llvm-project/mlir/lib/IR/Diagnostics.cpp

814 lines
28 KiB
C++
Raw Normal View History

//===- Diagnostics.cpp - MLIR Diagnostics ---------------------------------===//
//
// Copyright 2019 The MLIR Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// =============================================================================
#include "mlir/IR/Diagnostics.h"
#include "mlir/IR/Attributes.h"
#include "mlir/IR/Identifier.h"
#include "mlir/IR/Location.h"
#include "mlir/IR/MLIRContext.h"
#include "mlir/IR/Operation.h"
Introduce a new API for emitting diagnostics with Diagnostic and InFlightDiagnostic. The Diagnostic class contains all of the information necessary to report a diagnostic to the DiagnosticEngine. It should generally not be constructed directly, and instead used transitively via InFlightDiagnostic. A diagnostic is currently comprised of several different elements: * A severity level. * A source Location. * A list of DiagnosticArguments that help compose and comprise the output message. * A DiagnosticArgument represents any value that may be part of the diagnostic, e.g. string, integer, Type, Attribute, etc. * Arguments can be added to the diagnostic via the stream(<<) operator. * (In a future cl) A list of attached notes. * These are in the form of other diagnostics that provide supplemental information to the main diagnostic, but do not have context on their own. The InFlightDiagnostic class represents an RAII wrapper around a Diagnostic that is set to be reported with the diagnostic engine. This allows for the user to modify a diagnostic that is inflight. The internally wrapped diagnostic can be reported directly or automatically upon destruction. These classes allow for more natural composition of diagnostics by removing the restriction that the message of a diagnostic is comprised of a single Twine. They should also allow for nice incremental improvements to the diagnostics experience in the future, e.g. formatv style diagnostics. Simple Example: emitError(loc, "integer bitwidth is limited to " + Twine(IntegerType::kMaxWidth) + " bits"); emitError(loc) << "integer bitwidth is limited to " << IntegerType::kMaxWidth << " bits"; -- PiperOrigin-RevId: 246526439
2019-05-04 01:01:01 +08:00
#include "mlir/IR/Types.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/Support/Mutex.h"
#include "llvm/Support/PrettyStackTrace.h"
#include "llvm/Support/Regex.h"
#include "llvm/Support/SourceMgr.h"
#include "llvm/Support/raw_ostream.h"
using namespace mlir;
using namespace mlir::detail;
Introduce a new API for emitting diagnostics with Diagnostic and InFlightDiagnostic. The Diagnostic class contains all of the information necessary to report a diagnostic to the DiagnosticEngine. It should generally not be constructed directly, and instead used transitively via InFlightDiagnostic. A diagnostic is currently comprised of several different elements: * A severity level. * A source Location. * A list of DiagnosticArguments that help compose and comprise the output message. * A DiagnosticArgument represents any value that may be part of the diagnostic, e.g. string, integer, Type, Attribute, etc. * Arguments can be added to the diagnostic via the stream(<<) operator. * (In a future cl) A list of attached notes. * These are in the form of other diagnostics that provide supplemental information to the main diagnostic, but do not have context on their own. The InFlightDiagnostic class represents an RAII wrapper around a Diagnostic that is set to be reported with the diagnostic engine. This allows for the user to modify a diagnostic that is inflight. The internally wrapped diagnostic can be reported directly or automatically upon destruction. These classes allow for more natural composition of diagnostics by removing the restriction that the message of a diagnostic is comprised of a single Twine. They should also allow for nice incremental improvements to the diagnostics experience in the future, e.g. formatv style diagnostics. Simple Example: emitError(loc, "integer bitwidth is limited to " + Twine(IntegerType::kMaxWidth) + " bits"); emitError(loc) << "integer bitwidth is limited to " << IntegerType::kMaxWidth << " bits"; -- PiperOrigin-RevId: 246526439
2019-05-04 01:01:01 +08:00
//===----------------------------------------------------------------------===//
// DiagnosticArgument
//===----------------------------------------------------------------------===//
// Construct from an Attribute.
DiagnosticArgument::DiagnosticArgument(Attribute attr)
: kind(DiagnosticArgumentKind::Attribute),
opaqueVal(reinterpret_cast<intptr_t>(attr.getAsOpaquePointer())) {}
Introduce a new API for emitting diagnostics with Diagnostic and InFlightDiagnostic. The Diagnostic class contains all of the information necessary to report a diagnostic to the DiagnosticEngine. It should generally not be constructed directly, and instead used transitively via InFlightDiagnostic. A diagnostic is currently comprised of several different elements: * A severity level. * A source Location. * A list of DiagnosticArguments that help compose and comprise the output message. * A DiagnosticArgument represents any value that may be part of the diagnostic, e.g. string, integer, Type, Attribute, etc. * Arguments can be added to the diagnostic via the stream(<<) operator. * (In a future cl) A list of attached notes. * These are in the form of other diagnostics that provide supplemental information to the main diagnostic, but do not have context on their own. The InFlightDiagnostic class represents an RAII wrapper around a Diagnostic that is set to be reported with the diagnostic engine. This allows for the user to modify a diagnostic that is inflight. The internally wrapped diagnostic can be reported directly or automatically upon destruction. These classes allow for more natural composition of diagnostics by removing the restriction that the message of a diagnostic is comprised of a single Twine. They should also allow for nice incremental improvements to the diagnostics experience in the future, e.g. formatv style diagnostics. Simple Example: emitError(loc, "integer bitwidth is limited to " + Twine(IntegerType::kMaxWidth) + " bits"); emitError(loc) << "integer bitwidth is limited to " << IntegerType::kMaxWidth << " bits"; -- PiperOrigin-RevId: 246526439
2019-05-04 01:01:01 +08:00
// Construct from a Type.
DiagnosticArgument::DiagnosticArgument(Type val)
: kind(DiagnosticArgumentKind::Type),
opaqueVal(reinterpret_cast<intptr_t>(val.getAsOpaquePointer())) {}
/// Returns this argument as an Attribute.
Attribute DiagnosticArgument::getAsAttribute() const {
assert(getKind() == DiagnosticArgumentKind::Attribute);
return Attribute::getFromOpaquePointer(
reinterpret_cast<const void *>(opaqueVal));
}
Introduce a new API for emitting diagnostics with Diagnostic and InFlightDiagnostic. The Diagnostic class contains all of the information necessary to report a diagnostic to the DiagnosticEngine. It should generally not be constructed directly, and instead used transitively via InFlightDiagnostic. A diagnostic is currently comprised of several different elements: * A severity level. * A source Location. * A list of DiagnosticArguments that help compose and comprise the output message. * A DiagnosticArgument represents any value that may be part of the diagnostic, e.g. string, integer, Type, Attribute, etc. * Arguments can be added to the diagnostic via the stream(<<) operator. * (In a future cl) A list of attached notes. * These are in the form of other diagnostics that provide supplemental information to the main diagnostic, but do not have context on their own. The InFlightDiagnostic class represents an RAII wrapper around a Diagnostic that is set to be reported with the diagnostic engine. This allows for the user to modify a diagnostic that is inflight. The internally wrapped diagnostic can be reported directly or automatically upon destruction. These classes allow for more natural composition of diagnostics by removing the restriction that the message of a diagnostic is comprised of a single Twine. They should also allow for nice incremental improvements to the diagnostics experience in the future, e.g. formatv style diagnostics. Simple Example: emitError(loc, "integer bitwidth is limited to " + Twine(IntegerType::kMaxWidth) + " bits"); emitError(loc) << "integer bitwidth is limited to " << IntegerType::kMaxWidth << " bits"; -- PiperOrigin-RevId: 246526439
2019-05-04 01:01:01 +08:00
/// Returns this argument as a Type.
