generates corresponding access tag from it. * getTBAAInfoForVTablePtr() reworked to getTBAAVTablePtrAccessInfo() that now returns the virtual-pointer access descriptor and not the virtual-point type metadata. * Added function getTBAAMayAliasAccessInfo() that returns the descriptor for may-alias accesses. * getTBAAStructTagInfo() renamed to getTBAAAccessTagInfo() as now it is the only way to generate access tag by a given access descriptor. It is capable of producing both scalar and struct-path tags, depending on options and availability of the base access type. getTBAAScalarTagInfo() and its cache ScalarTagMetadataCache are eliminated. * Now that we do not need to care about whether the resulting access tag should be a scalar or struct-path one, getTBAAStructTypeInfo() is renamed to getBaseTypeInfo(). * Added function getTBAAAccessInfo() that constructs access descriptor by a given QualType access type. This is part of D37826 reworked to be a separate patch to simplify review. Differential Revision: https://reviews.llvm.org/D38503 llvm-svn: 314979
2017-10-05 19:08:17 +08:00
llvm::MDNode *CodeGenTBAA::getAccessTagInfo(TBAAAccessInfo Info) {
assert(!Info.isIncomplete() && "Access to an object of an incomplete type!");
if (Info.isMayAlias())
Info = TBAAAccessInfo(getChar(), Info.Size);
if (!Info.AccessType)
return nullptr;
if (!CodeGenOpts.StructPathTBAA)
Info = TBAAAccessInfo(Info.AccessType, Info.Size);
llvm::MDNode *&N = AccessTagMetadataCache[Info];
if (N)
return N;
if (!Info.BaseType) {
Info.BaseType = Info.AccessType;
assert(!Info.Offset && "Nonzero offset for an access with no base type!");
}
if (CodeGenOpts.NewStructPathTBAA) {
return N = MDHelper.createTBAAAccessTag(Info.BaseType, Info.AccessType,
Info.Offset, Info.Size);
}
return N = MDHelper.createTBAAStructTagNode(Info.BaseType, Info.AccessType,
Info.Offset);
}
TBAAAccessInfo CodeGenTBAA::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo,
TBAAAccessInfo TargetInfo) {
if (SourceInfo.isMayAlias() || TargetInfo.isMayAlias())
return TBAAAccessInfo::getMayAliasInfo();
return TargetInfo;
}
TBAAAccessInfo
CodeGenTBAA::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA,
TBAAAccessInfo InfoB) {
if (InfoA == InfoB)
return InfoA;
if (!InfoA || !InfoB)
return TBAAAccessInfo();
if (InfoA.isMayAlias() || InfoB.isMayAlias())
return TBAAAccessInfo::getMayAliasInfo();
// TODO: Implement the rest of the logic here. For example, two accesses
// with same final access types result in an access to an object of that final
// access type regardless of their base types.
return TBAAAccessInfo::getMayAliasInfo();
}