llvm-project/llvm/tools/llvm-exegesis/lib/Analysis.cpp

814 lines
30 KiB
C++
Raw Normal View History

//===-- Analysis.cpp --------------------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "Analysis.h"
#include "BenchmarkResult.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/Support/FormatVariadic.h"
#include <limits>
#include <unordered_set>
#include <vector>
namespace llvm {
namespace exegesis {
static const char kCsvSep = ',';
static unsigned resolveSchedClassId(const llvm::MCSubtargetInfo &STI,
unsigned SchedClassId,
const llvm::MCInst &MCI) {
const auto &SM = STI.getSchedModel();
while (SchedClassId && SM.getSchedClassDesc(SchedClassId)->isVariant())
SchedClassId =
STI.resolveVariantSchedClass(SchedClassId, &MCI, SM.getProcessorID());
return SchedClassId;
}
namespace {
enum EscapeTag { kEscapeCsv, kEscapeHtml, kEscapeHtmlString };
template <EscapeTag Tag>
void writeEscaped(llvm::raw_ostream &OS, const llvm::StringRef S);
template <>
void writeEscaped<kEscapeCsv>(llvm::raw_ostream &OS, const llvm::StringRef S) {
if (std::find(S.begin(), S.end(), kCsvSep) == S.end()) {
OS << S;
} else {
// Needs escaping.
OS << '"';
for (const char C : S) {
if (C == '"')
OS << "\"\"";
else
OS << C;
}
OS << '"';
}
}
template <>
void writeEscaped<kEscapeHtml>(llvm::raw_ostream &OS, const llvm::StringRef S) {
for (const char C : S) {
if (C == '<')
OS << "&lt;";
else if (C == '>')
OS << "&gt;";
else if (C == '&')
OS << "&amp;";
else
OS << C;
}
}
template <>
void writeEscaped<kEscapeHtmlString>(llvm::raw_ostream &OS,
const llvm::StringRef S) {
for (const char C : S) {
if (C == '"')
OS << "\\\"";
else
OS << C;
}
}
} // namespace
template <EscapeTag Tag>
static void
writeClusterId(llvm::raw_ostream &OS,
const InstructionBenchmarkClustering::ClusterId &CID) {
if (CID.isNoise())
writeEscaped<Tag>(OS, "[noise]");
else if (CID.isError())
writeEscaped<Tag>(OS, "[error]");
else
OS << CID.getId();
}
template <EscapeTag Tag>
static void writeMeasurementValue(llvm::raw_ostream &OS, const double Value) {
// Given Value, if we wanted to serialize it to a string,
// how many base-10 digits will we need to store, max?
static constexpr auto MaxDigitCount =
std::numeric_limits<decltype(Value)>::max_digits10;
// Also, we will need a decimal separator.
static constexpr auto DecimalSeparatorLen = 1; // '.' e.g.
// So how long of a string will the serialization produce, max?
static constexpr auto SerializationLen = MaxDigitCount + DecimalSeparatorLen;
// WARNING: when changing the format, also adjust the small-size estimate ^.
static constexpr StringLiteral SimpleFloatFormat = StringLiteral("{0:F}");
writeEscaped<Tag>(
OS,
llvm::formatv(SimpleFloatFormat.data(), Value).sstr<SerializationLen>());
}
template <typename EscapeTag, EscapeTag Tag>
void Analysis::writeSnippet(llvm::raw_ostream &OS,
llvm::ArrayRef<uint8_t> Bytes,
const char *Separator) const {
llvm::SmallVector<std::string, 3> Lines;
// Parse the asm snippet and print it.
while (!Bytes.empty()) {
llvm::MCInst MI;
uint64_t MISize = 0;
if (!Disasm_->getInstruction(MI, MISize, Bytes, 0, llvm::nulls(),
llvm::nulls())) {
writeEscaped<Tag>(OS, llvm::join(Lines, Separator));
writeEscaped<Tag>(OS, Separator);
writeEscaped<Tag>(OS, "[error decoding asm snippet]");
return;
}
llvm::SmallString<128> InstPrinterStr; // FIXME: magic number.