Type DiagnosticArgument::getAsType() const {
assert(getKind() == DiagnosticArgumentKind::Type);
return Type::getFromOpaquePointer(reinterpret_cast<const void *>(opaqueVal));
}
/// Outputs this argument to a stream.
void DiagnosticArgument::print(raw_ostream &os) const {
switch (kind) {
case DiagnosticArgumentKind::Attribute:
os << getAsAttribute();
break;
case DiagnosticArgumentKind::Double:
os << getAsDouble();
break;
Introduce a new API for emitting diagnostics with Diagnostic and InFlightDiagnostic. The Diagnostic class contains all of the information necessary to report a diagnostic to the DiagnosticEngine. It should generally not be constructed directly, and instead used transitively via InFlightDiagnostic. A diagnostic is currently comprised of several different elements: * A severity level. * A source Location. * A list of DiagnosticArguments that help compose and comprise the output message. * A DiagnosticArgument represents any value that may be part of the diagnostic, e.g. string, integer, Type, Attribute, etc. * Arguments can be added to the diagnostic via the stream(<<) operator. * (In a future cl) A list of attached notes. * These are in the form of other diagnostics that provide supplemental information to the main diagnostic, but do not have context on their own. The InFlightDiagnostic class represents an RAII wrapper around a Diagnostic that is set to be reported with the diagnostic engine. This allows for the user to modify a diagnostic that is inflight. The internally wrapped diagnostic can be reported directly or automatically upon destruction. These classes allow for more natural composition of diagnostics by removing the restriction that the message of a diagnostic is comprised of a single Twine. They should also allow for nice incremental improvements to the diagnostics experience in the future, e.g. formatv style diagnostics. Simple Example: emitError(loc, "integer bitwidth is limited to " + Twine(IntegerType::kMaxWidth) + " bits"); emitError(loc) << "integer bitwidth is limited to " << IntegerType::kMaxWidth << " bits"; -- PiperOrigin-RevId: 246526439
2019-05-04 01:01:01 +08:00
case DiagnosticArgumentKind::Integer:
os << getAsInteger();
break;
case DiagnosticArgumentKind::Operation:
os << getAsOperation();
break;
Introduce a new API for emitting diagnostics with Diagnostic and InFlightDiagnostic. The Diagnostic class contains all of the information necessary to report a diagnostic to the DiagnosticEngine. It should generally not be constructed directly, and instead used transitively via InFlightDiagnostic. A diagnostic is currently comprised of several different elements: * A severity level. * A source Location. * A list of DiagnosticArguments that help compose and comprise the output message. * A DiagnosticArgument represents any value that may be part of the diagnostic, e.g. string, integer, Type, Attribute, etc. * Arguments can be added to the diagnostic via the stream(<<) operator. * (In a future cl) A list of attached notes. * These are in the form of other diagnostics that provide supplemental information to the main diagnostic, but do not have context on their own. The InFlightDiagnostic class represents an RAII wrapper around a Diagnostic that is set to be reported with the diagnostic engine. This allows for the user to modify a diagnostic that is inflight. The internally wrapped diagnostic can be reported directly or automatically upon destruction. These classes allow for more natural composition of diagnostics by removing the restriction that the message of a diagnostic is comprised of a single Twine. They should also allow for nice incremental improvements to the diagnostics experience in the future, e.g. formatv style diagnostics. Simple Example: emitError(loc, "integer bitwidth is limited to " + Twine(IntegerType::kMaxWidth) + " bits"); emitError(loc) << "integer bitwidth is limited to " << IntegerType::kMaxWidth << " bits"; -- PiperOrigin-RevId: 246526439
2019-05-04 01:01:01 +08:00
case DiagnosticArgumentKind::String:
os << getAsString();
break;
case DiagnosticArgumentKind::Type:
os << '\'' << getAsType() << '\'';
Introduce a new API for emitting diagnostics with Diagnostic and InFlightDiagnostic. The Diagnostic class contains all of the information necessary to report a diagnostic to the DiagnosticEngine. It should generally not be constructed directly, and instead used transitively via InFlightDiagnostic. A diagnostic is currently comprised of several different elements: * A severity level. * A source Location. * A list of DiagnosticArguments that help compose and comprise the output message. * A DiagnosticArgument represents any value that may be part of the diagnostic, e.g. string, integer, Type, Attribute, etc. * Arguments can be added to the diagnostic via the stream(<<) operator. * (In a future cl) A list of attached notes. * These are in the form of other diagnostics that provide supplemental information to the main diagnostic, but do not have context on their own. The InFlightDiagnostic class represents an RAII wrapper around a Diagnostic that is set to be reported with the diagnostic engine. This allows for the user to modify a diagnostic that is inflight. The internally wrapped diagnostic can be reported directly or automatically upon destruction. These classes allow for more natural composition of diagnostics by removing the restriction that the message of a diagnostic is comprised of a single Twine. They should also allow for nice incremental improvements to the diagnostics experience in the future, e.g. formatv style diagnostics. Simple Example: emitError(loc, "integer bitwidth is limited to " + Twine(IntegerType::kMaxWidth) + " bits"); emitError(loc) << "integer bitwidth is limited to " << IntegerType::kMaxWidth << " bits"; -- PiperOrigin-RevId: 246526439
2019-05-04 01:01:01 +08:00
break;
case DiagnosticArgumentKind::Unsigned:
os << getAsUnsigned();
break;
}
}
//===----------------------------------------------------------------------===//
// Diagnostic
//===----------------------------------------------------------------------===//
/// Convert a Twine to a StringRef. Memory used for generating the StringRef is
/// stored in 'strings'.
static StringRef twineToStrRef(const Twine &val,
std::vector<std::unique_ptr<char[]>> &strings) {
// Allocate memory to hold this string.
llvm::SmallString<64> data;
auto strRef = val.toStringRef(data);
strings.push_back(std::unique_ptr<char[]>(new char[strRef.size()]));
memcpy(&strings.back()[0], strRef.data(), strRef.size());
// Return a reference to the new string.
return StringRef(&strings.back()[0], strRef.size());
}
/// Stream in a Twine argument.
Diagnostic &Diagnostic::operator<<(char val) { return *this << Twine(val); }
Diagnostic &Diagnostic::operator<<(const Twine &val) {
arguments.push_back(DiagnosticArgument(twineToStrRef(val, strings)));
return *this;
}
Diagnostic &Diagnostic::operator<<(Twine &&val) {
arguments.push_back(DiagnosticArgument(twineToStrRef(val, strings)));
return *this;
}
/// Stream in an Identifier.
