llvm-project/llvm/test/Bitcode/compatibility.ll

1719 lines
62 KiB
LLVM
Raw Normal View History

; Bitcode compatibility test for llvm
;
; Please update this file when making any IR changes. Information on the
; release process for this file is available here:
;
; http://llvm.org/docs/DeveloperPolicy.html#ir-backwards-compatibility
; RUN: llvm-as < %s | llvm-dis | llvm-as | llvm-dis | FileCheck %s
; RUN-PR24755: verify-uselistorder < %s
target datalayout = "E"
; CHECK: target datalayout = "E"
target triple = "x86_64-apple-macosx10.10.0"
; CHECK: target triple = "x86_64-apple-macosx10.10.0"
;; Module-level assembly
module asm "beep boop"
; CHECK: module asm "beep boop"
;; Comdats
$comdat.any = comdat any
; CHECK: $comdat.any = comdat any
$comdat.exactmatch = comdat exactmatch
; CHECK: $comdat.exactmatch = comdat exactmatch
$comdat.largest = comdat largest
; CHECK: $comdat.largest = comdat largest
$comdat.noduplicates = comdat noduplicates
; CHECK: $comdat.noduplicates = comdat noduplicates
$comdat.samesize = comdat samesize
; CHECK: $comdat.samesize = comdat samesize
;; Constants
@const.true = constant i1 true
; CHECK: @const.true = constant i1 true
@const.false = constant i1 false
; CHECK: @const.false = constant i1 false
@const.int = constant i32 zeroinitializer
; CHECK: @const.int = constant i32 0
@const.float = constant double 0.0
; CHECK: @const.float = constant double 0.0
@const.null = constant i8* null
; CHECK: @const.null = constant i8* null
%const.struct.type = type { i32, i8 }
%const.struct.type.packed = type <{ i32, i8 }>
@const.struct = constant %const.struct.type { i32 -1, i8 undef }
; CHECK: @const.struct = constant %const.struct.type { i32 -1, i8 undef }
@const.struct.packed = constant %const.struct.type.packed <{ i32 -1, i8 1 }>
; CHECK: @const.struct.packed = constant %const.struct.type.packed <{ i32 -1, i8 1 }>
; CHECK: @constant.array.i8 = constant [3 x i8] c"\00\01\00"
@constant.array.i8 = constant [3 x i8] [i8 -0, i8 1, i8 0]
; CHECK: @constant.array.i16 = constant [3 x i16] [i16 0, i16 1, i16 0]
@constant.array.i16 = constant [3 x i16] [i16 -0, i16 1, i16 0]
; CHECK: @constant.array.i32 = constant [3 x i32] [i32 0, i32 1, i32 0]
@constant.array.i32 = constant [3 x i32] [i32 -0, i32 1, i32 0]
; CHECK: @constant.array.i64 = constant [3 x i64] [i64 0, i64 1, i64 0]
@constant.array.i64 = constant [3 x i64] [i64 -0, i64 1, i64 0]
; CHECK: @constant.array.f16 = constant [3 x half] [half 0xH8000, half 0xH3C00, half 0xH0000]
@constant.array.f16 = constant [3 x half] [half -0.0, half 1.0, half 0.0]
; CHECK: @constant.array.f32 = constant [3 x float] [float -0.000000e+00, float 1.000000e+00, float 0.000000e+00]
@constant.array.f32 = constant [3 x float] [float -0.0, float 1.0, float 0.0]
; CHECK: @constant.array.f64 = constant [3 x double] [double -0.000000e+00, double 1.000000e+00, double 0.000000e+00]
@constant.array.f64 = constant [3 x double] [double -0.0, double 1.0, double 0.0]
; CHECK: @constant.vector.i8 = constant <3 x i8> <i8 0, i8 1, i8 0>
@constant.vector.i8 = constant <3 x i8> <i8 -0, i8 1, i8 0>
; CHECK: @constant.vector.i16 = constant <3 x i16> <i16 0, i16 1, i16 0>
@constant.vector.i16 = constant <3 x i16> <i16 -0, i16 1, i16 0>
; CHECK: @constant.vector.i32 = constant <3 x i32> <i32 0, i32 1, i32 0>
@constant.vector.i32 = constant <3 x i32> <i32 -0, i32 1, i32 0>
; CHECK: @constant.vector.i64 = constant <3 x i64> <i64 0, i64 1, i64 0>
@constant.vector.i64 = constant <3 x i64> <i64 -0, i64 1, i64 0>
; CHECK: @constant.vector.f16 = constant <3 x half> <half 0xH8000, half 0xH3C00, half 0xH0000>
@constant.vector.f16 = constant <3 x half> <half -0.0, half 1.0, half 0.0>
; CHECK: @constant.vector.f32 = constant <3 x float> <float -0.000000e+00, float 1.000000e+00, float 0.000000e+00>
@constant.vector.f32 = constant <3 x float> <float -0.0, float 1.0, float 0.0>
; CHECK: @constant.vector.f64 = constant <3 x double> <double -0.000000e+00, double 1.000000e+00, double 0.000000e+00>
@constant.vector.f64 = constant <3 x double> <double -0.0, double 1.0, double 0.0>
;; Global Variables
; Format: [@<GlobalVarName> =] [Linkage] [Visibility] [DLLStorageClass]
IR: Introduce local_unnamed_addr attribute. If a local_unnamed_addr attribute is attached to a global, the address is known to be insignificant within the module. It is distinct from the existing unnamed_addr attribute in that it only describes a local property of the module rather than a global property of the symbol. This attribute is intended to be used by the code generator and LTO to allow the linker to decide whether the global needs to be in the symbol table. It is possible to exclude a global from the symbol table if three things are true: - This attribute is present on every instance of the global (which means that the normal rule that the global must have a unique address can be broken without being observable by the program by performing comparisons against the global's address) - The global has linkonce_odr linkage (which means that each linkage unit must have its own copy of the global if it requires one, and the copy in each linkage unit must be the same) - It is a constant or a function (which means that the program cannot observe that the unique-address rule has been broken by writing to the global) Although this attribute could in principle be computed from the module contents, LTO clients (i.e. linkers) will normally need to be able to compute this property as part of symbol resolution, and it would be inefficient to materialize every module just to compute it. See: http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20160509/356401.html http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20160516/356738.html for earlier discussion. Part of the fix for PR27553. Differential Revision: http://reviews.llvm.org/D20348 llvm-svn: 272709
2016-06-15 05:01:22 +08:00
; [ThreadLocal] [(unnamed_addr|local_unnamed_addr)] [AddrSpace] [ExternallyInitialized]
; <global | constant> <Type> [<InitializerConstant>]
; [, section "name"] [, comdat [($name)]] [, align <Alignment>]
; Global Variables -- Simple
@g1 = global i32 0
; CHECK: @g1 = global i32 0
@g2 = constant i32 0
; CHECK: @g2 = constant i32 0
; Global Variables -- Linkage
@g.private = private global i32 0
; CHECK: @g.private = private global i32 0
@g.internal = internal global i32 0
; CHECK: @g.internal = internal global i32 0
@g.available_externally = available_externally global i32 0
; CHECK: @g.available_externally = available_externally global i32 0
@g.linkonce = linkonce global i32 0
; CHECK: @g.linkonce = linkonce global i32 0
@g.weak = weak global i32 0
; CHECK: @g.weak = weak global i32 0
@g.common = common global i32 0
; CHECK: @g.common = common global i32 0
@g.appending = appending global [4 x i8] c"test"
; CHECK: @g.appending = appending global [4 x i8] c"test"
@g.extern_weak = extern_weak global i32
; CHECK: @g.extern_weak = extern_weak global i32
@g.linkonce_odr = linkonce_odr global i32 0
; CHECK: @g.linkonce_odr = linkonce_odr global i32 0
@g.weak_odr = weak_odr global i32 0
; CHECK: @g.weak_odr = weak_odr global i32 0
@g.external = external global i32
; CHECK: @g.external = external global i32
; Global Variables -- Visibility
@g.default = default global i32 0
; CHECK: @g.default = global i32 0
@g.hidden = hidden global i32 0
; CHECK: @g.hidden = hidden global i32 0
@g.protected = protected global i32 0
; CHECK: @g.protected = protected global i32 0
; Global Variables -- DLLStorageClass
@g.dlldefault = default global i32 0
; CHECK: @g.dlldefault = global i32 0
@g.dllimport = external dllimport global i32
; CHECK: @g.dllimport = external dllimport global i32
@g.dllexport = dllexport global i32 0
; CHECK: @g.dllexport = dllexport global i32 0
; Global Variables -- ThreadLocal
@g.notthreadlocal = global i32 0
; CHECK: @g.notthreadlocal = global i32 0
@g.generaldynamic = thread_local global i32 0
; CHECK: @g.generaldynamic = thread_local global i32 0
@g.localdynamic = thread_local(localdynamic) global i32 0
; CHECK: @g.localdynamic = thread_local(localdynamic) global i32 0
@g.initialexec = thread_local(initialexec) global i32 0
; CHECK: @g.initialexec = thread_local(initialexec) global i32 0
@g.localexec = thread_local(localexec) global i32 0
; CHECK: @g.localexec = thread_local(localexec) global i32 0
IR: Introduce local_unnamed_addr attribute. If a local_unnamed_addr attribute is attached to a global, the address is known to be insignificant within the module. It is distinct from the existing unnamed_addr attribute in that it only describes a local property of the module rather than a global property of the symbol. This attribute is intended to be used by the code generator and LTO to allow the linker to decide whether the global needs to be in the symbol table. It is possible to exclude a global from the symbol table if three things are true: - This attribute is present on every instance of the global (which means that the normal rule that the global must have a unique address can be broken without being observable by the program by performing comparisons against the global's address) - The global has linkonce_odr linkage (which means that each linkage unit must have its own copy of the global if it requires one, and the copy in each linkage unit must be the same) - It is a constant or a function (which means that the program cannot observe that the unique-address rule has been broken by writing to the global) Although this attribute could in principle be computed from the module contents, LTO clients (i.e. linkers) will normally need to be able to compute this property as part of symbol resolution, and it would be inefficient to materialize every module just to compute it. See: http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20160509/356401.html http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20160516/356738.html for earlier discussion. Part of the fix for PR27553. Differential Revision: http://reviews.llvm.org/D20348 llvm-svn: 272709
2016-06-15 05:01:22 +08:00
; Global Variables -- unnamed_addr and local_unnamed_addr
@g.unnamed_addr = unnamed_addr global i32 0
; CHECK: @g.unnamed_addr = unnamed_addr global i32 0
IR: Introduce local_unnamed_addr attribute. If a local_unnamed_addr attribute is attached to a global, the address is known to be insignificant within the module. It is distinct from the existing unnamed_addr attribute in that it only describes a local property of the module rather than a global property of the symbol. This attribute is intended to be used by the code generator and LTO to allow the linker to decide whether the global needs to be in the symbol table. It is possible to exclude a global from the symbol table if three things are true: - This attribute is present on every instance of the global (which means that the normal rule that the global must have a unique address can be broken without being observable by the program by performing comparisons against the global's address) - The global has linkonce_odr linkage (which means that each linkage unit must have its own copy of the global if it requires one, and the copy in each linkage unit must be the same) - It is a constant or a function (which means that the program cannot observe that the unique-address rule has been broken by writing to the global) Although this attribute could in principle be computed from the module contents, LTO clients (i.e. linkers) will normally need to be able to compute this property as part of symbol resolution, and it would be inefficient to materialize every module just to compute it. See: http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20160509/356401.html http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20160516/356738.html for earlier discussion. Part of the fix for PR27553. Differential Revision: http://reviews.llvm.org/D20348 llvm-svn: 272709
2016-06-15 05:01:22 +08:00
@g.local_unnamed_addr = local_unnamed_addr global i32 0
; CHECK: @g.local_unnamed_addr = local_unnamed_addr global i32 0
; Global Variables -- AddrSpace
@g.addrspace = addrspace(1) global i32 0
; CHECK: @g.addrspace = addrspace(1) global i32 0
; Global Variables -- ExternallyInitialized
@g.externally_initialized = external externally_initialized global i32
; CHECK: @g.externally_initialized = external externally_initialized global i32
; Global Variables -- section
@g.section = global i32 0, section "_DATA"
; CHECK: @g.section = global i32 0, section "_DATA"
; Global Variables -- comdat
@comdat.any = global i32 0, comdat
; CHECK: @comdat.any = global i32 0, comdat
@comdat.exactmatch = global i32 0, comdat
; CHECK: @comdat.exactmatch = global i32 0, comdat
@comdat.largest = global i32 0, comdat
; CHECK: @comdat.largest = global i32 0, comdat
@comdat.noduplicates = global i32 0, comdat
; CHECK: @comdat.noduplicates = global i32 0, comdat
@comdat.samesize = global i32 0, comdat
; CHECK: @comdat.samesize = global i32 0, comdat
; Force two globals from different comdats into sections with the same name.
