llvm-project/llvm/test/CodeGen/X86/avx-vperm2x128.ll

694 lines
29 KiB
LLVM
Raw Normal View History

; NOTE: Assertions have been autogenerated by utils/update_llc_test_checks.py
; RUN: llc < %s -mtriple=x86_64-unknown-unknown -mattr=+avx -disable-peephole | FileCheck %s --check-prefix=ALL --check-prefix=AVX1
; RUN: llc < %s -mtriple=x86_64-unknown-unknown -mattr=+avx2 -disable-peephole | FileCheck %s --check-prefix=ALL --check-prefix=AVX2
define <8 x float> @shuffle_v8f32_45670123(<8 x float> %a, <8 x float> %b) nounwind uwtable readnone ssp {
; AVX1-LABEL: shuffle_v8f32_45670123:
; AVX1: # %bb.0: # %entry
; AVX1-NEXT: vperm2f128 {{.*#+}} ymm0 = ymm0[2,3,0,1]
; AVX1-NEXT: retq
;
; AVX2-LABEL: shuffle_v8f32_45670123:
; AVX2: # %bb.0: # %entry
; AVX2-NEXT: vpermpd {{.*#+}} ymm0 = ymm0[2,3,0,1]
; AVX2-NEXT: retq
entry:
%shuffle = shufflevector <8 x float> %a, <8 x float> %b, <8 x i32> <i32 4, i32 5, i32 6, i32 7, i32 0, i32 1, i32 2, i32 3>
ret <8 x float> %shuffle
}
define <8 x float> @shuffle_v8f32_45670123_mem(<8 x float>* %pa, <8 x float>* %pb) nounwind uwtable readnone ssp {
; AVX1-LABEL: shuffle_v8f32_45670123_mem:
; AVX1: # %bb.0: # %entry
; AVX1-NEXT: vperm2f128 {{.*#+}} ymm0 = mem[2,3,0,1]
; AVX1-NEXT: retq
;
; AVX2-LABEL: shuffle_v8f32_45670123_mem:
; AVX2: # %bb.0: # %entry
; AVX2-NEXT: vpermpd {{.*#+}} ymm0 = mem[2,3,0,1]
; AVX2-NEXT: retq
entry:
%a = load <8 x float>, <8 x float>* %pa
%b = load <8 x float>, <8 x float>* %pb
%shuffle = shufflevector <8 x float> %a, <8 x float> %b, <8 x i32> <i32 4, i32 5, i32 6, i32 7, i32 0, i32 1, i32 2, i32 3>
ret <8 x float> %shuffle
}
define <8 x float> @shuffle_v8f32_0123cdef(<8 x float> %a, <8 x float> %b) nounwind uwtable readnone ssp {
; ALL-LABEL: shuffle_v8f32_0123cdef:
; ALL: # %bb.0: # %entry
; ALL-NEXT: vblendps {{.*#+}} ymm0 = ymm0[0,1,2,3],ymm1[4,5,6,7]
; ALL-NEXT: retq
entry:
%shuffle = shufflevector <8 x float> %a, <8 x float> %b, <8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 12, i32 13, i32 14, i32 15>
ret <8 x float> %shuffle
}
define <8 x float> @shuffle_v8f32_01230123(<8 x float> %a, <8 x float> %b) nounwind uwtable readnone ssp {
; AVX1-LABEL: shuffle_v8f32_01230123:
; AVX1: # %bb.0: # %entry
; AVX1-NEXT: vinsertf128 $1, %xmm0, %ymm0, %ymm0
; AVX1-NEXT: retq
;
; AVX2-LABEL: shuffle_v8f32_01230123:
; AVX2: # %bb.0: # %entry
; AVX2-NEXT: vpermpd {{.*#+}} ymm0 = ymm0[0,1,0,1]
; AVX2-NEXT: retq
entry:
%shuffle = shufflevector <8 x float> %a, <8 x float> %b, <8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 0, i32 1, i32 2, i32 3>
ret <8 x float> %shuffle
}
define <8 x float> @shuffle_v8f32_01230123_mem(<8 x float>* %pa, <8 x float>* %pb) nounwind uwtable readnone ssp {
; AVX1-LABEL: shuffle_v8f32_01230123_mem:
; AVX1: # %bb.0: # %entry
; AVX1-NEXT: vperm2f128 {{.*#+}} ymm0 = mem[0,1,0,1]
; AVX1-NEXT: retq
;
; AVX2-LABEL: shuffle_v8f32_01230123_mem:
; AVX2: # %bb.0: # %entry
; AVX2-NEXT: vpermpd {{.*#+}} ymm0 = mem[0,1,0,1]
; AVX2-NEXT: retq
entry:
%a = load <8 x float>, <8 x float>* %pa
%b = load <8 x float>, <8 x float>* %pb
%shuffle = shufflevector <8 x float> %a, <8 x float> %b, <8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 0, i32 1, i32 2, i32 3>
ret <8 x float> %shuffle
}
define <8 x float> @shuffle_v8f32_45674567(<8 x float> %a, <8 x float> %b) nounwind uwtable readnone ssp {
; AVX1-LABEL: shuffle_v8f32_45674567:
; AVX1: # %bb.0: # %entry
; AVX1-NEXT: vperm2f128 {{.*#+}} ymm0 = ymm0[2,3,2,3]
; AVX1-NEXT: retq
;
; AVX2-LABEL: shuffle_v8f32_45674567:
; AVX2: # %bb.0: # %entry
; AVX2-NEXT: vpermpd {{.*#+}} ymm0 = ymm0[2,3,2,3]
; AVX2-NEXT: retq
entry:
%shuffle = shufflevector <8 x float> %a, <8 x float> %b, <8 x i32> <i32 4, i32 5, i32 6, i32 7, i32 4, i32 5, i32 6, i32 7>
ret <8 x float> %shuffle
}
define <8 x float> @shuffle_v8f32_45674567_mem(<8 x float>* %pa, <8 x float>* %pb) nounwind uwtable readnone ssp {
; AVX1-LABEL: shuffle_v8f32_45674567_mem:
; AVX1: # %bb.0: # %entry
; AVX1-NEXT: vperm2f128 {{.*#+}} ymm0 = mem[2,3,2,3]
; AVX1-NEXT: retq
;
; AVX2-LABEL: shuffle_v8f32_45674567_mem:
; AVX2: # %bb.0: # %entry
; AVX2-NEXT: vpermpd {{.*#+}} ymm0 = mem[2,3,2,3]
; AVX2-NEXT: retq
entry:
%a = load <8 x float>, <8 x float>* %pa
%b = load <8 x float>, <8 x float>* %pb
%shuffle = shufflevector <8 x float> %a, <8 x float> %b, <8 x i32> <i32 4, i32 5, i32 6, i32 7, i32 4, i32 5, i32 6, i32 7>
ret <8 x float> %shuffle
}
define <32 x i8> @shuffle_v32i8_2323(<32 x i8> %a, <32 x i8> %b) nounwind uwtable readnone ssp {
; AVX1-LABEL: shuffle_v32i8_2323:
; AVX1: # %bb.0: # %entry
; AVX1-NEXT: vperm2f128 {{.*#+}} ymm0 = ymm0[2,3,2,3]
; AVX1-NEXT: retq
;
; AVX2-LABEL: shuffle_v32i8_2323:
; AVX2: # %bb.0: # %entry
; AVX2-NEXT: vpermpd {{.*#+}} ymm0 = ymm0[2,3,2,3]
; AVX2-NEXT: retq
entry:
%shuffle = shufflevector <32 x i8> %a, <32 x i8> %b, <32 x i32> <i32 16, i32 17, i32 18, i32 19, i32 20, i32 21, i32 22, i32 23, i32 24, i32 25, i32 26, i32 27, i32 28, i32 29, i32 30, i32 31, i32 16, i32 17, i32 18, i32 19, i32 20, i32 21, i32 22, i32 23, i32 24, i32 25, i32 26, i32 27, i32 28, i32 29, i32 30, i32 31>
ret <32 x i8> %shuffle
}
define <32 x i8> @shuffle_v32i8_2323_domain(<32 x i8> %a, <32 x i8> %b) nounwind uwtable readnone ssp {
; AVX1-LABEL: shuffle_v32i8_2323_domain:
; AVX1: # %bb.0: # %entry
; AVX1-NEXT: vextractf128 $1, %ymm0, %xmm0