Diagnostic &Diagnostic::operator<<(Identifier val) {
// An identifier is stored in the context, so we don't need to worry about the
// lifetime of its data.
arguments.push_back(DiagnosticArgument(val.strref()));
return *this;
}
/// Stream in an OperationName.
Diagnostic &Diagnostic::operator<<(OperationName val) {
// An OperationName is stored in the context, so we don't need to worry about
// the lifetime of its data.
arguments.push_back(DiagnosticArgument(val.getStringRef()));
return *this;
}
Introduce a new API for emitting diagnostics with Diagnostic and InFlightDiagnostic. The Diagnostic class contains all of the information necessary to report a diagnostic to the DiagnosticEngine. It should generally not be constructed directly, and instead used transitively via InFlightDiagnostic. A diagnostic is currently comprised of several different elements: * A severity level. * A source Location. * A list of DiagnosticArguments that help compose and comprise the output message. * A DiagnosticArgument represents any value that may be part of the diagnostic, e.g. string, integer, Type, Attribute, etc. * Arguments can be added to the diagnostic via the stream(<<) operator. * (In a future cl) A list of attached notes. * These are in the form of other diagnostics that provide supplemental information to the main diagnostic, but do not have context on their own. The InFlightDiagnostic class represents an RAII wrapper around a Diagnostic that is set to be reported with the diagnostic engine. This allows for the user to modify a diagnostic that is inflight. The internally wrapped diagnostic can be reported directly or automatically upon destruction. These classes allow for more natural composition of diagnostics by removing the restriction that the message of a diagnostic is comprised of a single Twine. They should also allow for nice incremental improvements to the diagnostics experience in the future, e.g. formatv style diagnostics. Simple Example: emitError(loc, "integer bitwidth is limited to " + Twine(IntegerType::kMaxWidth) + " bits"); emitError(loc) << "integer bitwidth is limited to " << IntegerType::kMaxWidth << " bits"; -- PiperOrigin-RevId: 246526439
2019-05-04 01:01:01 +08:00
/// Outputs this diagnostic to a stream.
void Diagnostic::print(raw_ostream &os) const {
for (auto &arg : getArguments())
arg.print(os);
}
/// Convert the diagnostic to a string.
std::string Diagnostic::str() const {
std::string str;
llvm::raw_string_ostream os(str);
print(os);
return os.str();
}
/// Attaches a note to this diagnostic. A new location may be optionally
/// provided, if not, then the location defaults to the one specified for this
/// diagnostic. Notes may not be attached to other notes.
Diagnostic &Diagnostic::attachNote(llvm::Optional<Location> noteLoc) {
// We don't allow attaching notes to notes.
assert(severity != DiagnosticSeverity::Note &&
"cannot attach a note to a note");
// If a location wasn't provided then reuse our location.
if (!noteLoc)
noteLoc = loc;
/// Append and return a new note.
notes.push_back(
llvm::make_unique<Diagnostic>(*noteLoc, DiagnosticSeverity::Note));
return *notes.back();
}
Introduce a new API for emitting diagnostics with Diagnostic and InFlightDiagnostic. The Diagnostic class contains all of the information necessary to report a diagnostic to the DiagnosticEngine. It should generally not be constructed directly, and instead used transitively via InFlightDiagnostic. A diagnostic is currently comprised of several different elements: * A severity level. * A source Location. * A list of DiagnosticArguments that help compose and comprise the output message. * A DiagnosticArgument represents any value that may be part of the diagnostic, e.g. string, integer, Type, Attribute, etc. * Arguments can be added to the diagnostic via the stream(<<) operator. * (In a future cl) A list of attached notes. * These are in the form of other diagnostics that provide supplemental information to the main diagnostic, but do not have context on their own. The InFlightDiagnostic class represents an RAII wrapper around a Diagnostic that is set to be reported with the diagnostic engine. This allows for the user to modify a diagnostic that is inflight. The internally wrapped diagnostic can be reported directly or automatically upon destruction. These classes allow for more natural composition of diagnostics by removing the restriction that the message of a diagnostic is comprised of a single Twine. They should also allow for nice incremental improvements to the diagnostics experience in the future, e.g. formatv style diagnostics. Simple Example: emitError(loc, "integer bitwidth is limited to " + Twine(IntegerType::kMaxWidth) + " bits"); emitError(loc) << "integer bitwidth is limited to " << IntegerType::kMaxWidth << " bits"; -- PiperOrigin-RevId: 246526439
2019-05-04 01:01:01 +08:00
//===----------------------------------------------------------------------===//
// InFlightDiagnostic
//===----------------------------------------------------------------------===//
/// Allow an inflight diagnostic to be converted to 'failure', otherwise
/// 'success' if this is an empty diagnostic.
InFlightDiagnostic::operator LogicalResult() const {
return failure(isActive());
Introduce a new API for emitting diagnostics with Diagnostic and InFlightDiagnostic. The Diagnostic class contains all of the information necessary to report a diagnostic to the DiagnosticEngine. It should generally not be constructed directly, and instead used transitively via InFlightDiagnostic. A diagnostic is currently comprised of several different elements: * A severity level. * A source Location. * A list of DiagnosticArguments that help compose and comprise the output message. * A DiagnosticArgument represents any value that may be part of the diagnostic, e.g. string, integer, Type, Attribute, etc. * Arguments can be added to the diagnostic via the stream(<<) operator. * (In a future cl) A list of attached notes. * These are in the form of other diagnostics that provide supplemental information to the main diagnostic, but do not have context on their own. The InFlightDiagnostic class represents an RAII wrapper around a Diagnostic that is set to be reported with the diagnostic engine. This allows for the user to modify a diagnostic that is inflight. The internally wrapped diagnostic can be reported directly or automatically upon destruction. These classes allow for more natural composition of diagnostics by removing the restriction that the message of a diagnostic is comprised of a single Twine. They should also allow for nice incremental improvements to the diagnostics experience in the future, e.g. formatv style diagnostics. Simple Example: emitError(loc, "integer bitwidth is limited to " + Twine(IntegerType::kMaxWidth) + " bits"); emitError(loc) << "integer bitwidth is limited to " << IntegerType::kMaxWidth << " bits"; -- PiperOrigin-RevId: 246526439
2019-05-04 01:01:01 +08:00
}
/// Reports the diagnostic to the engine.
void InFlightDiagnostic::report() {
// If this diagnostic is still inflight and it hasn't been abandoned, then
// report it.
