llvm-project/mlir/lib/Parser/DialectSymbolParser.cpp

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

640 lines
22 KiB
C++
Raw Normal View History

//===- DialectSymbolParser.cpp - MLIR Dialect Symbol Parser --------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the parser for the dialect symbols, such as extended
// attributes and types.
//
//===----------------------------------------------------------------------===//
#include "Parser.h"
#include "mlir/IR/BuiltinTypes.h"
#include "mlir/IR/Dialect.h"
#include "mlir/IR/DialectImplementation.h"
#include "llvm/Support/SourceMgr.h"
using namespace mlir;
using namespace mlir::detail;
using llvm::MemoryBuffer;
using llvm::SMLoc;
using llvm::SourceMgr;
namespace {
/// This class provides the main implementation of the DialectAsmParser that
/// allows for dialects to parse attributes and types. This allows for dialect
/// hooking into the main MLIR parsing logic.
class CustomDialectAsmParser : public DialectAsmParser {
public:
CustomDialectAsmParser(StringRef fullSpec, Parser &parser)
: fullSpec(fullSpec), nameLoc(parser.getToken().getLoc()),
parser(parser) {}
~CustomDialectAsmParser() override {}
/// Emit a diagnostic at the specified location and return failure.
InFlightDiagnostic emitError(llvm::SMLoc loc, const Twine &message) override {
return parser.emitError(loc, message);
}
/// Return a builder which provides useful access to MLIRContext, global
/// objects like types and attributes.
Builder &getBuilder() const override { return parser.builder; }
/// Get the location of the next token and store it into the argument. This
/// always succeeds.
llvm::SMLoc getCurrentLocation() override {
return parser.getToken().getLoc();
}
/// Return the location of the original name token.
llvm::SMLoc getNameLoc() const override { return nameLoc; }
/// Re-encode the given source location as an MLIR location and return it.
Location getEncodedSourceLoc(llvm::SMLoc loc) override {
return parser.getEncodedSourceLocation(loc);
}
/// Returns the full specification of the symbol being parsed. This allows
/// for using a separate parser if necessary.
StringRef getFullSymbolSpec() const override { return fullSpec; }
/// Parse a floating point value from the stream.
ParseResult parseFloat(double &result) override {
bool isNegative = parser.consumeIf(Token::minus);
Token curTok = parser.getToken();
llvm::SMLoc loc = curTok.getLoc();
// Check for a floating point value.
if (curTok.is(Token::floatliteral)) {
auto val = curTok.getFloatingPointValue();
if (!val.hasValue())
return emitError(loc, "floating point value too large");
parser.consumeToken(Token::floatliteral);
result = isNegative ? -*val : *val;
return success();
}
// Check for a hexadecimal float value.
if (curTok.is(Token::integer)) {
Optional<APFloat> apResult;
if (failed(parser.parseFloatFromIntegerLiteral(
apResult, curTok, isNegative, APFloat::IEEEdouble(),
/*typeSizeInBits=*/64)))
return failure();
parser.consumeToken(Token::integer);
result = apResult->convertToDouble();
return success();
}
return emitError(loc, "expected floating point literal");
}
/// Parse an optional integer value from the stream.
OptionalParseResult parseOptionalInteger(uint64_t &result) override {
return parser.parseOptionalInteger(result);
}
//===--------------------------------------------------------------------===//
// Token Parsing
//===--------------------------------------------------------------------===//
/// Parse a `->` token.
ParseResult parseArrow() override {
return parser.parseToken(Token::arrow, "expected '->'");
}
/// Parses a `->` if present.
ParseResult parseOptionalArrow() override {
return success(parser.consumeIf(Token::arrow));
}
/// Parse a '{' token.
ParseResult parseLBrace() override {
return parser.parseToken(Token::l_brace, "expected '{'");
}
/// Parse a '{' token if present
ParseResult parseOptionalLBrace() override {
return success(parser.consumeIf(Token::l_brace));
}
/// Parse a `}` token.
ParseResult parseRBrace() override {
return parser.parseToken(Token::r_brace, "expected '}'");
}
/// Parse a `}` token if present
ParseResult parseOptionalRBrace() override {
return success(parser.consumeIf(Token::r_brace));
}
/// Parse a `:` token.
ParseResult parseColon() override {
return parser.parseToken(Token::colon, "expected ':'");
}
/// Parse a `:` token if present.
