llvm-project/llvm/test/CodeGen/X86/avx-intrinsics-x86.ll

2494 lines
89 KiB
LLVM
Raw Normal View History

; RUN: llc < %s -mtriple=x86_64-apple-darwin -march=x86 -mcpu=corei7-avx | FileCheck %s
define <2 x i64> @test_x86_aesni_aesdec(<2 x i64> %a0, <2 x i64> %a1) {
; CHECK: vaesdec
%res = call <2 x i64> @llvm.x86.aesni.aesdec(<2 x i64> %a0, <2 x i64> %a1) ; <<2 x i64>> [#uses=1]
ret <2 x i64> %res
}
declare <2 x i64> @llvm.x86.aesni.aesdec(<2 x i64>, <2 x i64>) nounwind readnone
define <2 x i64> @test_x86_aesni_aesdeclast(<2 x i64> %a0, <2 x i64> %a1) {
; CHECK: vaesdeclast
%res = call <2 x i64> @llvm.x86.aesni.aesdeclast(<2 x i64> %a0, <2 x i64> %a1) ; <<2 x i64>> [#uses=1]
ret <2 x i64> %res
}
declare <2 x i64> @llvm.x86.aesni.aesdeclast(<2 x i64>, <2 x i64>) nounwind readnone
define <2 x i64> @test_x86_aesni_aesenc(<2 x i64> %a0, <2 x i64> %a1) {
; CHECK: vaesenc
%res = call <2 x i64> @llvm.x86.aesni.aesenc(<2 x i64> %a0, <2 x i64> %a1) ; <<2 x i64>> [#uses=1]
ret <2 x i64> %res
}
declare <2 x i64> @llvm.x86.aesni.aesenc(<2 x i64>, <2 x i64>) nounwind readnone
define <2 x i64> @test_x86_aesni_aesenclast(<2 x i64> %a0, <2 x i64> %a1) {
; CHECK: vaesenclast
%res = call <2 x i64> @llvm.x86.aesni.aesenclast(<2 x i64> %a0, <2 x i64> %a1) ; <<2 x i64>> [#uses=1]
ret <2 x i64> %res
}
declare <2 x i64> @llvm.x86.aesni.aesenclast(<2 x i64>, <2 x i64>) nounwind readnone
define <2 x i64> @test_x86_aesni_aesimc(<2 x i64> %a0) {
; CHECK: vaesimc
%res = call <2 x i64> @llvm.x86.aesni.aesimc(<2 x i64> %a0) ; <<2 x i64>> [#uses=1]
ret <2 x i64> %res
}
declare <2 x i64> @llvm.x86.aesni.aesimc(<2 x i64>) nounwind readnone
define <2 x i64> @test_x86_aesni_aeskeygenassist(<2 x i64> %a0) {
; CHECK: vaeskeygenassist
%res = call <2 x i64> @llvm.x86.aesni.aeskeygenassist(<2 x i64> %a0, i8 7) ; <<2 x i64>> [#uses=1]
ret <2 x i64> %res
}
declare <2 x i64> @llvm.x86.aesni.aeskeygenassist(<2 x i64>, i8) nounwind readnone
define <2 x double> @test_x86_sse2_add_sd(<2 x double> %a0, <2 x double> %a1) {
; CHECK: vaddsd
%res = call <2 x double> @llvm.x86.sse2.add.sd(<2 x double> %a0, <2 x double> %a1) ; <<2 x double>> [#uses=1]
ret <2 x double> %res
}
declare <2 x double> @llvm.x86.sse2.add.sd(<2 x double>, <2 x double>) nounwind readnone
define <2 x double> @test_x86_sse2_cmp_pd(<2 x double> %a0, <2 x double> %a1) {
; CHECK: vcmpordpd
%res = call <2 x double> @llvm.x86.sse2.cmp.pd(<2 x double> %a0, <2 x double> %a1, i8 7) ; <<2 x double>> [#uses=1]
ret <2 x double> %res
}
declare <2 x double> @llvm.x86.sse2.cmp.pd(<2 x double>, <2 x double>, i8) nounwind readnone
define <2 x double> @test_x86_sse2_cmp_sd(<2 x double> %a0, <2 x double> %a1) {
; CHECK: vcmpordsd
%res = call <2 x double> @llvm.x86.sse2.cmp.sd(<2 x double> %a0, <2 x double> %a1, i8 7) ; <<2 x double>> [#uses=1]
ret <2 x double> %res
}
declare <2 x double> @llvm.x86.sse2.cmp.sd(<2 x double>, <2 x double>, i8) nounwind readnone
define i32 @test_x86_sse2_comieq_sd(<2 x double> %a0, <2 x double> %a1) {
; CHECK: vcomisd
; CHECK: sete
; CHECK: movzbl
%res = call i32 @llvm.x86.sse2.comieq.sd(<2 x double> %a0, <2 x double> %a1) ; <i32> [#uses=1]
ret i32 %res
}
declare i32 @llvm.x86.sse2.comieq.sd(<2 x double>, <2 x double>) nounwind readnone
define i32 @test_x86_sse2_comige_sd(<2 x double> %a0, <2 x double> %a1) {
; CHECK: vcomisd
; CHECK: setae
; CHECK: movzbl
%res = call i32 @llvm.x86.sse2.comige.sd(<2 x double> %a0, <2 x double> %a1) ; <i32> [#uses=1]
ret i32 %res
}
declare i32 @llvm.x86.sse2.comige.sd(<2 x double>, <2 x double>) nounwind readnone
define i32 @test_x86_sse2_comigt_sd(<2 x double> %a0, <2 x double> %a1) {
; CHECK: vcomisd
; CHECK: seta
; CHECK: movzbl
%res = call i32 @llvm.x86.sse2.comigt.sd(<2 x double> %a0, <2 x double> %a1) ; <i32> [#uses=1]
ret i32 %res
}
declare i32 @llvm.x86.sse2.comigt.sd(<2 x double>, <2 x double>) nounwind readnone
define i32 @test_x86_sse2_comile_sd(<2 x double> %a0, <2 x double> %a1) {
; CHECK: vcomisd
; CHECK: setbe
; CHECK: movzbl
%res = call i32 @llvm.x86.sse2.comile.sd(<2 x double> %a0, <2 x double> %a1) ; <i32> [#uses=1]
ret i32 %res
}
declare i32 @llvm.x86.sse2.comile.sd(<2 x double>, <2 x double>) nounwind readnone
define i32 @test_x86_sse2_comilt_sd(<2 x double> %a0, <2 x double> %a1) {
; CHECK: vcomisd
; CHECK: sbbl %eax, %eax
; CHECK: andl $1, %eax
%res = call i32 @llvm.x86.sse2.comilt.sd(<2 x double> %a0, <2 x double> %a1) ; <i32> [#uses=1]
ret i32 %res
}
declare i32 @llvm.x86.sse2.comilt.sd(<2 x double>, <2 x double>) nounwind readnone
define i32 @test_x86_sse2_comineq_sd(<2 x double> %a0, <2 x double> %a1) {
; CHECK: vcomisd
; CHECK: setne
; CHECK: movzbl
%res = call i32 @llvm.x86.sse2.comineq.sd(<2 x double> %a0, <2 x double> %a1) ; <i32> [#uses=1]
ret i32 %res
}
declare i32 @llvm.x86.sse2.comineq.sd(<2 x double>, <2 x double>) nounwind readnone
define <2 x double> @test_x86_sse2_cvtdq2pd(<4 x i32> %a0) {
; CHECK: vcvtdq2pd
%res = call <2 x double> @llvm.x86.sse2.cvtdq2pd(<4 x i32> %a0) ; <<2 x double>> [#uses=1]
ret <2 x double> %res
}
declare <2 x double> @llvm.x86.sse2.cvtdq2pd(<4 x i32>) nounwind readnone
define <4 x float> @test_x86_sse2_cvtdq2ps(<4 x i32> %a0) {
; CHECK: vcvtdq2ps
%res = call <4 x float> @llvm.x86.sse2.cvtdq2ps(<4 x i32> %a0) ; <<4 x float>> [#uses=1]
ret <4 x float> %res
}
declare <4 x float> @llvm.x86.sse2.cvtdq2ps(<4 x i32>) nounwind readnone
define <4 x i32> @test_x86_sse2_cvtpd2dq(<2 x double> %a0) {
; CHECK: vcvtpd2dq
%res = call <4 x i32> @llvm.x86.sse2.cvtpd2dq(<2 x double> %a0) ; <<4 x i32>> [#uses=1]
ret <4 x i32> %res
}
declare <4 x i32> @llvm.x86.sse2.cvtpd2dq(<2 x double>) nounwind readnone
define <4 x float> @test_x86_sse2_cvtpd2ps(<2 x double> %a0) {
; CHECK: vcvtpd2ps
%res = call <4 x float> @llvm.x86.sse2.cvtpd2ps(<2 x double> %a0) ; <<4 x float>> [#uses=1]
ret <4 x float> %res
}
declare <4 x float> @llvm.x86.sse2.cvtpd2ps(<2 x double>) nounwind readnone
define <4 x i32> @test_x86_sse2_cvtps2dq(<4 x float> %a0) {
; CHECK: vcvtps2dq
%res = call <4 x i32> @llvm.x86.sse2.cvtps2dq(<4 x float> %a0) ; <<4 x i32>> [#uses=1]
ret <4 x i32> %res
}
declare <4 x i32> @llvm.x86.sse2.cvtps2dq(<4 x float>) nounwind readnone
define <2 x double> @test_x86_sse2_cvtps2pd(<4 x float> %a0) {
; CHECK: vcvtps2pd
%res = call <2 x double> @llvm.x86.sse2.cvtps2pd(<4 x float> %a0) ; <<2 x double>> [#uses=1]
ret <2 x double> %res
}
declare <2 x double> @llvm.x86.sse2.cvtps2pd(<4 x float>) nounwind readnone
define i32 @test_x86_sse2_cvtsd2si(<2 x double> %a0) {
; CHECK: vcvtsd2si
%res = call i32 @llvm.x86.sse2.cvtsd2si(<2 x double> %a0) ; <i32> [#uses=1]
ret i32 %res
}
declare i32 @llvm.x86.sse2.cvtsd2si(<2 x double>) nounwind readnone
define <4 x float> @test_x86_sse2_cvtsd2ss(<4 x float> %a0, <2 x double> %a1) {
; CHECK: vcvtsd2ss
%res = call <4 x float> @llvm.x86.sse2.cvtsd2ss(<4 x float> %a0, <2 x double> %a1) ; <<4 x float>> [#uses=1]
ret <4 x float> %res
}
declare <4 x float> @llvm.x86.sse2.cvtsd2ss(<4 x float>, <2 x double>) nounwind readnone
define <2 x double> @test_x86_sse2_cvtsi2sd(<2 x double> %a0) {
; CHECK: movl
; CHECK: vcvtsi2sd
%res = call <2 x double> @llvm.x86.sse2.cvtsi2sd(<2 x double> %a0, i32 7) ; <<2 x double>> [#uses=1]
ret <2 x double> %res
}
declare <2 x double> @llvm.x86.sse2.cvtsi2sd(<2 x double>, i32) nounwind readnone
define <2 x double> @test_x86_sse2_cvtss2sd(<2 x double> %a0, <4 x float> %a1) {
; CHECK: vcvtss2sd
%res = call <2 x double> @llvm.x86.sse2.cvtss2sd(<2 x double> %a0, <4 x float> %a1) ; <<2 x double>> [#uses=1]
ret <2 x double> %res
}