llvm::raw_svector_ostream OSS(InstPrinterStr);
InstPrinter_->printInst(&MI, OSS, "", *SubtargetInfo_);
Bytes = Bytes.drop_front(MISize);
Lines.emplace_back(llvm::StringRef(InstPrinterStr).trim());
}
writeEscaped<Tag>(OS, llvm::join(Lines, Separator));
}
// Prints a row representing an instruction, along with scheduling info and
// point coordinates (measurements).
void Analysis::printInstructionRowCsv(const size_t PointId,
llvm::raw_ostream &OS) const {
const InstructionBenchmark &Point = Clustering_.getPoints()[PointId];
writeClusterId<kEscapeCsv>(OS, Clustering_.getClusterIdForPoint(PointId));
OS << kCsvSep;
writeSnippet<EscapeTag, kEscapeCsv>(OS, Point.AssembledSnippet, "; ");
OS << kCsvSep;
writeEscaped<kEscapeCsv>(OS, Point.Key.Config);
OS << kCsvSep;
assert(!Point.Key.Instructions.empty());
const llvm::MCInst &MCI = Point.Key.Instructions[0];
const unsigned SchedClassId = resolveSchedClassId(
*SubtargetInfo_, InstrInfo_->get(MCI.getOpcode()).getSchedClass(), MCI);
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
const llvm::MCSchedClassDesc *const SCDesc =
SubtargetInfo_->getSchedModel().getSchedClassDesc(SchedClassId);
writeEscaped<kEscapeCsv>(OS, SCDesc->Name);
#else
OS << SchedClassId;
#endif
for (const auto &Measurement : Point.Measurements) {
OS << kCsvSep;
writeMeasurementValue<kEscapeCsv>(OS, Measurement.PerInstructionValue);
}
OS << "\n";
}
Analysis::Analysis(const llvm::Target &Target,
const InstructionBenchmarkClustering &Clustering)
: Clustering_(Clustering) {
if (Clustering.getPoints().empty())
return;
const InstructionBenchmark &FirstPoint = Clustering.getPoints().front();
InstrInfo_.reset(Target.createMCInstrInfo());
RegInfo_.reset(Target.createMCRegInfo(FirstPoint.LLVMTriple));
AsmInfo_.reset(Target.createMCAsmInfo(*RegInfo_, FirstPoint.LLVMTriple));
SubtargetInfo_.reset(Target.createMCSubtargetInfo(FirstPoint.LLVMTriple,
FirstPoint.CpuName, ""));
InstPrinter_.reset(Target.createMCInstPrinter(
llvm::Triple(FirstPoint.LLVMTriple), 0 /*default variant*/, *AsmInfo_,
*InstrInfo_, *RegInfo_));
Context_ = llvm::make_unique<llvm::MCContext>(AsmInfo_.get(), RegInfo_.get(),
&ObjectFileInfo_);
Disasm_.reset(Target.createMCDisassembler(*SubtargetInfo_, *Context_));
assert(Disasm_ && "cannot create MCDisassembler. missing call to "
"InitializeXXXTargetDisassembler ?");
}
template <>
llvm::Error
Analysis::run<Analysis::PrintClusters>(llvm::raw_ostream &OS) const {
if (Clustering_.getPoints().empty())
return llvm::Error::success();
// Write the header.
OS << "cluster_id" << kCsvSep << "opcode_name" << kCsvSep << "config"
<< kCsvSep << "sched_class";
for (const auto &Measurement : Clustering_.getPoints().front().Measurements) {
OS << kCsvSep;
writeEscaped<kEscapeCsv>(OS, Measurement.Key);
}
OS << "\n";
// Write the points.
const auto &Clusters = Clustering_.getValidClusters();
for (size_t I = 0, E = Clusters.size(); I < E; ++I) {
for (const size_t PointId : Clusters[I].PointIndices) {
printInstructionRowCsv(PointId, OS);
}
OS << "\n\n";
}
return llvm::Error::success();
}
Analysis::ResolvedSchedClassAndPoints::ResolvedSchedClassAndPoints(
ResolvedSchedClass &&RSC)
: RSC(std::move(RSC)) {}
std::vector<Analysis::ResolvedSchedClassAndPoints>
Analysis::makePointsPerSchedClass() const {
std::vector<ResolvedSchedClassAndPoints> Entries;
// Maps SchedClassIds to index in result.