ParseResult parseOptionalColon() override {
return success(parser.consumeIf(Token::colon));
}
/// Parse a `,` token.
ParseResult parseComma() override {
return parser.parseToken(Token::comma, "expected ','");
}
/// Parse a `,` token if present.
ParseResult parseOptionalComma() override {
return success(parser.consumeIf(Token::comma));
}
/// Parses a `...` if present.
ParseResult parseOptionalEllipsis() override {
return success(parser.consumeIf(Token::ellipsis));
}
/// Parse a `=` token.
ParseResult parseEqual() override {
return parser.parseToken(Token::equal, "expected '='");
}
/// Parse a `=` token if present.
ParseResult parseOptionalEqual() override {
return success(parser.consumeIf(Token::equal));
}
/// Parse a '<' token.
ParseResult parseLess() override {
return parser.parseToken(Token::less, "expected '<'");
}
/// Parse a `<` token if present.
ParseResult parseOptionalLess() override {
return success(parser.consumeIf(Token::less));
}
/// Parse a '>' token.
ParseResult parseGreater() override {
return parser.parseToken(Token::greater, "expected '>'");
}
/// Parse a `>` token if present.
ParseResult parseOptionalGreater() override {
return success(parser.consumeIf(Token::greater));
}
/// Parse a `(` token.
ParseResult parseLParen() override {
return parser.parseToken(Token::l_paren, "expected '('");
}
/// Parses a '(' if present.
ParseResult parseOptionalLParen() override {
return success(parser.consumeIf(Token::l_paren));
}
/// Parse a `)` token.
ParseResult parseRParen() override {
return parser.parseToken(Token::r_paren, "expected ')'");
}
/// Parses a ')' if present.
ParseResult parseOptionalRParen() override {
return success(parser.consumeIf(Token::r_paren));
}
/// Parse a `[` token.
ParseResult parseLSquare() override {
return parser.parseToken(Token::l_square, "expected '['");
}
/// Parses a '[' if present.
ParseResult parseOptionalLSquare() override {
return success(parser.consumeIf(Token::l_square));
}
/// Parse a `]` token.
ParseResult parseRSquare() override {
return parser.parseToken(Token::r_square, "expected ']'");
}
/// Parses a ']' if present.
ParseResult parseOptionalRSquare() override {
return success(parser.consumeIf(Token::r_square));
}
/// Parses a '?' if present.
ParseResult parseOptionalQuestion() override {
return success(parser.consumeIf(Token::question));
}
/// Parses a '*' if present.
ParseResult parseOptionalStar() override {
return success(parser.consumeIf(Token::star));
}
/// Parses a quoted string token if present.
ParseResult parseOptionalString(StringRef *string) override {
if (!parser.getToken().is(Token::string))
return failure();
if (string)
*string = parser.getTokenSpelling().drop_front().drop_back();
parser.consumeToken();
return success();
}
/// Returns true if the current token corresponds to a keyword.
bool isCurrentTokenAKeyword() const {
return parser.getToken().is(Token::bare_identifier) ||
parser.getToken().isKeyword();
}
/// Parse the given keyword if present.
ParseResult parseOptionalKeyword(StringRef keyword) override {
// Check that the current token has the same spelling.
if (!isCurrentTokenAKeyword() || parser.getTokenSpelling() != keyword)
return failure();
parser.consumeToken();
return success();
}
/// Parse a keyword, if present, into 'keyword'.
ParseResult parseOptionalKeyword(StringRef *keyword) override {
// Check that the current token is a keyword.
if (!isCurrentTokenAKeyword())
return failure();
*keyword = parser.getTokenSpelling();
parser.consumeToken();
return success();
}
//===--------------------------------------------------------------------===//
// Attribute Parsing
//===--------------------------------------------------------------------===//
/// Parse an arbitrary attribute and return it in result.
ParseResult parseAttribute(Attribute &result, Type type) override {
result = parser.parseAttribute(type);
return success(static_cast<bool>(result));
}
/// Parse an affine map instance into 'map'.
ParseResult parseAffineMap(AffineMap &map) override {
return parser.parseAffineMapReference(map);
}
/// Parse an integer set instance into 'set'.