Introduce a new API for emitting diagnostics with Diagnostic and InFlightDiagnostic. The Diagnostic class contains all of the information necessary to report a diagnostic to the DiagnosticEngine. It should generally not be constructed directly, and instead used transitively via InFlightDiagnostic. A diagnostic is currently comprised of several different elements: * A severity level. * A source Location. * A list of DiagnosticArguments that help compose and comprise the output message. * A DiagnosticArgument represents any value that may be part of the diagnostic, e.g. string, integer, Type, Attribute, etc. * Arguments can be added to the diagnostic via the stream(<<) operator. * (In a future cl) A list of attached notes. * These are in the form of other diagnostics that provide supplemental information to the main diagnostic, but do not have context on their own. The InFlightDiagnostic class represents an RAII wrapper around a Diagnostic that is set to be reported with the diagnostic engine. This allows for the user to modify a diagnostic that is inflight. The internally wrapped diagnostic can be reported directly or automatically upon destruction. These classes allow for more natural composition of diagnostics by removing the restriction that the message of a diagnostic is comprised of a single Twine. They should also allow for nice incremental improvements to the diagnostics experience in the future, e.g. formatv style diagnostics. Simple Example: emitError(loc, "integer bitwidth is limited to " + Twine(IntegerType::kMaxWidth) + " bits"); emitError(loc) << "integer bitwidth is limited to " << IntegerType::kMaxWidth << " bits"; -- PiperOrigin-RevId: 246526439
2019-05-04 01:01:01 +08:00
if (isInFlight()) {
owner->emit(std::move(*impl));
owner = nullptr;
Introduce a new API for emitting diagnostics with Diagnostic and InFlightDiagnostic. The Diagnostic class contains all of the information necessary to report a diagnostic to the DiagnosticEngine. It should generally not be constructed directly, and instead used transitively via InFlightDiagnostic. A diagnostic is currently comprised of several different elements: * A severity level. * A source Location. * A list of DiagnosticArguments that help compose and comprise the output message. * A DiagnosticArgument represents any value that may be part of the diagnostic, e.g. string, integer, Type, Attribute, etc. * Arguments can be added to the diagnostic via the stream(<<) operator. * (In a future cl) A list of attached notes. * These are in the form of other diagnostics that provide supplemental information to the main diagnostic, but do not have context on their own. The InFlightDiagnostic class represents an RAII wrapper around a Diagnostic that is set to be reported with the diagnostic engine. This allows for the user to modify a diagnostic that is inflight. The internally wrapped diagnostic can be reported directly or automatically upon destruction. These classes allow for more natural composition of diagnostics by removing the restriction that the message of a diagnostic is comprised of a single Twine. They should also allow for nice incremental improvements to the diagnostics experience in the future, e.g. formatv style diagnostics. Simple Example: emitError(loc, "integer bitwidth is limited to " + Twine(IntegerType::kMaxWidth) + " bits"); emitError(loc) << "integer bitwidth is limited to " << IntegerType::kMaxWidth << " bits"; -- PiperOrigin-RevId: 246526439
2019-05-04 01:01:01 +08:00
}
impl.reset();
Introduce a new API for emitting diagnostics with Diagnostic and InFlightDiagnostic. The Diagnostic class contains all of the information necessary to report a diagnostic to the DiagnosticEngine. It should generally not be constructed directly, and instead used transitively via InFlightDiagnostic. A diagnostic is currently comprised of several different elements: * A severity level. * A source Location. * A list of DiagnosticArguments that help compose and comprise the output message. * A DiagnosticArgument represents any value that may be part of the diagnostic, e.g. string, integer, Type, Attribute, etc. * Arguments can be added to the diagnostic via the stream(<<) operator. * (In a future cl) A list of attached notes. * These are in the form of other diagnostics that provide supplemental information to the main diagnostic, but do not have context on their own. The InFlightDiagnostic class represents an RAII wrapper around a Diagnostic that is set to be reported with the diagnostic engine. This allows for the user to modify a diagnostic that is inflight. The internally wrapped diagnostic can be reported directly or automatically upon destruction. These classes allow for more natural composition of diagnostics by removing the restriction that the message of a diagnostic is comprised of a single Twine. They should also allow for nice incremental improvements to the diagnostics experience in the future, e.g. formatv style diagnostics. Simple Example: emitError(loc, "integer bitwidth is limited to " + Twine(IntegerType::kMaxWidth) + " bits"); emitError(loc) << "integer bitwidth is limited to " << IntegerType::kMaxWidth << " bits"; -- PiperOrigin-RevId: 246526439
2019-05-04 01:01:01 +08:00
}
/// Abandons this diagnostic.
void InFlightDiagnostic::abandon() { owner = nullptr; }
Introduce a new API for emitting diagnostics with Diagnostic and InFlightDiagnostic. The Diagnostic class contains all of the information necessary to report a diagnostic to the DiagnosticEngine. It should generally not be constructed directly, and instead used transitively via InFlightDiagnostic. A diagnostic is currently comprised of several different elements: * A severity level. * A source Location. * A list of DiagnosticArguments that help compose and comprise the output message. * A DiagnosticArgument represents any value that may be part of the diagnostic, e.g. string, integer, Type, Attribute, etc. * Arguments can be added to the diagnostic via the stream(<<) operator. * (In a future cl) A list of attached notes. * These are in the form of other diagnostics that provide supplemental information to the main diagnostic, but do not have context on their own. The InFlightDiagnostic class represents an RAII wrapper around a Diagnostic that is set to be reported with the diagnostic engine. This allows for the user to modify a diagnostic that is inflight. The internally wrapped diagnostic can be reported directly or automatically upon destruction. These classes allow for more natural composition of diagnostics by removing the restriction that the message of a diagnostic is comprised of a single Twine. They should also allow for nice incremental improvements to the diagnostics experience in the future, e.g. formatv style diagnostics. Simple Example: emitError(loc, "integer bitwidth is limited to " + Twine(IntegerType::kMaxWidth) + " bits"); emitError(loc) << "integer bitwidth is limited to " << IntegerType::kMaxWidth << " bits"; -- PiperOrigin-RevId: 246526439
2019-05-04 01:01:01 +08:00
//===----------------------------------------------------------------------===//
// DiagnosticEngineImpl
//===----------------------------------------------------------------------===//
namespace mlir {
namespace detail {
struct DiagnosticEngineImpl {
Introduce a new API for emitting diagnostics with Diagnostic and InFlightDiagnostic. The Diagnostic class contains all of the information necessary to report a diagnostic to the DiagnosticEngine. It should generally not be constructed directly, and instead used transitively via InFlightDiagnostic. A diagnostic is currently comprised of several different elements: * A severity level. * A source Location. * A list of DiagnosticArguments that help compose and comprise the output message. * A DiagnosticArgument represents any value that may be part of the diagnostic, e.g. string, integer, Type, Attribute, etc. * Arguments can be added to the diagnostic via the stream(<<) operator. * (In a future cl) A list of attached notes. * These are in the form of other diagnostics that provide supplemental information to the main diagnostic, but do not have context on their own. The InFlightDiagnostic class represents an RAII wrapper around a Diagnostic that is set to be reported with the diagnostic engine. This allows for the user to modify a diagnostic that is inflight. The internally wrapped diagnostic can be reported directly or automatically upon destruction. These classes allow for more natural composition of diagnostics by removing the restriction that the message of a diagnostic is comprised of a single Twine. They should also allow for nice incremental improvements to the diagnostics experience in the future, e.g. formatv style diagnostics. Simple Example: emitError(loc, "integer bitwidth is limited to " + Twine(IntegerType::kMaxWidth) + " bits"); emitError(loc) << "integer bitwidth is limited to " << IntegerType::kMaxWidth << " bits"; -- PiperOrigin-RevId: 246526439
2019-05-04 01:01:01 +08:00
/// Emit a diagnostic using the registered issue handle if present, or with
/// the default behavior if not.