$comdat1 = comdat any
$comdat2 = comdat any
@g.comdat1 = global i32 0, section "SharedSection", comdat($comdat1)
; CHECK: @g.comdat1 = global i32 0, section "SharedSection", comdat($comdat1)
@g.comdat2 = global i32 0, section "SharedSection", comdat($comdat2)
; CHECK: @g.comdat2 = global i32 0, section "SharedSection", comdat($comdat2)
; Global Variables -- align
@g.align = global i32 0, align 4
; CHECK: @g.align = global i32 0, align 4
; Global Variables -- Intrinsics
%pri.func.data = type { i32, void ()*, i8* }
@g.used1 = global i32 0
@g.used2 = global i32 0
@g.used3 = global i8 0
declare void @g.f1()
@llvm.used = appending global [1 x i32*] [i32* @g.used1], section "llvm.metadata"
; CHECK: @llvm.used = appending global [1 x i32*] [i32* @g.used1], section "llvm.metadata"
@llvm.compiler.used = appending global [1 x i32*] [i32* @g.used2], section "llvm.metadata"
; CHECK: @llvm.compiler.used = appending global [1 x i32*] [i32* @g.used2], section "llvm.metadata"
@llvm.global_ctors = appending global [1 x %pri.func.data] [%pri.func.data { i32 0, void ()* @g.f1, i8* @g.used3 }], section "llvm.metadata"
; CHECK: @llvm.global_ctors = appending global [1 x %pri.func.data] [%pri.func.data { i32 0, void ()* @g.f1, i8* @g.used3 }], section "llvm.metadata"
@llvm.global_dtors = appending global [1 x %pri.func.data] [%pri.func.data { i32 0, void ()* @g.f1, i8* @g.used3 }], section "llvm.metadata"
; CHECK: @llvm.global_dtors = appending global [1 x %pri.func.data] [%pri.func.data { i32 0, void ()* @g.f1, i8* @g.used3 }], section "llvm.metadata"
;; Aliases
; Format: @<Name> = [Linkage] [Visibility] [DLLStorageClass] [ThreadLocal]
; [unnamed_addr] alias <AliaseeTy> @<Aliasee>
; Aliases -- Linkage
[opaque pointer type] Add textual IR support for explicit type parameter for global aliases update.py: import fileinput import sys import re alias_match_prefix = r"(.*(?:=|:|^)\s*(?:external |)(?:(?:private|internal|linkonce|linkonce_odr|weak|weak_odr|common|appending|extern_weak|available_externally) )?(?:default |hidden |protected )?(?:dllimport |dllexport )?(?:unnamed_addr |)(?:thread_local(?:\([a-z]*\))? )?alias" plain = re.compile(alias_match_prefix + r" (.*?))(| addrspace\(\d+\) *)\*($| *(?:%|@|null|undef|blockaddress|addrspacecast|\[\[[a-zA-Z]|\{\{).*$)") cast = re.compile(alias_match_prefix + r") ((?:bitcast|inttoptr|addrspacecast)\s*\(.* to (.*?)(| addrspace\(\d+\) *)\*\)\s*(?:;.*)?$)") gep = re.compile(alias_match_prefix + r") ((?:getelementptr)\s*(?:inbounds)?\s*\((?P<type>.*), (?P=type)(?:\s*addrspace\(\d+\)\s*)?\* .*\)\s*(?:;.*)?$)") def conv(line): m = re.match(cast, line) if m: return m.group(1) + " " + m.group(3) + ", " + m.group(2) m = re.match(gep, line) if m: return m.group(1) + " " + m.group(3) + ", " + m.group(2) m = re.match(plain, line) if m: return m.group(1) + ", " + m.group(2) + m.group(3) + "*" + m.group(4) + "\n" return line for line in sys.stdin: sys.stdout.write(conv(line)) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh llvm-svn: 247378
2015-09-11 11:22:04 +08:00
@a.private = private alias i32, i32* @g.private
; CHECK: @a.private = private alias i32, i32* @g.private
@a.internal = internal alias i32, i32* @g.internal
; CHECK: @a.internal = internal alias i32, i32* @g.internal
@a.linkonce = linkonce alias i32, i32* @g.linkonce
; CHECK: @a.linkonce = linkonce alias i32, i32* @g.linkonce
@a.weak = weak alias i32, i32* @g.weak
; CHECK: @a.weak = weak alias i32, i32* @g.weak
@a.linkonce_odr = linkonce_odr alias i32, i32* @g.linkonce_odr
; CHECK: @a.linkonce_odr = linkonce_odr alias i32, i32* @g.linkonce_odr
@a.weak_odr = weak_odr alias i32, i32* @g.weak_odr
; CHECK: @a.weak_odr = weak_odr alias i32, i32* @g.weak_odr
@a.external = external alias i32, i32* @g1
; CHECK: @a.external = alias i32, i32* @g1
; Aliases -- Visibility
[opaque pointer type] Add textual IR support for explicit type parameter for global aliases update.py: import fileinput import sys import re alias_match_prefix = r"(.*(?:=|:|^)\s*(?:external |)(?:(?:private|internal|linkonce|linkonce_odr|weak|weak_odr|common|appending|extern_weak|available_externally) )?(?:default |hidden |protected )?(?:dllimport |dllexport )?(?:unnamed_addr |)(?:thread_local(?:\([a-z]*\))? )?alias" plain = re.compile(alias_match_prefix + r" (.*?))(| addrspace\(\d+\) *)\*($| *(?:%|@|null|undef|blockaddress|addrspacecast|\[\[[a-zA-Z]|\{\{).*$)") cast = re.compile(alias_match_prefix + r") ((?:bitcast|inttoptr|addrspacecast)\s*\(.* to (.*?)(| addrspace\(\d+\) *)\*\)\s*(?:;.*)?$)") gep = re.compile(alias_match_prefix + r") ((?:getelementptr)\s*(?:inbounds)?\s*\((?P<type>.*), (?P=type)(?:\s*addrspace\(\d+\)\s*)?\* .*\)\s*(?:;.*)?$)") def conv(line): m = re.match(cast, line) if m: return m.group(1) + " " + m.group(3) + ", " + m.group(2) m = re.match(gep, line) if m: return m.group(1) + " " + m.group(3) + ", " + m.group(2) m = re.match(plain, line) if m: return m.group(1) + ", " + m.group(2) + m.group(3) + "*" + m.group(4) + "\n" return line for line in sys.stdin: sys.stdout.write(conv(line)) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh llvm-svn: 247378
2015-09-11 11:22:04 +08:00
@a.default = default alias i32, i32* @g.default
; CHECK: @a.default = alias i32, i32* @g.default
@a.hidden = hidden alias i32, i32* @g.hidden
; CHECK: @a.hidden = hidden alias i32, i32* @g.hidden
@a.protected = protected alias i32, i32* @g.protected
; CHECK: @a.protected = protected alias i32, i32* @g.protected
; Aliases -- DLLStorageClass
[opaque pointer type] Add textual IR support for explicit type parameter for global aliases update.py: import fileinput import sys import re alias_match_prefix = r"(.*(?:=|:|^)\s*(?:external |)(?:(?:private|internal|linkonce|linkonce_odr|weak|weak_odr|common|appending|extern_weak|available_externally) )?(?:default |hidden |protected )?(?:dllimport |dllexport )?(?:unnamed_addr |)(?:thread_local(?:\([a-z]*\))? )?alias" plain = re.compile(alias_match_prefix + r" (.*?))(| addrspace\(\d+\) *)\*($| *(?:%|@|null|undef|blockaddress|addrspacecast|\[\[[a-zA-Z]|\{\{).*$)") cast = re.compile(alias_match_prefix + r") ((?:bitcast|inttoptr|addrspacecast)\s*\(.* to (.*?)(| addrspace\(\d+\) *)\*\)\s*(?:;.*)?$)") gep = re.compile(alias_match_prefix + r") ((?:getelementptr)\s*(?:inbounds)?\s*\((?P<type>.*), (?P=type)(?:\s*addrspace\(\d+\)\s*)?\* .*\)\s*(?:;.*)?$)") def conv(line): m = re.match(cast, line) if m: return m.group(1) + " " + m.group(3) + ", " + m.group(2) m = re.match(gep, line) if m: return m.group(1) + " " + m.group(3) + ", " + m.group(2) m = re.match(plain, line) if m: return m.group(1) + ", " + m.group(2) + m.group(3) + "*" + m.group(4) + "\n" return line for line in sys.stdin: sys.stdout.write(conv(line)) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh llvm-svn: 247378
2015-09-11 11:22:04 +08:00
@a.dlldefault = default alias i32, i32* @g.dlldefault
; CHECK: @a.dlldefault = alias i32, i32* @g.dlldefault
@a.dllexport = dllexport alias i32, i32* @g.dllexport
; CHECK: @a.dllexport = dllexport alias i32, i32* @g.dllexport
; Aliases -- ThreadLocal
[opaque pointer type] Add textual IR support for explicit type parameter for global aliases update.py: import fileinput import sys import re alias_match_prefix = r"(.*(?:=|:|^)\s*(?:external |)(?:(?:private|internal|linkonce|linkonce_odr|weak|weak_odr|common|appending|extern_weak|available_externally) )?(?:default |hidden |protected )?(?:dllimport |dllexport )?(?:unnamed_addr |)(?:thread_local(?:\([a-z]*\))? )?alias" plain = re.compile(alias_match_prefix + r" (.*?))(| addrspace\(\d+\) *)\*($| *(?:%|@|null|undef|blockaddress|addrspacecast|\[\[[a-zA-Z]|\{\{).*$)") cast = re.compile(alias_match_prefix + r") ((?:bitcast|inttoptr|addrspacecast)\s*\(.* to (.*?)(| addrspace\(\d+\) *)\*\)\s*(?:;.*)?$)") gep = re.compile(alias_match_prefix + r") ((?:getelementptr)\s*(?:inbounds)?\s*\((?P<type>.*), (?P=type)(?:\s*addrspace\(\d+\)\s*)?\* .*\)\s*(?:;.*)?$)") def conv(line): m = re.match(cast, line) if m: return m.group(1) + " " + m.group(3) + ", " + m.group(2) m = re.match(gep, line) if m: return m.group(1) + " " + m.group(3) + ", " + m.group(2) m = re.match(plain, line) if m: return m.group(1) + ", " + m.group(2) + m.group(3) + "*" + m.group(4) + "\n" return line for line in sys.stdin: sys.stdout.write(conv(line)) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh llvm-svn: 247378
2015-09-11 11:22:04 +08:00
@a.notthreadlocal = alias i32, i32* @g.notthreadlocal
; CHECK: @a.notthreadlocal = alias i32, i32* @g.notthreadlocal
@a.generaldynamic = thread_local alias i32, i32* @g.generaldynamic
; CHECK: @a.generaldynamic = thread_local alias i32, i32* @g.generaldynamic
@a.localdynamic = thread_local(localdynamic) alias i32, i32* @g.localdynamic
; CHECK: @a.localdynamic = thread_local(localdynamic) alias i32, i32* @g.localdynamic
@a.initialexec = thread_local(initialexec) alias i32, i32* @g.initialexec
; CHECK: @a.initialexec = thread_local(initialexec) alias i32, i32* @g.initialexec
@a.localexec = thread_local(localexec) alias i32, i32* @g.localexec
; CHECK: @a.localexec = thread_local(localexec) alias i32, i32* @g.localexec
IR: Introduce local_unnamed_addr attribute. If a local_unnamed_addr attribute is attached to a global, the address is known to be insignificant within the module. It is distinct from the existing unnamed_addr attribute in that it only describes a local property of the module rather than a global property of the symbol. This attribute is intended to be used by the code generator and LTO to allow the linker to decide whether the global needs to be in the symbol table. It is possible to exclude a global from the symbol table if three things are true: - This attribute is present on every instance of the global (which means that the normal rule that the global must have a unique address can be broken without being observable by the program by performing comparisons against the global's address) - The global has linkonce_odr linkage (which means that each linkage unit must have its own copy of the global if it requires one, and the copy in each linkage unit must be the same) - It is a constant or a function (which means that the program cannot observe that the unique-address rule has been broken by writing to the global) Although this attribute could in principle be computed from the module contents, LTO clients (i.e. linkers) will normally need to be able to compute this property as part of symbol resolution, and it would be inefficient to materialize every module just to compute it. See: http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20160509/356401.html http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20160516/356738.html for earlier discussion. Part of the fix for PR27553. Differential Revision: http://reviews.llvm.org/D20348 llvm-svn: 272709
2016-06-15 05:01:22 +08:00
; Aliases -- unnamed_addr and local_unnamed_addr
[opaque pointer type] Add textual IR support for explicit type parameter for global aliases update.py: import fileinput import sys import re alias_match_prefix = r"(.*(?:=|:|^)\s*(?:external |)(?:(?:private|internal|linkonce|linkonce_odr|weak|weak_odr|common|appending|extern_weak|available_externally) )?(?:default |hidden |protected )?(?:dllimport |dllexport )?(?:unnamed_addr |)(?:thread_local(?:\([a-z]*\))? )?alias" plain = re.compile(alias_match_prefix + r" (.*?))(| addrspace\(\d+\) *)\*($| *(?:%|@|null|undef|blockaddress|addrspacecast|\[\[[a-zA-Z]|\{\{).*$)") cast = re.compile(alias_match_prefix + r") ((?:bitcast|inttoptr|addrspacecast)\s*\(.* to (.*?)(| addrspace\(\d+\) *)\*\)\s*(?:;.*)?$)") gep = re.compile(alias_match_prefix + r") ((?:getelementptr)\s*(?:inbounds)?\s*\((?P<type>.*), (?P=type)(?:\s*addrspace\(\d+\)\s*)?\* .*\)\s*(?:;.*)?$)") def conv(line): m = re.match(cast, line) if m: return m.group(1) + " " + m.group(3) + ", " + m.group(2) m = re.match(gep, line) if m: return m.group(1) + " " + m.group(3) + ", " + m.group(2) m = re.match(plain, line) if m: return m.group(1) + ", " + m.group(2) + m.group(3) + "*" + m.group(4) + "\n" return line for line in sys.stdin: sys.stdout.write(conv(line)) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh llvm-svn: 247378
2015-09-11 11:22:04 +08:00
@a.unnamed_addr = unnamed_addr alias i32, i32* @g.unnamed_addr
; CHECK: @a.unnamed_addr = unnamed_addr alias i32, i32* @g.unnamed_addr
IR: Introduce local_unnamed_addr attribute. If a local_unnamed_addr attribute is attached to a global, the address is known to be insignificant within the module. It is distinct from the existing unnamed_addr attribute in that it only describes a local property of the module rather than a global property of the symbol. This attribute is intended to be used by the code generator and LTO to allow the linker to decide whether the global needs to be in the symbol table. It is possible to exclude a global from the symbol table if three things are true: - This attribute is present on every instance of the global (which means that the normal rule that the global must have a unique address can be broken without being observable by the program by performing comparisons against the global's address) - The global has linkonce_odr linkage (which means that each linkage unit must have its own copy of the global if it requires one, and the copy in each linkage unit must be the same) - It is a constant or a function (which means that the program cannot observe that the unique-address rule has been broken by writing to the global) Although this attribute could in principle be computed from the module contents, LTO clients (i.e. linkers) will normally need to be able to compute this property as part of symbol resolution, and it would be inefficient to materialize every module just to compute it. See: http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20160509/356401.html http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20160516/356738.html for earlier discussion. Part of the fix for PR27553. Differential Revision: http://reviews.llvm.org/D20348 llvm-svn: 272709
2016-06-15 05:01:22 +08:00
@a.local_unnamed_addr = local_unnamed_addr alias i32, i32* @g.local_unnamed_addr
; CHECK: @a.local_unnamed_addr = local_unnamed_addr alias i32, i32* @g.local_unnamed_addr
;; IFunc
; Format @<Name> = [Linkage] [Visibility] ifunc <IFuncTy>,
; <ResolverTy>* @<Resolver>
; IFunc -- Linkage
@ifunc.external = external ifunc void (), i8* ()* @ifunc_resolver
; CHECK: @ifunc.external = ifunc void (), i8* ()* @ifunc_resolver
@ifunc.private = private ifunc void (), i8* ()* @ifunc_resolver