ParseResult printIntegerSet(IntegerSet &set) override {
return parser.parseIntegerSetReference(set);
}
//===--------------------------------------------------------------------===//
// Type Parsing
//===--------------------------------------------------------------------===//
ParseResult parseType(Type &result) override {
result = parser.parseType();
return success(static_cast<bool>(result));
}
ParseResult parseDimensionList(SmallVectorImpl<int64_t> &dimensions,
bool allowDynamic) override {
return parser.parseDimensionListRanked(dimensions, allowDynamic);
}
ParseResult parseXInDimensionList() override {
return parser.parseXInDimensionList();
}
OptionalParseResult parseOptionalType(Type &result) override {
return parser.parseOptionalType(result);
}
private:
/// The full symbol specification.
StringRef fullSpec;
/// The source location of the dialect symbol.
SMLoc nameLoc;
/// The main parser.
Parser &parser;
};
} // namespace
/// Parse the body of a pretty dialect symbol, which starts and ends with <>'s,
/// and may be recursive. Return with the 'prettyName' StringRef encompassing
/// the entire pretty name.
///
/// pretty-dialect-sym-body ::= '<' pretty-dialect-sym-contents+ '>'
/// pretty-dialect-sym-contents ::= pretty-dialect-sym-body
/// | '(' pretty-dialect-sym-contents+ ')'
/// | '[' pretty-dialect-sym-contents+ ']'
/// | '{' pretty-dialect-sym-contents+ '}'
/// | '[^[<({>\])}\0]+'
///
ParseResult Parser::parsePrettyDialectSymbolName(StringRef &prettyName) {
// Pretty symbol names are a relatively unstructured format that contains a
// series of properly nested punctuation, with anything else in the middle.
// Scan ahead to find it and consume it if successful, otherwise emit an
// error.
auto *curPtr = getTokenSpelling().data();
SmallVector<char, 8> nestedPunctuation;
// Scan over the nested punctuation, bailing out on error and consuming until
// we find the end. We know that we're currently looking at the '<', so we
// can go until we find the matching '>' character.
assert(*curPtr == '<');
do {
char c = *curPtr++;
switch (c) {
case '\0':
// This also handles the EOF case.
return emitError("unexpected nul or EOF in pretty dialect name");
case '<':
case '[':
case '(':
case '{':
nestedPunctuation.push_back(c);
continue;
case '-':
// The sequence `->` is treated as special token.
if (*curPtr == '>')
++curPtr;
continue;
case '>':
if (nestedPunctuation.pop_back_val() != '<')
return emitError("unbalanced '>' character in pretty dialect name");
break;
case ']':
if (nestedPunctuation.pop_back_val() != '[')
return emitError("unbalanced ']' character in pretty dialect name");
break;
case ')':
if (nestedPunctuation.pop_back_val() != '(')
return emitError("unbalanced ')' character in pretty dialect name");
break;
case '}':
if (nestedPunctuation.pop_back_val() != '{')
return emitError("unbalanced '}' character in pretty dialect name");
break;
default:
continue;
}
} while (!nestedPunctuation.empty());
// Ok, we succeeded, remember where we stopped, reset the lexer to know it is
// consuming all this stuff, and return.
state.lex.resetPointer(curPtr);
unsigned length = curPtr - prettyName.begin();
prettyName = StringRef(prettyName.begin(), length);
consumeToken();
return success();
}
/// Parse an extended dialect symbol.
template <typename Symbol, typename SymbolAliasMap, typename CreateFn>
static Symbol parseExtendedSymbol(Parser &p, Token::Kind identifierTok,
SymbolAliasMap &aliases,
CreateFn &&createSymbol) {
// Parse the dialect namespace.
StringRef identifier = p.getTokenSpelling().drop_front();
auto loc = p.getToken().getLoc();
p.consumeToken(identifierTok);
// If there is no '<' token following this, and if the typename contains no
// dot, then we are parsing a symbol alias.
if (p.getToken().isNot(Token::less) && !identifier.contains('.')) {
// Check for an alias for this type.
auto aliasIt = aliases.find(identifier);
if (aliasIt == aliases.end())
return (p.emitError("undefined symbol alias id '" + identifier + "'"),
nullptr);
return aliasIt->second;
}
// Otherwise, we are parsing a dialect-specific symbol. If the name contains
// a dot, then this is the "pretty" form. If not, it is the verbose form that
// looks like <"...">.
std::string symbolData;
auto dialectName = identifier;
// Handle the verbose form, where "identifier" is a simple dialect name.
if (!identifier.contains('.')) {
// Consume the '<'.