[x86] transform vector inc/dec to use -1 constant (PR33483) Convert vector increment or decrement to sub/add with an all-ones constant: add X, <1, 1...> --> sub X, <-1, -1...> sub X, <1, 1...> --> add X, <-1, -1...> The all-ones vector constant can be materialized using a pcmpeq instruction that is commonly recognized as an idiom (has no register dependency), so that's better than loading a splat 1 constant. AVX512 uses 'vpternlogd' for 512-bit vectors because there is apparently no better way to produce 512 one-bits. The general advantages of this lowering are: 1. pcmpeq has lower latency than a memop on every uarch I looked at in Agner's tables, so in theory, this could be better for perf, but... 2. That seems unlikely to affect any OOO implementation, and I can't measure any real perf difference from this transform on Haswell or Jaguar, but... 3. It doesn't look like it from the diffs, but this is an overall size win because we eliminate 16 - 64 constant bytes in the case of a vector load. If we're broadcasting a scalar load (which might itself be a bug), then we're replacing a scalar constant load + broadcast with a single cheap op, so that should always be smaller/better too. 4. This makes the DAG/isel output more consistent - we use pcmpeq already for padd x, -1 and psub x, -1, so we should use that form for +1 too because we can. If there's some reason to favor a constant load on some CPU, let's make the reverse transform for all of these cases (either here in the DAG or in a later machine pass). This should fix: https://bugs.llvm.org/show_bug.cgi?id=33483 Differential Revision: https://reviews.llvm.org/D34336 llvm-svn: 306289
2017-06-26 22:19:26 +08:00
; AVX1-NEXT: vpcmpeqd %xmm1, %xmm1, %xmm1
; AVX1-NEXT: vpsubb %xmm1, %xmm0, %xmm0
; AVX1-NEXT: vinsertf128 $1, %xmm0, %ymm0, %ymm0
; AVX1-NEXT: vperm2f128 {{.*#+}} ymm0 = ymm0[2,3,2,3]
; AVX1-NEXT: retq
;
; AVX2-LABEL: shuffle_v32i8_2323_domain:
; AVX2: # %bb.0: # %entry
[x86] transform vector inc/dec to use -1 constant (PR33483) Convert vector increment or decrement to sub/add with an all-ones constant: add X, <1, 1...> --> sub X, <-1, -1...> sub X, <1, 1...> --> add X, <-1, -1...> The all-ones vector constant can be materialized using a pcmpeq instruction that is commonly recognized as an idiom (has no register dependency), so that's better than loading a splat 1 constant. AVX512 uses 'vpternlogd' for 512-bit vectors because there is apparently no better way to produce 512 one-bits. The general advantages of this lowering are: 1. pcmpeq has lower latency than a memop on every uarch I looked at in Agner's tables, so in theory, this could be better for perf, but... 2. That seems unlikely to affect any OOO implementation, and I can't measure any real perf difference from this transform on Haswell or Jaguar, but... 3. It doesn't look like it from the diffs, but this is an overall size win because we eliminate 16 - 64 constant bytes in the case of a vector load. If we're broadcasting a scalar load (which might itself be a bug), then we're replacing a scalar constant load + broadcast with a single cheap op, so that should always be smaller/better too. 4. This makes the DAG/isel output more consistent - we use pcmpeq already for padd x, -1 and psub x, -1, so we should use that form for +1 too because we can. If there's some reason to favor a constant load on some CPU, let's make the reverse transform for all of these cases (either here in the DAG or in a later machine pass). This should fix: https://bugs.llvm.org/show_bug.cgi?id=33483 Differential Revision: https://reviews.llvm.org/D34336 llvm-svn: 306289
2017-06-26 22:19:26 +08:00
; AVX2-NEXT: vpcmpeqd %ymm1, %ymm1, %ymm1
; AVX2-NEXT: vpsubb %ymm1, %ymm0, %ymm0
; AVX2-NEXT: vpermq {{.*#+}} ymm0 = ymm0[2,3,2,3]
; AVX2-NEXT: retq
entry:
; add forces execution domain
%a2 = add <32 x i8> %a, <i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1>
%shuffle = shufflevector <32 x i8> %a2, <32 x i8> %b, <32 x i32> <i32 16, i32 17, i32 18, i32 19, i32 20, i32 21, i32 22, i32 23, i32 24, i32 25, i32 26, i32 27, i32 28, i32 29, i32 30, i32 31, i32 16, i32 17, i32 18, i32 19, i32 20, i32 21, i32 22, i32 23, i32 24, i32 25, i32 26, i32 27, i32 28, i32 29, i32 30, i32 31>
ret <32 x i8> %shuffle
}
define <4 x i64> @shuffle_v4i64_6701(<4 x i64> %a, <4 x i64> %b) nounwind uwtable readnone ssp {
; ALL-LABEL: shuffle_v4i64_6701:
; ALL: # %bb.0: # %entry
; ALL-NEXT: vperm2f128 {{.*#+}} ymm0 = ymm1[2,3],ymm0[0,1]
; ALL-NEXT: retq
entry:
%shuffle = shufflevector <4 x i64> %a, <4 x i64> %b, <4 x i32> <i32 6, i32 7, i32 0, i32 1>
ret <4 x i64> %shuffle
}
define <4 x i64> @shuffle_v4i64_6701_domain(<4 x i64> %a, <4 x i64> %b) nounwind uwtable readnone ssp {
; AVX1-LABEL: shuffle_v4i64_6701_domain:
; AVX1: # %bb.0: # %entry
[x86] transform vector inc/dec to use -1 constant (PR33483) Convert vector increment or decrement to sub/add with an all-ones constant: add X, <1, 1...> --> sub X, <-1, -1...> sub X, <1, 1...> --> add X, <-1, -1...> The all-ones vector constant can be materialized using a pcmpeq instruction that is commonly recognized as an idiom (has no register dependency), so that's better than loading a splat 1 constant. AVX512 uses 'vpternlogd' for 512-bit vectors because there is apparently no better way to produce 512 one-bits. The general advantages of this lowering are: 1. pcmpeq has lower latency than a memop on every uarch I looked at in Agner's tables, so in theory, this could be better for perf, but... 2. That seems unlikely to affect any OOO implementation, and I can't measure any real perf difference from this transform on Haswell or Jaguar, but... 3. It doesn't look like it from the diffs, but this is an overall size win because we eliminate 16 - 64 constant bytes in the case of a vector load. If we're broadcasting a scalar load (which might itself be a bug), then we're replacing a scalar constant load + broadcast with a single cheap op, so that should always be smaller/better too. 4. This makes the DAG/isel output more consistent - we use pcmpeq already for padd x, -1 and psub x, -1, so we should use that form for +1 too because we can. If there's some reason to favor a constant load on some CPU, let's make the reverse transform for all of these cases (either here in the DAG or in a later machine pass). This should fix: https://bugs.llvm.org/show_bug.cgi?id=33483 Differential Revision: https://reviews.llvm.org/D34336 llvm-svn: 306289
2017-06-26 22:19:26 +08:00
; AVX1-NEXT: vpcmpeqd %xmm2, %xmm2, %xmm2
; AVX1-NEXT: vpsubq %xmm2, %xmm0, %xmm0
; AVX1-NEXT: vperm2f128 {{.*#+}} ymm0 = ymm1[2,3],ymm0[0,1]
; AVX1-NEXT: retq