; CHECK: @ifunc.private = private ifunc void (), i8* ()* @ifunc_resolver
@ifunc.internal = internal ifunc void (), i8* ()* @ifunc_resolver
; CHECK: @ifunc.internal = internal ifunc void (), i8* ()* @ifunc_resolver
; IFunc -- Visibility
@ifunc.default = default ifunc void (), i8* ()* @ifunc_resolver
; CHECK: @ifunc.default = ifunc void (), i8* ()* @ifunc_resolver
@ifunc.hidden = hidden ifunc void (), i8* ()* @ifunc_resolver
; CHECK: @ifunc.hidden = hidden ifunc void (), i8* ()* @ifunc_resolver
@ifunc.protected = protected ifunc void (), i8* ()* @ifunc_resolver
; CHECK: @ifunc.protected = protected ifunc void (), i8* ()* @ifunc_resolver
define i8* @ifunc_resolver() {
entry:
ret i8* null
}
;; Functions
; Format: define [linkage] [visibility] [DLLStorageClass]
; [cconv] [ret attrs]
; <ResultType> @<FunctionName> ([argument list])
IR: Introduce local_unnamed_addr attribute. If a local_unnamed_addr attribute is attached to a global, the address is known to be insignificant within the module. It is distinct from the existing unnamed_addr attribute in that it only describes a local property of the module rather than a global property of the symbol. This attribute is intended to be used by the code generator and LTO to allow the linker to decide whether the global needs to be in the symbol table. It is possible to exclude a global from the symbol table if three things are true: - This attribute is present on every instance of the global (which means that the normal rule that the global must have a unique address can be broken without being observable by the program by performing comparisons against the global's address) - The global has linkonce_odr linkage (which means that each linkage unit must have its own copy of the global if it requires one, and the copy in each linkage unit must be the same) - It is a constant or a function (which means that the program cannot observe that the unique-address rule has been broken by writing to the global) Although this attribute could in principle be computed from the module contents, LTO clients (i.e. linkers) will normally need to be able to compute this property as part of symbol resolution, and it would be inefficient to materialize every module just to compute it. See: http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20160509/356401.html http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20160516/356738.html for earlier discussion. Part of the fix for PR27553. Differential Revision: http://reviews.llvm.org/D20348 llvm-svn: 272709
2016-06-15 05:01:22 +08:00
; [(unnamed_addr|local_unnamed_addr)] [fn Attrs] [section "name"] [comdat [($name)]]
; [align N] [gc] [prefix Constant] [prologue Constant]
; [personality Constant] { ... }
; Functions -- Simple
declare void @f1 ()
; CHECK: declare void @f1()
define void @f2 () {
; CHECK: define void @f2()
entry:
ret void
}
; Functions -- linkage
define private void @f.private() {
; CHECK: define private void @f.private()
entry:
ret void
}
define internal void @f.internal() {
; CHECK: define internal void @f.internal()
entry:
ret void
}
define available_externally void @f.available_externally() {
; CHECK: define available_externally void @f.available_externally()
entry:
ret void
}
define linkonce void @f.linkonce() {
; CHECK: define linkonce void @f.linkonce()
entry:
ret void
}
define weak void @f.weak() {
; CHECK: define weak void @f.weak()
entry:
ret void
}
define linkonce_odr void @f.linkonce_odr() {
; CHECK: define linkonce_odr void @f.linkonce_odr()
entry:
ret void
}
define weak_odr void @f.weak_odr() {
; CHECK: define weak_odr void @f.weak_odr()
entry:
ret void
}
declare external void @f.external()
; CHECK: declare void @f.external()
declare extern_weak void @f.extern_weak()
; CHECK: declare extern_weak void @f.extern_weak()
; Functions -- visibility
declare default void @f.default()
; CHECK: declare void @f.default()
declare hidden void @f.hidden()
; CHECK: declare hidden void @f.hidden()
declare protected void @f.protected()
; CHECK: declare protected void @f.protected()
; Functions -- DLLStorageClass
declare dllimport void @f.dllimport()
; CHECK: declare dllimport void @f.dllimport()
declare dllexport void @f.dllexport()
; CHECK: declare dllexport void @f.dllexport()
; Functions -- cconv (Calling conventions)
declare ccc void @f.ccc()
; CHECK: declare void @f.ccc()
declare fastcc void @f.fastcc()
; CHECK: declare fastcc void @f.fastcc()
declare coldcc void @f.coldcc()
; CHECK: declare coldcc void @f.coldcc()
declare cc10 void @f.cc10()
; CHECK: declare ghccc void @f.cc10()
declare ghccc void @f.ghccc()
; CHECK: declare ghccc void @f.ghccc()
declare cc11 void @f.cc11()
; CHECK: declare cc11 void @f.cc11()
declare webkit_jscc void @f.webkit_jscc()
; CHECK: declare webkit_jscc void @f.webkit_jscc()
declare anyregcc void @f.anyregcc()
; CHECK: declare anyregcc void @f.anyregcc()
declare preserve_mostcc void @f.preserve_mostcc()
; CHECK: declare preserve_mostcc void @f.preserve_mostcc()
declare preserve_allcc void @f.preserve_allcc()
; CHECK: declare preserve_allcc void @f.preserve_allcc()
declare cc64 void @f.cc64()
; CHECK: declare x86_stdcallcc void @f.cc64()
declare x86_stdcallcc void @f.x86_stdcallcc()
; CHECK: declare x86_stdcallcc void @f.x86_stdcallcc()
declare cc65 void @f.cc65()
; CHECK: declare x86_fastcallcc void @f.cc65()
declare x86_fastcallcc void @f.x86_fastcallcc()
; CHECK: declare x86_fastcallcc void @f.x86_fastcallcc()
declare cc66 void @f.cc66()
; CHECK: declare arm_apcscc void @f.cc66()
declare arm_apcscc void @f.arm_apcscc()
; CHECK: declare arm_apcscc void @f.arm_apcscc()
declare cc67 void @f.cc67()
; CHECK: declare arm_aapcscc void @f.cc67()
declare arm_aapcscc void @f.arm_aapcscc()
; CHECK: declare arm_aapcscc void @f.arm_aapcscc()
declare cc68 void @f.cc68()
; CHECK: declare arm_aapcs_vfpcc void @f.cc68()
declare arm_aapcs_vfpcc void @f.arm_aapcs_vfpcc()
; CHECK: declare arm_aapcs_vfpcc void @f.arm_aapcs_vfpcc()
declare cc69 void @f.cc69()
; CHECK: declare msp430_intrcc void @f.cc69()
declare msp430_intrcc void @f.msp430_intrcc()
; CHECK: declare msp430_intrcc void @f.msp430_intrcc()
declare cc70 void @f.cc70()
; CHECK: declare x86_thiscallcc void @f.cc70()
declare x86_thiscallcc void @f.x86_thiscallcc()
; CHECK: declare x86_thiscallcc void @f.x86_thiscallcc()
declare cc71 void @f.cc71()
; CHECK: declare ptx_kernel void @f.cc71()
declare ptx_kernel void @f.ptx_kernel()
; CHECK: declare ptx_kernel void @f.ptx_kernel()
declare cc72 void @f.cc72()
; CHECK: declare ptx_device void @f.cc72()
declare ptx_device void @f.ptx_device()
; CHECK: declare ptx_device void @f.ptx_device()
declare cc75 void @f.cc75()
; CHECK: declare spir_func void @f.cc75()
declare spir_func void @f.spir_func()
; CHECK: declare spir_func void @f.spir_func()
declare cc76 void @f.cc76()
; CHECK: declare spir_kernel void @f.cc76()
declare spir_kernel void @f.spir_kernel()
; CHECK: declare spir_kernel void @f.spir_kernel()
declare cc77 void @f.cc77()
; CHECK: declare intel_ocl_bicc void @f.cc77()
declare intel_ocl_bicc void @f.intel_ocl_bicc()
; CHECK: declare intel_ocl_bicc void @f.intel_ocl_bicc()
declare cc78 void @f.cc78()
; CHECK: declare x86_64_sysvcc void @f.cc78()
declare x86_64_sysvcc void @f.x86_64_sysvcc()
; CHECK: declare x86_64_sysvcc void @f.x86_64_sysvcc()
declare cc79 void @f.cc79()
; CHECK: declare win64cc void @f.cc79()
declare win64cc void @f.win64cc()
; CHECK: declare win64cc void @f.win64cc()
declare cc80 void @f.cc80()
; CHECK: declare x86_vectorcallcc void @f.cc80()
declare x86_vectorcallcc void @f.x86_vectorcallcc()
; CHECK: declare x86_vectorcallcc void @f.x86_vectorcallcc()
declare cc81 void @f.cc81()
; CHECK: declare hhvmcc void @f.cc81()
declare hhvmcc void @f.hhvmcc()
; CHECK: declare hhvmcc void @f.hhvmcc()
declare cc82 void @f.cc82()
; CHECK: declare hhvm_ccc void @f.cc82()
declare hhvm_ccc void @f.hhvm_ccc()
; CHECK: declare hhvm_ccc void @f.hhvm_ccc()
declare cc83 void @f.cc83()
; CHECK: declare x86_intrcc void @f.cc83()
declare x86_intrcc void @f.x86_intrcc()
; CHECK: declare x86_intrcc void @f.x86_intrcc()
declare cc84 void @f.cc84()
; CHECK: declare avr_intrcc void @f.cc84()
declare avr_intrcc void @f.avr_intrcc()
; CHECK: declare avr_intrcc void @f.avr_intrcc()
declare cc85 void @f.cc85()
; CHECK: declare avr_signalcc void @f.cc85()
declare avr_signalcc void @f.avr_signalcc()
; CHECK: declare avr_signalcc void @f.avr_signalcc()
declare cc87 void @f.cc87()
; CHECK: declare amdgpu_vs void @f.cc87()
declare amdgpu_vs void @f.amdgpu_vs()
; CHECK: declare amdgpu_vs void @f.amdgpu_vs()
declare cc88 void @f.cc88()
; CHECK: declare amdgpu_gs void @f.cc88()
declare amdgpu_gs void @f.amdgpu_gs()
; CHECK: declare amdgpu_gs void @f.amdgpu_gs()
declare cc89 void @f.cc89()
; CHECK: declare amdgpu_ps void @f.cc89()
declare amdgpu_ps void @f.amdgpu_ps()
; CHECK: declare amdgpu_ps void @f.amdgpu_ps()
declare cc90 void @f.cc90()
; CHECK: declare amdgpu_cs void @f.cc90()
declare amdgpu_cs void @f.amdgpu_cs()
; CHECK: declare amdgpu_cs void @f.amdgpu_cs()
declare cc91 void @f.cc91()
; CHECK: declare amdgpu_kernel void @f.cc91()
declare amdgpu_kernel void @f.amdgpu_kernel()
; CHECK: declare amdgpu_kernel void @f.amdgpu_kernel()
declare cc93 void @f.cc93()
; CHECK: declare amdgpu_hs void @f.cc93()
declare amdgpu_hs void @f.amdgpu_hs()
; CHECK: declare amdgpu_hs void @f.amdgpu_hs()
declare cc95 void @f.cc95()
; CHECK: declare amdgpu_ls void @f.cc95()
declare amdgpu_ls void @f.amdgpu_ls()
; CHECK: declare amdgpu_ls void @f.amdgpu_ls()
declare cc96 void @f.cc96()
; CHECK: declare amdgpu_es void @f.cc96()
declare amdgpu_es void @f.amdgpu_es()
; CHECK: declare amdgpu_es void @f.amdgpu_es()
declare cc1023 void @f.cc1023()
; CHECK: declare cc1023 void @f.cc1023()
; Functions -- ret attrs (Return attributes)
declare zeroext i64 @f.zeroext()
; CHECK: declare zeroext i64 @f.zeroext()
declare signext i64 @f.signext()
; CHECK: declare signext i64 @f.signext()
declare inreg i32* @f.inreg()
; CHECK: declare inreg i32* @f.inreg()
declare noalias i32* @f.noalias()
; CHECK: declare noalias i32* @f.noalias()
declare nonnull i32* @f.nonnull()
; CHECK: declare nonnull i32* @f.nonnull()
declare dereferenceable(4) i32* @f.dereferenceable4()
; CHECK: declare dereferenceable(4) i32* @f.dereferenceable4()
declare dereferenceable(8) i32* @f.dereferenceable8()
; CHECK: declare dereferenceable(8) i32* @f.dereferenceable8()
declare dereferenceable(16) i32* @f.dereferenceable16()
; CHECK: declare dereferenceable(16) i32* @f.dereferenceable16()
declare dereferenceable_or_null(4) i32* @f.dereferenceable4_or_null()
; CHECK: declare dereferenceable_or_null(4) i32* @f.dereferenceable4_or_null()
declare dereferenceable_or_null(8) i32* @f.dereferenceable8_or_null()
; CHECK: declare dereferenceable_or_null(8) i32* @f.dereferenceable8_or_null()
declare dereferenceable_or_null(16) i32* @f.dereferenceable16_or_null()
; CHECK: declare dereferenceable_or_null(16) i32* @f.dereferenceable16_or_null()
; Functions -- Parameter attributes
declare void @f.param.zeroext(i8 zeroext)
; CHECK: declare void @f.param.zeroext(i8 zeroext)
declare void @f.param.signext(i8 signext)
; CHECK: declare void @f.param.signext(i8 signext)
declare void @f.param.inreg(i8 inreg)
; CHECK: declare void @f.param.inreg(i8 inreg)
declare void @f.param.byval({ i8, i8 }* byval)
; CHECK: declare void @f.param.byval({ i8, i8 }* byval)
declare void @f.param.inalloca(i8* inalloca)
; CHECK: declare void @f.param.inalloca(i8* inalloca)
declare void @f.param.sret(i8* sret)
; CHECK: declare void @f.param.sret(i8* sret)
declare void @f.param.noalias(i8* noalias)
; CHECK: declare void @f.param.noalias(i8* noalias)
declare void @f.param.nocapture(i8* nocapture)
; CHECK: declare void @f.param.nocapture(i8* nocapture)
declare void @f.param.nest(i8* nest)
; CHECK: declare void @f.param.nest(i8* nest)
declare i8* @f.param.returned(i8* returned)
; CHECK: declare i8* @f.param.returned(i8* returned)
declare void @f.param.nonnull(i8* nonnull)
; CHECK: declare void @f.param.nonnull(i8* nonnull)
declare void @f.param.dereferenceable(i8* dereferenceable(4))
; CHECK: declare void @f.param.dereferenceable(i8* dereferenceable(4))
declare void @f.param.dereferenceable_or_null(i8* dereferenceable_or_null(4))
; CHECK: declare void @f.param.dereferenceable_or_null(i8* dereferenceable_or_null(4))
IR: Introduce local_unnamed_addr attribute. If a local_unnamed_addr attribute is attached to a global, the address is known to be insignificant within the module. It is distinct from the existing unnamed_addr attribute in that it only describes a local property of the module rather than a global property of the symbol. This attribute is intended to be used by the code generator and LTO to allow the linker to decide whether the global needs to be in the symbol table. It is possible to exclude a global from the symbol table if three things are true: - This attribute is present on every instance of the global (which means that the normal rule that the global must have a unique address can be broken without being observable by the program by performing comparisons against the global's address) - The global has linkonce_odr linkage (which means that each linkage unit must have its own copy of the global if it requires one, and the copy in each linkage unit must be the same) - It is a constant or a function (which means that the program cannot observe that the unique-address rule has been broken by writing to the global) Although this attribute could in principle be computed from the module contents, LTO clients (i.e. linkers) will normally need to be able to compute this property as part of symbol resolution, and it would be inefficient to materialize every module just to compute it. See: http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20160509/356401.html http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20160516/356738.html for earlier discussion. Part of the fix for PR27553. Differential Revision: http://reviews.llvm.org/D20348 llvm-svn: 272709
2016-06-15 05:01:22 +08:00
; Functions -- unnamed_addr and local_unnamed_addr
declare void @f.unnamed_addr() unnamed_addr
; CHECK: declare void @f.unnamed_addr() unnamed_addr