if (p.parseToken(Token::less, "expected '<' in dialect type"))
return nullptr;
// Parse the symbol specific data.
if (p.getToken().isNot(Token::string))
return (p.emitError("expected string literal data in dialect symbol"),
nullptr);
symbolData = p.getToken().getStringValue();
loc = llvm::SMLoc::getFromPointer(p.getToken().getLoc().getPointer() + 1);
p.consumeToken(Token::string);
// Consume the '>'.
if (p.parseToken(Token::greater, "expected '>' in dialect symbol"))
return nullptr;
} else {
// Ok, the dialect name is the part of the identifier before the dot, the
// part after the dot is the dialect's symbol, or the start thereof.
auto dotHalves = identifier.split('.');
dialectName = dotHalves.first;
auto prettyName = dotHalves.second;
loc = llvm::SMLoc::getFromPointer(prettyName.data());
// If the dialect's symbol is followed immediately by a <, then lex the body
// of it into prettyName.
if (p.getToken().is(Token::less) &&
prettyName.bytes_end() == p.getTokenSpelling().bytes_begin()) {
if (p.parsePrettyDialectSymbolName(prettyName))
return nullptr;
}
symbolData = prettyName.str();
}
// Record the name location of the type remapped to the top level buffer.
llvm::SMLoc locInTopLevelBuffer = p.remapLocationToTopLevelBuffer(loc);
p.getState().symbols.nestedParserLocs.push_back(locInTopLevelBuffer);
// Call into the provided symbol construction function.
Symbol sym = createSymbol(dialectName, symbolData, loc);
// Pop the last parser location.
p.getState().symbols.nestedParserLocs.pop_back();
return sym;
}
/// Parses a symbol, of type 'T', and returns it if parsing was successful. If
/// parsing failed, nullptr is returned. The number of bytes read from the input
/// string is returned in 'numRead'.
template <typename T, typename ParserFn>
static T parseSymbol(StringRef inputStr, MLIRContext *context,
SymbolState &symbolState, ParserFn &&parserFn,
size_t *numRead = nullptr) {
SourceMgr sourceMgr;
auto memBuffer = MemoryBuffer::getMemBuffer(
inputStr, /*BufferName=*/"<mlir_parser_buffer>",
/*RequiresNullTerminator=*/false);
sourceMgr.AddNewSourceBuffer(std::move(memBuffer), SMLoc());
ParserState state(sourceMgr, context, symbolState);
Parser parser(state);
Token startTok = parser.getToken();
T symbol = parserFn(parser);
if (!symbol)
return T();
// If 'numRead' is valid, then provide the number of bytes that were read.
Token endTok = parser.getToken();
if (numRead) {
*numRead = static_cast<size_t>(endTok.getLoc().getPointer() -
startTok.getLoc().getPointer());
// Otherwise, ensure that all of the tokens were parsed.
} else if (startTok.getLoc() != endTok.getLoc() && endTok.isNot(Token::eof)) {
parser.emitError(endTok.getLoc(), "encountered unexpected token");
return T();
}
return symbol;
}
/// Parse an extended attribute.
///
/// extended-attribute ::= (dialect-attribute | attribute-alias)
/// dialect-attribute ::= `#` dialect-namespace `<` `"` attr-data `"` `>`
/// dialect-attribute ::= `#` alias-name pretty-dialect-sym-body?
/// attribute-alias ::= `#` alias-name
///
Attribute Parser::parseExtendedAttr(Type type) {
Attribute attr = parseExtendedSymbol<Attribute>(
*this, Token::hash_identifier, state.symbols.attributeAliasDefinitions,
[&](StringRef dialectName, StringRef symbolData,
llvm::SMLoc loc) -> Attribute {
// Parse an optional trailing colon type.
Type attrType = type;
if (consumeIf(Token::colon) && !(attrType = parseType()))
return Attribute();
// If we found a registered dialect, then ask it to parse the attribute.