declare <2 x double> @llvm.x86.sse2.cvtss2sd(<2 x double>, <4 x float>) nounwind readnone
define <4 x i32> @test_x86_sse2_cvttpd2dq(<2 x double> %a0) {
; CHECK: vcvttpd2dq
%res = call <4 x i32> @llvm.x86.sse2.cvttpd2dq(<2 x double> %a0) ; <<4 x i32>> [#uses=1]
ret <4 x i32> %res
}
declare <4 x i32> @llvm.x86.sse2.cvttpd2dq(<2 x double>) nounwind readnone
define <4 x i32> @test_x86_sse2_cvttps2dq(<4 x float> %a0) {
; CHECK: vcvttps2dq
%res = call <4 x i32> @llvm.x86.sse2.cvttps2dq(<4 x float> %a0) ; <<4 x i32>> [#uses=1]
ret <4 x i32> %res
}
declare <4 x i32> @llvm.x86.sse2.cvttps2dq(<4 x float>) nounwind readnone
define i32 @test_x86_sse2_cvttsd2si(<2 x double> %a0) {
; CHECK: vcvttsd2si
%res = call i32 @llvm.x86.sse2.cvttsd2si(<2 x double> %a0) ; <i32> [#uses=1]
ret i32 %res
}
declare i32 @llvm.x86.sse2.cvttsd2si(<2 x double>) nounwind readnone
define <2 x double> @test_x86_sse2_div_sd(<2 x double> %a0, <2 x double> %a1) {
; CHECK: vdivsd
%res = call <2 x double> @llvm.x86.sse2.div.sd(<2 x double> %a0, <2 x double> %a1) ; <<2 x double>> [#uses=1]
ret <2 x double> %res
}
declare <2 x double> @llvm.x86.sse2.div.sd(<2 x double>, <2 x double>) nounwind readnone
define <2 x double> @test_x86_sse2_max_pd(<2 x double> %a0, <2 x double> %a1) {
; CHECK: vmaxpd
%res = call <2 x double> @llvm.x86.sse2.max.pd(<2 x double> %a0, <2 x double> %a1) ; <<2 x double>> [#uses=1]
ret <2 x double> %res
}
declare <2 x double> @llvm.x86.sse2.max.pd(<2 x double>, <2 x double>) nounwind readnone
define <2 x double> @test_x86_sse2_max_sd(<2 x double> %a0, <2 x double> %a1) {
; CHECK: vmaxsd
%res = call <2 x double> @llvm.x86.sse2.max.sd(<2 x double> %a0, <2 x double> %a1) ; <<2 x double>> [#uses=1]
ret <2 x double> %res
}
declare <2 x double> @llvm.x86.sse2.max.sd(<2 x double>, <2 x double>) nounwind readnone
define <2 x double> @test_x86_sse2_min_pd(<2 x double> %a0, <2 x double> %a1) {
; CHECK: vminpd
%res = call <2 x double> @llvm.x86.sse2.min.pd(<2 x double> %a0, <2 x double> %a1) ; <<2 x double>> [#uses=1]
ret <2 x double> %res
}
declare <2 x double> @llvm.x86.sse2.min.pd(<2 x double>, <2 x double>) nounwind readnone
define <2 x double> @test_x86_sse2_min_sd(<2 x double> %a0, <2 x double> %a1) {
; CHECK: vminsd
%res = call <2 x double> @llvm.x86.sse2.min.sd(<2 x double> %a0, <2 x double> %a1) ; <<2 x double>> [#uses=1]
ret <2 x double> %res
}
declare <2 x double> @llvm.x86.sse2.min.sd(<2 x double>, <2 x double>) nounwind readnone
define i32 @test_x86_sse2_movmsk_pd(<2 x double> %a0) {
; CHECK: vmovmskpd
%res = call i32 @llvm.x86.sse2.movmsk.pd(<2 x double> %a0) ; <i32> [#uses=1]
ret i32 %res
}
declare i32 @llvm.x86.sse2.movmsk.pd(<2 x double>) nounwind readnone
define <2 x double> @test_x86_sse2_mul_sd(<2 x double> %a0, <2 x double> %a1) {
; CHECK: test_x86_sse2_mul_sd
; CHECK: vmulsd
%res = call <2 x double> @llvm.x86.sse2.mul.sd(<2 x double> %a0, <2 x double> %a1) ; <<2 x double>> [#uses=1]
ret <2 x double> %res
}
declare <2 x double> @llvm.x86.sse2.mul.sd(<2 x double>, <2 x double>) nounwind readnone
define <8 x i16> @test_x86_sse2_packssdw_128(<4 x i32> %a0, <4 x i32> %a1) {
; CHECK: vpackssdw
%res = call <8 x i16> @llvm.x86.sse2.packssdw.128(<4 x i32> %a0, <4 x i32> %a1) ; <<8 x i16>> [#uses=1]
ret <8 x i16> %res
}
declare <8 x i16> @llvm.x86.sse2.packssdw.128(<4 x i32>, <4 x i32>) nounwind readnone
define <16 x i8> @test_x86_sse2_packsswb_128(<8 x i16> %a0, <8 x i16> %a1) {
; CHECK: vpacksswb
%res = call <16 x i8> @llvm.x86.sse2.packsswb.128(<8 x i16> %a0, <8 x i16> %a1) ; <<16 x i8>> [#uses=1]
ret <16 x i8> %res
}
declare <16 x i8> @llvm.x86.sse2.packsswb.128(<8 x i16>, <8 x i16>) nounwind readnone
define <16 x i8> @test_x86_sse2_packuswb_128(<8 x i16> %a0, <8 x i16> %a1) {
; CHECK: vpackuswb
%res = call <16 x i8> @llvm.x86.sse2.packuswb.128(<8 x i16> %a0, <8 x i16> %a1) ; <<16 x i8>> [#uses=1]
ret <16 x i8> %res
}
declare <16 x i8> @llvm.x86.sse2.packuswb.128(<8 x i16>, <8 x i16>) nounwind readnone
define <16 x i8> @test_x86_sse2_padds_b(<16 x i8> %a0, <16 x i8> %a1) {
; CHECK: vpaddsb
%res = call <16 x i8> @llvm.x86.sse2.padds.b(<16 x i8> %a0, <16 x i8> %a1) ; <<16 x i8>> [#uses=1]
ret <16 x i8> %res
}
declare <16 x i8> @llvm.x86.sse2.padds.b(<16 x i8>, <16 x i8>) nounwind readnone
define <8 x i16> @test_x86_sse2_padds_w(<8 x i16> %a0, <8 x i16> %a1) {
; CHECK: vpaddsw
%res = call <8 x i16> @llvm.x86.sse2.padds.w(<8 x i16> %a0, <8 x i16> %a1) ; <<8 x i16>> [#uses=1]
ret <8 x i16> %res
}
declare <8 x i16> @llvm.x86.sse2.padds.w(<8 x i16>, <8 x i16>) nounwind readnone
define <16 x i8> @test_x86_sse2_paddus_b(<16 x i8> %a0, <16 x i8> %a1) {
; CHECK: vpaddusb
%res = call <16 x i8> @llvm.x86.sse2.paddus.b(<16 x i8> %a0, <16 x i8> %a1) ; <<16 x i8>> [#uses=1]
ret <16 x i8> %res
}
declare <16 x i8> @llvm.x86.sse2.paddus.b(<16 x i8>, <16 x i8>) nounwind readnone
define <8 x i16> @test_x86_sse2_paddus_w(<8 x i16> %a0, <8 x i16> %a1) {
; CHECK: vpaddusw
%res = call <8 x i16> @llvm.x86.sse2.paddus.w(<8 x i16> %a0, <8 x i16> %a1) ; <<8 x i16>> [#uses=1]
ret <8 x i16> %res
}
declare <8 x i16> @llvm.x86.sse2.paddus.w(<8 x i16>, <8 x i16>) nounwind readnone
define <16 x i8> @test_x86_sse2_pavg_b(<16 x i8> %a0, <16 x i8> %a1) {
; CHECK: vpavgb
%res = call <16 x i8> @llvm.x86.sse2.pavg.b(<16 x i8> %a0, <16 x i8> %a1) ; <<16 x i8>> [#uses=1]
ret <16 x i8> %res
}
declare <16 x i8> @llvm.x86.sse2.pavg.b(<16 x i8>, <16 x i8>) nounwind readnone
define <8 x i16> @test_x86_sse2_pavg_w(<8 x i16> %a0, <8 x i16> %a1) {
; CHECK: vpavgw
%res = call <8 x i16> @llvm.x86.sse2.pavg.w(<8 x i16> %a0, <8 x i16> %a1) ; <<8 x i16>> [#uses=1]
ret <8 x i16> %res
}
declare <8 x i16> @llvm.x86.sse2.pavg.w(<8 x i16>, <8 x i16>) nounwind readnone
define <4 x i32> @test_x86_sse2_pmadd_wd(<8 x i16> %a0, <8 x i16> %a1) {
; CHECK: vpmaddwd
%res = call <4 x i32> @llvm.x86.sse2.pmadd.wd(<8 x i16> %a0, <8 x i16> %a1) ; <<4 x i32>> [#uses=1]
ret <4 x i32> %res
}
declare <4 x i32> @llvm.x86.sse2.pmadd.wd(<8 x i16>, <8 x i16>) nounwind readnone
define <8 x i16> @test_x86_sse2_pmaxs_w(<8 x i16> %a0, <8 x i16> %a1) {
; CHECK: vpmaxsw
%res = call <8 x i16> @llvm.x86.sse2.pmaxs.w(<8 x i16> %a0, <8 x i16> %a1) ; <<8 x i16>> [#uses=1]
ret <8 x i16> %res
}
declare <8 x i16> @llvm.x86.sse2.pmaxs.w(<8 x i16>, <8 x i16>) nounwind readnone
define <16 x i8> @test_x86_sse2_pmaxu_b(<16 x i8> %a0, <16 x i8> %a1) {
; CHECK: vpmaxub
%res = call <16 x i8> @llvm.x86.sse2.pmaxu.b(<16 x i8> %a0, <16 x i8> %a1) ; <<16 x i8>> [#uses=1]
ret <16 x i8> %res
}
declare <16 x i8> @llvm.x86.sse2.pmaxu.b(<16 x i8>, <16 x i8>) nounwind readnone
define <8 x i16> @test_x86_sse2_pmins_w(<8 x i16> %a0, <8 x i16> %a1) {
; CHECK: vpminsw
%res = call <8 x i16> @llvm.x86.sse2.pmins.w(<8 x i16> %a0, <8 x i16> %a1) ; <<8 x i16>> [#uses=1]
ret <8 x i16> %res
}
declare <8 x i16> @llvm.x86.sse2.pmins.w(<8 x i16>, <8 x i16>) nounwind readnone
define <16 x i8> @test_x86_sse2_pminu_b(<16 x i8> %a0, <16 x i8> %a1) {
; CHECK: vpminub
%res = call <16 x i8> @llvm.x86.sse2.pminu.b(<16 x i8> %a0, <16 x i8> %a1) ; <<16 x i8>> [#uses=1]
ret <16 x i8> %res
}
declare <16 x i8> @llvm.x86.sse2.pminu.b(<16 x i8>, <16 x i8>) nounwind readnone
define i32 @test_x86_sse2_pmovmskb_128(<16 x i8> %a0) {
; CHECK: vpmovmskb
%res = call i32 @llvm.x86.sse2.pmovmskb.128(<16 x i8> %a0) ; <i32> [#uses=1]
ret i32 %res
}
declare i32 @llvm.x86.sse2.pmovmskb.128(<16 x i8>) nounwind readnone
define <8 x i16> @test_x86_sse2_pmulh_w(<8 x i16> %a0, <8 x i16> %a1) {
; CHECK: vpmulhw
%res = call <8 x i16> @llvm.x86.sse2.pmulh.w(<8 x i16> %a0, <8 x i16> %a1) ; <<8 x i16>> [#uses=1]