;
; AVX2-LABEL: shuffle_v4i64_6701_domain:
; AVX2: # %bb.0: # %entry
[x86] transform vector inc/dec to use -1 constant (PR33483) Convert vector increment or decrement to sub/add with an all-ones constant: add X, <1, 1...> --> sub X, <-1, -1...> sub X, <1, 1...> --> add X, <-1, -1...> The all-ones vector constant can be materialized using a pcmpeq instruction that is commonly recognized as an idiom (has no register dependency), so that's better than loading a splat 1 constant. AVX512 uses 'vpternlogd' for 512-bit vectors because there is apparently no better way to produce 512 one-bits. The general advantages of this lowering are: 1. pcmpeq has lower latency than a memop on every uarch I looked at in Agner's tables, so in theory, this could be better for perf, but... 2. That seems unlikely to affect any OOO implementation, and I can't measure any real perf difference from this transform on Haswell or Jaguar, but... 3. It doesn't look like it from the diffs, but this is an overall size win because we eliminate 16 - 64 constant bytes in the case of a vector load. If we're broadcasting a scalar load (which might itself be a bug), then we're replacing a scalar constant load + broadcast with a single cheap op, so that should always be smaller/better too. 4. This makes the DAG/isel output more consistent - we use pcmpeq already for padd x, -1 and psub x, -1, so we should use that form for +1 too because we can. If there's some reason to favor a constant load on some CPU, let's make the reverse transform for all of these cases (either here in the DAG or in a later machine pass). This should fix: https://bugs.llvm.org/show_bug.cgi?id=33483 Differential Revision: https://reviews.llvm.org/D34336 llvm-svn: 306289
2017-06-26 22:19:26 +08:00
; AVX2-NEXT: vpcmpeqd %ymm2, %ymm2, %ymm2
; AVX2-NEXT: vpsubq %ymm2, %ymm0, %ymm0
; AVX2-NEXT: vperm2i128 {{.*#+}} ymm0 = ymm1[2,3],ymm0[0,1]
; AVX2-NEXT: retq
entry:
; add forces execution domain
%a2 = add <4 x i64> %a, <i64 1, i64 1, i64 1, i64 1>
%shuffle = shufflevector <4 x i64> %a2, <4 x i64> %b, <4 x i32> <i32 6, i32 7, i32 0, i32 1>
ret <4 x i64> %shuffle
}
define <8 x i32> @shuffle_v8i32_u5u7cdef(<8 x i32> %a, <8 x i32> %b) nounwind uwtable readnone ssp {
; AVX1-LABEL: shuffle_v8i32_u5u7cdef:
; AVX1: # %bb.0: # %entry
; AVX1-NEXT: vextractf128 $1, %ymm0, %xmm0
[x86] transform vector inc/dec to use -1 constant (PR33483) Convert vector increment or decrement to sub/add with an all-ones constant: add X, <1, 1...> --> sub X, <-1, -1...> sub X, <1, 1...> --> add X, <-1, -1...> The all-ones vector constant can be materialized using a pcmpeq instruction that is commonly recognized as an idiom (has no register dependency), so that's better than loading a splat 1 constant. AVX512 uses 'vpternlogd' for 512-bit vectors because there is apparently no better way to produce 512 one-bits. The general advantages of this lowering are: 1. pcmpeq has lower latency than a memop on every uarch I looked at in Agner's tables, so in theory, this could be better for perf, but... 2. That seems unlikely to affect any OOO implementation, and I can't measure any real perf difference from this transform on Haswell or Jaguar, but... 3. It doesn't look like it from the diffs, but this is an overall size win because we eliminate 16 - 64 constant bytes in the case of a vector load. If we're broadcasting a scalar load (which might itself be a bug), then we're replacing a scalar constant load + broadcast with a single cheap op, so that should always be smaller/better too. 4. This makes the DAG/isel output more consistent - we use pcmpeq already for padd x, -1 and psub x, -1, so we should use that form for +1 too because we can. If there's some reason to favor a constant load on some CPU, let's make the reverse transform for all of these cases (either here in the DAG or in a later machine pass). This should fix: https://bugs.llvm.org/show_bug.cgi?id=33483 Differential Revision: https://reviews.llvm.org/D34336 llvm-svn: 306289
2017-06-26 22:19:26 +08:00
; AVX1-NEXT: vpcmpeqd %xmm2, %xmm2, %xmm2
; AVX1-NEXT: vpsubd %xmm2, %xmm0, %xmm0
; AVX1-NEXT: vinsertf128 $1, %xmm0, %ymm0, %ymm0
; AVX1-NEXT: vperm2f128 {{.*#+}} ymm0 = ymm0[2,3],ymm1[2,3]
; AVX1-NEXT: retq
;
; AVX2-LABEL: shuffle_v8i32_u5u7cdef:
; AVX2: # %bb.0: # %entry
[x86] transform vector inc/dec to use -1 constant (PR33483) Convert vector increment or decrement to sub/add with an all-ones constant: add X, <1, 1...> --> sub X, <-1, -1...> sub X, <1, 1...> --> add X, <-1, -1...> The all-ones vector constant can be materialized using a pcmpeq instruction that is commonly recognized as an idiom (has no register dependency), so that's better than loading a splat 1 constant. AVX512 uses 'vpternlogd' for 512-bit vectors because there is apparently no better way to produce 512 one-bits. The general advantages of this lowering are: 1. pcmpeq has lower latency than a memop on every uarch I looked at in Agner's tables, so in theory, this could be better for perf, but... 2. That seems unlikely to affect any OOO implementation, and I can't measure any real perf difference from this transform on Haswell or Jaguar, but... 3. It doesn't look like it from the diffs, but this is an overall size win because we eliminate 16 - 64 constant bytes in the case of a vector load. If we're broadcasting a scalar load (which might itself be a bug), then we're replacing a scalar constant load + broadcast with a single cheap op, so that should always be smaller/better too. 4. This makes the DAG/isel output more consistent - we use pcmpeq already for padd x, -1 and psub x, -1, so we should use that form for +1 too because we can. If there's some reason to favor a constant load on some CPU, let's make the reverse transform for all of these cases (either here in the DAG or in a later machine pass). This should fix: https://bugs.llvm.org/show_bug.cgi?id=33483 Differential Revision: https://reviews.llvm.org/D34336 llvm-svn: 306289