std::unordered_map<unsigned, size_t> SchedClassIdToIndex;
const auto &Points = Clustering_.getPoints();
for (size_t PointId = 0, E = Points.size(); PointId < E; ++PointId) {
const InstructionBenchmark &Point = Points[PointId];
if (!Point.Error.empty())
continue;
assert(!Point.Key.Instructions.empty());
// FIXME: we should be using the tuple of classes for instructions in the
// snippet as key.
const llvm::MCInst &MCI = Point.Key.Instructions[0];
unsigned SchedClassId = InstrInfo_->get(MCI.getOpcode()).getSchedClass();
const bool WasVariant = SchedClassId && SubtargetInfo_->getSchedModel()
.getSchedClassDesc(SchedClassId)
->isVariant();
SchedClassId = resolveSchedClassId(*SubtargetInfo_, SchedClassId, MCI);
const auto IndexIt = SchedClassIdToIndex.find(SchedClassId);
if (IndexIt == SchedClassIdToIndex.end()) {
// Create a new entry.
SchedClassIdToIndex.emplace(SchedClassId, Entries.size());
ResolvedSchedClassAndPoints Entry(
ResolvedSchedClass(*SubtargetInfo_, SchedClassId, WasVariant));
Entry.PointIds.push_back(PointId);
Entries.push_back(std::move(Entry));
} else {
// Append to the existing entry.
Entries[IndexIt->second].PointIds.push_back(PointId);
}
}
return Entries;
}
// Uops repeat the same opcode over again. Just show this opcode and show the
// whole snippet only on hover.
static void writeUopsSnippetHtml(llvm::raw_ostream &OS,
const std::vector<llvm::MCInst> &Instructions,
const llvm::MCInstrInfo &InstrInfo) {
if (Instructions.empty())
return;
writeEscaped<kEscapeHtml>(OS, InstrInfo.getName(Instructions[0].getOpcode()));
if (Instructions.size() > 1)
OS << " (x" << Instructions.size() << ")";
}
// Latency tries to find a serial path. Just show the opcode path and show the
// whole snippet only on hover.
static void
writeLatencySnippetHtml(llvm::raw_ostream &OS,
const std::vector<llvm::MCInst> &Instructions,
const llvm::MCInstrInfo &InstrInfo) {
bool First = true;
for (const llvm::MCInst &Instr : Instructions) {
if (First)
First = false;
else
OS << " &rarr; ";
writeEscaped<kEscapeHtml>(OS, InstrInfo.getName(Instr.getOpcode()));
}
}
void Analysis::printSchedClassClustersHtml(
const std::vector<SchedClassCluster> &Clusters,
const ResolvedSchedClass &RSC, llvm::raw_ostream &OS) const {
const auto &Points = Clustering_.getPoints();
OS << "<table class=\"sched-class-clusters\">";
OS << "<tr><th>ClusterId</th><th>Opcode/Config</th>";
assert(!Clusters.empty());
for (const auto &Measurement :
Points[Clusters[0].getPointIds()[0]].Measurements) {
OS << "<th>";
writeEscaped<kEscapeHtml>(OS, Measurement.Key);
OS << "</th>";
}
OS << "</tr>";
for (const SchedClassCluster &Cluster : Clusters) {
OS << "<tr class=\""
<< (Cluster.measurementsMatch(*SubtargetInfo_, RSC, Clustering_)
? "good-cluster"
: "bad-cluster")
<< "\"><td>";
writeClusterId<kEscapeHtml>(OS, Cluster.id());
OS << "</td><td><ul>";
for (const size_t PointId : Cluster.getPointIds()) {
const auto &Point = Points[PointId];
OS << "<li><span class=\"mono\" title=\"";
writeSnippet<EscapeTag, kEscapeHtmlString>(OS, Point.AssembledSnippet,
"\n");
OS << "\">";
switch (Point.Mode) {
case InstructionBenchmark::Latency:
writeLatencySnippetHtml(OS, Point.Key.Instructions, *InstrInfo_);
break;
case InstructionBenchmark::Uops:
writeUopsSnippetHtml(OS, Point.Key.Instructions, *InstrInfo_);
break;
default:
llvm_unreachable("invalid mode");
}
OS << "</span> <span class=\"mono\">";
writeEscaped<kEscapeHtml>(OS, Point.Key.Config);
OS << "</span></li>";
}
OS << "</ul></td>";
for (const auto &Stats : Cluster.getRepresentative()) {
OS << "<td class=\"measurement\">";
writeMeasurementValue<kEscapeHtml>(OS, Stats.avg());
OS << "<br><span class=\"minmax\">[";
writeMeasurementValue<kEscapeHtml>(OS, Stats.min());
OS << ";";
writeMeasurementValue<kEscapeHtml>(OS, Stats.max());
OS << "]</span></td>";
}
OS << "</tr>";
}
OS << "</table>";
}
// Return the non-redundant list of WriteProcRes used by the given sched class.