ret <8 x i16> %res
}
declare <8 x i16> @llvm.x86.sse2.pmulh.w(<8 x i16>, <8 x i16>) nounwind readnone
define <8 x i16> @test_x86_sse2_pmulhu_w(<8 x i16> %a0, <8 x i16> %a1) {
; CHECK: vpmulhuw
%res = call <8 x i16> @llvm.x86.sse2.pmulhu.w(<8 x i16> %a0, <8 x i16> %a1) ; <<8 x i16>> [#uses=1]
ret <8 x i16> %res
}
declare <8 x i16> @llvm.x86.sse2.pmulhu.w(<8 x i16>, <8 x i16>) nounwind readnone
define <2 x i64> @test_x86_sse2_pmulu_dq(<4 x i32> %a0, <4 x i32> %a1) {
; CHECK: vpmuludq
%res = call <2 x i64> @llvm.x86.sse2.pmulu.dq(<4 x i32> %a0, <4 x i32> %a1) ; <<2 x i64>> [#uses=1]
ret <2 x i64> %res
}
declare <2 x i64> @llvm.x86.sse2.pmulu.dq(<4 x i32>, <4 x i32>) nounwind readnone
define <2 x i64> @test_x86_sse2_psad_bw(<16 x i8> %a0, <16 x i8> %a1) {
; CHECK: vpsadbw
%res = call <2 x i64> @llvm.x86.sse2.psad.bw(<16 x i8> %a0, <16 x i8> %a1) ; <<2 x i64>> [#uses=1]
ret <2 x i64> %res
}
declare <2 x i64> @llvm.x86.sse2.psad.bw(<16 x i8>, <16 x i8>) nounwind readnone
define <4 x i32> @test_x86_sse2_psll_d(<4 x i32> %a0, <4 x i32> %a1) {
; CHECK: vpslld
%res = call <4 x i32> @llvm.x86.sse2.psll.d(<4 x i32> %a0, <4 x i32> %a1) ; <<4 x i32>> [#uses=1]
ret <4 x i32> %res
}
declare <4 x i32> @llvm.x86.sse2.psll.d(<4 x i32>, <4 x i32>) nounwind readnone
define <2 x i64> @test_x86_sse2_psll_q(<2 x i64> %a0, <2 x i64> %a1) {
; CHECK: vpsllq
%res = call <2 x i64> @llvm.x86.sse2.psll.q(<2 x i64> %a0, <2 x i64> %a1) ; <<2 x i64>> [#uses=1]
ret <2 x i64> %res
}
declare <2 x i64> @llvm.x86.sse2.psll.q(<2 x i64>, <2 x i64>) nounwind readnone
define <8 x i16> @test_x86_sse2_psll_w(<8 x i16> %a0, <8 x i16> %a1) {
; CHECK: vpsllw
%res = call <8 x i16> @llvm.x86.sse2.psll.w(<8 x i16> %a0, <8 x i16> %a1) ; <<8 x i16>> [#uses=1]
ret <8 x i16> %res
}
declare <8 x i16> @llvm.x86.sse2.psll.w(<8 x i16>, <8 x i16>) nounwind readnone
define <4 x i32> @test_x86_sse2_pslli_d(<4 x i32> %a0) {
; CHECK: vpslld
%res = call <4 x i32> @llvm.x86.sse2.pslli.d(<4 x i32> %a0, i32 7) ; <<4 x i32>> [#uses=1]
ret <4 x i32> %res
}
declare <4 x i32> @llvm.x86.sse2.pslli.d(<4 x i32>, i32) nounwind readnone
define <2 x i64> @test_x86_sse2_pslli_q(<2 x i64> %a0) {
; CHECK: vpsllq
%res = call <2 x i64> @llvm.x86.sse2.pslli.q(<2 x i64> %a0, i32 7) ; <<2 x i64>> [#uses=1]
ret <2 x i64> %res
}
declare <2 x i64> @llvm.x86.sse2.pslli.q(<2 x i64>, i32) nounwind readnone
define <8 x i16> @test_x86_sse2_pslli_w(<8 x i16> %a0) {
; CHECK: vpsllw
%res = call <8 x i16> @llvm.x86.sse2.pslli.w(<8 x i16> %a0, i32 7) ; <<8 x i16>> [#uses=1]
ret <8 x i16> %res
}
declare <8 x i16> @llvm.x86.sse2.pslli.w(<8 x i16>, i32) nounwind readnone
define <4 x i32> @test_x86_sse2_psra_d(<4 x i32> %a0, <4 x i32> %a1) {
; CHECK: vpsrad
%res = call <4 x i32> @llvm.x86.sse2.psra.d(<4 x i32> %a0, <4 x i32> %a1) ; <<4 x i32>> [#uses=1]
ret <4 x i32> %res
}
declare <4 x i32> @llvm.x86.sse2.psra.d(<4 x i32>, <4 x i32>) nounwind readnone
define <8 x i16> @test_x86_sse2_psra_w(<8 x i16> %a0, <8 x i16> %a1) {
; CHECK: vpsraw
%res = call <8 x i16> @llvm.x86.sse2.psra.w(<8 x i16> %a0, <8 x i16> %a1) ; <<8 x i16>> [#uses=1]
ret <8 x i16> %res
}
declare <8 x i16> @llvm.x86.sse2.psra.w(<8 x i16>, <8 x i16>) nounwind readnone
define <4 x i32> @test_x86_sse2_psrai_d(<4 x i32> %a0) {
; CHECK: vpsrad
%res = call <4 x i32> @llvm.x86.sse2.psrai.d(<4 x i32> %a0, i32 7) ; <<4 x i32>> [#uses=1]
ret <4 x i32> %res
}
declare <4 x i32> @llvm.x86.sse2.psrai.d(<4 x i32>, i32) nounwind readnone
define <8 x i16> @test_x86_sse2_psrai_w(<8 x i16> %a0) {
; CHECK: vpsraw
%res = call <8 x i16> @llvm.x86.sse2.psrai.w(<8 x i16> %a0, i32 7) ; <<8 x i16>> [#uses=1]
ret <8 x i16> %res
}
declare <8 x i16> @llvm.x86.sse2.psrai.w(<8 x i16>, i32) nounwind readnone
define <4 x i32> @test_x86_sse2_psrl_d(<4 x i32> %a0, <4 x i32> %a1) {
; CHECK: vpsrld
%res = call <4 x i32> @llvm.x86.sse2.psrl.d(<4 x i32> %a0, <4 x i32> %a1) ; <<4 x i32>> [#uses=1]
ret <4 x i32> %res
}
declare <4 x i32> @llvm.x86.sse2.psrl.d(<4 x i32>, <4 x i32>) nounwind readnone
define <2 x i64> @test_x86_sse2_psrl_q(<2 x i64> %a0, <2 x i64> %a1) {
; CHECK: vpsrlq
%res = call <2 x i64> @llvm.x86.sse2.psrl.q(<2 x i64> %a0, <2 x i64> %a1) ; <<2 x i64>> [#uses=1]
ret <2 x i64> %res
}
declare <2 x i64> @llvm.x86.sse2.psrl.q(<2 x i64>, <2 x i64>) nounwind readnone
define <8 x i16> @test_x86_sse2_psrl_w(<8 x i16> %a0, <8 x i16> %a1) {
; CHECK: vpsrlw
%res = call <8 x i16> @llvm.x86.sse2.psrl.w(<8 x i16> %a0, <8 x i16> %a1) ; <<8 x i16>> [#uses=1]
ret <8 x i16> %res
}
declare <8 x i16> @llvm.x86.sse2.psrl.w(<8 x i16>, <8 x i16>) nounwind readnone
define <4 x i32> @test_x86_sse2_psrli_d(<4 x i32> %a0) {
; CHECK: vpsrld
%res = call <4 x i32> @llvm.x86.sse2.psrli.d(<4 x i32> %a0, i32 7) ; <<4 x i32>> [#uses=1]
ret <4 x i32> %res
}
declare <4 x i32> @llvm.x86.sse2.psrli.d(<4 x i32>, i32) nounwind readnone
define <2 x i64> @test_x86_sse2_psrli_q(<2 x i64> %a0) {
; CHECK: vpsrlq
%res = call <2 x i64> @llvm.x86.sse2.psrli.q(<2 x i64> %a0, i32 7) ; <<2 x i64>> [#uses=1]
ret <2 x i64> %res
}
declare <2 x i64> @llvm.x86.sse2.psrli.q(<2 x i64>, i32) nounwind readnone
define <8 x i16> @test_x86_sse2_psrli_w(<8 x i16> %a0) {
; CHECK: vpsrlw
%res = call <8 x i16> @llvm.x86.sse2.psrli.w(<8 x i16> %a0, i32 7) ; <<8 x i16>> [#uses=1]
ret <8 x i16> %res
}
declare <8 x i16> @llvm.x86.sse2.psrli.w(<8 x i16>, i32) nounwind readnone
define <16 x i8> @test_x86_sse2_psubs_b(<16 x i8> %a0, <16 x i8> %a1) {
; CHECK: vpsubsb
%res = call <16 x i8> @llvm.x86.sse2.psubs.b(<16 x i8> %a0, <16 x i8> %a1) ; <<16 x i8>> [#uses=1]
ret <16 x i8> %res
}
declare <16 x i8> @llvm.x86.sse2.psubs.b(<16 x i8>, <16 x i8>) nounwind readnone
define <8 x i16> @test_x86_sse2_psubs_w(<8 x i16> %a0, <8 x i16> %a1) {
; CHECK: vpsubsw
%res = call <8 x i16> @llvm.x86.sse2.psubs.w(<8 x i16> %a0, <8 x i16> %a1) ; <<8 x i16>> [#uses=1]
ret <8 x i16> %res
}
declare <8 x i16> @llvm.x86.sse2.psubs.w(<8 x i16>, <8 x i16>) nounwind readnone
define <16 x i8> @test_x86_sse2_psubus_b(<16 x i8> %a0, <16 x i8> %a1) {
; CHECK: vpsubusb
%res = call <16 x i8> @llvm.x86.sse2.psubus.b(<16 x i8> %a0, <16 x i8> %a1) ; <<16 x i8>> [#uses=1]
ret <16 x i8> %res
}
declare <16 x i8> @llvm.x86.sse2.psubus.b(<16 x i8>, <16 x i8>) nounwind readnone
define <8 x i16> @test_x86_sse2_psubus_w(<8 x i16> %a0, <8 x i16> %a1) {
; CHECK: vpsubusw
%res = call <8 x i16> @llvm.x86.sse2.psubus.w(<8 x i16> %a0, <8 x i16> %a1) ; <<8 x i16>> [#uses=1]
ret <8 x i16> %res
}
declare <8 x i16> @llvm.x86.sse2.psubus.w(<8 x i16>, <8 x i16>) nounwind readnone
define <2 x double> @test_x86_sse2_sqrt_pd(<2 x double> %a0) {
; CHECK: vsqrtpd
%res = call <2 x double> @llvm.x86.sse2.sqrt.pd(<2 x double> %a0) ; <<2 x double>> [#uses=1]
ret <2 x double> %res
}
declare <2 x double> @llvm.x86.sse2.sqrt.pd(<2 x double>) nounwind readnone
define <2 x double> @test_x86_sse2_sqrt_sd(<2 x double> %a0) {
; CHECK: vsqrtsd
%res = call <2 x double> @llvm.x86.sse2.sqrt.sd(<2 x double> %a0) ; <<2 x double>> [#uses=1]
ret <2 x double> %res
}
declare <2 x double> @llvm.x86.sse2.sqrt.sd(<2 x double>) nounwind readnone
define void @test_x86_sse2_storel_dq(i8* %a0, <4 x i32> %a1) {
; CHECK: test_x86_sse2_storel_dq
; CHECK: movl
; CHECK: vmovq
call void @llvm.x86.sse2.storel.dq(i8* %a0, <4 x i32> %a1)
ret void
}
declare void @llvm.x86.sse2.storel.dq(i8*, <4 x i32>) nounwind
define void @test_x86_sse2_storeu_dq(i8* %a0, <16 x i8> %a1) {
; CHECK: test_x86_sse2_storeu_dq
; CHECK: movl
; CHECK: vmovdqu
; add operation forces the execution domain.