2017-06-26 22:19:26 +08:00
; AVX2-NEXT: vpcmpeqd %ymm2, %ymm2, %ymm2
; AVX2-NEXT: vpsubd %ymm2, %ymm0, %ymm0
; AVX2-NEXT: vperm2i128 {{.*#+}} ymm0 = ymm0[2,3],ymm1[2,3]
; AVX2-NEXT: retq
entry:
; add forces execution domain
%a2 = add <8 x i32> %a, <i32 1, i32 1, i32 1, i32 1, i32 1, i32 1, i32 1, i32 1>
%shuffle = shufflevector <8 x i32> %a2, <8 x i32> %b, <8 x i32> <i32 undef, i32 5, i32 undef, i32 7, i32 12, i32 13, i32 14, i32 15>
ret <8 x i32> %shuffle
}
define <16 x i16> @shuffle_v16i16_4501(<16 x i16> %a, <16 x i16> %b) nounwind uwtable readnone ssp {
; AVX1-LABEL: shuffle_v16i16_4501:
; AVX1: # %bb.0: # %entry
[x86] transform vector inc/dec to use -1 constant (PR33483) Convert vector increment or decrement to sub/add with an all-ones constant: add X, <1, 1...> --> sub X, <-1, -1...> sub X, <1, 1...> --> add X, <-1, -1...> The all-ones vector constant can be materialized using a pcmpeq instruction that is commonly recognized as an idiom (has no register dependency), so that's better than loading a splat 1 constant. AVX512 uses 'vpternlogd' for 512-bit vectors because there is apparently no better way to produce 512 one-bits. The general advantages of this lowering are: 1. pcmpeq has lower latency than a memop on every uarch I looked at in Agner's tables, so in theory, this could be better for perf, but... 2. That seems unlikely to affect any OOO implementation, and I can't measure any real perf difference from this transform on Haswell or Jaguar, but... 3. It doesn't look like it from the diffs, but this is an overall size win because we eliminate 16 - 64 constant bytes in the case of a vector load. If we're broadcasting a scalar load (which might itself be a bug), then we're replacing a scalar constant load + broadcast with a single cheap op, so that should always be smaller/better too. 4. This makes the DAG/isel output more consistent - we use pcmpeq already for padd x, -1 and psub x, -1, so we should use that form for +1 too because we can. If there's some reason to favor a constant load on some CPU, let's make the reverse transform for all of these cases (either here in the DAG or in a later machine pass). This should fix: https://bugs.llvm.org/show_bug.cgi?id=33483 Differential Revision: https://reviews.llvm.org/D34336 llvm-svn: 306289
2017-06-26 22:19:26 +08:00
; AVX1-NEXT: vpcmpeqd %xmm2, %xmm2, %xmm2
; AVX1-NEXT: vpsubw %xmm2, %xmm0, %xmm0
; AVX1-NEXT: vinsertf128 $1, %xmm0, %ymm1, %ymm0
; AVX1-NEXT: retq
;
; AVX2-LABEL: shuffle_v16i16_4501:
; AVX2: # %bb.0: # %entry
; AVX2-NEXT: vpcmpeqd %xmm2, %xmm2, %xmm2
; AVX2-NEXT: vpsubw %xmm2, %xmm0, %xmm0
; AVX2-NEXT: vinserti128 $1, %xmm0, %ymm1, %ymm0
; AVX2-NEXT: retq
entry:
; add forces execution domain
%a2 = add <16 x i16> %a, <i16 1, i16 1, i16 1, i16 1, i16 1, i16 1, i16 1, i16 1, i16 1, i16 1, i16 1, i16 1, i16 1, i16 1, i16 1, i16 1>
%shuffle = shufflevector <16 x i16> %a2, <16 x i16> %b, <16 x i32> <i32 16, i32 17, i32 18, i32 19, i32 20, i32 21, i32 22, i32 23, i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7>
ret <16 x i16> %shuffle
}
define <16 x i16> @shuffle_v16i16_4501_mem(<16 x i16>* %a, <16 x i16>* %b) nounwind uwtable readnone ssp {
; AVX1-LABEL: shuffle_v16i16_4501_mem:
; AVX1: # %bb.0: # %entry
; AVX1-NEXT: vmovdqa (%rdi), %xmm0
[x86] transform vector inc/dec to use -1 constant (PR33483) Convert vector increment or decrement to sub/add with an all-ones constant: add X, <1, 1...> --> sub X, <-1, -1...> sub X, <1, 1...> --> add X, <-1, -1...> The all-ones vector constant can be materialized using a pcmpeq instruction that is commonly recognized as an idiom (has no register dependency), so that's better than loading a splat 1 constant. AVX512 uses 'vpternlogd' for 512-bit vectors because there is apparently no better way to produce 512 one-bits. The general advantages of this lowering are: 1. pcmpeq has lower latency than a memop on every uarch I looked at in Agner's tables, so in theory, this could be better for perf, but... 2. That seems unlikely to affect any OOO implementation, and I can't measure any real perf difference from this transform on Haswell or Jaguar, but... 3. It doesn't look like it from the diffs, but this is an overall size win because we eliminate 16 - 64 constant bytes in the case of a vector load. If we're broadcasting a scalar load (which might itself be a bug), then we're replacing a scalar constant load + broadcast with a single cheap op, so that should always be smaller/better too. 4. This makes the DAG/isel output more consistent - we use pcmpeq already for padd x, -1 and psub x, -1, so we should use that form for +1 too because we can. If there's some reason to favor a constant load on some CPU, let's make the reverse transform for all of these cases (either here in the DAG or in a later machine pass). This should fix: https://bugs.llvm.org/show_bug.cgi?id=33483 Differential Revision: https://reviews.llvm.org/D34336 llvm-svn: 306289
2017-06-26 22:19:26 +08:00
; AVX1-NEXT: vpcmpeqd %xmm1, %xmm1, %xmm1
; AVX1-NEXT: vpsubw %xmm1, %xmm0, %xmm0
; AVX1-NEXT: vperm2f128 {{.*#+}} ymm0 = mem[0,1],ymm0[0,1]
; AVX1-NEXT: retq
;
; AVX2-LABEL: shuffle_v16i16_4501_mem:
; AVX2: # %bb.0: # %entry
; AVX2-NEXT: vmovdqa (%rdi), %ymm0