IR: Introduce local_unnamed_addr attribute. If a local_unnamed_addr attribute is attached to a global, the address is known to be insignificant within the module. It is distinct from the existing unnamed_addr attribute in that it only describes a local property of the module rather than a global property of the symbol. This attribute is intended to be used by the code generator and LTO to allow the linker to decide whether the global needs to be in the symbol table. It is possible to exclude a global from the symbol table if three things are true: - This attribute is present on every instance of the global (which means that the normal rule that the global must have a unique address can be broken without being observable by the program by performing comparisons against the global's address) - The global has linkonce_odr linkage (which means that each linkage unit must have its own copy of the global if it requires one, and the copy in each linkage unit must be the same) - It is a constant or a function (which means that the program cannot observe that the unique-address rule has been broken by writing to the global) Although this attribute could in principle be computed from the module contents, LTO clients (i.e. linkers) will normally need to be able to compute this property as part of symbol resolution, and it would be inefficient to materialize every module just to compute it. See: http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20160509/356401.html http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20160516/356738.html for earlier discussion. Part of the fix for PR27553. Differential Revision: http://reviews.llvm.org/D20348 llvm-svn: 272709
2016-06-15 05:01:22 +08:00
declare void @f.local_unnamed_addr() local_unnamed_addr
; CHECK: declare void @f.local_unnamed_addr() local_unnamed_addr
; Functions -- fn Attrs (Function attributes)
declare void @f.alignstack4() alignstack(4)
; CHECK: declare void @f.alignstack4() #0
declare void @f.alignstack8() alignstack(8)
; CHECK: declare void @f.alignstack8() #1
declare void @f.alwaysinline() alwaysinline
; CHECK: declare void @f.alwaysinline() #2
declare void @f.cold() cold
; CHECK: declare void @f.cold() #3
declare void @f.convergent() convergent
; CHECK: declare void @f.convergent() #4
declare void @f.inlinehint() inlinehint
; CHECK: declare void @f.inlinehint() #5
declare void @f.jumptable() unnamed_addr jumptable
; CHECK: declare void @f.jumptable() unnamed_addr #6
declare void @f.minsize() minsize
; CHECK: declare void @f.minsize() #7
declare void @f.naked() naked
; CHECK: declare void @f.naked() #8
declare void @f.nobuiltin() nobuiltin
; CHECK: declare void @f.nobuiltin() #9
declare void @f.noduplicate() noduplicate
; CHECK: declare void @f.noduplicate() #10
declare void @f.noimplicitfloat() noimplicitfloat
; CHECK: declare void @f.noimplicitfloat() #11
declare void @f.noinline() noinline
; CHECK: declare void @f.noinline() #12
declare void @f.nonlazybind() nonlazybind
; CHECK: declare void @f.nonlazybind() #13
declare void @f.noredzone() noredzone
; CHECK: declare void @f.noredzone() #14
declare void @f.noreturn() noreturn
; CHECK: declare void @f.noreturn() #15
declare void @f.nounwind() nounwind
; CHECK: declare void @f.nounwind() #16
declare void @f.optnone() noinline optnone
; CHECK: declare void @f.optnone() #17
declare void @f.optsize() optsize
; CHECK: declare void @f.optsize() #18
declare void @f.readnone() readnone
; CHECK: declare void @f.readnone() #19
declare void @f.readonly() readonly
; CHECK: declare void @f.readonly() #20
declare void @f.returns_twice() returns_twice
; CHECK: declare void @f.returns_twice() #21
declare void @f.safestack() safestack
; CHECK: declare void @f.safestack() #22
declare void @f.sanitize_address() sanitize_address
; CHECK: declare void @f.sanitize_address() #23
declare void @f.sanitize_memory() sanitize_memory
; CHECK: declare void @f.sanitize_memory() #24
declare void @f.sanitize_thread() sanitize_thread
; CHECK: declare void @f.sanitize_thread() #25
declare void @f.ssp() ssp
; CHECK: declare void @f.ssp() #26
declare void @f.sspreq() sspreq
; CHECK: declare void @f.sspreq() #27
declare void @f.sspstrong() sspstrong
; CHECK: declare void @f.sspstrong() #28
declare void @f.thunk() "thunk"
; CHECK: declare void @f.thunk() #29
declare void @f.uwtable() uwtable
; CHECK: declare void @f.uwtable() #30
declare void @f.kvpair() "cpu"="cortex-a8"
; CHECK:declare void @f.kvpair() #31
declare void @f.norecurse() norecurse
; CHECK: declare void @f.norecurse() #32
declare void @f.inaccessiblememonly() inaccessiblememonly
; CHECK: declare void @f.inaccessiblememonly() #33
declare void @f.inaccessiblemem_or_argmemonly() inaccessiblemem_or_argmemonly
; CHECK: declare void @f.inaccessiblemem_or_argmemonly() #34
declare void @f.strictfp() #35
; Functions -- section
declare void @f.section() section "80"
; CHECK: declare void @f.section() section "80"
; Functions -- comdat
define void @f.comdat_any() comdat($comdat.any) {
; CHECK: define void @f.comdat_any() comdat($comdat.any)
entry:
ret void
}
define void @f.comdat_exactmatch() comdat($comdat.exactmatch) {
; CHECK: define void @f.comdat_exactmatch() comdat($comdat.exactmatch)
entry:
ret void
}
define void @f.comdat_largest() comdat($comdat.largest) {
; CHECK: define void @f.comdat_largest() comdat($comdat.largest)
entry:
ret void
}
define void @f.comdat_noduplicates() comdat($comdat.noduplicates) {
; CHECK: define void @f.comdat_noduplicates() comdat($comdat.noduplicates)
entry:
ret void
}
define void @f.comdat_samesize() comdat($comdat.samesize) {
; CHECK: define void @f.comdat_samesize() comdat($comdat.samesize)
entry:
ret void
}
; Functions -- align
declare void @f.align2() align 2
; CHECK: declare void @f.align2() align 2
declare void @f.align4() align 4
; CHECK: declare void @f.align4() align 4
declare void @f.align8() align 8
; CHECK: declare void @f.align8() align 8
; Functions -- GC
declare void @f.gcshadow() gc "shadow-stack"
; CHECK: declare void @f.gcshadow() gc "shadow-stack"
; Functions -- Prefix data
declare void @f.prefixi32() prefix i32 1684365668
; CHECK: declare void @f.prefixi32() prefix i32 1684365668
declare void @f.prefixarray() prefix [4 x i32] [i32 0, i32 1, i32 2, i32 3]
; CHECK: declare void @f.prefixarray() prefix [4 x i32] [i32 0, i32 1, i32 2, i32 3]
; Functions -- Prologue data
declare void @f.prologuei32() prologue i32 1684365669
; CHECK: declare void @f.prologuei32() prologue i32 1684365669
declare void @f.prologuearray() prologue [4 x i32] [i32 0, i32 1, i32 2, i32 3]
; CHECK: declare void @f.prologuearray() prologue [4 x i32] [i32 0, i32 1, i32 2, i32 3]
; Functions -- Personality constant
declare void @llvm.donothing() nounwind readnone
; CHECK: declare void @llvm.donothing() #35
define void @f.no_personality() personality i8 3 {
; CHECK: define void @f.no_personality() personality i8 3
invoke void @llvm.donothing() to label %normal unwind label %exception
exception:
%cleanup = landingpad i8 cleanup
br label %normal
normal:
ret void
}
declare i32 @f.personality_handler()
; CHECK: declare i32 @f.personality_handler()
define void @f.personality() personality i32 ()* @f.personality_handler {
; CHECK: define void @f.personality() personality i32 ()* @f.personality_handler
invoke void @llvm.donothing() to label %normal unwind label %exception
exception:
%cleanup = landingpad i32 cleanup
br label %normal
normal:
ret void
}
;; Atomic Memory Ordering Constraints
define void @atomics(i32* %word) {
%cmpxchg.0 = cmpxchg i32* %word, i32 0, i32 4 monotonic monotonic
; CHECK: %cmpxchg.0 = cmpxchg i32* %word, i32 0, i32 4 monotonic monotonic
%cmpxchg.1 = cmpxchg i32* %word, i32 0, i32 5 acq_rel monotonic
; CHECK: %cmpxchg.1 = cmpxchg i32* %word, i32 0, i32 5 acq_rel monotonic
%cmpxchg.2 = cmpxchg i32* %word, i32 0, i32 6 acquire monotonic
; CHECK: %cmpxchg.2 = cmpxchg i32* %word, i32 0, i32 6 acquire monotonic
%cmpxchg.3 = cmpxchg i32* %word, i32 0, i32 7 release monotonic
; CHECK: %cmpxchg.3 = cmpxchg i32* %word, i32 0, i32 7 release monotonic
%cmpxchg.4 = cmpxchg i32* %word, i32 0, i32 8 seq_cst monotonic
; CHECK: %cmpxchg.4 = cmpxchg i32* %word, i32 0, i32 8 seq_cst monotonic
%cmpxchg.5 = cmpxchg weak i32* %word, i32 0, i32 9 seq_cst monotonic
; CHECK: %cmpxchg.5 = cmpxchg weak i32* %word, i32 0, i32 9 seq_cst monotonic
%cmpxchg.6 = cmpxchg volatile i32* %word, i32 0, i32 10 seq_cst monotonic
; CHECK: %cmpxchg.6 = cmpxchg volatile i32* %word, i32 0, i32 10 seq_cst monotonic
%cmpxchg.7 = cmpxchg weak volatile i32* %word, i32 0, i32 11 syncscope("singlethread") seq_cst monotonic
; CHECK: %cmpxchg.7 = cmpxchg weak volatile i32* %word, i32 0, i32 11 syncscope("singlethread") seq_cst monotonic
%atomicrmw.xchg = atomicrmw xchg i32* %word, i32 12 monotonic
; CHECK: %atomicrmw.xchg = atomicrmw xchg i32* %word, i32 12 monotonic
%atomicrmw.add = atomicrmw add i32* %word, i32 13 monotonic
; CHECK: %atomicrmw.add = atomicrmw add i32* %word, i32 13 monotonic
%atomicrmw.sub = atomicrmw sub i32* %word, i32 14 monotonic
; CHECK: %atomicrmw.sub = atomicrmw sub i32* %word, i32 14 monotonic
%atomicrmw.and = atomicrmw and i32* %word, i32 15 monotonic
; CHECK: %atomicrmw.and = atomicrmw and i32* %word, i32 15 monotonic
%atomicrmw.nand = atomicrmw nand i32* %word, i32 16 monotonic
; CHECK: %atomicrmw.nand = atomicrmw nand i32* %word, i32 16 monotonic
%atomicrmw.or = atomicrmw or i32* %word, i32 17 monotonic
; CHECK: %atomicrmw.or = atomicrmw or i32* %word, i32 17 monotonic
%atomicrmw.xor = atomicrmw xor i32* %word, i32 18 monotonic
; CHECK: %atomicrmw.xor = atomicrmw xor i32* %word, i32 18 monotonic
%atomicrmw.max = atomicrmw max i32* %word, i32 19 monotonic
; CHECK: %atomicrmw.max = atomicrmw max i32* %word, i32 19 monotonic
%atomicrmw.min = atomicrmw volatile min i32* %word, i32 20 monotonic
; CHECK: %atomicrmw.min = atomicrmw volatile min i32* %word, i32 20 monotonic
%atomicrmw.umax = atomicrmw umax i32* %word, i32 21 syncscope("singlethread") monotonic
; CHECK: %atomicrmw.umax = atomicrmw umax i32* %word, i32 21 syncscope("singlethread") monotonic
%atomicrmw.umin = atomicrmw volatile umin i32* %word, i32 22 syncscope("singlethread") monotonic
; CHECK: %atomicrmw.umin = atomicrmw volatile umin i32* %word, i32 22 syncscope("singlethread") monotonic
fence acquire
; CHECK: fence acquire
fence release
; CHECK: fence release
fence acq_rel
; CHECK: fence acq_rel
fence syncscope("singlethread") seq_cst
; CHECK: fence syncscope("singlethread") seq_cst
%ld.1 = load atomic i32, i32* %word monotonic, align 4
; CHECK: %ld.1 = load atomic i32, i32* %word monotonic, align 4
%ld.2 = load atomic volatile i32, i32* %word acquire, align 8
; CHECK: %ld.2 = load atomic volatile i32, i32* %word acquire, align 8
%ld.3 = load atomic volatile i32, i32* %word syncscope("singlethread") seq_cst, align 16
; CHECK: %ld.3 = load atomic volatile i32, i32* %word syncscope("singlethread") seq_cst, align 16
store atomic i32 23, i32* %word monotonic, align 4
; CHECK: store atomic i32 23, i32* %word monotonic, align 4
store atomic volatile i32 24, i32* %word monotonic, align 4
; CHECK: store atomic volatile i32 24, i32* %word monotonic, align 4
store atomic volatile i32 25, i32* %word syncscope("singlethread") monotonic, align 4
; CHECK: store atomic volatile i32 25, i32* %word syncscope("singlethread") monotonic, align 4
ret void
}
;; Fast Math Flags
define void @fastmathflags(float %op1, float %op2) {
%f.nnan = fadd nnan float %op1, %op2
; CHECK: %f.nnan = fadd nnan float %op1, %op2
%f.ninf = fadd ninf float %op1, %op2
; CHECK: %f.ninf = fadd ninf float %op1, %op2
%f.nsz = fadd nsz float %op1, %op2
; CHECK: %f.nsz = fadd nsz float %op1, %op2
%f.arcp = fadd arcp float %op1, %op2
; CHECK: %f.arcp = fadd arcp float %op1, %op2
%f.contract = fadd contract float %op1, %op2
; CHECK: %f.contract = fadd contract float %op1, %op2
[IR] redefine 'UnsafeAlgebra' / 'reassoc' fast-math-flags and add 'trans' fast-math-flag As discussed on llvm-dev: http://lists.llvm.org/pipermail/llvm-dev/2016-November/107104.html and again more recently: http://lists.llvm.org/pipermail/llvm-dev/2017-October/118118.html ...this is a step in cleaning up our fast-math-flags implementation in IR to better match the capabilities of both clang's user-visible flags and the backend's flags for SDNode. As proposed in the above threads, we're replacing the 'UnsafeAlgebra' bit (which had the 'umbrella' meaning that all flags are set) with a new bit that only applies to algebraic reassociation - 'AllowReassoc'. We're also adding a bit to allow approximations for library functions called 'ApproxFunc' (this was initially proposed as 'libm' or similar). ...and we're out of bits. 7 bits ought to be enough for anyone, right? :) FWIW, I did look at getting this out of SubclassOptionalData via SubclassData (spacious 16-bits), but that's apparently already used for other purposes. Also, I don't think we can just add a field to FPMathOperator because Operator is not intended to be instantiated. We'll defer movement of FMF to another day. We keep the 'fast' keyword. I thought about removing that, but seeing IR like this: %f.fast = fadd reassoc nnan ninf nsz arcp contract afn float %op1, %op2 ...made me think we want to keep the shortcut synonym. Finally, this change is binary incompatible with existing IR as seen in the compatibility tests. This statement: "Newer releases can ignore features from older releases, but they cannot miscompile them. For example, if nsw is ever replaced with something else, dropping it would be a valid way to upgrade the IR." ( http://llvm.org/docs/DeveloperPolicy.html#ir-backwards-compatibility ) ...provides the flexibility we want to make this change without requiring a new IR version. Ie, we're not loosening the FP strictness of existing IR. At worst, we will fail to optimize some previously 'fast' code because it's no longer recognized as 'fast'. This should get fixed as we audit/squash all of the uses of 'isFast()'. Note: an inter-dependent clang commit to use the new API name should closely follow commit. Differential Revision: https://reviews.llvm.org/D39304 llvm-svn: 317488
2017-11-07 00:27:15 +08:00
%f.afn = fadd afn float %op1, %op2
; CHECK: %f.afn = fadd afn float %op1, %op2
%f.reassoc = fadd reassoc float %op1, %op2
; CHECK: %f.reassoc = fadd reassoc float %op1, %op2
%f.fast = fadd fast float %op1, %op2
; CHECK: %f.fast = fadd fast float %op1, %op2
ret void
}
; Check various fast math flags and floating-point types on calls.
declare float @fmf1()
declare double @fmf2()
declare <4 x double> @fmf3()
; CHECK-LABEL: fastMathFlagsForCalls(
define void @fastMathFlagsForCalls(float %f, double %d1, <4 x double> %d2) {
%call.fast = call fast float @fmf1()
; CHECK: %call.fast = call fast float @fmf1()
; Throw in some other attributes to make sure those stay in the right places.