%a2 = add <16 x i8> %a1, <i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1>
call void @llvm.x86.sse2.storeu.dq(i8* %a0, <16 x i8> %a2)
ret void
}
declare void @llvm.x86.sse2.storeu.dq(i8*, <16 x i8>) nounwind
define void @test_x86_sse2_storeu_pd(i8* %a0, <2 x double> %a1) {
; CHECK: test_x86_sse2_storeu_pd
; CHECK: movl
; CHECK: vmovupd
; fadd operation forces the execution domain.
%a2 = fadd <2 x double> %a1, <double 0x0, double 0x4200000000000000>
call void @llvm.x86.sse2.storeu.pd(i8* %a0, <2 x double> %a2)
ret void
}
declare void @llvm.x86.sse2.storeu.pd(i8*, <2 x double>) nounwind
define <2 x double> @test_x86_sse2_sub_sd(<2 x double> %a0, <2 x double> %a1) {
; CHECK: test_x86_sse2_sub_sd
; CHECK: vsubsd
%res = call <2 x double> @llvm.x86.sse2.sub.sd(<2 x double> %a0, <2 x double> %a1) ; <<2 x double>> [#uses=1]
ret <2 x double> %res
}
declare <2 x double> @llvm.x86.sse2.sub.sd(<2 x double>, <2 x double>) nounwind readnone
define i32 @test_x86_sse2_ucomieq_sd(<2 x double> %a0, <2 x double> %a1) {
; CHECK: vucomisd
; CHECK: sete
; CHECK: movzbl
%res = call i32 @llvm.x86.sse2.ucomieq.sd(<2 x double> %a0, <2 x double> %a1) ; <i32> [#uses=1]
ret i32 %res
}
declare i32 @llvm.x86.sse2.ucomieq.sd(<2 x double>, <2 x double>) nounwind readnone
define i32 @test_x86_sse2_ucomige_sd(<2 x double> %a0, <2 x double> %a1) {
; CHECK: vucomisd
; CHECK: setae
; CHECK: movzbl
%res = call i32 @llvm.x86.sse2.ucomige.sd(<2 x double> %a0, <2 x double> %a1) ; <i32> [#uses=1]
ret i32 %res
}
declare i32 @llvm.x86.sse2.ucomige.sd(<2 x double>, <2 x double>) nounwind readnone
define i32 @test_x86_sse2_ucomigt_sd(<2 x double> %a0, <2 x double> %a1) {
; CHECK: vucomisd
; CHECK: seta
; CHECK: movzbl
%res = call i32 @llvm.x86.sse2.ucomigt.sd(<2 x double> %a0, <2 x double> %a1) ; <i32> [#uses=1]
ret i32 %res
}
declare i32 @llvm.x86.sse2.ucomigt.sd(<2 x double>, <2 x double>) nounwind readnone
define i32 @test_x86_sse2_ucomile_sd(<2 x double> %a0, <2 x double> %a1) {
; CHECK: vucomisd
; CHECK: setbe
; CHECK: movzbl
%res = call i32 @llvm.x86.sse2.ucomile.sd(<2 x double> %a0, <2 x double> %a1) ; <i32> [#uses=1]
ret i32 %res
}
declare i32 @llvm.x86.sse2.ucomile.sd(<2 x double>, <2 x double>) nounwind readnone
define i32 @test_x86_sse2_ucomilt_sd(<2 x double> %a0, <2 x double> %a1) {
; CHECK: vucomisd
; CHECK: sbbl
%res = call i32 @llvm.x86.sse2.ucomilt.sd(<2 x double> %a0, <2 x double> %a1) ; <i32> [#uses=1]
ret i32 %res
}
declare i32 @llvm.x86.sse2.ucomilt.sd(<2 x double>, <2 x double>) nounwind readnone
define i32 @test_x86_sse2_ucomineq_sd(<2 x double> %a0, <2 x double> %a1) {
; CHECK: vucomisd
; CHECK: setne
; CHECK: movzbl
%res = call i32 @llvm.x86.sse2.ucomineq.sd(<2 x double> %a0, <2 x double> %a1) ; <i32> [#uses=1]
ret i32 %res
}
declare i32 @llvm.x86.sse2.ucomineq.sd(<2 x double>, <2 x double>) nounwind readnone
define <2 x double> @test_x86_sse3_addsub_pd(<2 x double> %a0, <2 x double> %a1) {
; CHECK: vaddsubpd
%res = call <2 x double> @llvm.x86.sse3.addsub.pd(<2 x double> %a0, <2 x double> %a1) ; <<2 x double>> [#uses=1]
ret <2 x double> %res
}
declare <2 x double> @llvm.x86.sse3.addsub.pd(<2 x double>, <2 x double>) nounwind readnone
define <4 x float> @test_x86_sse3_addsub_ps(<4 x float> %a0, <4 x float> %a1) {
; CHECK: vaddsubps
%res = call <4 x float> @llvm.x86.sse3.addsub.ps(<4 x float> %a0, <4 x float> %a1) ; <<4 x float>> [#uses=1]
ret <4 x float> %res
}
declare <4 x float> @llvm.x86.sse3.addsub.ps(<4 x float>, <4 x float>) nounwind readnone
define <2 x double> @test_x86_sse3_hadd_pd(<2 x double> %a0, <2 x double> %a1) {
; CHECK: vhaddpd
%res = call <2 x double> @llvm.x86.sse3.hadd.pd(<2 x double> %a0, <2 x double> %a1) ; <<2 x double>> [#uses=1]
ret <2 x double> %res
}
declare <2 x double> @llvm.x86.sse3.hadd.pd(<2 x double>, <2 x double>) nounwind readnone
define <4 x float> @test_x86_sse3_hadd_ps(<4 x float> %a0, <4 x float> %a1) {
; CHECK: vhaddps
%res = call <4 x float> @llvm.x86.sse3.hadd.ps(<4 x float> %a0, <4 x float> %a1) ; <<4 x float>> [#uses=1]
ret <4 x float> %res
}
declare <4 x float> @llvm.x86.sse3.hadd.ps(<4 x float>, <4 x float>) nounwind readnone
define <2 x double> @test_x86_sse3_hsub_pd(<2 x double> %a0, <2 x double> %a1) {
; CHECK: vhsubpd
%res = call <2 x double> @llvm.x86.sse3.hsub.pd(<2 x double> %a0, <2 x double> %a1) ; <<2 x double>> [#uses=1]
ret <2 x double> %res
}
declare <2 x double> @llvm.x86.sse3.hsub.pd(<2 x double>, <2 x double>) nounwind readnone
define <4 x float> @test_x86_sse3_hsub_ps(<4 x float> %a0, <4 x float> %a1) {
; CHECK: vhsubps
%res = call <4 x float> @llvm.x86.sse3.hsub.ps(<4 x float> %a0, <4 x float> %a1) ; <<4 x float>> [#uses=1]
ret <4 x float> %res
}
declare <4 x float> @llvm.x86.sse3.hsub.ps(<4 x float>, <4 x float>) nounwind readnone
define <16 x i8> @test_x86_sse3_ldu_dq(i8* %a0) {
; CHECK: movl
; CHECK: vlddqu
%res = call <16 x i8> @llvm.x86.sse3.ldu.dq(i8* %a0) ; <<16 x i8>> [#uses=1]
ret <16 x i8> %res
}
declare <16 x i8> @llvm.x86.sse3.ldu.dq(i8*) nounwind readonly
define <2 x double> @test_x86_sse41_blendvpd(<2 x double> %a0, <2 x double> %a1, <2 x double> %a2) {
; CHECK: vblendvpd
%res = call <2 x double> @llvm.x86.sse41.blendvpd(<2 x double> %a0, <2 x double> %a1, <2 x double> %a2) ; <<2 x double>> [#uses=1]
ret <2 x double> %res
}
declare <2 x double> @llvm.x86.sse41.blendvpd(<2 x double>, <2 x double>, <2 x double>) nounwind readnone
define <4 x float> @test_x86_sse41_blendvps(<4 x float> %a0, <4 x float> %a1, <4 x float> %a2) {
; CHECK: vblendvps
%res = call <4 x float> @llvm.x86.sse41.blendvps(<4 x float> %a0, <4 x float> %a1, <4 x float> %a2) ; <<4 x float>> [#uses=1]
ret <4 x float> %res
}
declare <4 x float> @llvm.x86.sse41.blendvps(<4 x float>, <4 x float>, <4 x float>) nounwind readnone
define <2 x double> @test_x86_sse41_dppd(<2 x double> %a0, <2 x double> %a1) {
; CHECK: vdppd
[x86] Fix a pretty horrible bug and inconsistency in the x86 asm parsing (and latent bug in the instruction definitions). This is effectively a revert of r136287 which tried to address a specific and narrow case of immediate operands failing to be accepted by x86 instructions with a pretty heavy hammer: it introduced a new kind of operand that behaved differently. All of that is removed with this commit, but the test cases are both preserved and enhanced. The core problem that r136287 and this commit are trying to handle is that gas accepts both of the following instructions: insertps $192, %xmm0, %xmm1 insertps $-64, %xmm0, %xmm1 These will encode to the same byte sequence, with the immediate occupying an 8-bit entry. The first form was fixed by r136287 but that broke the prior handling of the second form! =[ Ironically, we would still emit the second form in some cases and then be unable to re-assemble the output. The reason why the first instruction failed to be handled is because prior to r136287 the operands ere marked 'i32i8imm' which forces them to be sign-extenable. Clearly, that won't work for 192 in a single byte. However, making thim zero-extended or "unsigned" doesn't really address the core issue either because it breaks negative immediates. The correct fix is to make these operands 'i8imm' reflecting that they can be either signed or unsigned but must be 8-bit immediates. This patch backs out r136287 and then changes those places as well as some others to use 'i8imm' rather than one of the extended variants. Naturally, this broke something else. The custom DAG nodes had to be updated to have a much more accurate type constraint of an i8 node, and a bunch of Pat immediates needed to be specified as i8 values. The fallout didn't end there though. We also then ceased to be able to match the instruction-specific intrinsics to the instructions so modified. Digging, this is because they too used i32 rather than i8 in their signature. So I've also switched those intrinsics to i8 arguments in line with the instructions. In order to make the intrinsic adjustments of course, I also had to add auto upgrading for the intrinsics. I suspect that the intrinsic argument types may have led everything down this rabbit hole. Pretty happy with the result. llvm-svn: 217310
2014-09-06 18:00:01 +08:00
%res = call <2 x double> @llvm.x86.sse41.dppd(<2 x double> %a0, <2 x double> %a1, i8 7) ; <<2 x double>> [#uses=1]
ret <2 x double> %res
}