[x86] transform vector inc/dec to use -1 constant (PR33483) Convert vector increment or decrement to sub/add with an all-ones constant: add X, <1, 1...> --> sub X, <-1, -1...> sub X, <1, 1...> --> add X, <-1, -1...> The all-ones vector constant can be materialized using a pcmpeq instruction that is commonly recognized as an idiom (has no register dependency), so that's better than loading a splat 1 constant. AVX512 uses 'vpternlogd' for 512-bit vectors because there is apparently no better way to produce 512 one-bits. The general advantages of this lowering are: 1. pcmpeq has lower latency than a memop on every uarch I looked at in Agner's tables, so in theory, this could be better for perf, but... 2. That seems unlikely to affect any OOO implementation, and I can't measure any real perf difference from this transform on Haswell or Jaguar, but... 3. It doesn't look like it from the diffs, but this is an overall size win because we eliminate 16 - 64 constant bytes in the case of a vector load. If we're broadcasting a scalar load (which might itself be a bug), then we're replacing a scalar constant load + broadcast with a single cheap op, so that should always be smaller/better too. 4. This makes the DAG/isel output more consistent - we use pcmpeq already for padd x, -1 and psub x, -1, so we should use that form for +1 too because we can. If there's some reason to favor a constant load on some CPU, let's make the reverse transform for all of these cases (either here in the DAG or in a later machine pass). This should fix: https://bugs.llvm.org/show_bug.cgi?id=33483 Differential Revision: https://reviews.llvm.org/D34336 llvm-svn: 306289
2017-06-26 22:19:26 +08:00
; AVX2-NEXT: vpcmpeqd %ymm1, %ymm1, %ymm1
; AVX2-NEXT: vpsubw %ymm1, %ymm0, %ymm0
; AVX2-NEXT: vperm2i128 {{.*#+}} ymm0 = mem[0,1],ymm0[0,1]
; AVX2-NEXT: retq
entry:
%c = load <16 x i16>, <16 x i16>* %a
%d = load <16 x i16>, <16 x i16>* %b
%c2 = add <16 x i16> %c, <i16 1, i16 1, i16 1, i16 1, i16 1, i16 1, i16 1, i16 1, i16 1, i16 1, i16 1, i16 1, i16 1, i16 1, i16 1, i16 1>
%shuffle = shufflevector <16 x i16> %c2, <16 x i16> %d, <16 x i32> <i32 16, i32 17, i32 18, i32 19, i32 20, i32 21, i32 22, i32 23, i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7>
ret <16 x i16> %shuffle
}
;;;; Cases with undef indicies mixed in the mask
define <8 x float> @shuffle_v8f32_uu67u9ub(<8 x float> %a, <8 x float> %b) nounwind uwtable readnone ssp {
; ALL-LABEL: shuffle_v8f32_uu67u9ub:
; ALL: # %bb.0: # %entry
; ALL-NEXT: vperm2f128 {{.*#+}} ymm0 = ymm0[2,3],ymm1[0,1]
; ALL-NEXT: retq
entry:
%shuffle = shufflevector <8 x float> %a, <8 x float> %b, <8 x i32> <i32 undef, i32 undef, i32 6, i32 7, i32 undef, i32 9, i32 undef, i32 11>
ret <8 x float> %shuffle
}
define <8 x float> @shuffle_v8f32_uu67uu67(<8 x float> %a, <8 x float> %b) nounwind uwtable readnone ssp {
; AVX1-LABEL: shuffle_v8f32_uu67uu67:
; AVX1: # %bb.0: # %entry
; AVX1-NEXT: vperm2f128 {{.*#+}} ymm0 = ymm0[2,3,2,3]
; AVX1-NEXT: retq
;
; AVX2-LABEL: shuffle_v8f32_uu67uu67:
; AVX2: # %bb.0: # %entry
; AVX2-NEXT: vpermpd {{.*#+}} ymm0 = ymm0[0,3,2,3]
; AVX2-NEXT: retq
entry:
%shuffle = shufflevector <8 x float> %a, <8 x float> %b, <8 x i32> <i32 undef, i32 undef, i32 6, i32 7, i32 undef, i32 undef, i32 6, i32 7>
ret <8 x float> %shuffle
}
define <8 x float> @shuffle_v8f32_uu67uuab(<8 x float> %a, <8 x float> %b) nounwind uwtable readnone ssp {
; ALL-LABEL: shuffle_v8f32_uu67uuab:
; ALL: # %bb.0: # %entry
; ALL-NEXT: vperm2f128 {{.*#+}} ymm0 = ymm0[2,3],ymm1[0,1]
; ALL-NEXT: retq
entry:
%shuffle = shufflevector <8 x float> %a, <8 x float> %b, <8 x i32> <i32 undef, i32 undef, i32 6, i32 7, i32 undef, i32 undef, i32 10, i32 11>
ret <8 x float> %shuffle
}
define <8 x float> @shuffle_v8f32_uu67uuef(<8 x float> %a, <8 x float> %b) nounwind uwtable readnone ssp {
; ALL-LABEL: shuffle_v8f32_uu67uuef:
; ALL: # %bb.0: # %entry
; ALL-NEXT: vperm2f128 {{.*#+}} ymm0 = ymm0[2,3],ymm1[2,3]
; ALL-NEXT: retq
entry:
%shuffle = shufflevector <8 x float> %a, <8 x float> %b, <8 x i32> <i32 undef, i32 undef, i32 6, i32 7, i32 undef, i32 undef, i32 14, i32 15>
ret <8 x float> %shuffle
}
define <8 x float> @shuffle_v8f32_uu674567(<8 x float> %a, <8 x float> %b) nounwind uwtable readnone ssp {
; AVX1-LABEL: shuffle_v8f32_uu674567:
; AVX1: # %bb.0: # %entry
; AVX1-NEXT: vperm2f128 {{.*#+}} ymm0 = ymm0[2,3,2,3]
; AVX1-NEXT: retq
;
; AVX2-LABEL: shuffle_v8f32_uu674567:
; AVX2: # %bb.0: # %entry
; AVX2-NEXT: vpermpd {{.*#+}} ymm0 = ymm0[0,3,2,3]
; AVX2-NEXT: retq
entry:
%shuffle = shufflevector <8 x float> %a, <8 x float> %b, <8 x i32> <i32 undef, i32 undef, i32 6, i32 7, i32 4, i32 5, i32 6, i32 7>
ret <8 x float> %shuffle
}
define <8 x float> @shuffle_v8f32_uu6789ab(<8 x float> %a, <8 x float> %b) nounwind uwtable readnone ssp {
; ALL-LABEL: shuffle_v8f32_uu6789ab:
; ALL: # %bb.0: # %entry
; ALL-NEXT: vperm2f128 {{.*#+}} ymm0 = ymm0[2,3],ymm1[0,1]
; ALL-NEXT: retq
entry:
%shuffle = shufflevector <8 x float> %a, <8 x float> %b, <8 x i32> <i32 undef, i32 undef, i32 6, i32 7, i32 8, i32 9, i32 10, i32 11>
ret <8 x float> %shuffle
}
define <8 x float> @shuffle_v8f32_4567uu67(<8 x float> %a, <8 x float> %b) nounwind uwtable readnone ssp {
; AVX1-LABEL: shuffle_v8f32_4567uu67:
; AVX1: # %bb.0: # %entry
; AVX1-NEXT: vperm2f128 {{.*#+}} ymm0 = ymm0[2,3,2,3]
; AVX1-NEXT: retq
;
; AVX2-LABEL: shuffle_v8f32_4567uu67:
; AVX2: # %bb.0: # %entry
; AVX2-NEXT: vpermpd {{.*#+}} ymm0 = ymm0[2,3,2,3]
; AVX2-NEXT: retq
entry:
%shuffle = shufflevector <8 x float> %a, <8 x float> %b, <8 x i32> <i32 4, i32 5, i32 6, i32 7, i32 undef, i32 undef, i32 6, i32 7>
ret <8 x float> %shuffle
}
define <8 x float> @shuffle_v8f32_4567uuef(<8 x float> %a, <8 x float> %b) nounwind uwtable readnone ssp {
; ALL-LABEL: shuffle_v8f32_4567uuef:
; ALL: # %bb.0: # %entry
; ALL-NEXT: vperm2f128 {{.*#+}} ymm0 = ymm0[2,3],ymm1[2,3]
; ALL-NEXT: retq
entry:
%shuffle = shufflevector <8 x float> %a, <8 x float> %b, <8 x i32> <i32 4, i32 5, i32 6, i32 7, i32 undef, i32 undef, i32 14, i32 15>
ret <8 x float> %shuffle
}
;;;; Cases we must not select vperm2f128
define <8 x float> @shuffle_v8f32_uu67ucuf(<8 x float> %a, <8 x float> %b) nounwind uwtable readnone ssp {
; ALL-LABEL: shuffle_v8f32_uu67ucuf:
; ALL: # %bb.0: # %entry
; ALL-NEXT: vperm2f128 {{.*#+}} ymm0 = ymm0[2,3],ymm1[2,3]
; ALL-NEXT: vpermilps {{.*#+}} ymm0 = ymm0[0,0,2,3,4,4,6,7]
; ALL-NEXT: retq
entry:
%shuffle = shufflevector <8 x float> %a, <8 x float> %b, <8 x i32> <i32 undef, i32 undef, i32 6, i32 7, i32 undef, i32 12, i32 undef, i32 15>
ret <8 x float> %shuffle
}
;; Test zero mask generation.
;; PR22984: https://llvm.org/bugs/show_bug.cgi?id=22984
;; Prefer xor+vblendpd over vperm2f128 because that has better performance.