// The scheduling model for LLVM is such that each instruction has a certain
// number of uops which consume resources which are described by WriteProcRes
// entries. Each entry describe how many cycles are spent on a specific ProcRes
// kind.
// For example, an instruction might have 3 uOps, one dispatching on P0
// (ProcResIdx=1) and two on P06 (ProcResIdx = 7).
// Note that LLVM additionally denormalizes resource consumption to include
// usage of super resources by subresources. So in practice if there exists a
// P016 (ProcResIdx=10), then the cycles consumed by P0 are also consumed by
// P06 (ProcResIdx = 7) and P016 (ProcResIdx = 10), and the resources consumed
// by P06 are also consumed by P016. In the figure below, parenthesized cycles
// denote implied usage of superresources by subresources:
// P0 P06 P016
// uOp1 1 (1) (1)
// uOp2 1 (1)
// uOp3 1 (1)
// =============================
// 1 3 3
// Eventually we end up with three entries for the WriteProcRes of the
// instruction:
// {ProcResIdx=1, Cycles=1} // P0
// {ProcResIdx=7, Cycles=3} // P06
// {ProcResIdx=10, Cycles=3} // P016
//
// Note that in this case, P016 does not contribute any cycles, so it would
// be removed by this function.
// FIXME: Move this to MCSubtargetInfo and use it in llvm-mca.
static llvm::SmallVector<llvm::MCWriteProcResEntry, 8>
getNonRedundantWriteProcRes(const llvm::MCSchedClassDesc &SCDesc,
const llvm::MCSubtargetInfo &STI) {
llvm::SmallVector<llvm::MCWriteProcResEntry, 8> Result;
const auto &SM = STI.getSchedModel();
const unsigned NumProcRes = SM.getNumProcResourceKinds();
// This assumes that the ProcResDescs are sorted in topological order, which
// is guaranteed by the tablegen backend.
llvm::SmallVector<float, 32> ProcResUnitUsage(NumProcRes);
for (const auto *WPR = STI.getWriteProcResBegin(&SCDesc),
*const WPREnd = STI.getWriteProcResEnd(&SCDesc);
WPR != WPREnd; ++WPR) {
const llvm::MCProcResourceDesc *const ProcResDesc =
SM.getProcResource(WPR->ProcResourceIdx);
if (ProcResDesc->SubUnitsIdxBegin == nullptr) {
// This is a ProcResUnit.
Result.push_back({WPR->ProcResourceIdx, WPR->Cycles});
ProcResUnitUsage[WPR->ProcResourceIdx] += WPR->Cycles;
} else {
// This is a ProcResGroup. First see if it contributes any cycles or if
// it has cycles just from subunits.
float RemainingCycles = WPR->Cycles;
for (const auto *SubResIdx = ProcResDesc->SubUnitsIdxBegin;
SubResIdx != ProcResDesc->SubUnitsIdxBegin + ProcResDesc->NumUnits;
++SubResIdx) {
RemainingCycles -= ProcResUnitUsage[*SubResIdx];
}
if (RemainingCycles < 0.01f) {
// The ProcResGroup contributes no cycles of its own.
continue;
}
// The ProcResGroup contributes `RemainingCycles` cycles of its own.