[x86] Fix a pretty horrible bug and inconsistency in the x86 asm parsing (and latent bug in the instruction definitions). This is effectively a revert of r136287 which tried to address a specific and narrow case of immediate operands failing to be accepted by x86 instructions with a pretty heavy hammer: it introduced a new kind of operand that behaved differently. All of that is removed with this commit, but the test cases are both preserved and enhanced. The core problem that r136287 and this commit are trying to handle is that gas accepts both of the following instructions: insertps $192, %xmm0, %xmm1 insertps $-64, %xmm0, %xmm1 These will encode to the same byte sequence, with the immediate occupying an 8-bit entry. The first form was fixed by r136287 but that broke the prior handling of the second form! =[ Ironically, we would still emit the second form in some cases and then be unable to re-assemble the output. The reason why the first instruction failed to be handled is because prior to r136287 the operands ere marked 'i32i8imm' which forces them to be sign-extenable. Clearly, that won't work for 192 in a single byte. However, making thim zero-extended or "unsigned" doesn't really address the core issue either because it breaks negative immediates. The correct fix is to make these operands 'i8imm' reflecting that they can be either signed or unsigned but must be 8-bit immediates. This patch backs out r136287 and then changes those places as well as some others to use 'i8imm' rather than one of the extended variants. Naturally, this broke something else. The custom DAG nodes had to be updated to have a much more accurate type constraint of an i8 node, and a bunch of Pat immediates needed to be specified as i8 values. The fallout didn't end there though. We also then ceased to be able to match the instruction-specific intrinsics to the instructions so modified. Digging, this is because they too used i32 rather than i8 in their signature. So I've also switched those intrinsics to i8 arguments in line with the instructions. In order to make the intrinsic adjustments of course, I also had to add auto upgrading for the intrinsics. I suspect that the intrinsic argument types may have led everything down this rabbit hole. Pretty happy with the result. llvm-svn: 217310
2014-09-06 18:00:01 +08:00
declare <2 x double> @llvm.x86.sse41.dppd(<2 x double>, <2 x double>, i8) nounwind readnone
define <4 x float> @test_x86_sse41_dpps(<4 x float> %a0, <4 x float> %a1) {
; CHECK: vdpps
[x86] Fix a pretty horrible bug and inconsistency in the x86 asm parsing (and latent bug in the instruction definitions). This is effectively a revert of r136287 which tried to address a specific and narrow case of immediate operands failing to be accepted by x86 instructions with a pretty heavy hammer: it introduced a new kind of operand that behaved differently. All of that is removed with this commit, but the test cases are both preserved and enhanced. The core problem that r136287 and this commit are trying to handle is that gas accepts both of the following instructions: insertps $192, %xmm0, %xmm1 insertps $-64, %xmm0, %xmm1 These will encode to the same byte sequence, with the immediate occupying an 8-bit entry. The first form was fixed by r136287 but that broke the prior handling of the second form! =[ Ironically, we would still emit the second form in some cases and then be unable to re-assemble the output. The reason why the first instruction failed to be handled is because prior to r136287 the operands ere marked 'i32i8imm' which forces them to be sign-extenable. Clearly, that won't work for 192 in a single byte. However, making thim zero-extended or "unsigned" doesn't really address the core issue either because it breaks negative immediates. The correct fix is to make these operands 'i8imm' reflecting that they can be either signed or unsigned but must be 8-bit immediates. This patch backs out r136287 and then changes those places as well as some others to use 'i8imm' rather than one of the extended variants. Naturally, this broke something else. The custom DAG nodes had to be updated to have a much more accurate type constraint of an i8 node, and a bunch of Pat immediates needed to be specified as i8 values. The fallout didn't end there though. We also then ceased to be able to match the instruction-specific intrinsics to the instructions so modified. Digging, this is because they too used i32 rather than i8 in their signature. So I've also switched those intrinsics to i8 arguments in line with the instructions. In order to make the intrinsic adjustments of course, I also had to add auto upgrading for the intrinsics. I suspect that the intrinsic argument types may have led everything down this rabbit hole. Pretty happy with the result. llvm-svn: 217310
2014-09-06 18:00:01 +08:00
%res = call <4 x float> @llvm.x86.sse41.dpps(<4 x float> %a0, <4 x float> %a1, i8 7) ; <<4 x float>> [#uses=1]
ret <4 x float> %res
}
[x86] Fix a pretty horrible bug and inconsistency in the x86 asm parsing (and latent bug in the instruction definitions). This is effectively a revert of r136287 which tried to address a specific and narrow case of immediate operands failing to be accepted by x86 instructions with a pretty heavy hammer: it introduced a new kind of operand that behaved differently. All of that is removed with this commit, but the test cases are both preserved and enhanced. The core problem that r136287 and this commit are trying to handle is that gas accepts both of the following instructions: insertps $192, %xmm0, %xmm1 insertps $-64, %xmm0, %xmm1 These will encode to the same byte sequence, with the immediate occupying an 8-bit entry. The first form was fixed by r136287 but that broke the prior handling of the second form! =[ Ironically, we would still emit the second form in some cases and then be unable to re-assemble the output. The reason why the first instruction failed to be handled is because prior to r136287 the operands ere marked 'i32i8imm' which forces them to be sign-extenable. Clearly, that won't work for 192 in a single byte. However, making thim zero-extended or "unsigned" doesn't really address the core issue either because it breaks negative immediates. The correct fix is to make these operands 'i8imm' reflecting that they can be either signed or unsigned but must be 8-bit immediates. This patch backs out r136287 and then changes those places as well as some others to use 'i8imm' rather than one of the extended variants. Naturally, this broke something else. The custom DAG nodes had to be updated to have a much more accurate type constraint of an i8 node, and a bunch of Pat immediates needed to be specified as i8 values. The fallout didn't end there though. We also then ceased to be able to match the instruction-specific intrinsics to the instructions so modified. Digging, this is because they too used i32 rather than i8 in their signature. So I've also switched those intrinsics to i8 arguments in line with the instructions. In order to make the intrinsic adjustments of course, I also had to add auto upgrading for the intrinsics. I suspect that the intrinsic argument types may have led everything down this rabbit hole. Pretty happy with the result. llvm-svn: 217310
2014-09-06 18:00:01 +08:00
declare <4 x float> @llvm.x86.sse41.dpps(<4 x float>, <4 x float>, i8) nounwind readnone
define <4 x float> @test_x86_sse41_insertps(<4 x float> %a0, <4 x float> %a1) {
; CHECK: vinsertps
[x86] Fix a pretty horrible bug and inconsistency in the x86 asm parsing (and latent bug in the instruction definitions). This is effectively a revert of r136287 which tried to address a specific and narrow case of immediate operands failing to be accepted by x86 instructions with a pretty heavy hammer: it introduced a new kind of operand that behaved differently. All of that is removed with this commit, but the test cases are both preserved and enhanced. The core problem that r136287 and this commit are trying to handle is that gas accepts both of the following instructions: insertps $192, %xmm0, %xmm1 insertps $-64, %xmm0, %xmm1 These will encode to the same byte sequence, with the immediate occupying an 8-bit entry. The first form was fixed by r136287 but that broke the prior handling of the second form! =[ Ironically, we would still emit the second form in some cases and then be unable to re-assemble the output. The reason why the first instruction failed to be handled is because prior to r136287 the operands ere marked 'i32i8imm' which forces them to be sign-extenable. Clearly, that won't work for 192 in a single byte. However, making thim zero-extended or "unsigned" doesn't really address the core issue either because it breaks negative immediates. The correct fix is to make these operands 'i8imm' reflecting that they can be either signed or unsigned but must be 8-bit immediates. This patch backs out r136287 and then changes those places as well as some others to use 'i8imm' rather than one of the extended variants. Naturally, this broke something else. The custom DAG nodes had to be updated to have a much more accurate type constraint of an i8 node, and a bunch of Pat immediates needed to be specified as i8 values. The fallout didn't end there though. We also then ceased to be able to match the instruction-specific intrinsics to the instructions so modified. Digging, this is because they too used i32 rather than i8 in their signature. So I've also switched those intrinsics to i8 arguments in line with the instructions. In order to make the intrinsic adjustments of course, I also had to add auto upgrading for the intrinsics. I suspect that the intrinsic argument types may have led everything down this rabbit hole. Pretty happy with the result. llvm-svn: 217310
2014-09-06 18:00:01 +08:00
%res = call <4 x float> @llvm.x86.sse41.insertps(<4 x float> %a0, <4 x float> %a1, i8 7) ; <<4 x float>> [#uses=1]
ret <4 x float> %res
}