;; TODO: When building for optsize we should use vperm2f128.
define <4 x double> @shuffle_v4f64_zz01(<4 x double> %a) {
; ALL-LABEL: shuffle_v4f64_zz01:
; ALL: # %bb.0:
; ALL-NEXT: vperm2f128 {{.*#+}} ymm0 = zero,zero,ymm0[0,1]
; ALL-NEXT: retq
%s = shufflevector <4 x double> %a, <4 x double> <double 0.0, double 0.0, double undef, double undef>, <4 x i32> <i32 4, i32 5, i32 0, i32 1>
ret <4 x double> %s
}
define <4 x double> @shuffle_v4f64_zz01_optsize(<4 x double> %a) optsize {
; ALL-LABEL: shuffle_v4f64_zz01_optsize:
; ALL: # %bb.0:
; ALL-NEXT: vperm2f128 {{.*#+}} ymm0 = zero,zero,ymm0[0,1]
; ALL-NEXT: retq
%s = shufflevector <4 x double> %a, <4 x double> <double 0.0, double 0.0, double undef, double undef>, <4 x i32> <i32 4, i32 5, i32 0, i32 1>
ret <4 x double> %s
}
define <4 x double> @shuffle_v4f64_zz23(<4 x double> %a) {
; ALL-LABEL: shuffle_v4f64_zz23:
; ALL: # %bb.0:
; ALL-NEXT: vxorps %xmm1, %xmm1, %xmm1
; ALL-NEXT: vblendps {{.*#+}} ymm0 = ymm1[0,1,2,3],ymm0[4,5,6,7]
; ALL-NEXT: retq
%s = shufflevector <4 x double> %a, <4 x double> <double 0.0, double 0.0, double undef, double undef>, <4 x i32> <i32 4, i32 5, i32 2, i32 3>
ret <4 x double> %s
}
define <4 x double> @shuffle_v4f64_zz23_optsize(<4 x double> %a) optsize {
; ALL-LABEL: shuffle_v4f64_zz23_optsize:
; ALL: # %bb.0:
; ALL-NEXT: vxorps %xmm1, %xmm1, %xmm1
; ALL-NEXT: vblendps {{.*#+}} ymm0 = ymm1[0,1,2,3],ymm0[4,5,6,7]
; ALL-NEXT: retq
%s = shufflevector <4 x double> %a, <4 x double> <double 0.0, double 0.0, double undef, double undef>, <4 x i32> <i32 4, i32 5, i32 2, i32 3>
ret <4 x double> %s
}
define <4 x double> @shuffle_v4f64_zz45(<4 x double> %a) {
; ALL-LABEL: shuffle_v4f64_zz45:
; ALL: # %bb.0:
; ALL-NEXT: vperm2f128 {{.*#+}} ymm0 = zero,zero,ymm0[0,1]
; ALL-NEXT: retq
%s = shufflevector <4 x double> <double 0.0, double 0.0, double undef, double undef>, <4 x double> %a, <4 x i32> <i32 0, i32 1, i32 4, i32 5>
ret <4 x double> %s
}
define <4 x double> @shuffle_v4f64_zz45_optsize(<4 x double> %a) optsize {
; ALL-LABEL: shuffle_v4f64_zz45_optsize:
; ALL: # %bb.0:
; ALL-NEXT: vperm2f128 {{.*#+}} ymm0 = zero,zero,ymm0[0,1]
; ALL-NEXT: retq
%s = shufflevector <4 x double> <double 0.0, double 0.0, double undef, double undef>, <4 x double> %a, <4 x i32> <i32 0, i32 1, i32 4, i32 5>
ret <4 x double> %s
}
define <4 x double> @shuffle_v4f64_zz67(<4 x double> %a) {
; ALL-LABEL: shuffle_v4f64_zz67:
; ALL: # %bb.0:
; ALL-NEXT: vxorps %xmm1, %xmm1, %xmm1
; ALL-NEXT: vblendps {{.*#+}} ymm0 = ymm1[0,1,2,3],ymm0[4,5,6,7]
; ALL-NEXT: retq
%s = shufflevector <4 x double> <double 0.0, double 0.0, double undef, double undef>, <4 x double> %a, <4 x i32> <i32 0, i32 1, i32 6, i32 7>
ret <4 x double> %s
}
define <4 x double> @shuffle_v4f64_zz67_optsize(<4 x double> %a) optsize {
; ALL-LABEL: shuffle_v4f64_zz67_optsize:
; ALL: # %bb.0:
; ALL-NEXT: vxorps %xmm1, %xmm1, %xmm1
; ALL-NEXT: vblendps {{.*#+}} ymm0 = ymm1[0,1,2,3],ymm0[4,5,6,7]
; ALL-NEXT: retq
%s = shufflevector <4 x double> <double 0.0, double 0.0, double undef, double undef>, <4 x double> %a, <4 x i32> <i32 0, i32 1, i32 6, i32 7>
ret <4 x double> %s
}
define <4 x double> @shuffle_v4f64_01zz(<4 x double> %a) {
; ALL-LABEL: shuffle_v4f64_01zz:
; ALL: # %bb.0:
; ALL-NEXT: vmovaps %xmm0, %xmm0
; ALL-NEXT: retq
%s = shufflevector <4 x double> %a, <4 x double> <double 0.0, double 0.0, double undef, double undef>, <4 x i32> <i32 0, i32 1, i32 4, i32 5>
ret <4 x double> %s
}
define <4 x double> @shuffle_v4f64_01zz_optsize(<4 x double> %a) optsize {
; ALL-LABEL: shuffle_v4f64_01zz_optsize:
; ALL: # %bb.0:
; ALL-NEXT: vmovaps %xmm0, %xmm0
; ALL-NEXT: retq
%s = shufflevector <4 x double> %a, <4 x double> <double 0.0, double 0.0, double undef, double undef>, <4 x i32> <i32 0, i32 1, i32 4, i32 5>
ret <4 x double> %s
}
define <4 x double> @shuffle_v4f64_23zz(<4 x double> %a) {
; ALL-LABEL: shuffle_v4f64_23zz:
; ALL: # %bb.0:
; ALL-NEXT: vperm2f128 {{.*#+}} ymm0 = ymm0[2,3],zero,zero
; ALL-NEXT: retq
%s = shufflevector <4 x double> %a, <4 x double> <double 0.0, double 0.0, double undef, double undef>, <4 x i32> <i32 2, i32 3, i32 4, i32 5>
ret <4 x double> %s
}
define <4 x double> @shuffle_v4f64_23zz_optsize(<4 x double> %a) optsize {
; ALL-LABEL: shuffle_v4f64_23zz_optsize:
; ALL: # %bb.0:
; ALL-NEXT: vperm2f128 {{.*#+}} ymm0 = ymm0[2,3],zero,zero
; ALL-NEXT: retq
%s = shufflevector <4 x double> %a, <4 x double> <double 0.0, double 0.0, double undef, double undef>, <4 x i32> <i32 2, i32 3, i32 4, i32 5>
ret <4 x double> %s
}
define <4 x double> @shuffle_v4f64_45zz(<4 x double> %a) {
; ALL-LABEL: shuffle_v4f64_45zz:
; ALL: # %bb.0:
; ALL-NEXT: vmovaps %xmm0, %xmm0
; ALL-NEXT: retq
%s = shufflevector <4 x double> <double 0.0, double 0.0, double undef, double undef>, <4 x double> %a, <4 x i32> <i32 4, i32 5, i32 0, i32 1>
ret <4 x double> %s
}
define <4 x double> @shuffle_v4f64_45zz_optsize(<4 x double> %a) optsize {
; ALL-LABEL: shuffle_v4f64_45zz_optsize:
; ALL: # %bb.0:
; ALL-NEXT: vmovaps %xmm0, %xmm0
; ALL-NEXT: retq
%s = shufflevector <4 x double> <double 0.0, double 0.0, double undef, double undef>, <4 x double> %a, <4 x i32> <i32 4, i32 5, i32 0, i32 1>
ret <4 x double> %s
}
define <4 x double> @shuffle_v4f64_67zz(<4 x double> %a) {
; ALL-LABEL: shuffle_v4f64_67zz:
; ALL: # %bb.0:
; ALL-NEXT: vperm2f128 {{.*#+}} ymm0 = ymm0[2,3],zero,zero
; ALL-NEXT: retq
%s = shufflevector <4 x double> <double 0.0, double 0.0, double undef, double undef>, <4 x double> %a, <4 x i32> <i32 6, i32 7, i32 0, i32 1>
ret <4 x double> %s
}
define <4 x double> @shuffle_v4f64_67zz_optsize(<4 x double> %a) optsize {
; ALL-LABEL: shuffle_v4f64_67zz_optsize:
; ALL: # %bb.0:
; ALL-NEXT: vperm2f128 {{.*#+}} ymm0 = ymm0[2,3],zero,zero
; ALL-NEXT: retq
%s = shufflevector <4 x double> <double 0.0, double 0.0, double undef, double undef>, <4 x double> %a, <4 x i32> <i32 6, i32 7, i32 0, i32 1>
ret <4 x double> %s
}
;; With AVX2 select the integer version of the instruction. Use an add to force the domain selection.