%call.nsz.arcp = notail call nsz arcp double @fmf2()
; CHECK: %call.nsz.arcp = notail call nsz arcp double @fmf2()
%call.nnan.ninf = tail call nnan ninf fastcc <4 x double> @fmf3()
; CHECK: %call.nnan.ninf = tail call nnan ninf fastcc <4 x double> @fmf3()
ret void
}
;; Type System
%opaquety = type opaque
define void @typesystem() {
%p0 = bitcast i8* null to i32 (i32)*
; CHECK: %p0 = bitcast i8* null to i32 (i32)*
%p1 = bitcast i8* null to void (i8*)*
; CHECK: %p1 = bitcast i8* null to void (i8*)*
%p2 = bitcast i8* null to i32 (i8*, ...)*
; CHECK: %p2 = bitcast i8* null to i32 (i8*, ...)*
%p3 = bitcast i8* null to { i32, i8 } (i8*, ...)*
; CHECK: %p3 = bitcast i8* null to { i32, i8 } (i8*, ...)*
%p4 = bitcast i8* null to <{ i32, i8 }> (i8*, ...)*
; CHECK: %p4 = bitcast i8* null to <{ i32, i8 }> (i8*, ...)*
%p5 = bitcast i8* null to <{ i32, i8 }> (<{ i8*, i64 }>*, ...)*
; CHECK: %p5 = bitcast i8* null to <{ i32, i8 }> (<{ i8*, i64 }>*, ...)*
%t0 = alloca i1942652
; CHECK: %t0 = alloca i1942652
%t1 = alloca half
; CHECK: %t1 = alloca half
%t2 = alloca float
; CHECK: %t2 = alloca float
%t3 = alloca double
; CHECK: %t3 = alloca double
%t4 = alloca fp128
; CHECK: %t4 = alloca fp128
%t5 = alloca x86_fp80
; CHECK: %t5 = alloca x86_fp80
%t6 = alloca ppc_fp128
; CHECK: %t6 = alloca ppc_fp128
%t7 = alloca x86_mmx
; CHECK: %t7 = alloca x86_mmx
%t8 = alloca %opaquety*
; CHECK: %t8 = alloca %opaquety*
ret void
}
declare void @llvm.token(token)
; CHECK: declare void @llvm.token(token)
;; Inline Assembler Expressions
define void @inlineasm(i32 %arg) {
call i32 asm "bswap $0", "=r,r"(i32 %arg)
; CHECK: call i32 asm "bswap $0", "=r,r"(i32 %arg)
call i32 asm sideeffect "blt $1, $2, $3", "=r,r,rm"(i32 %arg, i32 %arg)
; CHECK: call i32 asm sideeffect "blt $1, $2, $3", "=r,r,rm"(i32 %arg, i32 %arg)
ret void
}
;; Instructions
; Instructions -- Terminators
define void @instructions.terminators(i8 %val) personality i32 -10 {
br i1 false, label %iftrue, label %iffalse
; CHECK: br i1 false, label %iftrue, label %iffalse
br label %iftrue
; CHECK: br label %iftrue
iftrue:
ret void
; CHECK: ret void
iffalse:
switch i8 %val, label %defaultdest [
; CHECK: switch i8 %val, label %defaultdest [
i8 0, label %defaultdest.0
; CHECK: i8 0, label %defaultdest.0
i8 1, label %defaultdest.1
; CHECK: i8 1, label %defaultdest.1
i8 2, label %defaultdest.2
; CHECK: i8 2, label %defaultdest.2
]
; CHECK: ]
defaultdest:
ret void
defaultdest.0:
ret void
defaultdest.1:
ret void
defaultdest.2:
indirectbr i8* blockaddress(@instructions.terminators, %defaultdest.2), [label %defaultdest.2]
; CHECK: indirectbr i8* blockaddress(@instructions.terminators, %defaultdest.2), [label %defaultdest.2]
indirectbr i8* blockaddress(@instructions.terminators, %defaultdest.2), [label %defaultdest.2, label %defaultdest.2]
; CHECK: indirectbr i8* blockaddress(@instructions.terminators, %defaultdest.2), [label %defaultdest.2, label %defaultdest.2]
invoke fastcc void @f.fastcc()
; CHECK: invoke fastcc void @f.fastcc()
to label %defaultdest unwind label %exc
; CHECK: to label %defaultdest unwind label %exc
exc:
%cleanup = landingpad i32 cleanup
resume i32 undef
; CHECK: resume i32 undef
unreachable
; CHECK: unreachable
ret void
}
define i32 @instructions.win_eh.1() personality i32 -3 {
entry:
%arg1 = alloca i32
%arg2 = alloca i32
[IR] Reformulate LLVM's EH funclet IR While we have successfully implemented a funclet-oriented EH scheme on top of LLVM IR, our scheme has some notable deficiencies: - catchendpad and cleanupendpad are necessary in the current design but they are difficult to explain to others, even to seasoned LLVM experts. - catchendpad and cleanupendpad are optimization barriers. They cannot be split and force all potentially throwing call-sites to be invokes. This has a noticable effect on the quality of our code generation. - catchpad, while similar in some aspects to invoke, is fairly awkward. It is unsplittable, starts a funclet, and has control flow to other funclets. - The nesting relationship between funclets is currently a property of control flow edges. Because of this, we are forced to carefully analyze the flow graph to see if there might potentially exist illegal nesting among funclets. While we have logic to clone funclets when they are illegally nested, it would be nicer if we had a representation which forbade them upfront. Let's clean this up a bit by doing the following: - Instead, make catchpad more like cleanuppad and landingpad: no control flow, just a bunch of simple operands; catchpad would be splittable. - Introduce catchswitch, a control flow instruction designed to model the constraints of funclet oriented EH. - Make funclet scoping explicit by having funclet instructions consume the token produced by the funclet which contains them. - Remove catchendpad and cleanupendpad. Their presence can be inferred implicitly using coloring information. N.B. The state numbering code for the CLR has been updated but the veracity of it's output cannot be spoken for. An expert should take a look to make sure the results are reasonable. Reviewers: rnk, JosephTremoulet, andrew.w.kaylor Differential Revision: http://reviews.llvm.org/D15139 llvm-svn: 255422
2015-12-12 13:38:55 +08:00
invoke void @f.ccc() to label %normal unwind label %catchswitch1
invoke void @f.ccc() to label %normal unwind label %catchswitch2
invoke void @f.ccc() to label %normal unwind label %catchswitch3
catchswitch1:
%cs1 = catchswitch within none [label %catchpad1] unwind to caller
catchpad1:
[IR] Reformulate LLVM's EH funclet IR While we have successfully implemented a funclet-oriented EH scheme on top of LLVM IR, our scheme has some notable deficiencies: - catchendpad and cleanupendpad are necessary in the current design but they are difficult to explain to others, even to seasoned LLVM experts. - catchendpad and cleanupendpad are optimization barriers. They cannot be split and force all potentially throwing call-sites to be invokes. This has a noticable effect on the quality of our code generation. - catchpad, while similar in some aspects to invoke, is fairly awkward. It is unsplittable, starts a funclet, and has control flow to other funclets. - The nesting relationship between funclets is currently a property of control flow edges. Because of this, we are forced to carefully analyze the flow graph to see if there might potentially exist illegal nesting among funclets. While we have logic to clone funclets when they are illegally nested, it would be nicer if we had a representation which forbade them upfront. Let's clean this up a bit by doing the following: - Instead, make catchpad more like cleanuppad and landingpad: no control flow, just a bunch of simple operands; catchpad would be splittable. - Introduce catchswitch, a control flow instruction designed to model the constraints of funclet oriented EH. - Make funclet scoping explicit by having funclet instructions consume the token produced by the funclet which contains them. - Remove catchendpad and cleanupendpad. Their presence can be inferred implicitly using coloring information. N.B. The state numbering code for the CLR has been updated but the veracity of it's output cannot be spoken for. An expert should take a look to make sure the results are reasonable. Reviewers: rnk, JosephTremoulet, andrew.w.kaylor Differential Revision: http://reviews.llvm.org/D15139 llvm-svn: 255422
2015-12-12 13:38:55 +08:00
catchpad within %cs1 []
br label %normal
; CHECK: catchpad within %cs1 []
; CHECK-NEXT: br label %normal
[IR] Reformulate LLVM's EH funclet IR While we have successfully implemented a funclet-oriented EH scheme on top of LLVM IR, our scheme has some notable deficiencies: - catchendpad and cleanupendpad are necessary in the current design but they are difficult to explain to others, even to seasoned LLVM experts. - catchendpad and cleanupendpad are optimization barriers. They cannot be split and force all potentially throwing call-sites to be invokes. This has a noticable effect on the quality of our code generation. - catchpad, while similar in some aspects to invoke, is fairly awkward. It is unsplittable, starts a funclet, and has control flow to other funclets. - The nesting relationship between funclets is currently a property of control flow edges. Because of this, we are forced to carefully analyze the flow graph to see if there might potentially exist illegal nesting among funclets. While we have logic to clone funclets when they are illegally nested, it would be nicer if we had a representation which forbade them upfront. Let's clean this up a bit by doing the following: - Instead, make catchpad more like cleanuppad and landingpad: no control flow, just a bunch of simple operands; catchpad would be splittable. - Introduce catchswitch, a control flow instruction designed to model the constraints of funclet oriented EH. - Make funclet scoping explicit by having funclet instructions consume the token produced by the funclet which contains them. - Remove catchendpad and cleanupendpad. Their presence can be inferred implicitly using coloring information. N.B. The state numbering code for the CLR has been updated but the veracity of it's output cannot be spoken for. An expert should take a look to make sure the results are reasonable. Reviewers: rnk, JosephTremoulet, andrew.w.kaylor Differential Revision: http://reviews.llvm.org/D15139 llvm-svn: 255422
2015-12-12 13:38:55 +08:00
catchswitch2:
%cs2 = catchswitch within none [label %catchpad2] unwind to caller
[IR] Reformulate LLVM's EH funclet IR While we have successfully implemented a funclet-oriented EH scheme on top of LLVM IR, our scheme has some notable deficiencies: - catchendpad and cleanupendpad are necessary in the current design but they are difficult to explain to others, even to seasoned LLVM experts. - catchendpad and cleanupendpad are optimization barriers. They cannot be split and force all potentially throwing call-sites to be invokes. This has a noticable effect on the quality of our code generation. - catchpad, while similar in some aspects to invoke, is fairly awkward. It is unsplittable, starts a funclet, and has control flow to other funclets. - The nesting relationship between funclets is currently a property of control flow edges. Because of this, we are forced to carefully analyze the flow graph to see if there might potentially exist illegal nesting among funclets. While we have logic to clone funclets when they are illegally nested, it would be nicer if we had a representation which forbade them upfront. Let's clean this up a bit by doing the following: - Instead, make catchpad more like cleanuppad and landingpad: no control flow, just a bunch of simple operands; catchpad would be splittable. - Introduce catchswitch, a control flow instruction designed to model the constraints of funclet oriented EH. - Make funclet scoping explicit by having funclet instructions consume the token produced by the funclet which contains them. - Remove catchendpad and cleanupendpad. Their presence can be inferred implicitly using coloring information. N.B. The state numbering code for the CLR has been updated but the veracity of it's output cannot be spoken for. An expert should take a look to make sure the results are reasonable. Reviewers: rnk, JosephTremoulet, andrew.w.kaylor Differential Revision: http://reviews.llvm.org/D15139 llvm-svn: 255422
2015-12-12 13:38:55 +08:00
catchpad2:
catchpad within %cs2 [i32* %arg1]
br label %normal
; CHECK: catchpad within %cs2 [i32* %arg1]
; CHECK-NEXT: br label %normal
[IR] Reformulate LLVM's EH funclet IR While we have successfully implemented a funclet-oriented EH scheme on top of LLVM IR, our scheme has some notable deficiencies: - catchendpad and cleanupendpad are necessary in the current design but they are difficult to explain to others, even to seasoned LLVM experts. - catchendpad and cleanupendpad are optimization barriers. They cannot be split and force all potentially throwing call-sites to be invokes. This has a noticable effect on the quality of our code generation. - catchpad, while similar in some aspects to invoke, is fairly awkward. It is unsplittable, starts a funclet, and has control flow to other funclets. - The nesting relationship between funclets is currently a property of control flow edges. Because of this, we are forced to carefully analyze the flow graph to see if there might potentially exist illegal nesting among funclets. While we have logic to clone funclets when they are illegally nested, it would be nicer if we had a representation which forbade them upfront. Let's clean this up a bit by doing the following: - Instead, make catchpad more like cleanuppad and landingpad: no control flow, just a bunch of simple operands; catchpad would be splittable. - Introduce catchswitch, a control flow instruction designed to model the constraints of funclet oriented EH. - Make funclet scoping explicit by having funclet instructions consume the token produced by the funclet which contains them. - Remove catchendpad and cleanupendpad. Their presence can be inferred implicitly using coloring information. N.B. The state numbering code for the CLR has been updated but the veracity of it's output cannot be spoken for. An expert should take a look to make sure the results are reasonable. Reviewers: rnk, JosephTremoulet, andrew.w.kaylor Differential Revision: http://reviews.llvm.org/D15139 llvm-svn: 255422
2015-12-12 13:38:55 +08:00
catchswitch3:
%cs3 = catchswitch within none [label %catchpad3] unwind label %cleanuppad1