void emit(Diagnostic diag);
Introduce a new API for emitting diagnostics with Diagnostic and InFlightDiagnostic. The Diagnostic class contains all of the information necessary to report a diagnostic to the DiagnosticEngine. It should generally not be constructed directly, and instead used transitively via InFlightDiagnostic. A diagnostic is currently comprised of several different elements: * A severity level. * A source Location. * A list of DiagnosticArguments that help compose and comprise the output message. * A DiagnosticArgument represents any value that may be part of the diagnostic, e.g. string, integer, Type, Attribute, etc. * Arguments can be added to the diagnostic via the stream(<<) operator. * (In a future cl) A list of attached notes. * These are in the form of other diagnostics that provide supplemental information to the main diagnostic, but do not have context on their own. The InFlightDiagnostic class represents an RAII wrapper around a Diagnostic that is set to be reported with the diagnostic engine. This allows for the user to modify a diagnostic that is inflight. The internally wrapped diagnostic can be reported directly or automatically upon destruction. These classes allow for more natural composition of diagnostics by removing the restriction that the message of a diagnostic is comprised of a single Twine. They should also allow for nice incremental improvements to the diagnostics experience in the future, e.g. formatv style diagnostics. Simple Example: emitError(loc, "integer bitwidth is limited to " + Twine(IntegerType::kMaxWidth) + " bits"); emitError(loc) << "integer bitwidth is limited to " << IntegerType::kMaxWidth << " bits"; -- PiperOrigin-RevId: 246526439
2019-05-04 01:01:01 +08:00
/// A mutex to ensure that diagnostics emission is thread-safe.
llvm::sys::SmartMutex<true> mutex;
/// This is the handler to use to report diagnostics, or null if not
/// registered.
DiagnosticEngine::HandlerTy handler;
};
} // namespace detail
} // namespace mlir
/// Emit a diagnostic using the registered issue handle if present, or with
Introduce a new API for emitting diagnostics with Diagnostic and InFlightDiagnostic. The Diagnostic class contains all of the information necessary to report a diagnostic to the DiagnosticEngine. It should generally not be constructed directly, and instead used transitively via InFlightDiagnostic. A diagnostic is currently comprised of several different elements: * A severity level. * A source Location. * A list of DiagnosticArguments that help compose and comprise the output message. * A DiagnosticArgument represents any value that may be part of the diagnostic, e.g. string, integer, Type, Attribute, etc. * Arguments can be added to the diagnostic via the stream(<<) operator. * (In a future cl) A list of attached notes. * These are in the form of other diagnostics that provide supplemental information to the main diagnostic, but do not have context on their own. The InFlightDiagnostic class represents an RAII wrapper around a Diagnostic that is set to be reported with the diagnostic engine. This allows for the user to modify a diagnostic that is inflight. The internally wrapped diagnostic can be reported directly or automatically upon destruction. These classes allow for more natural composition of diagnostics by removing the restriction that the message of a diagnostic is comprised of a single Twine. They should also allow for nice incremental improvements to the diagnostics experience in the future, e.g. formatv style diagnostics. Simple Example: emitError(loc, "integer bitwidth is limited to " + Twine(IntegerType::kMaxWidth) + " bits"); emitError(loc) << "integer bitwidth is limited to " << IntegerType::kMaxWidth << " bits"; -- PiperOrigin-RevId: 246526439
2019-05-04 01:01:01 +08:00
/// the default behavior if not.
void DiagnosticEngineImpl::emit(Diagnostic diag) {
llvm::sys::SmartScopedLock<true> lock(mutex);
// If we had a handler registered, emit the diagnostic using it.
if (handler)
return handler(std::move(diag));
// Otherwise, if this is an error we emit it to stderr.
if (diag.getSeverity() != DiagnosticSeverity::Error)
return;
auto &os = llvm::errs();
if (!diag.getLocation().isa<UnknownLoc>())
os << diag.getLocation() << ": ";
os << "error: ";
// The default behavior for errors is to emit them to stderr.
os << diag << '\n';
os.flush();
}
Introduce a new API for emitting diagnostics with Diagnostic and InFlightDiagnostic. The Diagnostic class contains all of the information necessary to report a diagnostic to the DiagnosticEngine. It should generally not be constructed directly, and instead used transitively via InFlightDiagnostic. A diagnostic is currently comprised of several different elements: * A severity level. * A source Location. * A list of DiagnosticArguments that help compose and comprise the output message. * A DiagnosticArgument represents any value that may be part of the diagnostic, e.g. string, integer, Type, Attribute, etc. * Arguments can be added to the diagnostic via the stream(<<) operator. * (In a future cl) A list of attached notes. * These are in the form of other diagnostics that provide supplemental information to the main diagnostic, but do not have context on their own. The InFlightDiagnostic class represents an RAII wrapper around a Diagnostic that is set to be reported with the diagnostic engine. This allows for the user to modify a diagnostic that is inflight. The internally wrapped diagnostic can be reported directly or automatically upon destruction. These classes allow for more natural composition of diagnostics by removing the restriction that the message of a diagnostic is comprised of a single Twine. They should also allow for nice incremental improvements to the diagnostics experience in the future, e.g. formatv style diagnostics. Simple Example: emitError(loc, "integer bitwidth is limited to " + Twine(IntegerType::kMaxWidth) + " bits"); emitError(loc) << "integer bitwidth is limited to " << IntegerType::kMaxWidth << " bits"; -- PiperOrigin-RevId: 246526439
2019-05-04 01:01:01 +08:00
//===----------------------------------------------------------------------===//
// DiagnosticEngine
//===----------------------------------------------------------------------===//
DiagnosticEngine::DiagnosticEngine() : impl(new DiagnosticEngineImpl()) {}
DiagnosticEngine::~DiagnosticEngine() {}
/// Set the diagnostic handler for this engine. The handler is passed
/// location information if present (nullptr if not) along with a message and
/// a severity that indicates whether this is an error, warning, etc. Note
/// that this replaces any existing handler.
void DiagnosticEngine::setHandler(const HandlerTy &handler) {
impl->handler = handler;
}
/// Return the current diagnostic handler, or null if none is present.
auto DiagnosticEngine::getHandler() -> HandlerTy {
llvm::sys::SmartScopedLock<true> lock(impl->mutex);
return impl->handler;
}
/// Emit a diagnostic using the registered issue handler if present, or with
/// the default behavior if not.