Result.push_back({WPR->ProcResourceIdx,
static_cast<uint16_t>(std::round(RemainingCycles))});
// Spread the remaining cycles over all subunits.
for (const auto *SubResIdx = ProcResDesc->SubUnitsIdxBegin;
SubResIdx != ProcResDesc->SubUnitsIdxBegin + ProcResDesc->NumUnits;
++SubResIdx) {
ProcResUnitUsage[*SubResIdx] += RemainingCycles / ProcResDesc->NumUnits;
}
}
}
return Result;
}
Analysis::ResolvedSchedClass::ResolvedSchedClass(
const llvm::MCSubtargetInfo &STI, unsigned ResolvedSchedClassId,
bool WasVariant)
: SchedClassId(ResolvedSchedClassId), SCDesc(STI.getSchedModel().getSchedClassDesc(ResolvedSchedClassId)),
WasVariant(WasVariant),
NonRedundantWriteProcRes(getNonRedundantWriteProcRes(*SCDesc, STI)),
IdealizedProcResPressure(computeIdealizedProcResPressure(
STI.getSchedModel(), NonRedundantWriteProcRes)) {
assert((SCDesc == nullptr || !SCDesc->isVariant()) &&
"ResolvedSchedClass should never be variant");
}
void Analysis::SchedClassCluster::addPoint(
size_t PointId, const InstructionBenchmarkClustering &Clustering) {
PointIds.push_back(PointId);
const auto &Point = Clustering.getPoints()[PointId];
if (ClusterId.isUndef()) {
ClusterId = Clustering.getClusterIdForPoint(PointId);
Representative.resize(Point.Measurements.size());
}
for (size_t I = 0, E = Point.Measurements.size(); I < E; ++I) {
Representative[I].push(Point.Measurements[I]);
}
assert(ClusterId == Clustering.getClusterIdForPoint(PointId));
}
// Returns a ProxResIdx by id or name.
static unsigned findProcResIdx(const llvm::MCSubtargetInfo &STI,
const llvm::StringRef NameOrId) {
// Interpret the key as an ProcResIdx.
unsigned ProcResIdx = 0;
if (llvm::to_integer(NameOrId, ProcResIdx, 10))
return ProcResIdx;
// Interpret the key as a ProcRes name.
const auto &SchedModel = STI.getSchedModel();
for (int I = 0, E = SchedModel.getNumProcResourceKinds(); I < E; ++I) {
if (NameOrId == SchedModel.getProcResource(I)->Name)
return I;
}
return 0;
}
bool Analysis::SchedClassCluster::measurementsMatch(
const llvm::MCSubtargetInfo &STI, const ResolvedSchedClass &RSC,
const InstructionBenchmarkClustering &Clustering) const {
const size_t NumMeasurements = Representative.size();
std::vector<BenchmarkMeasure> ClusterCenterPoint(NumMeasurements);
std::vector<BenchmarkMeasure> SchedClassPoint(NumMeasurements);
// Latency case.
assert(!Clustering.getPoints().empty());
const InstructionBenchmark::ModeE Mode = Clustering.getPoints()[0].Mode;
if (Mode == InstructionBenchmark::Latency) {
if (NumMeasurements != 1) {
llvm::errs()
<< "invalid number of measurements in latency mode: expected 1, got "
<< NumMeasurements << "\n";
return false;
}
// Find the latency.
SchedClassPoint[0].PerInstructionValue = 0.0;
for (unsigned I = 0; I < RSC.SCDesc->NumWriteLatencyEntries; ++I) {
const llvm::MCWriteLatencyEntry *const WLE =
STI.getWriteLatencyEntry(RSC.SCDesc, I);
SchedClassPoint[0].PerInstructionValue =
std::max<double>(SchedClassPoint[0].PerInstructionValue, WLE->Cycles);
}
ClusterCenterPoint[0].PerInstructionValue = Representative[0].avg();
} else if (Mode == InstructionBenchmark::Uops) {
for (int I = 0, E = Representative.size(); I < E; ++I) {
const auto Key = Representative[I].key();
uint16_t ProcResIdx = findProcResIdx(STI, Key);
if (ProcResIdx > 0) {
// Find the pressure on ProcResIdx `Key`.