[x86] Fix a pretty horrible bug and inconsistency in the x86 asm parsing (and latent bug in the instruction definitions). This is effectively a revert of r136287 which tried to address a specific and narrow case of immediate operands failing to be accepted by x86 instructions with a pretty heavy hammer: it introduced a new kind of operand that behaved differently. All of that is removed with this commit, but the test cases are both preserved and enhanced. The core problem that r136287 and this commit are trying to handle is that gas accepts both of the following instructions: insertps $192, %xmm0, %xmm1 insertps $-64, %xmm0, %xmm1 These will encode to the same byte sequence, with the immediate occupying an 8-bit entry. The first form was fixed by r136287 but that broke the prior handling of the second form! =[ Ironically, we would still emit the second form in some cases and then be unable to re-assemble the output. The reason why the first instruction failed to be handled is because prior to r136287 the operands ere marked 'i32i8imm' which forces them to be sign-extenable. Clearly, that won't work for 192 in a single byte. However, making thim zero-extended or "unsigned" doesn't really address the core issue either because it breaks negative immediates. The correct fix is to make these operands 'i8imm' reflecting that they can be either signed or unsigned but must be 8-bit immediates. This patch backs out r136287 and then changes those places as well as some others to use 'i8imm' rather than one of the extended variants. Naturally, this broke something else. The custom DAG nodes had to be updated to have a much more accurate type constraint of an i8 node, and a bunch of Pat immediates needed to be specified as i8 values. The fallout didn't end there though. We also then ceased to be able to match the instruction-specific intrinsics to the instructions so modified. Digging, this is because they too used i32 rather than i8 in their signature. So I've also switched those intrinsics to i8 arguments in line with the instructions. In order to make the intrinsic adjustments of course, I also had to add auto upgrading for the intrinsics. I suspect that the intrinsic argument types may have led everything down this rabbit hole. Pretty happy with the result. llvm-svn: 217310
2014-09-06 18:00:01 +08:00
declare <4 x float> @llvm.x86.sse41.insertps(<4 x float>, <4 x float>, i8) nounwind readnone
define <8 x i16> @test_x86_sse41_mpsadbw(<16 x i8> %a0, <16 x i8> %a1) {
; CHECK: vmpsadbw
[x86] Fix a pretty horrible bug and inconsistency in the x86 asm parsing (and latent bug in the instruction definitions). This is effectively a revert of r136287 which tried to address a specific and narrow case of immediate operands failing to be accepted by x86 instructions with a pretty heavy hammer: it introduced a new kind of operand that behaved differently. All of that is removed with this commit, but the test cases are both preserved and enhanced. The core problem that r136287 and this commit are trying to handle is that gas accepts both of the following instructions: insertps $192, %xmm0, %xmm1 insertps $-64, %xmm0, %xmm1 These will encode to the same byte sequence, with the immediate occupying an 8-bit entry. The first form was fixed by r136287 but that broke the prior handling of the second form! =[ Ironically, we would still emit the second form in some cases and then be unable to re-assemble the output. The reason why the first instruction failed to be handled is because prior to r136287 the operands ere marked 'i32i8imm' which forces them to be sign-extenable. Clearly, that won't work for 192 in a single byte. However, making thim zero-extended or "unsigned" doesn't really address the core issue either because it breaks negative immediates. The correct fix is to make these operands 'i8imm' reflecting that they can be either signed or unsigned but must be 8-bit immediates. This patch backs out r136287 and then changes those places as well as some others to use 'i8imm' rather than one of the extended variants. Naturally, this broke something else. The custom DAG nodes had to be updated to have a much more accurate type constraint of an i8 node, and a bunch of Pat immediates needed to be specified as i8 values. The fallout didn't end there though. We also then ceased to be able to match the instruction-specific intrinsics to the instructions so modified. Digging, this is because they too used i32 rather than i8 in their signature. So I've also switched those intrinsics to i8 arguments in line with the instructions. In order to make the intrinsic adjustments of course, I also had to add auto upgrading for the intrinsics. I suspect that the intrinsic argument types may have led everything down this rabbit hole. Pretty happy with the result. llvm-svn: 217310
2014-09-06 18:00:01 +08:00
%res = call <8 x i16> @llvm.x86.sse41.mpsadbw(<16 x i8> %a0, <16 x i8> %a1, i8 7) ; <<8 x i16>> [#uses=1]
ret <8 x i16> %res
}
[x86] Fix a pretty horrible bug and inconsistency in the x86 asm parsing (and latent bug in the instruction definitions). This is effectively a revert of r136287 which tried to address a specific and narrow case of immediate operands failing to be accepted by x86 instructions with a pretty heavy hammer: it introduced a new kind of operand that behaved differently. All of that is removed with this commit, but the test cases are both preserved and enhanced. The core problem that r136287 and this commit are trying to handle is that gas accepts both of the following instructions: insertps $192, %xmm0, %xmm1 insertps $-64, %xmm0, %xmm1 These will encode to the same byte sequence, with the immediate occupying an 8-bit entry. The first form was fixed by r136287 but that broke the prior handling of the second form! =[ Ironically, we would still emit the second form in some cases and then be unable to re-assemble the output. The reason why the first instruction failed to be handled is because prior to r136287 the operands ere marked 'i32i8imm' which forces them to be sign-extenable. Clearly, that won't work for 192 in a single byte. However, making thim zero-extended or "unsigned" doesn't really address the core issue either because it breaks negative immediates. The correct fix is to make these operands 'i8imm' reflecting that they can be either signed or unsigned but must be 8-bit immediates. This patch backs out r136287 and then changes those places as well as some others to use 'i8imm' rather than one of the extended variants. Naturally, this broke something else. The custom DAG nodes had to be updated to have a much more accurate type constraint of an i8 node, and a bunch of Pat immediates needed to be specified as i8 values. The fallout didn't end there though. We also then ceased to be able to match the instruction-specific intrinsics to the instructions so modified. Digging, this is because they too used i32 rather than i8 in their signature. So I've also switched those intrinsics to i8 arguments in line with the instructions. In order to make the intrinsic adjustments of course, I also had to add auto upgrading for the intrinsics. I suspect that the intrinsic argument types may have led everything down this rabbit hole. Pretty happy with the result. llvm-svn: 217310
2014-09-06 18:00:01 +08:00
declare <8 x i16> @llvm.x86.sse41.mpsadbw(<16 x i8>, <16 x i8>, i8) nounwind readnone
define <8 x i16> @test_x86_sse41_packusdw(<4 x i32> %a0, <4 x i32> %a1) {
; CHECK: vpackusdw
%res = call <8 x i16> @llvm.x86.sse41.packusdw(<4 x i32> %a0, <4 x i32> %a1) ; <<8 x i16>> [#uses=1]
ret <8 x i16> %res
}
declare <8 x i16> @llvm.x86.sse41.packusdw(<4 x i32>, <4 x i32>) nounwind readnone
define <16 x i8> @test_x86_sse41_pblendvb(<16 x i8> %a0, <16 x i8> %a1, <16 x i8> %a2) {
; CHECK: vpblendvb
%res = call <16 x i8> @llvm.x86.sse41.pblendvb(<16 x i8> %a0, <16 x i8> %a1, <16 x i8> %a2) ; <<16 x i8>> [#uses=1]
ret <16 x i8> %res
}
declare <16 x i8> @llvm.x86.sse41.pblendvb(<16 x i8>, <16 x i8>, <16 x i8>) nounwind readnone
define <8 x i16> @test_x86_sse41_phminposuw(<8 x i16> %a0) {
; CHECK: vphminposuw
%res = call <8 x i16> @llvm.x86.sse41.phminposuw(<8 x i16> %a0) ; <<8 x i16>> [#uses=1]
ret <8 x i16> %res
}
declare <8 x i16> @llvm.x86.sse41.phminposuw(<8 x i16>) nounwind readnone
define <16 x i8> @test_x86_sse41_pmaxsb(<16 x i8> %a0, <16 x i8> %a1) {
; CHECK: vpmaxsb
%res = call <16 x i8> @llvm.x86.sse41.pmaxsb(<16 x i8> %a0, <16 x i8> %a1) ; <<16 x i8>> [#uses=1]
ret <16 x i8> %res
}
declare <16 x i8> @llvm.x86.sse41.pmaxsb(<16 x i8>, <16 x i8>) nounwind readnone
define <4 x i32> @test_x86_sse41_pmaxsd(<4 x i32> %a0, <4 x i32> %a1) {
; CHECK: vpmaxsd
%res = call <4 x i32> @llvm.x86.sse41.pmaxsd(<4 x i32> %a0, <4 x i32> %a1) ; <<4 x i32>> [#uses=1]
ret <4 x i32> %res
}
declare <4 x i32> @llvm.x86.sse41.pmaxsd(<4 x i32>, <4 x i32>) nounwind readnone
define <4 x i32> @test_x86_sse41_pmaxud(<4 x i32> %a0, <4 x i32> %a1) {
; CHECK: vpmaxud
%res = call <4 x i32> @llvm.x86.sse41.pmaxud(<4 x i32> %a0, <4 x i32> %a1) ; <<4 x i32>> [#uses=1]
ret <4 x i32> %res
}
declare <4 x i32> @llvm.x86.sse41.pmaxud(<4 x i32>, <4 x i32>) nounwind readnone
define <8 x i16> @test_x86_sse41_pmaxuw(<8 x i16> %a0, <8 x i16> %a1) {
; CHECK: vpmaxuw
%res = call <8 x i16> @llvm.x86.sse41.pmaxuw(<8 x i16> %a0, <8 x i16> %a1) ; <<8 x i16>> [#uses=1]
ret <8 x i16> %res
}
declare <8 x i16> @llvm.x86.sse41.pmaxuw(<8 x i16>, <8 x i16>) nounwind readnone
define <16 x i8> @test_x86_sse41_pminsb(<16 x i8> %a0, <16 x i8> %a1) {
; CHECK: vpminsb
%res = call <16 x i8> @llvm.x86.sse41.pminsb(<16 x i8> %a0, <16 x i8> %a1) ; <<16 x i8>> [#uses=1]