Separate the Registration from Loading dialects in the Context This changes the behavior of constructing MLIRContext to no longer load globally registered dialects on construction. Instead Dialects are only loaded explicitly on demand: - the Parser is lazily loading Dialects in the context as it encounters them during parsing. This is the only purpose for registering dialects and not load them in the context. - Passes are expected to declare the dialects they will create entity from (Operations, Attributes, or Types), and the PassManager is loading Dialects into the Context when starting a pipeline. This changes simplifies the configuration of the registration: a compiler only need to load the dialect for the IR it will emit, and the optimizer is self-contained and load the required Dialects. For example in the Toy tutorial, the compiler only needs to load the Toy dialect in the Context, all the others (linalg, affine, std, LLVM, ...) are automatically loaded depending on the optimization pipeline enabled. To adjust to this change, stop using the existing dialect registration: the global registry will be removed soon. 1) For passes, you need to override the method: virtual void getDependentDialects(DialectRegistry &registry) const {} and registery on the provided registry any dialect that this pass can produce. Passes defined in TableGen can provide this list in the dependentDialects list field. 2) For dialects, on construction you can register dependent dialects using the provided MLIRContext: `context.getOrLoadDialect<DialectName>()` This is useful if a dialect may canonicalize or have interfaces involving another dialect. 3) For loading IR, dialect that can be in the input file must be explicitly registered with the context. `MlirOptMain()` is taking an explicit registry for this purpose. See how the standalone-opt.cpp example is setup: mlir::DialectRegistry registry; registry.insert<mlir::standalone::StandaloneDialect>(); registry.insert<mlir::StandardOpsDialect>(); Only operations from these two dialects can be in the input file. To include all of the dialects in MLIR Core, you can populate the registry this way: mlir::registerAllDialects(registry); 4) For `mlir-translate` callback, as well as frontend, Dialects can be loaded in the context before emitting the IR: context.getOrLoadDialect<ToyDialect>() Differential Revision: https://reviews.llvm.org/D85622
2020-08-19 04:01:19 +08:00
if (Dialect *dialect =
builder.getContext()->getOrLoadDialect(dialectName)) {
return parseSymbol<Attribute>(
symbolData, state.context, state.symbols, [&](Parser &parser) {
CustomDialectAsmParser customParser(symbolData, parser);
return dialect->parseAttribute(customParser, attrType);
});
}
// Otherwise, form a new opaque attribute.
return OpaqueAttr::getChecked(
[&] { return emitError(loc); },
Identifier::get(dialectName, state.context), symbolData,
[mlir][IR] Refactor the `getChecked` and `verifyConstructionInvariants` methods on Attributes/Types `verifyConstructionInvariants` is intended to allow for verifying the invariants of an attribute/type on construction, and `getChecked` is intended to enable more graceful error handling aside from an assert. There are a few problems with the current implementation of these methods: * `verifyConstructionInvariants` requires an mlir::Location for emitting errors, which is prohibitively costly in the situations that would most likely use them, e.g. the parser. This creates an unfortunate code duplication between the verifier code and the parser code, given that the parser operates on llvm::SMLoc and it is an undesirable overhead to pre-emptively convert from that to an mlir::Location. * `getChecked` effectively requires duplicating the definition of the `get` method, creating a quite clunky workflow due to the subtle different in its signature. This revision aims to talk the above problems by refactoring the implementation to use a callback for error emission. Using a callback allows for deferring the costly part of error emission until it is actually necessary. Due to the necessary signature change in each instance of these methods, this revision also takes this opportunity to cleanup the definition of these methods by: * restructuring the signature of `getChecked` such that it can be generated from the same code block as the `get` method. * renaming `verifyConstructionInvariants` to `verify` to match the naming scheme of the rest of the compiler. Differential Revision: https://reviews.llvm.org/D97100
2021-02-23 09:30:19 +08:00
attrType ? attrType : NoneType::get(state.context));
});
// Ensure that the attribute has the same type as requested.
if (attr && type && attr.getType() != type) {
emitError("attribute type different than expected: expected ")
<< type << ", but got " << attr.getType();
return nullptr;
}
return attr;
}
/// Parse an extended type.
///
/// extended-type ::= (dialect-type | type-alias)
/// dialect-type ::= `!` dialect-namespace `<` `"` type-data `"` `>`
/// dialect-type ::= `!` alias-name pretty-dialect-attribute-body?
/// type-alias ::= `!` alias-name
///
Type Parser::parseExtendedType() {
return parseExtendedSymbol<Type>(
*this, Token::exclamation_identifier, state.symbols.typeAliasDefinitions,
[&](StringRef dialectName, StringRef symbolData,
llvm::SMLoc loc) -> Type {
// If we found a registered dialect, then ask it to parse the type.