[IR] Reformulate LLVM's EH funclet IR While we have successfully implemented a funclet-oriented EH scheme on top of LLVM IR, our scheme has some notable deficiencies: - catchendpad and cleanupendpad are necessary in the current design but they are difficult to explain to others, even to seasoned LLVM experts. - catchendpad and cleanupendpad are optimization barriers. They cannot be split and force all potentially throwing call-sites to be invokes. This has a noticable effect on the quality of our code generation. - catchpad, while similar in some aspects to invoke, is fairly awkward. It is unsplittable, starts a funclet, and has control flow to other funclets. - The nesting relationship between funclets is currently a property of control flow edges. Because of this, we are forced to carefully analyze the flow graph to see if there might potentially exist illegal nesting among funclets. While we have logic to clone funclets when they are illegally nested, it would be nicer if we had a representation which forbade them upfront. Let's clean this up a bit by doing the following: - Instead, make catchpad more like cleanuppad and landingpad: no control flow, just a bunch of simple operands; catchpad would be splittable. - Introduce catchswitch, a control flow instruction designed to model the constraints of funclet oriented EH. - Make funclet scoping explicit by having funclet instructions consume the token produced by the funclet which contains them. - Remove catchendpad and cleanupendpad. Their presence can be inferred implicitly using coloring information. N.B. The state numbering code for the CLR has been updated but the veracity of it's output cannot be spoken for. An expert should take a look to make sure the results are reasonable. Reviewers: rnk, JosephTremoulet, andrew.w.kaylor Differential Revision: http://reviews.llvm.org/D15139 llvm-svn: 255422
2015-12-12 13:38:55 +08:00
catchpad3:
catchpad within %cs3 [i32* %arg1, i32* %arg2]
br label %normal
; CHECK: catchpad within %cs3 [i32* %arg1, i32* %arg2]
; CHECK-NEXT: br label %normal
cleanuppad1:
[IR] Reformulate LLVM's EH funclet IR While we have successfully implemented a funclet-oriented EH scheme on top of LLVM IR, our scheme has some notable deficiencies: - catchendpad and cleanupendpad are necessary in the current design but they are difficult to explain to others, even to seasoned LLVM experts. - catchendpad and cleanupendpad are optimization barriers. They cannot be split and force all potentially throwing call-sites to be invokes. This has a noticable effect on the quality of our code generation. - catchpad, while similar in some aspects to invoke, is fairly awkward. It is unsplittable, starts a funclet, and has control flow to other funclets. - The nesting relationship between funclets is currently a property of control flow edges. Because of this, we are forced to carefully analyze the flow graph to see if there might potentially exist illegal nesting among funclets. While we have logic to clone funclets when they are illegally nested, it would be nicer if we had a representation which forbade them upfront. Let's clean this up a bit by doing the following: - Instead, make catchpad more like cleanuppad and landingpad: no control flow, just a bunch of simple operands; catchpad would be splittable. - Introduce catchswitch, a control flow instruction designed to model the constraints of funclet oriented EH. - Make funclet scoping explicit by having funclet instructions consume the token produced by the funclet which contains them. - Remove catchendpad and cleanupendpad. Their presence can be inferred implicitly using coloring information. N.B. The state numbering code for the CLR has been updated but the veracity of it's output cannot be spoken for. An expert should take a look to make sure the results are reasonable. Reviewers: rnk, JosephTremoulet, andrew.w.kaylor Differential Revision: http://reviews.llvm.org/D15139 llvm-svn: 255422
2015-12-12 13:38:55 +08:00
%clean.1 = cleanuppad within none []
unreachable
[IR] Reformulate LLVM's EH funclet IR While we have successfully implemented a funclet-oriented EH scheme on top of LLVM IR, our scheme has some notable deficiencies: - catchendpad and cleanupendpad are necessary in the current design but they are difficult to explain to others, even to seasoned LLVM experts. - catchendpad and cleanupendpad are optimization barriers. They cannot be split and force all potentially throwing call-sites to be invokes. This has a noticable effect on the quality of our code generation. - catchpad, while similar in some aspects to invoke, is fairly awkward. It is unsplittable, starts a funclet, and has control flow to other funclets. - The nesting relationship between funclets is currently a property of control flow edges. Because of this, we are forced to carefully analyze the flow graph to see if there might potentially exist illegal nesting among funclets. While we have logic to clone funclets when they are illegally nested, it would be nicer if we had a representation which forbade them upfront. Let's clean this up a bit by doing the following: - Instead, make catchpad more like cleanuppad and landingpad: no control flow, just a bunch of simple operands; catchpad would be splittable. - Introduce catchswitch, a control flow instruction designed to model the constraints of funclet oriented EH. - Make funclet scoping explicit by having funclet instructions consume the token produced by the funclet which contains them. - Remove catchendpad and cleanupendpad. Their presence can be inferred implicitly using coloring information. N.B. The state numbering code for the CLR has been updated but the veracity of it's output cannot be spoken for. An expert should take a look to make sure the results are reasonable. Reviewers: rnk, JosephTremoulet, andrew.w.kaylor Differential Revision: http://reviews.llvm.org/D15139 llvm-svn: 255422
2015-12-12 13:38:55 +08:00
; CHECK: %clean.1 = cleanuppad within none []
; CHECK-NEXT: unreachable
normal:
ret i32 0
}
[IR] Reformulate LLVM's EH funclet IR While we have successfully implemented a funclet-oriented EH scheme on top of LLVM IR, our scheme has some notable deficiencies: - catchendpad and cleanupendpad are necessary in the current design but they are difficult to explain to others, even to seasoned LLVM experts. - catchendpad and cleanupendpad are optimization barriers. They cannot be split and force all potentially throwing call-sites to be invokes. This has a noticable effect on the quality of our code generation. - catchpad, while similar in some aspects to invoke, is fairly awkward. It is unsplittable, starts a funclet, and has control flow to other funclets. - The nesting relationship between funclets is currently a property of control flow edges. Because of this, we are forced to carefully analyze the flow graph to see if there might potentially exist illegal nesting among funclets. While we have logic to clone funclets when they are illegally nested, it would be nicer if we had a representation which forbade them upfront. Let's clean this up a bit by doing the following: - Instead, make catchpad more like cleanuppad and landingpad: no control flow, just a bunch of simple operands; catchpad would be splittable. - Introduce catchswitch, a control flow instruction designed to model the constraints of funclet oriented EH. - Make funclet scoping explicit by having funclet instructions consume the token produced by the funclet which contains them. - Remove catchendpad and cleanupendpad. Their presence can be inferred implicitly using coloring information. N.B. The state numbering code for the CLR has been updated but the veracity of it's output cannot be spoken for. An expert should take a look to make sure the results are reasonable. Reviewers: rnk, JosephTremoulet, andrew.w.kaylor Differential Revision: http://reviews.llvm.org/D15139 llvm-svn: 255422
2015-12-12 13:38:55 +08:00
;
define i32 @instructions.win_eh.2() personality i32 -4 {
entry:
[IR] Reformulate LLVM's EH funclet IR While we have successfully implemented a funclet-oriented EH scheme on top of LLVM IR, our scheme has some notable deficiencies: - catchendpad and cleanupendpad are necessary in the current design but they are difficult to explain to others, even to seasoned LLVM experts. - catchendpad and cleanupendpad are optimization barriers. They cannot be split and force all potentially throwing call-sites to be invokes. This has a noticable effect on the quality of our code generation. - catchpad, while similar in some aspects to invoke, is fairly awkward. It is unsplittable, starts a funclet, and has control flow to other funclets. - The nesting relationship between funclets is currently a property of control flow edges. Because of this, we are forced to carefully analyze the flow graph to see if there might potentially exist illegal nesting among funclets. While we have logic to clone funclets when they are illegally nested, it would be nicer if we had a representation which forbade them upfront. Let's clean this up a bit by doing the following: - Instead, make catchpad more like cleanuppad and landingpad: no control flow, just a bunch of simple operands; catchpad would be splittable. - Introduce catchswitch, a control flow instruction designed to model the constraints of funclet oriented EH. - Make funclet scoping explicit by having funclet instructions consume the token produced by the funclet which contains them. - Remove catchendpad and cleanupendpad. Their presence can be inferred implicitly using coloring information. N.B. The state numbering code for the CLR has been updated but the veracity of it's output cannot be spoken for. An expert should take a look to make sure the results are reasonable. Reviewers: rnk, JosephTremoulet, andrew.w.kaylor Differential Revision: http://reviews.llvm.org/D15139 llvm-svn: 255422
2015-12-12 13:38:55 +08:00
invoke void @f.ccc() to label %invoke.cont unwind label %catchswitch
invoke.cont:
invoke void @f.ccc() to label %continue unwind label %cleanup
cleanup:
[IR] Reformulate LLVM's EH funclet IR While we have successfully implemented a funclet-oriented EH scheme on top of LLVM IR, our scheme has some notable deficiencies: - catchendpad and cleanupendpad are necessary in the current design but they are difficult to explain to others, even to seasoned LLVM experts. - catchendpad and cleanupendpad are optimization barriers. They cannot be split and force all potentially throwing call-sites to be invokes. This has a noticable effect on the quality of our code generation. - catchpad, while similar in some aspects to invoke, is fairly awkward. It is unsplittable, starts a funclet, and has control flow to other funclets. - The nesting relationship between funclets is currently a property of control flow edges. Because of this, we are forced to carefully analyze the flow graph to see if there might potentially exist illegal nesting among funclets. While we have logic to clone funclets when they are illegally nested, it would be nicer if we had a representation which forbade them upfront. Let's clean this up a bit by doing the following: - Instead, make catchpad more like cleanuppad and landingpad: no control flow, just a bunch of simple operands; catchpad would be splittable. - Introduce catchswitch, a control flow instruction designed to model the constraints of funclet oriented EH. - Make funclet scoping explicit by having funclet instructions consume the token produced by the funclet which contains them. - Remove catchendpad and cleanupendpad. Their presence can be inferred implicitly using coloring information. N.B. The state numbering code for the CLR has been updated but the veracity of it's output cannot be spoken for. An expert should take a look to make sure the results are reasonable. Reviewers: rnk, JosephTremoulet, andrew.w.kaylor Differential Revision: http://reviews.llvm.org/D15139 llvm-svn: 255422
2015-12-12 13:38:55 +08:00
%clean = cleanuppad within none []
; CHECK: %clean = cleanuppad within none []
cleanupret from %clean unwind to caller
; CHECK: cleanupret from %clean unwind to caller
catchswitch:
%cs = catchswitch within none [label %catchpad] unwind label %terminate
catchpad:
[IR] Reformulate LLVM's EH funclet IR While we have successfully implemented a funclet-oriented EH scheme on top of LLVM IR, our scheme has some notable deficiencies: - catchendpad and cleanupendpad are necessary in the current design but they are difficult to explain to others, even to seasoned LLVM experts. - catchendpad and cleanupendpad are optimization barriers. They cannot be split and force all potentially throwing call-sites to be invokes. This has a noticable effect on the quality of our code generation. - catchpad, while similar in some aspects to invoke, is fairly awkward. It is unsplittable, starts a funclet, and has control flow to other funclets. - The nesting relationship between funclets is currently a property of control flow edges. Because of this, we are forced to carefully analyze the flow graph to see if there might potentially exist illegal nesting among funclets. While we have logic to clone funclets when they are illegally nested, it would be nicer if we had a representation which forbade them upfront. Let's clean this up a bit by doing the following: - Instead, make catchpad more like cleanuppad and landingpad: no control flow, just a bunch of simple operands; catchpad would be splittable. - Introduce catchswitch, a control flow instruction designed to model the constraints of funclet oriented EH. - Make funclet scoping explicit by having funclet instructions consume the token produced by the funclet which contains them. - Remove catchendpad and cleanupendpad. Their presence can be inferred implicitly using coloring information. N.B. The state numbering code for the CLR has been updated but the veracity of it's output cannot be spoken for. An expert should take a look to make sure the results are reasonable. Reviewers: rnk, JosephTremoulet, andrew.w.kaylor Differential Revision: http://reviews.llvm.org/D15139 llvm-svn: 255422
2015-12-12 13:38:55 +08:00
%catch = catchpad within %cs []
br label %body
; CHECK: %catch = catchpad within %cs []
; CHECK-NEXT: br label %body
body:
invoke void @f.ccc() [ "funclet"(token %catch) ]
to label %continue unwind label %terminate.inner