ret <16 x i8> %res
}
declare <16 x i8> @llvm.x86.sse41.pminsb(<16 x i8>, <16 x i8>) nounwind readnone
define <4 x i32> @test_x86_sse41_pminsd(<4 x i32> %a0, <4 x i32> %a1) {
; CHECK: vpminsd
%res = call <4 x i32> @llvm.x86.sse41.pminsd(<4 x i32> %a0, <4 x i32> %a1) ; <<4 x i32>> [#uses=1]
ret <4 x i32> %res
}
declare <4 x i32> @llvm.x86.sse41.pminsd(<4 x i32>, <4 x i32>) nounwind readnone
define <4 x i32> @test_x86_sse41_pminud(<4 x i32> %a0, <4 x i32> %a1) {
; CHECK: vpminud
%res = call <4 x i32> @llvm.x86.sse41.pminud(<4 x i32> %a0, <4 x i32> %a1) ; <<4 x i32>> [#uses=1]
ret <4 x i32> %res
}
declare <4 x i32> @llvm.x86.sse41.pminud(<4 x i32>, <4 x i32>) nounwind readnone
define <8 x i16> @test_x86_sse41_pminuw(<8 x i16> %a0, <8 x i16> %a1) {
; CHECK: vpminuw
%res = call <8 x i16> @llvm.x86.sse41.pminuw(<8 x i16> %a0, <8 x i16> %a1) ; <<8 x i16>> [#uses=1]
ret <8 x i16> %res
}
declare <8 x i16> @llvm.x86.sse41.pminuw(<8 x i16>, <8 x i16>) nounwind readnone
define <4 x i32> @test_x86_sse41_pmovsxbd(<16 x i8> %a0) {
; CHECK: vpmovsxbd
%res = call <4 x i32> @llvm.x86.sse41.pmovsxbd(<16 x i8> %a0) ; <<4 x i32>> [#uses=1]
ret <4 x i32> %res
}
declare <4 x i32> @llvm.x86.sse41.pmovsxbd(<16 x i8>) nounwind readnone
define <2 x i64> @test_x86_sse41_pmovsxbq(<16 x i8> %a0) {
; CHECK: vpmovsxbq
%res = call <2 x i64> @llvm.x86.sse41.pmovsxbq(<16 x i8> %a0) ; <<2 x i64>> [#uses=1]
ret <2 x i64> %res
}
declare <2 x i64> @llvm.x86.sse41.pmovsxbq(<16 x i8>) nounwind readnone
define <8 x i16> @test_x86_sse41_pmovsxbw(<16 x i8> %a0) {
; CHECK: vpmovsxbw
%res = call <8 x i16> @llvm.x86.sse41.pmovsxbw(<16 x i8> %a0) ; <<8 x i16>> [#uses=1]
ret <8 x i16> %res
}
declare <8 x i16> @llvm.x86.sse41.pmovsxbw(<16 x i8>) nounwind readnone
define <2 x i64> @test_x86_sse41_pmovsxdq(<4 x i32> %a0) {
; CHECK: vpmovsxdq
%res = call <2 x i64> @llvm.x86.sse41.pmovsxdq(<4 x i32> %a0) ; <<2 x i64>> [#uses=1]
ret <2 x i64> %res
}
declare <2 x i64> @llvm.x86.sse41.pmovsxdq(<4 x i32>) nounwind readnone
define <4 x i32> @test_x86_sse41_pmovsxwd(<8 x i16> %a0) {
; CHECK: vpmovsxwd
%res = call <4 x i32> @llvm.x86.sse41.pmovsxwd(<8 x i16> %a0) ; <<4 x i32>> [#uses=1]
ret <4 x i32> %res
}
declare <4 x i32> @llvm.x86.sse41.pmovsxwd(<8 x i16>) nounwind readnone
define <2 x i64> @test_x86_sse41_pmovsxwq(<8 x i16> %a0) {
; CHECK: vpmovsxwq
%res = call <2 x i64> @llvm.x86.sse41.pmovsxwq(<8 x i16> %a0) ; <<2 x i64>> [#uses=1]
ret <2 x i64> %res
}
declare <2 x i64> @llvm.x86.sse41.pmovsxwq(<8 x i16>) nounwind readnone
define <4 x i32> @test_x86_sse41_pmovzxbd(<16 x i8> %a0) {
; CHECK: vpmovzxbd
%res = call <4 x i32> @llvm.x86.sse41.pmovzxbd(<16 x i8> %a0) ; <<4 x i32>> [#uses=1]
ret <4 x i32> %res
}
declare <4 x i32> @llvm.x86.sse41.pmovzxbd(<16 x i8>) nounwind readnone
define <2 x i64> @test_x86_sse41_pmovzxbq(<16 x i8> %a0) {
; CHECK: vpmovzxbq
%res = call <2 x i64> @llvm.x86.sse41.pmovzxbq(<16 x i8> %a0) ; <<2 x i64>> [#uses=1]
ret <2 x i64> %res
}
declare <2 x i64> @llvm.x86.sse41.pmovzxbq(<16 x i8>) nounwind readnone
define <8 x i16> @test_x86_sse41_pmovzxbw(<16 x i8> %a0) {
; CHECK: vpmovzxbw
%res = call <8 x i16> @llvm.x86.sse41.pmovzxbw(<16 x i8> %a0) ; <<8 x i16>> [#uses=1]
ret <8 x i16> %res
}
declare <8 x i16> @llvm.x86.sse41.pmovzxbw(<16 x i8>) nounwind readnone
define <2 x i64> @test_x86_sse41_pmovzxdq(<4 x i32> %a0) {
; CHECK: vpmovzxdq
%res = call <2 x i64> @llvm.x86.sse41.pmovzxdq(<4 x i32> %a0) ; <<2 x i64>> [#uses=1]
ret <2 x i64> %res
}
declare <2 x i64> @llvm.x86.sse41.pmovzxdq(<4 x i32>) nounwind readnone
define <4 x i32> @test_x86_sse41_pmovzxwd(<8 x i16> %a0) {
; CHECK: vpmovzxwd
%res = call <4 x i32> @llvm.x86.sse41.pmovzxwd(<8 x i16> %a0) ; <<4 x i32>> [#uses=1]
ret <4 x i32> %res
}
declare <4 x i32> @llvm.x86.sse41.pmovzxwd(<8 x i16>) nounwind readnone
define <2 x i64> @test_x86_sse41_pmovzxwq(<8 x i16> %a0) {
; CHECK: vpmovzxwq
%res = call <2 x i64> @llvm.x86.sse41.pmovzxwq(<8 x i16> %a0) ; <<2 x i64>> [#uses=1]
ret <2 x i64> %res
}
declare <2 x i64> @llvm.x86.sse41.pmovzxwq(<8 x i16>) nounwind readnone
define <2 x i64> @test_x86_sse41_pmuldq(<4 x i32> %a0, <4 x i32> %a1) {
; CHECK: vpmuldq
%res = call <2 x i64> @llvm.x86.sse41.pmuldq(<4 x i32> %a0, <4 x i32> %a1) ; <<2 x i64>> [#uses=1]
ret <2 x i64> %res
}
declare <2 x i64> @llvm.x86.sse41.pmuldq(<4 x i32>, <4 x i32>) nounwind readnone
define i32 @test_x86_sse41_ptestc(<2 x i64> %a0, <2 x i64> %a1) {
; CHECK: vptest
; CHECK: sbbl
%res = call i32 @llvm.x86.sse41.ptestc(<2 x i64> %a0, <2 x i64> %a1) ; <i32> [#uses=1]
ret i32 %res
}
declare i32 @llvm.x86.sse41.ptestc(<2 x i64>, <2 x i64>) nounwind readnone
define i32 @test_x86_sse41_ptestnzc(<2 x i64> %a0, <2 x i64> %a1) {
; CHECK: vptest
; CHECK: seta
; CHECK: movzbl
%res = call i32 @llvm.x86.sse41.ptestnzc(<2 x i64> %a0, <2 x i64> %a1) ; <i32> [#uses=1]
ret i32 %res
}
declare i32 @llvm.x86.sse41.ptestnzc(<2 x i64>, <2 x i64>) nounwind readnone
define i32 @test_x86_sse41_ptestz(<2 x i64> %a0, <2 x i64> %a1) {
; CHECK: vptest
; CHECK: sete
; CHECK: movzbl
%res = call i32 @llvm.x86.sse41.ptestz(<2 x i64> %a0, <2 x i64> %a1) ; <i32> [#uses=1]
ret i32 %res
}
declare i32 @llvm.x86.sse41.ptestz(<2 x i64>, <2 x i64>) nounwind readnone
define <2 x double> @test_x86_sse41_round_pd(<2 x double> %a0) {
; CHECK: vroundpd
%res = call <2 x double> @llvm.x86.sse41.round.pd(<2 x double> %a0, i32 7) ; <<2 x double>> [#uses=1]
ret <2 x double> %res
}
declare <2 x double> @llvm.x86.sse41.round.pd(<2 x double>, i32) nounwind readnone
define <4 x float> @test_x86_sse41_round_ps(<4 x float> %a0) {
; CHECK: vroundps
%res = call <4 x float> @llvm.x86.sse41.round.ps(<4 x float> %a0, i32 7) ; <<4 x float>> [#uses=1]
ret <4 x float> %res
}
declare <4 x float> @llvm.x86.sse41.round.ps(<4 x float>, i32) nounwind readnone
define <2 x double> @test_x86_sse41_round_sd(<2 x double> %a0, <2 x double> %a1) {
; CHECK: vroundsd
%res = call <2 x double> @llvm.x86.sse41.round.sd(<2 x double> %a0, <2 x double> %a1, i32 7) ; <<2 x double>> [#uses=1]
ret <2 x double> %res
}
declare <2 x double> @llvm.x86.sse41.round.sd(<2 x double>, <2 x double>, i32) nounwind readnone
define <4 x float> @test_x86_sse41_round_ss(<4 x float> %a0, <4 x float> %a1) {
; CHECK: vroundss
%res = call <4 x float> @llvm.x86.sse41.round.ss(<4 x float> %a0, <4 x float> %a1, i32 7) ; <<4 x float>> [#uses=1]
ret <4 x float> %res
}
declare <4 x float> @llvm.x86.sse41.round.ss(<4 x float>, <4 x float>, i32) nounwind readnone
define i32 @test_x86_sse42_pcmpestri128(<16 x i8> %a0, <16 x i8> %a2) {
; CHECK: movl $7
; CHECK: movl $7
; CHECK: vpcmpestri $7
; CHECK: movl
%res = call i32 @llvm.x86.sse42.pcmpestri128(<16 x i8> %a0, i32 7, <16 x i8> %a2, i32 7, i8 7) ; <i32> [#uses=1]
ret i32 %res
}
declare i32 @llvm.x86.sse42.pcmpestri128(<16 x i8>, i32, <16 x i8>, i32, i8) nounwind readnone
define i32 @test_x86_sse42_pcmpestri128_load(<16 x i8>* %a0, <16 x i8>* %a2) {
; CHECK: movl $7
; CHECK: movl $7
; CHECK: vpcmpestri $7, (
; CHECK: movl
%1 = load <16 x i8>, <16 x i8>* %a0
%2 = load <16 x i8>, <16 x i8>* %a2
%res = call i32 @llvm.x86.sse42.pcmpestri128(<16 x i8> %1, i32 7, <16 x i8> %2, i32 7, i8 7) ; <i32> [#uses=1]
ret i32 %res
}
define i32 @test_x86_sse42_pcmpestria128(<16 x i8> %a0, <16 x i8> %a2) {
; CHECK: movl
; CHECK: movl
; CHECK: vpcmpestri
; CHECK: seta
%res = call i32 @llvm.x86.sse42.pcmpestria128(<16 x i8> %a0, i32 7, <16 x i8> %a2, i32 7, i8 7) ; <i32> [#uses=1]
ret i32 %res
}
declare i32 @llvm.x86.sse42.pcmpestria128(<16 x i8>, i32, <16 x i8>, i32, i8) nounwind readnone
define i32 @test_x86_sse42_pcmpestric128(<16 x i8> %a0, <16 x i8> %a2) {
; CHECK: movl
; CHECK: movl
; CHECK: vpcmpestri
; CHECK: sbbl
%res = call i32 @llvm.x86.sse42.pcmpestric128(<16 x i8> %a0, i32 7, <16 x i8> %a2, i32 7, i8 7) ; <i32> [#uses=1]
ret i32 %res
}
declare i32 @llvm.x86.sse42.pcmpestric128(<16 x i8>, i32, <16 x i8>, i32, i8) nounwind readnone
define i32 @test_x86_sse42_pcmpestrio128(<16 x i8> %a0, <16 x i8> %a2) {
; CHECK: movl
; CHECK: movl
; CHECK: vpcmpestri
; CHECK: seto
%res = call i32 @llvm.x86.sse42.pcmpestrio128(<16 x i8> %a0, i32 7, <16 x i8> %a2, i32 7, i8 7) ; <i32> [#uses=1]
ret i32 %res
}
declare i32 @llvm.x86.sse42.pcmpestrio128(<16 x i8>, i32, <16 x i8>, i32, i8) nounwind readnone
define i32 @test_x86_sse42_pcmpestris128(<16 x i8> %a0, <16 x i8> %a2) {
; CHECK: movl
; CHECK: movl
; CHECK: vpcmpestri
; CHECK: sets
%res = call i32 @llvm.x86.sse42.pcmpestris128(<16 x i8> %a0, i32 7, <16 x i8> %a2, i32 7, i8 7) ; <i32> [#uses=1]
ret i32 %res
}
declare i32 @llvm.x86.sse42.pcmpestris128(<16 x i8>, i32, <16 x i8>, i32, i8) nounwind readnone
define i32 @test_x86_sse42_pcmpestriz128(<16 x i8> %a0, <16 x i8> %a2) {
; CHECK: movl
; CHECK: movl
; CHECK: vpcmpestri
; CHECK: sete
%res = call i32 @llvm.x86.sse42.pcmpestriz128(<16 x i8> %a0, i32 7, <16 x i8> %a2, i32 7, i8 7) ; <i32> [#uses=1]
ret i32 %res
}
declare i32 @llvm.x86.sse42.pcmpestriz128(<16 x i8>, i32, <16 x i8>, i32, i8) nounwind readnone
define <16 x i8> @test_x86_sse42_pcmpestrm128(<16 x i8> %a0, <16 x i8> %a2) {
; CHECK: movl
; CHECK: movl
; CHECK: vpcmpestrm
; CHECK-NOT: vmov
%res = call <16 x i8> @llvm.x86.sse42.pcmpestrm128(<16 x i8> %a0, i32 7, <16 x i8> %a2, i32 7, i8 7) ; <<16 x i8>> [#uses=1]
ret <16 x i8> %res
}