const auto ProcResPressureIt =
std::find_if(RSC.IdealizedProcResPressure.begin(),
RSC.IdealizedProcResPressure.end(),
[ProcResIdx](const std::pair<uint16_t, float> &WPR) {
return WPR.first == ProcResIdx;
});
SchedClassPoint[I].PerInstructionValue =
ProcResPressureIt == RSC.IdealizedProcResPressure.end()
? 0.0
: ProcResPressureIt->second;
} else if (Key == "NumMicroOps") {
SchedClassPoint[I].PerInstructionValue = RSC.SCDesc->NumMicroOps;
} else {
llvm::errs() << "expected `key` to be either a ProcResIdx or a ProcRes "
"name, got "
<< Key << "\n";
return false;
}
ClusterCenterPoint[I].PerInstructionValue = Representative[I].avg();
}
} else {
llvm::errs() << "unimplemented measurement matching for mode " << Mode
<< "\n";
return false;
}
return Clustering.isNeighbour(ClusterCenterPoint, SchedClassPoint);
}
void Analysis::printSchedClassDescHtml(const ResolvedSchedClass &RSC,
llvm::raw_ostream &OS) const {
OS << "<table class=\"sched-class-desc\">";
OS << "<tr><th>Valid</th><th>Variant</th><th>NumMicroOps</th><th>Latency</"
"th><th>WriteProcRes</th><th title=\"This is the idealized unit "
"resource (port) pressure assuming ideal distribution\">Idealized "
"Resource Pressure</th></tr>";
if (RSC.SCDesc->isValid()) {
const auto &SM = SubtargetInfo_->getSchedModel();
OS << "<tr><td>&#10004;</td>";
OS << "<td>" << (RSC.WasVariant ? "&#10004;" : "&#10005;") << "</td>";
OS << "<td>" << RSC.SCDesc->NumMicroOps << "</td>";
// Latencies.
OS << "<td><ul>";
for (int I = 0, E = RSC.SCDesc->NumWriteLatencyEntries; I < E; ++I) {
const auto *const Entry =
SubtargetInfo_->getWriteLatencyEntry(RSC.SCDesc, I);
OS << "<li>" << Entry->Cycles;
if (RSC.SCDesc->NumWriteLatencyEntries > 1) {
// Dismabiguate if more than 1 latency.
OS << " (WriteResourceID " << Entry->WriteResourceID << ")";
}
OS << "</li>";
}
OS << "</ul></td>";
// WriteProcRes.
OS << "<td><ul>";
for (const auto &WPR : RSC.NonRedundantWriteProcRes) {
OS << "<li><span class=\"mono\">";
writeEscaped<kEscapeHtml>(OS,
SM.getProcResource(WPR.ProcResourceIdx)->Name);
OS << "</span>: " << WPR.Cycles << "</li>";
}
OS << "</ul></td>";
// Idealized port pressure.
OS << "<td><ul>";
for (const auto &Pressure : RSC.IdealizedProcResPressure) {
OS << "<li><span class=\"mono\">";
writeEscaped<kEscapeHtml>(OS, SubtargetInfo_->getSchedModel()
.getProcResource(Pressure.first)
->Name);
OS << "</span>: ";
writeMeasurementValue<kEscapeHtml>(OS, Pressure.second);
OS << "</li>";
}
OS << "</ul></td>";
OS << "</tr>";
} else {
OS << "<tr><td>&#10005;</td><td></td><td></td></tr>";
}
OS << "</table>";
}
static constexpr const char kHtmlHead[] = R"(
<head>
<title>llvm-exegesis Analysis Results</title>
<style>
body {
font-family: sans-serif
}
span.sched-class-name {
font-weight: bold;
font-family: monospace;
}
span.opcode {
font-family: monospace;
}
span.config {
font-family: monospace;
}
div.inconsistency {
margin-top: 50px;
}
table {
margin-left: 50px;
border-collapse: collapse;
}
table, table tr,td,th {
border: 1px solid #444;
}
table ul {
padding-left: 0px;
margin: 0px;
list-style-type: none;
}
table.sched-class-clusters td {
padding-left: 10px;
padding-right: 10px;
padding-top: 10px;
padding-bottom: 10px;
}
table.sched-class-desc td {
padding-left: 10px;
padding-right: 10px;
padding-top: 2px;
padding-bottom: 2px;
}
span.mono {
font-family: monospace;
}
td.measurement {
text-align: center;
}
tr.good-cluster td.measurement {
color: #292
}
tr.bad-cluster td.measurement {
color: #922
}
tr.good-cluster td.measurement span.minmax {
color: #888;
}
tr.bad-cluster td.measurement span.minmax {
color: #888;
}
</style>
</head>
)";
template <>
llvm::Error Analysis::run<Analysis::PrintSchedClassInconsistencies>(
llvm::raw_ostream &OS) const {
const auto &FirstPoint = Clustering_.getPoints()[0];
// Print the header.