[IR] Reformulate LLVM's EH funclet IR While we have successfully implemented a funclet-oriented EH scheme on top of LLVM IR, our scheme has some notable deficiencies: - catchendpad and cleanupendpad are necessary in the current design but they are difficult to explain to others, even to seasoned LLVM experts. - catchendpad and cleanupendpad are optimization barriers. They cannot be split and force all potentially throwing call-sites to be invokes. This has a noticable effect on the quality of our code generation. - catchpad, while similar in some aspects to invoke, is fairly awkward. It is unsplittable, starts a funclet, and has control flow to other funclets. - The nesting relationship between funclets is currently a property of control flow edges. Because of this, we are forced to carefully analyze the flow graph to see if there might potentially exist illegal nesting among funclets. While we have logic to clone funclets when they are illegally nested, it would be nicer if we had a representation which forbade them upfront. Let's clean this up a bit by doing the following: - Instead, make catchpad more like cleanuppad and landingpad: no control flow, just a bunch of simple operands; catchpad would be splittable. - Introduce catchswitch, a control flow instruction designed to model the constraints of funclet oriented EH. - Make funclet scoping explicit by having funclet instructions consume the token produced by the funclet which contains them. - Remove catchendpad and cleanupendpad. Their presence can be inferred implicitly using coloring information. N.B. The state numbering code for the CLR has been updated but the veracity of it's output cannot be spoken for. An expert should take a look to make sure the results are reasonable. Reviewers: rnk, JosephTremoulet, andrew.w.kaylor Differential Revision: http://reviews.llvm.org/D15139 llvm-svn: 255422
2015-12-12 13:38:55 +08:00
catchret from %catch to label %return
; CHECK: catchret from %catch to label %return
return:
ret i32 0
terminate.inner:
cleanuppad within %catch []
unreachable
; CHECK: cleanuppad within %catch []
; CHECK-NEXT: unreachable
terminate:
cleanuppad within none []
unreachable
; CHECK: cleanuppad within none []
; CHECK-NEXT: unreachable
continue:
ret i32 0
}
; Instructions -- Binary Operations
define void @instructions.binops(i8 %op1, i8 %op2) {
; nuw x nsw
add i8 %op1, %op2
; CHECK: add i8 %op1, %op2
add nuw i8 %op1, %op2
; CHECK: add nuw i8 %op1, %op2
add nsw i8 %op1, %op2
; CHECK: add nsw i8 %op1, %op2
add nuw nsw i8 %op1, %op2
; CHECK: add nuw nsw i8 %op1, %op2
sub i8 %op1, %op2
; CHECK: sub i8 %op1, %op2
sub nuw i8 %op1, %op2
; CHECK: sub nuw i8 %op1, %op2
sub nsw i8 %op1, %op2
; CHECK: sub nsw i8 %op1, %op2
sub nuw nsw i8 %op1, %op2
; CHECK: sub nuw nsw i8 %op1, %op2
mul i8 %op1, %op2
; CHECK: mul i8 %op1, %op2
mul nuw i8 %op1, %op2
; CHECK: mul nuw i8 %op1, %op2
mul nsw i8 %op1, %op2
; CHECK: mul nsw i8 %op1, %op2
mul nuw nsw i8 %op1, %op2
; CHECK: mul nuw nsw i8 %op1, %op2
; exact
udiv i8 %op1, %op2
; CHECK: udiv i8 %op1, %op2
udiv exact i8 %op1, %op2
; CHECK: udiv exact i8 %op1, %op2
sdiv i8 %op1, %op2
; CHECK: sdiv i8 %op1, %op2
sdiv exact i8 %op1, %op2
; CHECK: sdiv exact i8 %op1, %op2
; none
urem i8 %op1, %op2
; CHECK: urem i8 %op1, %op2
srem i8 %op1, %op2
; CHECK: srem i8 %op1, %op2
ret void
}
; Instructions -- Bitwise Binary Operations
define void @instructions.bitwise_binops(i8 %op1, i8 %op2) {
; nuw x nsw
shl i8 %op1, %op2
; CHECK: shl i8 %op1, %op2
shl nuw i8 %op1, %op2
; CHECK: shl nuw i8 %op1, %op2
shl nsw i8 %op1, %op2
; CHECK: shl nsw i8 %op1, %op2
shl nuw nsw i8 %op1, %op2
; CHECK: shl nuw nsw i8 %op1, %op2
; exact
lshr i8 %op1, %op2
; CHECK: lshr i8 %op1, %op2
lshr exact i8 %op1, %op2
; CHECK: lshr exact i8 %op1, %op2
ashr i8 %op1, %op2
; CHECK: ashr i8 %op1, %op2
ashr exact i8 %op1, %op2
; CHECK: ashr exact i8 %op1, %op2
; none
and i8 %op1, %op2
; CHECK: and i8 %op1, %op2
or i8 %op1, %op2
; CHECK: or i8 %op1, %op2
xor i8 %op1, %op2
; CHECK: xor i8 %op1, %op2
ret void
}
; Instructions -- Vector Operations
define void @instructions.vectorops(<4 x float> %vec, <4 x float> %vec2) {
extractelement <4 x float> %vec, i8 0
; CHECK: extractelement <4 x float> %vec, i8 0
insertelement <4 x float> %vec, float 3.500000e+00, i8 0
; CHECK: insertelement <4 x float> %vec, float 3.500000e+00, i8 0
shufflevector <4 x float> %vec, <4 x float> %vec2, <2 x i32> zeroinitializer
; CHECK: shufflevector <4 x float> %vec, <4 x float> %vec2, <2 x i32> zeroinitializer
ret void
}
; Instructions -- Aggregate Operations
define void @instructions.aggregateops({ i8, i32 } %up, <{ i8, i32 }> %p,
[3 x i8] %arr, { i8, { i32 }} %n,
<2 x i8*> %pvec, <2 x i64> %offsets) {
extractvalue { i8, i32 } %up, 0
; CHECK: extractvalue { i8, i32 } %up, 0
extractvalue <{ i8, i32 }> %p, 1
; CHECK: extractvalue <{ i8, i32 }> %p, 1
extractvalue [3 x i8] %arr, 2
; CHECK: extractvalue [3 x i8] %arr, 2
extractvalue { i8, { i32 } } %n, 1, 0
; CHECK: extractvalue { i8, { i32 } } %n, 1, 0
insertvalue { i8, i32 } %up, i8 1, 0
; CHECK: insertvalue { i8, i32 } %up, i8 1, 0
insertvalue <{ i8, i32 }> %p, i32 2, 1
; CHECK: insertvalue <{ i8, i32 }> %p, i32 2, 1
insertvalue [3 x i8] %arr, i8 0, 0
; CHECK: insertvalue [3 x i8] %arr, i8 0, 0
insertvalue { i8, { i32 } } %n, i32 0, 1, 0
; CHECK: insertvalue { i8, { i32 } } %n, i32 0, 1, 0
%up.ptr = alloca { i8, i32 }
%p.ptr = alloca <{ i8, i32 }>
%arr.ptr = alloca [3 x i8]
%n.ptr = alloca { i8, { i32 } }
getelementptr { i8, i32 }, { i8, i32 }* %up.ptr, i8 0
; CHECK: getelementptr { i8, i32 }, { i8, i32 }* %up.ptr, i8 0
getelementptr <{ i8, i32 }>, <{ i8, i32 }>* %p.ptr, i8 1
; CHECK: getelementptr <{ i8, i32 }>, <{ i8, i32 }>* %p.ptr, i8 1
getelementptr [3 x i8], [3 x i8]* %arr.ptr, i8 2
; CHECK: getelementptr [3 x i8], [3 x i8]* %arr.ptr, i8 2
getelementptr { i8, { i32 } }, { i8, { i32 } }* %n.ptr, i32 0, i32 1
; CHECK: getelementptr { i8, { i32 } }, { i8, { i32 } }* %n.ptr, i32 0, i32 1
getelementptr inbounds { i8, { i32 } }, { i8, { i32 } }* %n.ptr, i32 1, i32 0
; CHECK: getelementptr inbounds { i8, { i32 } }, { i8, { i32 } }* %n.ptr, i32 1, i32 0
getelementptr i8, <2 x i8*> %pvec, <2 x i64> %offsets
; CHECK: getelementptr i8, <2 x i8*> %pvec, <2 x i64> %offsets
ret void
}
; Instructions -- Memory Access and Addressing Operations
!7 = !{i32 1}
!8 = !{}
!9 = !{i64 4}
define void @instructions.memops(i32** %base) {
alloca i32, i8 4, align 4
; CHECK: alloca i32, i8 4, align 4
alloca inalloca i32, i8 4, align 4
; CHECK: alloca inalloca i32, i8 4, align 4
load i32*, i32** %base, align 8, !invariant.load !7, !nontemporal !8, !nonnull !7, !dereferenceable !9, !dereferenceable_or_null !9
; CHECK: load i32*, i32** %base, align 8, !invariant.load !7, !nontemporal !8, !nonnull !7, !dereferenceable !9, !dereferenceable_or_null !9
load volatile i32*, i32** %base, align 8, !invariant.load !7, !nontemporal !8, !nonnull !7, !dereferenceable !9, !dereferenceable_or_null !9
; CHECK: load volatile i32*, i32** %base, align 8, !invariant.load !7, !nontemporal !8, !nonnull !7, !dereferenceable !9, !dereferenceable_or_null !9
store i32* null, i32** %base, align 4, !nontemporal !8
; CHECK: store i32* null, i32** %base, align 4, !nontemporal !8
store volatile i32* null, i32** %base, align 4, !nontemporal !8
; CHECK: store volatile i32* null, i32** %base, align 4, !nontemporal !8
ret void
}
; Instructions -- Conversion Operations
define void @instructions.conversions() {
trunc i32 -1 to i1
; CHECK: trunc i32 -1 to i1
zext i32 -1 to i64
; CHECK: zext i32 -1 to i64
sext i32 -1 to i64
; CHECK: sext i32 -1 to i64
fptrunc float undef to half
; CHECK: fptrunc float undef to half
fpext half undef to float
; CHECK: fpext half undef to float
fptoui float undef to i32
; CHECK: fptoui float undef to i32
fptosi float undef to i32
; CHECK: fptosi float undef to i32
uitofp i32 1 to float
; CHECK: uitofp i32 1 to float
sitofp i32 -1 to float
; CHECK: sitofp i32 -1 to float
ptrtoint i8* null to i64
; CHECK: ptrtoint i8* null to i64
inttoptr i64 0 to i8*
; CHECK: inttoptr i64 0 to i8*
bitcast i32 0 to i32
; CHECK: bitcast i32 0 to i32
addrspacecast i32* null to i32 addrspace(1)*
; CHECK: addrspacecast i32* null to i32 addrspace(1)*
ret void
}
; Instructions -- Other Operations
define void @instructions.other(i32 %op1, i32 %op2, half %fop1, half %fop2) {
entry:
icmp eq i32 %op1, %op2
; CHECK: icmp eq i32 %op1, %op2
icmp ne i32 %op1, %op2
; CHECK: icmp ne i32 %op1, %op2
icmp ugt i32 %op1, %op2
; CHECK: icmp ugt i32 %op1, %op2
icmp uge i32 %op1, %op2
; CHECK: icmp uge i32 %op1, %op2
icmp ult i32 %op1, %op2
; CHECK: icmp ult i32 %op1, %op2
icmp ule i32 %op1, %op2
; CHECK: icmp ule i32 %op1, %op2
icmp sgt i32 %op1, %op2
; CHECK: icmp sgt i32 %op1, %op2
icmp sge i32 %op1, %op2
; CHECK: icmp sge i32 %op1, %op2
icmp slt i32 %op1, %op2
; CHECK: icmp slt i32 %op1, %op2
icmp sle i32 %op1, %op2
; CHECK: icmp sle i32 %op1, %op2
fcmp false half %fop1, %fop2
; CHECK: fcmp false half %fop1, %fop2
fcmp oeq half %fop1, %fop2
; CHECK: fcmp oeq half %fop1, %fop2
fcmp ogt half %fop1, %fop2
; CHECK: fcmp ogt half %fop1, %fop2
fcmp oge half %fop1, %fop2
; CHECK: fcmp oge half %fop1, %fop2
fcmp olt half %fop1, %fop2
; CHECK: fcmp olt half %fop1, %fop2
fcmp ole half %fop1, %fop2
; CHECK: fcmp ole half %fop1, %fop2
fcmp one half %fop1, %fop2
; CHECK: fcmp one half %fop1, %fop2
fcmp ord half %fop1, %fop2
; CHECK: fcmp ord half %fop1, %fop2
fcmp ueq half %fop1, %fop2
; CHECK: fcmp ueq half %fop1, %fop2
fcmp ugt half %fop1, %fop2
; CHECK: fcmp ugt half %fop1, %fop2
fcmp uge half %fop1, %fop2
; CHECK: fcmp uge half %fop1, %fop2
fcmp ult half %fop1, %fop2
; CHECK: fcmp ult half %fop1, %fop2
fcmp ule half %fop1, %fop2
; CHECK: fcmp ule half %fop1, %fop2
fcmp une half %fop1, %fop2
; CHECK: fcmp une half %fop1, %fop2
fcmp uno half %fop1, %fop2
; CHECK: fcmp uno half %fop1, %fop2
fcmp true half %fop1, %fop2
; CHECK: fcmp true half %fop1, %fop2
br label %exit
L1:
%v1 = add i32 %op1, %op2
br label %exit
L2:
%v2 = add i32 %op1, %op2
br label %exit
exit:
phi i32 [ %v1, %L1 ], [ %v2, %L2 ], [ %op1, %entry ]
; CHECK: phi i32 [ %v1, %L1 ], [ %v2, %L2 ], [ %op1, %entry ]
select i1 true, i32 0, i32 1
; CHECK: select i1 true, i32 0, i32 1
select <2 x i1> <i1 true, i1 false>, <2 x i8> <i8 2, i8 3>, <2 x i8> <i8 3, i8 2>
; CHECK: select <2 x i1> <i1 true, i1 false>, <2 x i8> <i8 2, i8 3>, <2 x i8> <i8 3, i8 2>
call void @f.nobuiltin() builtin
; CHECK: call void @f.nobuiltin() #42
call void @f.strictfp() strictfp
; CHECK: call void @f.strictfp() #43
call fastcc noalias i32* @f.noalias() noinline
; CHECK: call fastcc noalias i32* @f.noalias() #12
tail call ghccc nonnull i32* @f.nonnull() minsize
; CHECK: tail call ghccc nonnull i32* @f.nonnull() #7
ret void
}
define void @instructions.call_musttail(i8* inalloca %val) {
musttail call void @f.param.inalloca(i8* inalloca %val)
; CHECK: musttail call void @f.param.inalloca(i8* inalloca %val)
ret void
}
define void @instructions.call_notail() {
notail call void @f1()
; CHECK: notail call void @f1()
ret void
}
define void @instructions.landingpad() personality i32 -2 {
invoke void @llvm.donothing() to label %proceed unwind label %catch1
invoke void @llvm.donothing() to label %proceed unwind label %catch2
invoke void @llvm.donothing() to label %proceed unwind label %catch3
invoke void @llvm.donothing() to label %proceed unwind label %catch4
catch1:
landingpad i32
; CHECK: landingpad i32
cleanup
; CHECK: cleanup
br label %proceed
catch2:
landingpad i32
; CHECK: landingpad i32
cleanup
; CHECK: cleanup
catch i32* null
; CHECK: catch i32* null
br label %proceed
catch3:
landingpad i32
; CHECK: landingpad i32
cleanup
; CHECK: cleanup
catch i32* null
; CHECK: catch i32* null
catch i32* null
; CHECK: catch i32* null
br label %proceed
catch4:
landingpad i32
; CHECK: landingpad i32
filter [2 x i32] zeroinitializer
; CHECK: filter [2 x i32] zeroinitializer
br label %proceed
proceed:
ret void
}
;; Intrinsic Functions
; Intrinsic Functions -- Variable Argument Handling
declare void @llvm.va_start(i8*)
declare void @llvm.va_copy(i8*, i8*)
declare void @llvm.va_end(i8*)
define void @instructions.va_arg(i8* %v, ...) {
%ap = alloca i8*
%ap2 = bitcast i8** %ap to i8*
call void @llvm.va_start(i8* %ap2)
; CHECK: call void @llvm.va_start(i8* %ap2)
va_arg i8* %ap2, i32
; CHECK: va_arg i8* %ap2, i32
call void @llvm.va_copy(i8* %v, i8* %ap2)
; CHECK: call void @llvm.va_copy(i8* %v, i8* %ap2)
call void @llvm.va_end(i8* %ap2)
; CHECK: call void @llvm.va_end(i8* %ap2)
ret void
}
; Intrinsic Functions -- Accurate Garbage Collection
declare void @llvm.gcroot(i8**, i8*)
declare i8* @llvm.gcread(i8*, i8**)
declare void @llvm.gcwrite(i8*, i8*, i8**)
define void @intrinsics.gc() gc "shadow-stack" {
%ptrloc = alloca i8*
call void @llvm.gcroot(i8** %ptrloc, i8* null)
; CHECK: call void @llvm.gcroot(i8** %ptrloc, i8* null)
call i8* @llvm.gcread(i8* null, i8** %ptrloc)
; CHECK: call i8* @llvm.gcread(i8* null, i8** %ptrloc)
%ref = alloca i8
call void @llvm.gcwrite(i8* %ref, i8* null, i8** %ptrloc)
; CHECK: call void @llvm.gcwrite(i8* %ref, i8* null, i8** %ptrloc)
ret void
}
; Intrinsic Functions -- Code Generation
declare i8* @llvm.returnaddress(i32)
declare i8* @llvm.frameaddress(i32)
declare i32 @llvm.read_register.i32(metadata)
declare i64 @llvm.read_register.i64(metadata)
declare void @llvm.write_register.i32(metadata, i32)
declare void @llvm.write_register.i64(metadata, i64)
declare i8* @llvm.stacksave()
declare void @llvm.stackrestore(i8*)
declare void @llvm.prefetch(i8*, i32, i32, i32)
declare void @llvm.pcmarker(i32)
declare i64 @llvm.readcyclecounter()
declare void @llvm.clear_cache(i8*, i8*)
declare void @llvm.instrprof_increment(i8*, i64, i32, i32)
!10 = !{!"rax"}
define void @intrinsics.codegen() {
call i8* @llvm.returnaddress(i32 1)
; CHECK: call i8* @llvm.returnaddress(i32 1)
call i8* @llvm.frameaddress(i32 1)
; CHECK: call i8* @llvm.frameaddress(i32 1)
call i32 @llvm.read_register.i32(metadata !10)
; CHECK: call i32 @llvm.read_register.i32(metadata !10)
call i64 @llvm.read_register.i64(metadata !10)
; CHECK: call i64 @llvm.read_register.i64(metadata !10)
call void @llvm.write_register.i32(metadata !10, i32 0)
; CHECK: call void @llvm.write_register.i32(metadata !10, i32 0)
call void @llvm.write_register.i64(metadata !10, i64 0)
; CHECK: call void @llvm.write_register.i64(metadata !10, i64 0)
%stack = call i8* @llvm.stacksave()
; CHECK: %stack = call i8* @llvm.stacksave()
call void @llvm.stackrestore(i8* %stack)
; CHECK: call void @llvm.stackrestore(i8* %stack)
call void @llvm.prefetch(i8* %stack, i32 0, i32 3, i32 0)
; CHECK: call void @llvm.prefetch(i8* %stack, i32 0, i32 3, i32 0)
call void @llvm.pcmarker(i32 1)
; CHECK: call void @llvm.pcmarker(i32 1)
call i64 @llvm.readcyclecounter()
; CHECK: call i64 @llvm.readcyclecounter()
call void @llvm.clear_cache(i8* null, i8* null)
; CHECK: call void @llvm.clear_cache(i8* null, i8* null)
call void @llvm.instrprof_increment(i8* null, i64 0, i32 0, i32 0)
; CHECK: call void @llvm.instrprof_increment(i8* null, i64 0, i32 0, i32 0)
ret void
}
declare void @llvm.localescape(...)