define <4 x i64> @shuffle_v4i64_67zz(<4 x i64> %a, <4 x i64> %b) {
; AVX1-LABEL: shuffle_v4i64_67zz:
; AVX1: # %bb.0:
; AVX1-NEXT: vextractf128 $1, %ymm0, %xmm0
; AVX1-NEXT: vpaddq %xmm0, %xmm1, %xmm0
; AVX1-NEXT: vblendps {{.*#+}} ymm0 = ymm0[0,1,2,3],ymm1[4,5,6,7]
; AVX1-NEXT: retq
;
; AVX2-LABEL: shuffle_v4i64_67zz:
; AVX2: # %bb.0:
; AVX2-NEXT: vperm2i128 {{.*#+}} ymm0 = ymm0[2,3],zero,zero
; AVX2-NEXT: vpaddq %ymm0, %ymm1, %ymm0
; AVX2-NEXT: retq
%s = shufflevector <4 x i64> <i64 0, i64 0, i64 undef, i64 undef>, <4 x i64> %a, <4 x i32> <i32 6, i32 7, i32 0, i32 1>
%c = add <4 x i64> %b, %s
ret <4 x i64> %c
}
;;; Memory folding cases
define <4 x double> @ld0_hi0_lo1_4f64(<4 x double> * %pa, <4 x double> %b) nounwind uwtable readnone ssp {
; AVX1-LABEL: ld0_hi0_lo1_4f64:
; AVX1: # %bb.0: # %entry
; AVX1-NEXT: vperm2f128 {{.*#+}} ymm0 = mem[2,3],ymm0[0,1]
; AVX1-NEXT: vaddpd {{.*}}(%rip), %ymm0, %ymm0
; AVX1-NEXT: retq
;
; AVX2-LABEL: ld0_hi0_lo1_4f64:
; AVX2: # %bb.0: # %entry
; AVX2-NEXT: vperm2f128 {{.*#+}} ymm0 = mem[2,3],ymm0[0,1]
; AVX2-NEXT: vbroadcastsd {{.*#+}} ymm1 = [1.0E+0,1.0E+0,1.0E+0,1.0E+0]
; AVX2-NEXT: vaddpd %ymm1, %ymm0, %ymm0
; AVX2-NEXT: retq
entry:
%a = load <4 x double>, <4 x double> * %pa
%shuffle = shufflevector <4 x double> %a, <4 x double> %b, <4 x i32> <i32 2, i32 3, i32 4, i32 5>
%res = fadd <4 x double> %shuffle, <double 1.0, double 1.0, double 1.0, double 1.0>
ret <4 x double> %res
}
define <4 x double> @ld1_hi0_hi1_4f64(<4 x double> %a, <4 x double> * %pb) nounwind uwtable readnone ssp {
; AVX1-LABEL: ld1_hi0_hi1_4f64:
; AVX1: # %bb.0: # %entry
; AVX1-NEXT: vperm2f128 {{.*#+}} ymm0 = ymm0[2,3],mem[2,3]
; AVX1-NEXT: vaddpd {{.*}}(%rip), %ymm0, %ymm0
; AVX1-NEXT: retq
;
; AVX2-LABEL: ld1_hi0_hi1_4f64:
; AVX2: # %bb.0: # %entry
; AVX2-NEXT: vperm2f128 {{.*#+}} ymm0 = ymm0[2,3],mem[2,3]
; AVX2-NEXT: vbroadcastsd {{.*#+}} ymm1 = [1.0E+0,1.0E+0,1.0E+0,1.0E+0]
; AVX2-NEXT: vaddpd %ymm1, %ymm0, %ymm0
; AVX2-NEXT: retq
entry:
%b = load <4 x double>, <4 x double> * %pb
%shuffle = shufflevector <4 x double> %a, <4 x double> %b, <4 x i32> <i32 2, i32 3, i32 6, i32 7>
%res = fadd <4 x double> %shuffle, <double 1.0, double 1.0, double 1.0, double 1.0>
ret <4 x double> %res
}
define <8 x float> @ld0_hi0_lo1_8f32(<8 x float> * %pa, <8 x float> %b) nounwind uwtable readnone ssp {
; AVX1-LABEL: ld0_hi0_lo1_8f32:
; AVX1: # %bb.0: # %entry
; AVX1-NEXT: vperm2f128 {{.*#+}} ymm0 = mem[2,3],ymm0[0,1]
; AVX1-NEXT: vaddps {{.*}}(%rip), %ymm0, %ymm0
; AVX1-NEXT: retq
;
; AVX2-LABEL: ld0_hi0_lo1_8f32:
; AVX2: # %bb.0: # %entry
; AVX2-NEXT: vperm2f128 {{.*#+}} ymm0 = mem[2,3],ymm0[0,1]
; AVX2-NEXT: vbroadcastss {{.*#+}} ymm1 = [1.0E+0,1.0E+0,1.0E+0,1.0E+0,1.0E+0,1.0E+0,1.0E+0,1.0E+0]
; AVX2-NEXT: vaddps %ymm1, %ymm0, %ymm0
; AVX2-NEXT: retq
entry:
%a = load <8 x float>, <8 x float> * %pa
%shuffle = shufflevector <8 x float> %a, <8 x float> %b, <8 x i32> <i32 4, i32 5, i32 6, i32 7, i32 8, i32 9, i32 10, i32 11>
%res = fadd <8 x float> %shuffle, <float 1.0, float 1.0, float 1.0, float 1.0, float 1.0, float 1.0, float 1.0, float 1.0>
ret <8 x float> %res
}
define <8 x float> @ld1_hi0_hi1_8f32(<8 x float> %a, <8 x float> * %pb) nounwind uwtable readnone ssp {
; AVX1-LABEL: ld1_hi0_hi1_8f32:
; AVX1: # %bb.0: # %entry
; AVX1-NEXT: vperm2f128 {{.*#+}} ymm0 = ymm0[2,3],mem[2,3]
; AVX1-NEXT: vaddps {{.*}}(%rip), %ymm0, %ymm0
; AVX1-NEXT: retq
;
; AVX2-LABEL: ld1_hi0_hi1_8f32:
; AVX2: # %bb.0: # %entry
; AVX2-NEXT: vperm2f128 {{.*#+}} ymm0 = ymm0[2,3],mem[2,3]
; AVX2-NEXT: vbroadcastss {{.*#+}} ymm1 = [1.0E+0,1.0E+0,1.0E+0,1.0E+0,1.0E+0,1.0E+0,1.0E+0,1.0E+0]
; AVX2-NEXT: vaddps %ymm1, %ymm0, %ymm0
; AVX2-NEXT: retq
entry:
%b = load <8 x float>, <8 x float> * %pb