OS << "<!DOCTYPE html><html>" << kHtmlHead << "<body>";
OS << "<h1><span class=\"mono\">llvm-exegesis</span> Analysis Results</h1>";
OS << "<h3>Triple: <span class=\"mono\">";
writeEscaped<kEscapeHtml>(OS, FirstPoint.LLVMTriple);
OS << "</span></h3><h3>Cpu: <span class=\"mono\">";
writeEscaped<kEscapeHtml>(OS, FirstPoint.CpuName);
OS << "</span></h3>";
for (const auto &RSCAndPoints : makePointsPerSchedClass()) {
if (!RSCAndPoints.RSC.SCDesc)
continue;
// Bucket sched class points into sched class clusters.
std::vector<SchedClassCluster> SchedClassClusters;
for (const size_t PointId : RSCAndPoints.PointIds) {
const auto &ClusterId = Clustering_.getClusterIdForPoint(PointId);
if (!ClusterId.isValid())
continue; // Ignore noise and errors. FIXME: take noise into account ?
auto SchedClassClusterIt =
std::find_if(SchedClassClusters.begin(), SchedClassClusters.end(),
[ClusterId](const SchedClassCluster &C) {
return C.id() == ClusterId;
});
if (SchedClassClusterIt == SchedClassClusters.end()) {
SchedClassClusters.emplace_back();
SchedClassClusterIt = std::prev(SchedClassClusters.end());
}
SchedClassClusterIt->addPoint(PointId, Clustering_);
}
// Print any scheduling class that has at least one cluster that does not
// match the checked-in data.
if (llvm::all_of(SchedClassClusters,
[this, &RSCAndPoints](const SchedClassCluster &C) {
return C.measurementsMatch(
*SubtargetInfo_, RSCAndPoints.RSC, Clustering_);
}))
continue; // Nothing weird.
OS << "<div class=\"inconsistency\"><p>Sched Class <span "
"class=\"sched-class-name\">";
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
writeEscaped<kEscapeHtml>(OS, RSCAndPoints.RSC.SCDesc->Name);
#else
OS << RSCAndPoints.RSC.SchedClassId;
#endif
OS << "</span> contains instructions whose performance characteristics do"
" not match that of LLVM:</p>";
printSchedClassClustersHtml(SchedClassClusters, RSCAndPoints.RSC, OS);
OS << "<p>llvm SchedModel data:</p>";
printSchedClassDescHtml(RSCAndPoints.RSC, OS);
OS << "</div>";
}
OS << "</body></html>";
return llvm::Error::success();
}
// Distributes a pressure budget as evenly as possible on the provided subunits
// given the already existing port pressure distribution.
//
// The algorithm is as follows: while there is remaining pressure to
// distribute, find the subunits with minimal pressure, and distribute
// remaining pressure equally up to the pressure of the unit with
// second-to-minimal pressure.
// For example, let's assume we want to distribute 2*P1256
// (Subunits = [P1,P2,P5,P6]), and the starting DensePressure is:
// DensePressure = P0 P1 P2 P3 P4 P5 P6 P7
// 0.1 0.3 0.2 0.0 0.0 0.5 0.5 0.5
// RemainingPressure = 2.0
// We sort the subunits by pressure:
// Subunits = [(P2,p=0.2), (P1,p=0.3), (P5,p=0.5), (P6, p=0.5)]
// We'll first start by the subunits with minimal pressure, which are at
// the beginning of the sorted array. In this example there is one (P2).
// The subunit with second-to-minimal pressure is the next one in the
// array (P1). So we distribute 0.1 pressure to P2, and remove 0.1 cycles
// from the budget.