declare i8* @llvm.localrecover(i8* %func, i8* %fp, i32 %idx)
define void @intrinsics.localescape() {
%static.alloca = alloca i32
call void (...) @llvm.localescape(i32* %static.alloca)
; CHECK: call void (...) @llvm.localescape(i32* %static.alloca)
call void @intrinsics.localrecover()
ret void
}
define void @intrinsics.localrecover() {
%func = bitcast void ()* @intrinsics.localescape to i8*
%fp = call i8* @llvm.frameaddress(i32 1)
call i8* @llvm.localrecover(i8* %func, i8* %fp, i32 0)
; CHECK: call i8* @llvm.localrecover(i8* %func, i8* %fp, i32 0)
ret void
}
; We need this function to provide `uses' for some metadata tests.
define void @misc.metadata() {
call void @f1(), !srcloc !11
call void @f1(), !srcloc !12
call void @f1(), !srcloc !13
call void @f1(), !srcloc !14
ret void
}
declare void @op_bundle_callee_0()
declare void @op_bundle_callee_1(i32,i32)
define void @call_with_operand_bundle0(i32* %ptr) {
; CHECK-LABEL: call_with_operand_bundle0(
entry:
%l = load i32, i32* %ptr
%x = add i32 42, 1
call void @op_bundle_callee_0() [ "foo"(i32 42, i64 100, i32 %x), "bar"(float 0.000000e+00, i64 100, i32 %l) ]
; CHECK: call void @op_bundle_callee_0() [ "foo"(i32 42, i64 100, i32 %x), "bar"(float 0.000000e+00, i64 100, i32 %l) ]
ret void
}
define void @call_with_operand_bundle1(i32* %ptr) {
; CHECK-LABEL: call_with_operand_bundle1(
entry:
%l = load i32, i32* %ptr
%x = add i32 42, 1
call void @op_bundle_callee_0()
call void @op_bundle_callee_0() [ "foo"() ]
call void @op_bundle_callee_0() [ "foo"(i32 42, i64 100, i32 %x), "bar"(float 0.000000e+00, i64 100, i32 %l) ]
; CHECK: @op_bundle_callee_0(){{$}}
; CHECK-NEXT: call void @op_bundle_callee_0() [ "foo"() ]
; CHECK-NEXT: call void @op_bundle_callee_0() [ "foo"(i32 42, i64 100, i32 %x), "bar"(float 0.000000e+00, i64 100, i32 %l) ]
ret void
}
define void @call_with_operand_bundle2(i32* %ptr) {
; CHECK-LABEL: call_with_operand_bundle2(
entry:
call void @op_bundle_callee_0() [ "foo"() ]
; CHECK: call void @op_bundle_callee_0() [ "foo"() ]
ret void
}
define void @call_with_operand_bundle3(i32* %ptr) {
; CHECK-LABEL: call_with_operand_bundle3(
entry:
%l = load i32, i32* %ptr
%x = add i32 42, 1
call void @op_bundle_callee_0() [ "foo"(i32 42, i64 100, i32 %x), "foo"(i32 42, float 0.000000e+00, i32 %l) ]
; CHECK: call void @op_bundle_callee_0() [ "foo"(i32 42, i64 100, i32 %x), "foo"(i32 42, float 0.000000e+00, i32 %l) ]
ret void
}
define void @call_with_operand_bundle4(i32* %ptr) {
; CHECK-LABEL: call_with_operand_bundle4(
entry:
%l = load i32, i32* %ptr
%x = add i32 42, 1
call void @op_bundle_callee_1(i32 10, i32 %x) [ "foo"(i32 42, i64 100, i32 %x), "foo"(i32 42, float 0.000000e+00, i32 %l) ]
; CHECK: call void @op_bundle_callee_1(i32 10, i32 %x) [ "foo"(i32 42, i64 100, i32 %x), "foo"(i32 42, float 0.000000e+00, i32 %l) ]
ret void
}
; Invoke versions of the above tests:
define void @invoke_with_operand_bundle0(i32* %ptr) personality i8 3 {
; CHECK-LABEL: @invoke_with_operand_bundle0(
entry:
%l = load i32, i32* %ptr
%x = add i32 42, 1
invoke void @op_bundle_callee_0() [ "foo"(i32 42, i64 100, i32 %x), "bar"(float 0.000000e+00, i64 100, i32 %l) ] to label %normal unwind label %exception
; CHECK: invoke void @op_bundle_callee_0() [ "foo"(i32 42, i64 100, i32 %x), "bar"(float 0.000000e+00, i64 100, i32 %l) ]
exception:
%cleanup = landingpad i8 cleanup
br label %normal
normal:
ret void
}
define void @invoke_with_operand_bundle1(i32* %ptr) personality i8 3 {
; CHECK-LABEL: @invoke_with_operand_bundle1(
entry:
%l = load i32, i32* %ptr
%x = add i32 42, 1
invoke void @op_bundle_callee_0() to label %normal unwind label %exception
; CHECK: invoke void @op_bundle_callee_0(){{$}}
exception:
%cleanup = landingpad i8 cleanup
br label %normal
normal:
invoke void @op_bundle_callee_0() [ "foo"() ] to label %normal1 unwind label %exception1
; CHECK: invoke void @op_bundle_callee_0() [ "foo"() ]
exception1:
%cleanup1 = landingpad i8 cleanup
br label %normal1
normal1:
invoke void @op_bundle_callee_0() [ "foo"(i32 42, i64 100, i32 %x), "foo"(i32 42, float 0.000000e+00, i32 %l) ] to label %normal2 unwind label %exception2
; CHECK: invoke void @op_bundle_callee_0() [ "foo"(i32 42, i64 100, i32 %x), "foo"(i32 42, float 0.000000e+00, i32 %l) ]
exception2:
%cleanup2 = landingpad i8 cleanup
br label %normal2
normal2:
ret void
}
define void @invoke_with_operand_bundle2(i32* %ptr) personality i8 3 {
; CHECK-LABEL: @invoke_with_operand_bundle2(
entry:
invoke void @op_bundle_callee_0() [ "foo"() ] to label %normal unwind label %exception
; CHECK: invoke void @op_bundle_callee_0() [ "foo"() ]
exception:
%cleanup = landingpad i8 cleanup
br label %normal
normal:
ret void
}
define void @invoke_with_operand_bundle3(i32* %ptr) personality i8 3 {
; CHECK-LABEL: @invoke_with_operand_bundle3(
entry:
%l = load i32, i32* %ptr
%x = add i32 42, 1
invoke void @op_bundle_callee_0() [ "foo"(i32 42, i64 100, i32 %x), "foo"(i32 42, float 0.000000e+00, i32 %l) ] to label %normal unwind label %exception
; CHECK: invoke void @op_bundle_callee_0() [ "foo"(i32 42, i64 100, i32 %x), "foo"(i32 42, float 0.000000e+00, i32 %l) ]
exception:
%cleanup = landingpad i8 cleanup
br label %normal
normal:
ret void
}
define void @invoke_with_operand_bundle4(i32* %ptr) personality i8 3 {
; CHECK-LABEL: @invoke_with_operand_bundle4(
entry:
%l = load i32, i32* %ptr
%x = add i32 42, 1
invoke void @op_bundle_callee_1(i32 10, i32 %x) [ "foo"(i32 42, i64 100, i32 %x), "foo"(i32 42, float 0.000000e+00, i32 %l) ]
to label %normal unwind label %exception
; CHECK: invoke void @op_bundle_callee_1(i32 10, i32 %x) [ "foo"(i32 42, i64 100, i32 %x), "foo"(i32 42, float 0.000000e+00, i32 %l) ]
exception:
%cleanup = landingpad i8 cleanup
br label %normal
normal:
ret void
}
declare void @vaargs_func(...)
define void @invoke_with_operand_bundle_vaarg(i32* %ptr) personality i8 3 {
; CHECK-LABEL: @invoke_with_operand_bundle_vaarg(
entry:
%l = load i32, i32* %ptr
%x = add i32 42, 1
invoke void (...) @vaargs_func(i32 10, i32 %x) [ "foo"(i32 42, i64 100, i32 %x), "foo"(i32 42, float 0.000000e+00, i32 %l) ]
to label %normal unwind label %exception
; CHECK: invoke void (...) @vaargs_func(i32 10, i32 %x) [ "foo"(i32 42, i64 100, i32 %x), "foo"(i32 42, float 0.000000e+00, i32 %l) ]
exception:
%cleanup = landingpad i8 cleanup
br label %normal
normal:
ret void
}
declare void @f.writeonly() writeonly
; CHECK: declare void @f.writeonly() #40
declare void @f.speculatable() speculatable
; CHECK: declare void @f.speculatable() #41
;; Constant Expressions
define i8** @constexpr() {
; CHECK: ret i8** getelementptr inbounds ({ [4 x i8*], [4 x i8*] }, { [4 x i8*], [4 x i8*] }* null, i32 0, inrange i32 1, i32 2)
ret i8** getelementptr inbounds ({ [4 x i8*], [4 x i8*] }, { [4 x i8*], [4 x i8*] }* null, i32 0, inrange i32 1, i32 2)
}
; CHECK: attributes #0 = { alignstack=4 }
; CHECK: attributes #1 = { alignstack=8 }
; CHECK: attributes #2 = { alwaysinline }
; CHECK: attributes #3 = { cold }
; CHECK: attributes #4 = { convergent }
; CHECK: attributes #5 = { inlinehint }
; CHECK: attributes #6 = { jumptable }
; CHECK: attributes #7 = { minsize }
; CHECK: attributes #8 = { naked }
; CHECK: attributes #9 = { nobuiltin }
; CHECK: attributes #10 = { noduplicate }
; CHECK: attributes #11 = { noimplicitfloat }
; CHECK: attributes #12 = { noinline }
; CHECK: attributes #13 = { nonlazybind }
; CHECK: attributes #14 = { noredzone }
; CHECK: attributes #15 = { noreturn }
; CHECK: attributes #16 = { nounwind }
; CHECK: attributes #17 = { noinline optnone }
; CHECK: attributes #18 = { optsize }
; CHECK: attributes #19 = { readnone }
; CHECK: attributes #20 = { readonly }
; CHECK: attributes #21 = { returns_twice }
; CHECK: attributes #22 = { safestack }
; CHECK: attributes #23 = { sanitize_address }
; CHECK: attributes #24 = { sanitize_memory }
; CHECK: attributes #25 = { sanitize_thread }
; CHECK: attributes #26 = { ssp }
; CHECK: attributes #27 = { sspreq }
; CHECK: attributes #28 = { sspstrong }
; CHECK: attributes #29 = { "thunk" }
; CHECK: attributes #30 = { uwtable }
; CHECK: attributes #31 = { "cpu"="cortex-a8" }
; CHECK: attributes #32 = { norecurse }
; CHECK: attributes #33 = { inaccessiblememonly }
; CHECK: attributes #34 = { inaccessiblemem_or_argmemonly }
; CHECK: attributes #35 = { nounwind readnone }
; CHECK: attributes #36 = { argmemonly nounwind readonly }
; CHECK: attributes #37 = { argmemonly nounwind }
; CHECK: attributes #38 = { nounwind readonly }
; CHECK: attributes #39 = { inaccessiblemem_or_argmemonly nounwind }
; CHECK: attributes #40 = { writeonly }
; CHECK: attributes #41 = { speculatable }
; CHECK: attributes #42 = { builtin }
; CHECK: attributes #43 = { strictfp }
;; Metadata
; Metadata -- Module flags
!llvm.module.flags = !{!0, !1, !2, !4, !5, !6}
; CHECK: !llvm.module.flags = !{!0, !1, !2, !4, !5, !6}
!0 = !{i32 1, !"mod1", i32 0}
; CHECK: !0 = !{i32 1, !"mod1", i32 0}
!1 = !{i32 2, !"mod2", i32 0}
; CHECK: !1 = !{i32 2, !"mod2", i32 0}
!2 = !{i32 3, !"mod3", !3}
; CHECK: !2 = !{i32 3, !"mod3", !3}
!3 = !{!"mod6", !0}
; CHECK: !3 = !{!"mod6", !0}
!4 = !{i32 4, !"mod4", i32 0}
; CHECK: !4 = !{i32 4, !"mod4", i32 0}
!5 = !{i32 5, !"mod5", !0}
; CHECK: !5 = !{i32 5, !"mod5", !0}
!6 = !{i32 6, !"mod6", !0}
; CHECK: !6 = !{i32 6, !"mod6", !0}
; Metadata -- Check `distinct'
!11 = distinct !{}
; CHECK: !11 = distinct !{}
!12 = distinct !{}
; CHECK: !12 = distinct !{}
!13 = !{!11}
; CHECK: !13 = !{!11}
!14 = !{!12}
; CHECK: !14 = !{!12}