%shuffle = shufflevector <8 x float> %a, <8 x float> %b, <8 x i32> <i32 4, i32 5, i32 6, i32 7, i32 12, i32 13, i32 14, i32 15>
%res = fadd <8 x float> %shuffle, <float 1.0, float 1.0, float 1.0, float 1.0, float 1.0, float 1.0, float 1.0, float 1.0>
ret <8 x float> %res
}
define <4 x i64> @ld0_hi0_lo1_4i64(<4 x i64> * %pa, <4 x i64> %b) nounwind uwtable readnone ssp {
; AVX1-LABEL: ld0_hi0_lo1_4i64:
; AVX1: # %bb.0: # %entry
; AVX1-NEXT: vperm2f128 {{.*#+}} ymm0 = mem[2,3],ymm0[0,1]
; AVX1-NEXT: vpaddq {{.*}}(%rip), %xmm0, %xmm1
; AVX1-NEXT: vextractf128 $1, %ymm0, %xmm0
; AVX1-NEXT: vpaddq {{.*}}(%rip), %xmm0, %xmm0
; AVX1-NEXT: vinsertf128 $1, %xmm0, %ymm1, %ymm0
; AVX1-NEXT: retq
;
; AVX2-LABEL: ld0_hi0_lo1_4i64:
; AVX2: # %bb.0: # %entry
; AVX2-NEXT: vperm2i128 {{.*#+}} ymm0 = mem[2,3],ymm0[0,1]
; AVX2-NEXT: vpaddq {{.*}}(%rip), %ymm0, %ymm0
; AVX2-NEXT: retq
entry:
%a = load <4 x i64>, <4 x i64> * %pa
%shuffle = shufflevector <4 x i64> %a, <4 x i64> %b, <4 x i32> <i32 2, i32 3, i32 4, i32 5>
%res = add <4 x i64> %shuffle, <i64 1, i64 2, i64 3, i64 4>
ret <4 x i64> %res
}
define <4 x i64> @ld1_hi0_hi1_4i64(<4 x i64> %a, <4 x i64> * %pb) nounwind uwtable readnone ssp {
; AVX1-LABEL: ld1_hi0_hi1_4i64:
; AVX1: # %bb.0: # %entry
; AVX1-NEXT: vperm2f128 {{.*#+}} ymm0 = ymm0[2,3],mem[2,3]
; AVX1-NEXT: vpaddq {{.*}}(%rip), %xmm0, %xmm1
; AVX1-NEXT: vextractf128 $1, %ymm0, %xmm0
; AVX1-NEXT: vpaddq {{.*}}(%rip), %xmm0, %xmm0
; AVX1-NEXT: vinsertf128 $1, %xmm0, %ymm1, %ymm0
; AVX1-NEXT: retq
;
; AVX2-LABEL: ld1_hi0_hi1_4i64:
; AVX2: # %bb.0: # %entry
; AVX2-NEXT: vperm2i128 {{.*#+}} ymm0 = ymm0[2,3],mem[2,3]
; AVX2-NEXT: vpaddq {{.*}}(%rip), %ymm0, %ymm0
; AVX2-NEXT: retq
entry:
%b = load <4 x i64>, <4 x i64> * %pb
%shuffle = shufflevector <4 x i64> %a, <4 x i64> %b, <4 x i32> <i32 2, i32 3, i32 6, i32 7>
%res = add <4 x i64> %shuffle, <i64 1, i64 2, i64 3, i64 4>
ret <4 x i64> %res
}
define <8 x i32> @ld0_hi0_lo1_8i32(<8 x i32> * %pa, <8 x i32> %b) nounwind uwtable readnone ssp {
; AVX1-LABEL: ld0_hi0_lo1_8i32:
; AVX1: # %bb.0: # %entry
; AVX1-NEXT: vperm2f128 {{.*#+}} ymm0 = mem[2,3],ymm0[0,1]
; AVX1-NEXT: vextractf128 $1, %ymm0, %xmm1
; AVX1-NEXT: vmovdqa {{.*#+}} xmm2 = [1,2,3,4]
; AVX1-NEXT: vpaddd %xmm2, %xmm1, %xmm1
; AVX1-NEXT: vpaddd %xmm2, %xmm0, %xmm0
; AVX1-NEXT: vinsertf128 $1, %xmm1, %ymm0, %ymm0
; AVX1-NEXT: retq
;
; AVX2-LABEL: ld0_hi0_lo1_8i32:
; AVX2: # %bb.0: # %entry
; AVX2-NEXT: vperm2i128 {{.*#+}} ymm0 = mem[2,3],ymm0[0,1]
; AVX2-NEXT: vpaddd {{.*}}(%rip), %ymm0, %ymm0
; AVX2-NEXT: retq
entry:
%a = load <8 x i32>, <8 x i32> * %pa
%shuffle = shufflevector <8 x i32> %a, <8 x i32> %b, <8 x i32> <i32 4, i32 5, i32 6, i32 7, i32 8, i32 9, i32 10, i32 11>
%res = add <8 x i32> %shuffle, <i32 1, i32 2, i32 3, i32 4, i32 1, i32 2, i32 3, i32 4>
ret <8 x i32> %res
}
define <8 x i32> @ld1_hi0_hi1_8i32(<8 x i32> %a, <8 x i32> * %pb) nounwind uwtable readnone ssp {
; AVX1-LABEL: ld1_hi0_hi1_8i32:
; AVX1: # %bb.0: # %entry
; AVX1-NEXT: vperm2f128 {{.*#+}} ymm0 = ymm0[2,3],mem[2,3]
; AVX1-NEXT: vextractf128 $1, %ymm0, %xmm1
; AVX1-NEXT: vmovdqa {{.*#+}} xmm2 = [1,2,3,4]
; AVX1-NEXT: vpaddd %xmm2, %xmm1, %xmm1
; AVX1-NEXT: vpaddd %xmm2, %xmm0, %xmm0
; AVX1-NEXT: vinsertf128 $1, %xmm1, %ymm0, %ymm0
; AVX1-NEXT: retq
;
; AVX2-LABEL: ld1_hi0_hi1_8i32:
; AVX2: # %bb.0: # %entry
; AVX2-NEXT: vperm2i128 {{.*#+}} ymm0 = ymm0[2,3],mem[2,3]
; AVX2-NEXT: vpaddd {{.*}}(%rip), %ymm0, %ymm0
; AVX2-NEXT: retq
entry:
%b = load <8 x i32>, <8 x i32> * %pb
%shuffle = shufflevector <8 x i32> %a, <8 x i32> %b, <8 x i32> <i32 4, i32 5, i32 6, i32 7, i32 12, i32 13, i32 14, i32 15>
%res = add <8 x i32> %shuffle, <i32 1, i32 2, i32 3, i32 4, i32 1, i32 2, i32 3, i32 4>
ret <8 x i32> %res
}