// Subunits = [(P2,p=0.3), (P1,p=0.3), (P5,p=0.5), (P5,p=0.5)]
// RemainingPressure = 1.9
// We repeat this process: distribute 0.2 pressure on each of the minimal
// P2 and P1, decrease budget by 2*0.2:
// Subunits = [(P2,p=0.5), (P1,p=0.5), (P5,p=0.5), (P5,p=0.5)]
// RemainingPressure = 1.5
// There are no second-to-minimal subunits so we just share the remaining
// budget (1.5 cycles) equally:
// Subunits = [(P2,p=0.875), (P1,p=0.875), (P5,p=0.875), (P5,p=0.875)]
// RemainingPressure = 0.0
// We stop as there is no remaining budget to distribute.
void distributePressure(float RemainingPressure,
llvm::SmallVector<uint16_t, 32> Subunits,
llvm::SmallVector<float, 32> &DensePressure) {
// Find the number of subunits with minimal pressure (they are at the
// front).
llvm::sort(Subunits, [&DensePressure](const uint16_t A, const uint16_t B) {
return DensePressure[A] < DensePressure[B];
});
const auto getPressureForSubunit = [&DensePressure,
&Subunits](size_t I) -> float & {
return DensePressure[Subunits[I]];
};
size_t NumMinimalSU = 1;
while (NumMinimalSU < Subunits.size() &&
getPressureForSubunit(NumMinimalSU) == getPressureForSubunit(0)) {
++NumMinimalSU;
}
while (RemainingPressure > 0.0f) {
if (NumMinimalSU == Subunits.size()) {
// All units are minimal, just distribute evenly and be done.
for (size_t I = 0; I < NumMinimalSU; ++I) {
getPressureForSubunit(I) += RemainingPressure / NumMinimalSU;
}
return;
}
// Distribute the remaining pressure equally.
const float MinimalPressure = getPressureForSubunit(NumMinimalSU - 1);
const float SecondToMinimalPressure = getPressureForSubunit(NumMinimalSU);
assert(MinimalPressure < SecondToMinimalPressure);
const float Increment = SecondToMinimalPressure - MinimalPressure;
if (RemainingPressure <= NumMinimalSU * Increment) {
// There is not enough remaining pressure.
for (size_t I = 0; I < NumMinimalSU; ++I) {
getPressureForSubunit(I) += RemainingPressure / NumMinimalSU;
}
return;
}
// Bump all minimal pressure subunits to `SecondToMinimalPressure`.
for (size_t I = 0; I < NumMinimalSU; ++I) {
getPressureForSubunit(I) = SecondToMinimalPressure;
RemainingPressure -= SecondToMinimalPressure;
}
while (NumMinimalSU < Subunits.size() &&
getPressureForSubunit(NumMinimalSU) == SecondToMinimalPressure) {
++NumMinimalSU;
}
}
}
std::vector<std::pair<uint16_t, float>> computeIdealizedProcResPressure(
const llvm::MCSchedModel &SM,
llvm::SmallVector<llvm::MCWriteProcResEntry, 8> WPRS) {
// DensePressure[I] is the port pressure for Proc Resource I.
llvm::SmallVector<float, 32> DensePressure(SM.getNumProcResourceKinds());
llvm::sort(WPRS, [](const llvm::MCWriteProcResEntry &A,
const llvm::MCWriteProcResEntry &B) {
return A.ProcResourceIdx < B.ProcResourceIdx;
});
for (const llvm::MCWriteProcResEntry &WPR : WPRS) {
// Get units for the entry.
const llvm::MCProcResourceDesc *const ProcResDesc =
SM.getProcResource(WPR.ProcResourceIdx);
if (ProcResDesc->SubUnitsIdxBegin == nullptr) {
// This is a ProcResUnit.
DensePressure[WPR.ProcResourceIdx] += WPR.Cycles;
} else {
// This is a ProcResGroup.
llvm::SmallVector<uint16_t, 32> Subunits(ProcResDesc->SubUnitsIdxBegin,
ProcResDesc->SubUnitsIdxBegin +
ProcResDesc->NumUnits);
distributePressure(WPR.Cycles, Subunits, DensePressure);
}
}
// Turn dense pressure into sparse pressure by removing zero entries.
std::vector<std::pair<uint16_t, float>> Pressure;
for (unsigned I = 0, E = SM.getNumProcResourceKinds(); I < E; ++I) {
if (DensePressure[I] > 0.0f)
Pressure.emplace_back(I, DensePressure[I]);
}
return Pressure;
}
} // namespace exegesis
} // namespace llvm