void DiagnosticEngine::emit(Diagnostic diag) {
assert(diag.getSeverity() != DiagnosticSeverity::Note &&
"notes should not be emitted directly");
impl->emit(std::move(diag));
Introduce a new API for emitting diagnostics with Diagnostic and InFlightDiagnostic. The Diagnostic class contains all of the information necessary to report a diagnostic to the DiagnosticEngine. It should generally not be constructed directly, and instead used transitively via InFlightDiagnostic. A diagnostic is currently comprised of several different elements: * A severity level. * A source Location. * A list of DiagnosticArguments that help compose and comprise the output message. * A DiagnosticArgument represents any value that may be part of the diagnostic, e.g. string, integer, Type, Attribute, etc. * Arguments can be added to the diagnostic via the stream(<<) operator. * (In a future cl) A list of attached notes. * These are in the form of other diagnostics that provide supplemental information to the main diagnostic, but do not have context on their own. The InFlightDiagnostic class represents an RAII wrapper around a Diagnostic that is set to be reported with the diagnostic engine. This allows for the user to modify a diagnostic that is inflight. The internally wrapped diagnostic can be reported directly or automatically upon destruction. These classes allow for more natural composition of diagnostics by removing the restriction that the message of a diagnostic is comprised of a single Twine. They should also allow for nice incremental improvements to the diagnostics experience in the future, e.g. formatv style diagnostics. Simple Example: emitError(loc, "integer bitwidth is limited to " + Twine(IntegerType::kMaxWidth) + " bits"); emitError(loc) << "integer bitwidth is limited to " << IntegerType::kMaxWidth << " bits"; -- PiperOrigin-RevId: 246526439
2019-05-04 01:01:01 +08:00
}
//===----------------------------------------------------------------------===//
// ScopedDiagnosticHandler
//===----------------------------------------------------------------------===//
ScopedDiagnosticHandler::ScopedDiagnosticHandler(MLIRContext *ctx)
: existingHandler(ctx->getDiagEngine().getHandler()), ctx(ctx) {}
ScopedDiagnosticHandler::ScopedDiagnosticHandler(
MLIRContext *ctx, const DiagnosticEngine::HandlerTy &handler)
: ScopedDiagnosticHandler(ctx) {
ctx->getDiagEngine().setHandler(handler);
}
ScopedDiagnosticHandler::~ScopedDiagnosticHandler() {
ctx->getDiagEngine().setHandler(existingHandler);
}
//===----------------------------------------------------------------------===//
// SourceMgrDiagnosticHandler
//===----------------------------------------------------------------------===//
namespace mlir {
namespace detail {
struct SourceMgrDiagnosticHandlerImpl {
/// Get a memory buffer for the given file, or nullptr if one is not found.
const llvm::MemoryBuffer *getBufferForFile(llvm::SourceMgr &mgr,
StringRef filename) {
// Check for an existing mapping to the buffer id for this file.
auto bufferIt = filenameToBuf.find(filename);
if (bufferIt != filenameToBuf.end())
return bufferIt->second;
// Look for a buffer in the manager that has this filename.
for (unsigned i = 1, e = mgr.getNumBuffers() + 1; i != e; ++i) {
auto *buf = mgr.getMemoryBuffer(i);
if (buf->getBufferIdentifier() == filename)
return filenameToBuf[filename] = buf;
}
// Otherwise, try to load the source file.
const llvm::MemoryBuffer *newBuf = nullptr;
std::string ignored;
if (auto newBufID = mgr.AddIncludeFile(filename, llvm::SMLoc(), ignored))
newBuf = mgr.getMemoryBuffer(newBufID);
return filenameToBuf[filename] = newBuf;
}
/// Mapping between file name and buffer pointer.
llvm::StringMap<const llvm::MemoryBuffer *> filenameToBuf;
};
} // end namespace detail
} // end namespace mlir
/// Return a processable FileLineColLoc from the given location.
static llvm::Optional<FileLineColLoc> getFileLineColLoc(Location loc) {
switch (loc.getKind()) {
case Location::Kind::Name:
return getFileLineColLoc(loc.cast<NameLoc>().getChildLoc());
case Location::Kind::FileLineCol:
return loc.cast<FileLineColLoc>();
case Location::Kind::CallSite:
// Process the callee of a callsite location.
return getFileLineColLoc(loc.cast<CallSiteLoc>().getCallee());
default:
return llvm::None;
}
}
/// Given a diagnostic kind, returns the LLVM DiagKind.
static llvm::SourceMgr::DiagKind getDiagKind(DiagnosticSeverity kind) {
switch (kind) {
case DiagnosticSeverity::Note:
return llvm::SourceMgr::DK_Note;
case DiagnosticSeverity::Warning:
return llvm::SourceMgr::DK_Warning;
case DiagnosticSeverity::Error:
return llvm::SourceMgr::DK_Error;
case DiagnosticSeverity::Remark:
return llvm::SourceMgr::DK_Remark;
}
llvm_unreachable("Unknown DiagnosticSeverity");
}
SourceMgrDiagnosticHandler::SourceMgrDiagnosticHandler(llvm::SourceMgr &mgr,
MLIRContext *ctx)
: ScopedDiagnosticHandler(ctx), mgr(mgr),
impl(new SourceMgrDiagnosticHandlerImpl()) {
// Register a simple diagnostic handler.
ctx->getDiagEngine().setHandler(
[this](Diagnostic diag) { emitDiagnostic(diag); });
}
SourceMgrDiagnosticHandler::~SourceMgrDiagnosticHandler() {}
void SourceMgrDiagnosticHandler::emitDiagnostic(Location loc, Twine message,
DiagnosticSeverity kind) {
// Extract a file location from this loc.
auto fileLoc = getFileLineColLoc(loc);
// If one doesn't exist, then print the location as part of the message.
if (!fileLoc) {
std::string str;
llvm::raw_string_ostream os(str);
os << loc << ": ";
return mgr.PrintMessage(llvm::SMLoc(), getDiagKind(kind),
os.str() + message);
}
// Otherwise, try to convert the file location to an SMLoc.
auto smloc = convertLocToSMLoc(*fileLoc);
if (smloc.isValid())
return mgr.PrintMessage(smloc, getDiagKind(kind), message);
// If the conversion was unsuccessful, create a diagnostic with the source
// location information directly.
llvm::SMDiagnostic diag(mgr, llvm::SMLoc(), fileLoc->getFilename(),
fileLoc->getLine(), fileLoc->getColumn(),
getDiagKind(kind), message.str(), /*LineStr=*/"",
/*Ranges=*/llvm::None);
diag.print(nullptr, llvm::errs());
}
/// Emit the given diagnostic with the held source manager.
void SourceMgrDiagnosticHandler::emitDiagnostic(Diagnostic &diag) {
// Emit the diagnostic.
auto loc = diag.getLocation();
emitDiagnostic(loc, diag.str(), diag.getSeverity());
// If the diagnostic location was a call site location, then print the call
// stack as well.
if (auto callLoc = loc.dyn_cast<CallSiteLoc>()) {
// Print the call stack while valid, or until the limit is reached.
