llvm-project/llvm/tools/llvm-exegesis/lib/Clustering.cpp

171 lines
6.1 KiB
C++
Raw Normal View History

//===-- Clustering.cpp ------------------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "Clustering.h"
#include <string>
#include <unordered_set>
namespace exegesis {
// The clustering problem has the following characteristics:
// (A) - Low dimension (dimensions are typically proc resource units,
// typically < 10).
// (B) - Number of points : ~thousands (points are measurements of an MCInst)
// (C) - Number of clusters: ~tens.
// (D) - The number of clusters is not known /a priory/.
// (E) - The amount of noise is relatively small.
// The problem is rather small. In terms of algorithms, (D) disqualifies
// k-means and makes algorithms such as DBSCAN[1] or OPTICS[2] more applicable.
//
// We've used DBSCAN here because it's simple to implement. This is a pretty
// straightforward and inefficient implementation of the pseudocode in [2].
//
// [1] https://en.wikipedia.org/wiki/DBSCAN
// [2] https://en.wikipedia.org/wiki/OPTICS_algorithm
namespace {
// Finds the points at distance less than sqrt(EpsilonSquared) of Q (not
// including Q).
std::vector<size_t> rangeQuery(const std::vector<InstructionBenchmark> &Points,
const size_t Q, const double EpsilonSquared) {
std::vector<size_t> Neighbors;
const auto &QMeasurements = Points[Q].Measurements;
for (size_t P = 0, NumPoints = Points.size(); P < NumPoints; ++P) {
if (P == Q)
continue;
const auto &PMeasurements = Points[P].Measurements;
if (PMeasurements.empty()) // Error point.
continue;
double DistanceSquared = 0;
for (size_t I = 0, E = QMeasurements.size(); I < E; ++I) {
const auto Diff = PMeasurements[I].Value - QMeasurements[I].Value;
DistanceSquared += Diff * Diff;
}
if (DistanceSquared <= EpsilonSquared) {
Neighbors.push_back(P);
}
}
return Neighbors;
}
} // namespace
InstructionBenchmarkClustering::InstructionBenchmarkClustering(
const std::vector<InstructionBenchmark> &Points)
: Points_(Points), NoiseCluster_(ClusterId::noise()),
ErrorCluster_(ClusterId::error()) {}
llvm::Error InstructionBenchmarkClustering::validateAndSetup() {
ClusterIdForPoint_.resize(Points_.size());
// Mark erroneous measurements out.
// All points must have the same number of dimensions, in the same order.
const std::vector<BenchmarkMeasure> *LastMeasurement = nullptr;
for (size_t P = 0, NumPoints = Points_.size(); P < NumPoints; ++P) {
const auto &Point = Points_[P];
if (!Point.Error.empty()) {
ClusterIdForPoint_[P] = ClusterId::error();
ErrorCluster_.PointIndices.push_back(P);
continue;
}
const auto *CurMeasurement = &Point.Measurements;
if (LastMeasurement) {
if (LastMeasurement->size() != CurMeasurement->size()) {
return llvm::make_error<llvm::StringError>(
"inconsistent measurement dimensions",
llvm::inconvertibleErrorCode());
}
for (size_t I = 0, E = LastMeasurement->size(); I < E; ++I) {
if (LastMeasurement->at(I).Key != CurMeasurement->at(I).Key) {
return llvm::make_error<llvm::StringError>(
"inconsistent measurement dimensions keys",
llvm::inconvertibleErrorCode());
}
}
}
LastMeasurement = CurMeasurement;
}
if (LastMeasurement) {
NumDimensions_ = LastMeasurement->size();
}
return llvm::Error::success();
}
void InstructionBenchmarkClustering::dbScan(const size_t MinPts,
const double EpsilonSquared) {
for (size_t P = 0, NumPoints = Points_.size(); P < NumPoints; ++P) {
if (!ClusterIdForPoint_[P].isUndef())
continue; // Previously processed in inner loop.
const auto Neighbors = rangeQuery(Points_, P, EpsilonSquared);
if (Neighbors.size() + 1 < MinPts) { // Density check.
// The region around P is not dense enough to create a new cluster, mark
// as noise for now.
ClusterIdForPoint_[P] = ClusterId::noise();
continue;
}
// Create a new cluster, add P.
Clusters_.emplace_back(ClusterId::makeValid(Clusters_.size()));
Cluster &CurrentCluster = Clusters_.back();
ClusterIdForPoint_[P] = CurrentCluster.Id; /* Label initial point */
CurrentCluster.PointIndices.push_back(P);
// Process P's neighbors.
std::unordered_set<size_t> ToProcess(Neighbors.begin(), Neighbors.end());
while (!ToProcess.empty()) {
// Retrieve a point from the set.
const size_t Q = *ToProcess.begin();
ToProcess.erase(Q);
if (ClusterIdForPoint_[Q].isNoise()) {
// Change noise point to border point.
ClusterIdForPoint_[Q] = CurrentCluster.Id;
CurrentCluster.PointIndices.push_back(Q);
continue;
}
if (!ClusterIdForPoint_[Q].isUndef()) {
continue; // Previously processed.
}
// Add Q to the current custer.
ClusterIdForPoint_[Q] = CurrentCluster.Id;
CurrentCluster.PointIndices.push_back(Q);
// And extend to the neighbors of Q if the region is dense enough.
const auto Neighbors = rangeQuery(Points_, Q, EpsilonSquared);
if (Neighbors.size() + 1 >= MinPts) {
ToProcess.insert(Neighbors.begin(), Neighbors.end());
}
}
}
// Add noisy points to noise cluster.
for (size_t P = 0, NumPoints = Points_.size(); P < NumPoints; ++P) {
if (ClusterIdForPoint_[P].isNoise()) {
NoiseCluster_.PointIndices.push_back(P);
}
}
}
llvm::Expected<InstructionBenchmarkClustering>
InstructionBenchmarkClustering::create(
const std::vector<InstructionBenchmark> &Points, const size_t MinPts,
const double Epsilon) {
InstructionBenchmarkClustering Clustering(Points);
if (auto Error = Clustering.validateAndSetup()) {
return Error;
}
if (Clustering.ErrorCluster_.PointIndices.size() == Points.size()) {
return Clustering; // Nothing to cluster.
}
Clustering.dbScan(MinPts, Epsilon * Epsilon);
return Clustering;
}
} // namespace exegesis