Separate the Registration from Loading dialects in the Context This changes the behavior of constructing MLIRContext to no longer load globally registered dialects on construction. Instead Dialects are only loaded explicitly on demand: - the Parser is lazily loading Dialects in the context as it encounters them during parsing. This is the only purpose for registering dialects and not load them in the context. - Passes are expected to declare the dialects they will create entity from (Operations, Attributes, or Types), and the PassManager is loading Dialects into the Context when starting a pipeline. This changes simplifies the configuration of the registration: a compiler only need to load the dialect for the IR it will emit, and the optimizer is self-contained and load the required Dialects. For example in the Toy tutorial, the compiler only needs to load the Toy dialect in the Context, all the others (linalg, affine, std, LLVM, ...) are automatically loaded depending on the optimization pipeline enabled. To adjust to this change, stop using the existing dialect registration: the global registry will be removed soon. 1) For passes, you need to override the method: virtual void getDependentDialects(DialectRegistry &registry) const {} and registery on the provided registry any dialect that this pass can produce. Passes defined in TableGen can provide this list in the dependentDialects list field. 2) For dialects, on construction you can register dependent dialects using the provided MLIRContext: `context.getOrLoadDialect<DialectName>()` This is useful if a dialect may canonicalize or have interfaces involving another dialect. 3) For loading IR, dialect that can be in the input file must be explicitly registered with the context. `MlirOptMain()` is taking an explicit registry for this purpose. See how the standalone-opt.cpp example is setup: mlir::DialectRegistry registry; registry.insert<mlir::standalone::StandaloneDialect>(); registry.insert<mlir::StandardOpsDialect>(); Only operations from these two dialects can be in the input file. To include all of the dialects in MLIR Core, you can populate the registry this way: mlir::registerAllDialects(registry); 4) For `mlir-translate` callback, as well as frontend, Dialects can be loaded in the context before emitting the IR: context.getOrLoadDialect<ToyDialect>() Differential Revision: https://reviews.llvm.org/D85622
2020-08-19 04:01:19 +08:00
auto *dialect = state.context->getOrLoadDialect(dialectName);
if (dialect) {
return parseSymbol<Type>(
symbolData, state.context, state.symbols, [&](Parser &parser) {
CustomDialectAsmParser customParser(symbolData, parser);
return dialect->parseType(customParser);
});
}
// Otherwise, form a new opaque type.
return OpaqueType::getChecked(
[&] { return emitError(loc); },
Identifier::get(dialectName, state.context), symbolData);
});
}
//===----------------------------------------------------------------------===//
// mlir::parseAttribute/parseType
//===----------------------------------------------------------------------===//
/// Parses a symbol, of type 'T', and returns it if parsing was successful. If
/// parsing failed, nullptr is returned. The number of bytes read from the input
/// string is returned in 'numRead'.
template <typename T, typename ParserFn>
static T parseSymbol(StringRef inputStr, MLIRContext *context, size_t &numRead,
ParserFn &&parserFn) {
SymbolState aliasState;
return parseSymbol<T>(
inputStr, context, aliasState,
[&](Parser &parser) {
SourceMgrDiagnosticHandler handler(
const_cast<llvm::SourceMgr &>(parser.getSourceMgr()),
parser.getContext());
return parserFn(parser);
},
&numRead);
}
Attribute mlir::parseAttribute(StringRef attrStr, MLIRContext *context) {
size_t numRead = 0;
return parseAttribute(attrStr, context, numRead);
}
Attribute mlir::parseAttribute(StringRef attrStr, Type type) {
size_t numRead = 0;
return parseAttribute(attrStr, type, numRead);
}
Attribute mlir::parseAttribute(StringRef attrStr, MLIRContext *context,
size_t &numRead) {
return parseSymbol<Attribute>(attrStr, context, numRead, [](Parser &parser) {
return parser.parseAttribute();
});
}
Attribute mlir::parseAttribute(StringRef attrStr, Type type, size_t &numRead) {
return parseSymbol<Attribute>(
attrStr, type.getContext(), numRead,
[type](Parser &parser) { return parser.parseAttribute(type); });
}
Type mlir::parseType(StringRef typeStr, MLIRContext *context) {
size_t numRead = 0;
return parseType(typeStr, context, numRead);
}
Type mlir::parseType(StringRef typeStr, MLIRContext *context, size_t &numRead) {
return parseSymbol<Type>(typeStr, context, numRead,
[](Parser &parser) { return parser.parseType(); });
}