Location callerLoc = callLoc->getCaller();
for (unsigned curDepth = 0; curDepth < callStackLimit; ++curDepth) {
emitDiagnostic(callerLoc, "called from", DiagnosticSeverity::Note);
if ((callLoc = callerLoc.dyn_cast<CallSiteLoc>()))
callerLoc = callLoc->getCaller();
else
break;
}
}
// Emit each of the notes.
for (auto &note : diag.getNotes())
emitDiagnostic(note.getLocation(), note.str(), note.getSeverity());
}
/// Get a memory buffer for the given file, or nullptr if one is not found.
const llvm::MemoryBuffer *
SourceMgrDiagnosticHandler::getBufferForFile(StringRef filename) {
return impl->getBufferForFile(mgr, filename);
}
/// Get a memory buffer for the given file, or the main file of the source
/// manager if one doesn't exist. This always returns non-null.
llvm::SMLoc SourceMgrDiagnosticHandler::convertLocToSMLoc(FileLineColLoc loc) {
// Get the buffer for this filename.
auto *membuf = getBufferForFile(loc.getFilename());
if (!membuf)
return llvm::SMLoc();
// TODO: This should really be upstreamed to be a method on llvm::SourceMgr.
// Doing so would allow it to use the offset cache that is already maintained
// by SrcBuffer, making this more efficient.
unsigned lineNo = loc.getLine();
unsigned columnNo = loc.getColumn();
// Scan for the correct line number.
const char *position = membuf->getBufferStart();
const char *end = membuf->getBufferEnd();
// We start counting line and column numbers from 1.
if (lineNo != 0)
--lineNo;
if (columnNo != 0)
--columnNo;
while (position < end && lineNo) {
auto curChar = *position++;
// Scan for newlines. If this isn't one, ignore it.
if (curChar != '\r' && curChar != '\n')
continue;
// We saw a line break, decrement our counter.
--lineNo;
// Check for \r\n and \n\r and treat it as a single escape. We know that
// looking past one character is safe because MemoryBuffer's are always nul
// terminated.
if (*position != curChar && (*position == '\r' || *position == '\n'))
++position;
}
// If the line/column counter was invalid, return a pointer to the start of
// the buffer.
if (lineNo || position + columnNo > end)
return llvm::SMLoc::getFromPointer(membuf->getBufferStart());
// If the column is zero, try to skip to the first non-whitespace character.
if (columnNo == 0) {
auto isNewline = [](char c) { return c == '\n' || c == '\r'; };
auto isWhitespace = [](char c) { return c == ' ' || c == '\t'; };
// Look for a valid non-whitespace character before the next line.
for (auto *newPos = position; newPos < end && !isNewline(*newPos); ++newPos)
if (!isWhitespace(*newPos))
return llvm::SMLoc::getFromPointer(newPos);
}
// Otherwise return the right pointer.
return llvm::SMLoc::getFromPointer(position + columnNo);
}
//===----------------------------------------------------------------------===//
// SourceMgrDiagnosticVerifierHandler
//===----------------------------------------------------------------------===//
namespace mlir {
namespace detail {
// Record the expected diagnostic's position, substring and whether it was
// seen.
struct ExpectedDiag {
DiagnosticSeverity kind;
unsigned lineNo;
StringRef substring;
llvm::SMLoc fileLoc;
bool matched;
};
struct SourceMgrDiagnosticVerifierHandlerImpl {
SourceMgrDiagnosticVerifierHandlerImpl() : status(success()) {}
/// Returns the expected diagnostics for the given source file.
llvm::Optional<MutableArrayRef<ExpectedDiag>>
getExpectedDiags(StringRef bufName);
/// Computes the expected diagnostics for the given source buffer.
MutableArrayRef<ExpectedDiag>
computeExpectedDiags(const llvm::MemoryBuffer *buf);
/// The current status of the verifier.
LogicalResult status;
/// A list of expected diagnostics for each buffer of the source manager.
llvm::StringMap<SmallVector<ExpectedDiag, 2>> expectedDiagsPerFile;
/// Regex to match the expected diagnostics format.
llvm::Regex expected = llvm::Regex(
"expected-(error|note|remark|warning) *(@[+-][0-9]+)? *{{(.*)}}");
};
} // end namespace detail
} // end namespace mlir
/// Given a diagnostic kind, return a human readable string for it.
static StringRef getDiagKindStr(DiagnosticSeverity kind) {
switch (kind) {
case DiagnosticSeverity::Note:
return "note";
case DiagnosticSeverity::Warning:
return "warning";
case DiagnosticSeverity::Error:
return "error";
case DiagnosticSeverity::Remark:
return "remark";
}
llvm_unreachable("Unknown DiagnosticSeverity");
}
/// Returns the expected diagnostics for the given source file.
llvm::Optional<MutableArrayRef<ExpectedDiag>>
SourceMgrDiagnosticVerifierHandlerImpl::getExpectedDiags(StringRef bufName) {
auto expectedDiags = expectedDiagsPerFile.find(bufName);
if (expectedDiags != expectedDiagsPerFile.end())
return MutableArrayRef<ExpectedDiag>(expectedDiags->second);
return llvm::None;
}
/// Computes the expected diagnostics for the given source buffer.
MutableArrayRef<ExpectedDiag>
SourceMgrDiagnosticVerifierHandlerImpl::computeExpectedDiags(
const llvm::MemoryBuffer *buf) {
// If the buffer is invalid, return an empty list.
if (!buf)
return llvm::None;
auto &expectedDiags = expectedDiagsPerFile[buf->getBufferIdentifier()];
// Scan the file for expected-* designators.
SmallVector<StringRef, 100> lines;
buf->getBuffer().split(lines, '\n');
for (unsigned lineNo = 0, e = lines.size(); lineNo < e; ++lineNo) {
SmallVector<StringRef, 3> matches;
if (!expected.match(lines[lineNo], &matches))
continue;
// Point to the start of expected-*.
auto expectedStart = llvm::SMLoc::getFromPointer(matches[0].data());
DiagnosticSeverity kind;
if (matches[1] == "error")
kind = DiagnosticSeverity::Error;
else if (matches[1] == "warning")
kind = DiagnosticSeverity::Warning;
else if (matches[1] == "remark")
kind = DiagnosticSeverity::Remark;
else {
assert(matches[1] == "note");
kind = DiagnosticSeverity::Note;
}
ExpectedDiag record{kind, lineNo + 1, matches[3], expectedStart, false};
auto offsetMatch = matches[2];
if (!offsetMatch.empty()) {
int offset;
// Get the integer value without the @ and +/- prefix.
if (!offsetMatch.drop_front(2).getAsInteger(0, offset)) {
if (offsetMatch[1] == '+')
record.lineNo += offset;
else
record.lineNo -= offset;
}
}
expectedDiags.push_back(record);
}
return expectedDiags;
}
SourceMgrDiagnosticVerifierHandler::SourceMgrDiagnosticVerifierHandler(
llvm::SourceMgr &srcMgr, MLIRContext *ctx)
: SourceMgrDiagnosticHandler(srcMgr, ctx),
impl(new SourceMgrDiagnosticVerifierHandlerImpl()) {
// Compute the expected diagnostics for each of the current files in the
// source manager.
for (unsigned i = 0, e = mgr.getNumBuffers(); i != e; ++i)
(void)impl->computeExpectedDiags(mgr.getMemoryBuffer(i + 1));
// Register a handler to verfy the diagnostics.
ctx->getDiagEngine().setHandler([&](Diagnostic diag) {
// Process the main diagnostics.
process(diag);
// Process each of the notes.
for (auto &note : diag.getNotes())
process(note);
});
}
SourceMgrDiagnosticVerifierHandler::~SourceMgrDiagnosticVerifierHandler() {
// Ensure that all expected diagnosics were handled.
(void)verify();
}
/// Returns the status of the verifier and verifies that all expected
/// diagnostics were emitted. This return success if all diagnostics were
/// verified correctly, failure otherwise.
LogicalResult SourceMgrDiagnosticVerifierHandler::verify() {
// Verify that all expected errors were seen.
for (auto &expectedDiagsPair : impl->expectedDiagsPerFile) {
for (auto &err : expectedDiagsPair.second) {
if (err.matched)
continue;
llvm::SMRange range(err.fileLoc,
llvm::SMLoc::getFromPointer(err.fileLoc.getPointer() +
err.substring.size()));
mgr.PrintMessage(err.fileLoc, llvm::SourceMgr::DK_Error,
"expected " + getDiagKindStr(err.kind) + " \"" +
err.substring + "\" was not produced",
range);
impl->status = failure();
}
}
impl->expectedDiagsPerFile.clear();
return impl->status;
}
/// Process a single diagnostic.
void SourceMgrDiagnosticVerifierHandler::process(Diagnostic &diag) {
auto kind = diag.getSeverity();
// Process a FileLineColLoc.
if (auto fileLoc = getFileLineColLoc(diag.getLocation()))
return process(*fileLoc, diag.str(), kind);
emitDiagnostic(diag.getLocation(),
"unexpected " + getDiagKindStr(kind) + ": " + diag.str(),
DiagnosticSeverity::Error);
impl->status = failure();
}
/// Process a FileLineColLoc diagnostic.
void SourceMgrDiagnosticVerifierHandler::process(FileLineColLoc loc,
StringRef msg,
DiagnosticSeverity kind) {
// Get the expected diagnostics for this file.
auto diags = impl->getExpectedDiags(loc.getFilename());
if (!diags)
diags = impl->computeExpectedDiags(getBufferForFile(loc.getFilename()));
// Search for a matching expected diagnostic.
// If we find something that is close then emit a more specific error.
ExpectedDiag *nearMiss = nullptr;
// If this was an expected error, remember that we saw it and return.
unsigned line = loc.getLine();
for (auto &e : *diags) {
if (line == e.lineNo && msg.contains(e.substring)) {
if (e.kind == kind) {
e.matched = true;
return;
}
// If this only differs based on the diagnostic kind, then consider it
// to be a near miss.
nearMiss = &e;
}
}
// Otherwise, emit an error for the near miss.
if (nearMiss)
mgr.PrintMessage(nearMiss->fileLoc, llvm::SourceMgr::DK_Error,
"'" + getDiagKindStr(kind) +
"' diagnostic emitted when expecting a '" +
getDiagKindStr(nearMiss->kind) + "'");
else
emitDiagnostic(loc, "unexpected " + getDiagKindStr(kind) + ": " + msg,
DiagnosticSeverity::Error);
impl->status = failure();
}
//===----------------------------------------------------------------------===//
// ParallelDiagnosticHandler
//===----------------------------------------------------------------------===//
namespace mlir {
namespace detail {
struct ParallelDiagnosticHandlerImpl : public llvm::PrettyStackTraceEntry {
struct ThreadDiagnostic {
ThreadDiagnostic(size_t id, Diagnostic diag)
: id(id), diag(std::move(diag)) {}
bool operator<(const ThreadDiagnostic &rhs) const { return id < rhs.id; }
/// The id for this diagnostic, this is used for ordering.
/// Note: This id corresponds to the ordered position of the current element
/// being processed by a given thread.
size_t id;
/// The diagnostic.
Diagnostic diag;
};
ParallelDiagnosticHandlerImpl(MLIRContext *ctx)
: prevHandler(ctx->getDiagEngine().getHandler()), context(ctx) {
ctx->getDiagEngine().setHandler([this](Diagnostic diag) {
uint64_t tid = llvm::get_threadid();
llvm::sys::SmartScopedLock<true> lock(mutex);
assert(threadToOrderID.count(tid) &&
"current thread does not have a valid orderID");
// Append a new diagnostic.
diagnostics.emplace_back(threadToOrderID[tid], std::move(diag));
});
}
~ParallelDiagnosticHandlerImpl() {
// Restore the previous diagnostic handler.
context->getDiagEngine().setHandler(prevHandler);
// Early exit if there are no diagnostics, this is the common case.
if (diagnostics.empty())
return;
// Emit the diagnostics back to the context.
emitDiagnostics([&](Diagnostic diag) {
return context->getDiagEngine().emit(std::move(diag));
});
}
/// Utility method to emit any held diagnostics.
void emitDiagnostics(std::function<void(Diagnostic)> emitFn) {
// Stable sort all of the diagnostics that were emitted. This creates a
// deterministic ordering for the diagnostics based upon which order id they
// were emitted for.
std::stable_sort(diagnostics.begin(), diagnostics.end());
// Emit each diagnostic to the context again.
for (ThreadDiagnostic &diag : diagnostics)
emitFn(std::move(diag.diag));
}
/// Set the order id for the current thread.
void setOrderIDForThread(size_t orderID) {
uint64_t tid = llvm::get_threadid();
llvm::sys::SmartScopedLock<true> lock(mutex);
threadToOrderID[tid] = orderID;
}
/// Dump the current diagnostics that were inflight.
void print(raw_ostream &os) const override {
// Early exit if there are no diagnostics, this is the common case.
if (diagnostics.empty())
return;
os << "In-Flight Diagnostics:\n";
const_cast<ParallelDiagnosticHandlerImpl *>(this)->emitDiagnostics(
[&](Diagnostic diag) {
os.indent(4);
// Print each diagnostic with the format:
// "<location>: <kind>: <msg>"
if (!diag.getLocation().isa<UnknownLoc>())
os << diag.getLocation() << ": ";
switch (diag.getSeverity()) {
case DiagnosticSeverity::Error:
os << "error: ";
break;
case DiagnosticSeverity::Warning:
os << "warning: ";
break;
case DiagnosticSeverity::Note:
os << "note: ";
break;
case DiagnosticSeverity::Remark:
os << "remark: ";
break;
}
os << diag << '\n';
});
}
/// The previous context diagnostic handler.
DiagnosticEngine::HandlerTy prevHandler;
/// A smart mutex to lock access to the internal state.
llvm::sys::SmartMutex<true> mutex;
/// A mapping between the thread id and the current order id.
DenseMap<uint64_t, size_t> threadToOrderID;
/// An unordered list of diagnostics that were emitted.
std::vector<ThreadDiagnostic> diagnostics;
/// The context to emit the diagnostics to.
MLIRContext *context;
};
} // end namespace detail
} // end namespace mlir
ParallelDiagnosticHandler::ParallelDiagnosticHandler(MLIRContext *ctx)
: impl(new ParallelDiagnosticHandlerImpl(ctx)) {}
ParallelDiagnosticHandler::~ParallelDiagnosticHandler() {}
/// Set the order id for the current thread.
void ParallelDiagnosticHandler::setOrderIDForThread(size_t orderID) {
impl->setOrderIDForThread(orderID);
}