declare <16 x i8> @llvm.x86.sse42.pcmpestrm128(<16 x i8>, i32, <16 x i8>, i32, i8) nounwind readnone
define <16 x i8> @test_x86_sse42_pcmpestrm128_load(<16 x i8> %a0, <16 x i8>* %a2) {
; CHECK: movl $7
; CHECK: movl $7
; CHECK: vpcmpestrm $7,
; CHECK-NOT: vmov
%1 = load <16 x i8>, <16 x i8>* %a2
%res = call <16 x i8> @llvm.x86.sse42.pcmpestrm128(<16 x i8> %a0, i32 7, <16 x i8> %1, i32 7, i8 7) ; <<16 x i8>> [#uses=1]
ret <16 x i8> %res
}
define i32 @test_x86_sse42_pcmpistri128(<16 x i8> %a0, <16 x i8> %a1) {
; CHECK: vpcmpistri $7
; CHECK: movl
%res = call i32 @llvm.x86.sse42.pcmpistri128(<16 x i8> %a0, <16 x i8> %a1, i8 7) ; <i32> [#uses=1]
ret i32 %res
}
declare i32 @llvm.x86.sse42.pcmpistri128(<16 x i8>, <16 x i8>, i8) nounwind readnone
define i32 @test_x86_sse42_pcmpistri128_load(<16 x i8>* %a0, <16 x i8>* %a1) {
; CHECK: vpcmpistri $7, (
; CHECK: movl
%1 = load <16 x i8>, <16 x i8>* %a0
%2 = load <16 x i8>, <16 x i8>* %a1
%res = call i32 @llvm.x86.sse42.pcmpistri128(<16 x i8> %1, <16 x i8> %2, i8 7) ; <i32> [#uses=1]
ret i32 %res
}
define i32 @test_x86_sse42_pcmpistria128(<16 x i8> %a0, <16 x i8> %a1) {
; CHECK: vpcmpistri
; CHECK: seta
%res = call i32 @llvm.x86.sse42.pcmpistria128(<16 x i8> %a0, <16 x i8> %a1, i8 7) ; <i32> [#uses=1]
ret i32 %res
}
declare i32 @llvm.x86.sse42.pcmpistria128(<16 x i8>, <16 x i8>, i8) nounwind readnone
define i32 @test_x86_sse42_pcmpistric128(<16 x i8> %a0, <16 x i8> %a1) {
; CHECK: vpcmpistri
; CHECK: sbbl
%res = call i32 @llvm.x86.sse42.pcmpistric128(<16 x i8> %a0, <16 x i8> %a1, i8 7) ; <i32> [#uses=1]
ret i32 %res
}
declare i32 @llvm.x86.sse42.pcmpistric128(<16 x i8>, <16 x i8>, i8) nounwind readnone
define i32 @test_x86_sse42_pcmpistrio128(<16 x i8> %a0, <16 x i8> %a1) {
; CHECK: vpcmpistri
; CHECK: seto
%res = call i32 @llvm.x86.sse42.pcmpistrio128(<16 x i8> %a0, <16 x i8> %a1, i8 7) ; <i32> [#uses=1]
ret i32 %res
}
declare i32 @llvm.x86.sse42.pcmpistrio128(<16 x i8>, <16 x i8>, i8) nounwind readnone
define i32 @test_x86_sse42_pcmpistris128(<16 x i8> %a0, <16 x i8> %a1) {
; CHECK: vpcmpistri
; CHECK: sets
%res = call i32 @llvm.x86.sse42.pcmpistris128(<16 x i8> %a0, <16 x i8> %a1, i8 7) ; <i32> [#uses=1]
ret i32 %res
}
declare i32 @llvm.x86.sse42.pcmpistris128(<16 x i8>, <16 x i8>, i8) nounwind readnone
define i32 @test_x86_sse42_pcmpistriz128(<16 x i8> %a0, <16 x i8> %a1) {
; CHECK: vpcmpistri
; CHECK: sete
%res = call i32 @llvm.x86.sse42.pcmpistriz128(<16 x i8> %a0, <16 x i8> %a1, i8 7) ; <i32> [#uses=1]
ret i32 %res
}
declare i32 @llvm.x86.sse42.pcmpistriz128(<16 x i8>, <16 x i8>, i8) nounwind readnone
define <16 x i8> @test_x86_sse42_pcmpistrm128(<16 x i8> %a0, <16 x i8> %a1) {
; CHECK: vpcmpistrm $7
; CHECK-NOT: vmov
%res = call <16 x i8> @llvm.x86.sse42.pcmpistrm128(<16 x i8> %a0, <16 x i8> %a1, i8 7) ; <<16 x i8>> [#uses=1]
ret <16 x i8> %res
}
declare <16 x i8> @llvm.x86.sse42.pcmpistrm128(<16 x i8>, <16 x i8>, i8) nounwind readnone
define <16 x i8> @test_x86_sse42_pcmpistrm128_load(<16 x i8> %a0, <16 x i8>* %a1) {
; CHECK: vpcmpistrm $7, (
; CHECK-NOT: vmov
%1 = load <16 x i8>, <16 x i8>* %a1
%res = call <16 x i8> @llvm.x86.sse42.pcmpistrm128(<16 x i8> %a0, <16 x i8> %1, i8 7) ; <<16 x i8>> [#uses=1]
ret <16 x i8> %res
}
define <4 x float> @test_x86_sse_add_ss(<4 x float> %a0, <4 x float> %a1) {
; CHECK: vaddss
%res = call <4 x float> @llvm.x86.sse.add.ss(<4 x float> %a0, <4 x float> %a1) ; <<4 x float>> [#uses=1]
ret <4 x float> %res
}
declare <4 x float> @llvm.x86.sse.add.ss(<4 x float>, <4 x float>) nounwind readnone
define <4 x float> @test_x86_sse_cmp_ps(<4 x float> %a0, <4 x float> %a1) {
; CHECK: vcmpordps
%res = call <4 x float> @llvm.x86.sse.cmp.ps(<4 x float> %a0, <4 x float> %a1, i8 7) ; <<4 x float>> [#uses=1]
ret <4 x float> %res
}
declare <4 x float> @llvm.x86.sse.cmp.ps(<4 x float>, <4 x float>, i8) nounwind readnone
define <4 x float> @test_x86_sse_cmp_ss(<4 x float> %a0, <4 x float> %a1) {
; CHECK: vcmpordss
%res = call <4 x float> @llvm.x86.sse.cmp.ss(<4 x float> %a0, <4 x float> %a1, i8 7) ; <<4 x float>> [#uses=1]
ret <4 x float> %res
}
declare <4 x float> @llvm.x86.sse.cmp.ss(<4 x float>, <4 x float>, i8) nounwind readnone
define i32 @test_x86_sse_comieq_ss(<4 x float> %a0, <4 x float> %a1) {
; CHECK: vcomiss
; CHECK: sete
; CHECK: movzbl
%res = call i32 @llvm.x86.sse.comieq.ss(<4 x float> %a0, <4 x float> %a1) ; <i32> [#uses=1]
ret i32 %res
}
declare i32 @llvm.x86.sse.comieq.ss(<4 x float>, <4 x float>) nounwind readnone
define i32 @test_x86_sse_comige_ss(<4 x float> %a0, <4 x float> %a1) {
; CHECK: vcomiss
; CHECK: setae
; CHECK: movzbl
%res = call i32 @llvm.x86.sse.comige.ss(<4 x float> %a0, <4 x float> %a1) ; <i32> [#uses=1]
ret i32 %res
}
declare i32 @llvm.x86.sse.comige.ss(<4 x float>, <4 x float>) nounwind readnone
define i32 @test_x86_sse_comigt_ss(<4 x float> %a0, <4 x float> %a1) {
; CHECK: vcomiss
; CHECK: seta
; CHECK: movzbl
%res = call i32 @llvm.x86.sse.comigt.ss(<4 x float> %a0, <4 x float> %a1) ; <i32> [#uses=1]
ret i32 %res
}
declare i32 @llvm.x86.sse.comigt.ss(<4 x float>, <4 x float>) nounwind readnone
define i32 @test_x86_sse_comile_ss(<4 x float> %a0, <4 x float> %a1) {
; CHECK: vcomiss
; CHECK: setbe
; CHECK: movzbl
%res = call i32 @llvm.x86.sse.comile.ss(<4 x float> %a0, <4 x float> %a1) ; <i32> [#uses=1]
ret i32 %res
}
declare i32 @llvm.x86.sse.comile.ss(<4 x float>, <4 x float>) nounwind readnone
define i32 @test_x86_sse_comilt_ss(<4 x float> %a0, <4 x float> %a1) {
; CHECK: vcomiss
; CHECK: sbb
%res = call i32 @llvm.x86.sse.comilt.ss(<4 x float> %a0, <4 x float> %a1) ; <i32> [#uses=1]
ret i32 %res
}
declare i32 @llvm.x86.sse.comilt.ss(<4 x float>, <4 x float>) nounwind readnone
define i32 @test_x86_sse_comineq_ss(<4 x float> %a0, <4 x float> %a1) {
; CHECK: vcomiss
; CHECK: setne
; CHECK: movzbl
%res = call i32 @llvm.x86.sse.comineq.ss(<4 x float> %a0, <4 x float> %a1) ; <i32> [#uses=1]
ret i32 %res
}
declare i32 @llvm.x86.sse.comineq.ss(<4 x float>, <4 x float>) nounwind readnone
define <4 x float> @test_x86_sse_cvtsi2ss(<4 x float> %a0) {
; CHECK: movl
; CHECK: vcvtsi2ss
%res = call <4 x float> @llvm.x86.sse.cvtsi2ss(<4 x float> %a0, i32 7) ; <<4 x float>> [#uses=1]
ret <4 x float> %res
}
declare <4 x float> @llvm.x86.sse.cvtsi2ss(<4 x float>, i32) nounwind readnone
define i32 @test_x86_sse_cvtss2si(<4 x float> %a0) {
; CHECK: vcvtss2si
%res = call i32 @llvm.x86.sse.cvtss2si(<4 x float> %a0) ; <i32> [#uses=1]
ret i32 %res
}
declare i32 @llvm.x86.sse.cvtss2si(<4 x float>) nounwind readnone
define i32 @test_x86_sse_cvttss2si(<4 x float> %a0) {
; CHECK: vcvttss2si
%res = call i32 @llvm.x86.sse.cvttss2si(<4 x float> %a0) ; <i32> [#uses=1]
ret i32 %res
}
declare i32 @llvm.x86.sse.cvttss2si(<4 x float>) nounwind readnone
define <4 x float> @test_x86_sse_div_ss(<4 x float> %a0, <4 x float> %a1) {
; CHECK: vdivss
%res = call <4 x float> @llvm.x86.sse.div.ss(<4 x float> %a0, <4 x float> %a1) ; <<4 x float>> [#uses=1]
ret <4 x float> %res
}
declare <4 x float> @llvm.x86.sse.div.ss(<4 x float>, <4 x float>) nounwind readnone
define void @test_x86_sse_ldmxcsr(i8* %a0) {
; CHECK: movl
; CHECK: vldmxcsr
call void @llvm.x86.sse.ldmxcsr(i8* %a0)
ret void
}
declare void @llvm.x86.sse.ldmxcsr(i8*) nounwind
define <4 x float> @test_x86_sse_max_ps(<4 x float> %a0, <4 x float> %a1) {
; CHECK: vmaxps
%res = call <4 x float> @llvm.x86.sse.max.ps(<4 x float> %a0, <4 x float> %a1) ; <<4 x float>> [#uses=1]
ret <4 x float> %res
}
declare <4 x float> @llvm.x86.sse.max.ps(<4 x float>, <4 x float>) nounwind readnone
define <4 x float> @test_x86_sse_max_ss(<4 x float> %a0, <4 x float> %a1) {
; CHECK: vmaxss
%res = call <4 x float> @llvm.x86.sse.max.ss(<4 x float> %a0, <4 x float> %a1) ; <<4 x float>> [#uses=1]
ret <4 x float> %res
}
declare <4 x float> @llvm.x86.sse.max.ss(<4 x float>, <4 x float>) nounwind readnone
define <4 x float> @test_x86_sse_min_ps(<4 x float> %a0, <4 x float> %a1) {
; CHECK: vminps
%res = call <4 x float> @llvm.x86.sse.min.ps(<4 x float> %a0, <4 x float> %a1) ; <<4 x float>> [#uses=1]
ret <4 x float> %res
}
declare <4 x float> @llvm.x86.sse.min.ps(<4 x float>, <4 x float>) nounwind readnone
define <4 x float> @test_x86_sse_min_ss(<4 x float> %a0, <4 x float> %a1) {
; CHECK: vminss
%res = call <4 x float> @llvm.x86.sse.min.ss(<4 x float> %a0, <4 x float> %a1) ; <<4 x float>> [#uses=1]
ret <4 x float> %res
}
declare <4 x float> @llvm.x86.sse.min.ss(<4 x float>, <4 x float>) nounwind readnone
define i32 @test_x86_sse_movmsk_ps(<4 x float> %a0) {
; CHECK: vmovmskps
%res = call i32 @llvm.x86.sse.movmsk.ps(<4 x float> %a0) ; <i32> [#uses=1]
ret i32 %res
}
declare i32 @llvm.x86.sse.movmsk.ps(<4 x float>) nounwind readnone
define <4 x float> @test_x86_sse_mul_ss(<4 x float> %a0, <4 x float> %a1) {
; CHECK: vmulss
%res = call <4 x float> @llvm.x86.sse.mul.ss(<4 x float> %a0, <4 x float> %a1) ; <<4 x float>> [#uses=1]
ret <4 x float> %res
}
declare <4 x float> @llvm.x86.sse.mul.ss(<4 x float>, <4 x float>) nounwind readnone
define <4 x float> @test_x86_sse_rcp_ps(<4 x float> %a0) {
; CHECK: vrcpps
%res = call <4 x float> @llvm.x86.sse.rcp.ps(<4 x float> %a0) ; <<4 x float>> [#uses=1]
ret <4 x float> %res
}
declare <4 x float> @llvm.x86.sse.rcp.ps(<4 x float>) nounwind readnone
define <4 x float> @test_x86_sse_rcp_ss(<4 x float> %a0) {
; CHECK: vrcpss
%res = call <4 x float> @llvm.x86.sse.rcp.ss(<4 x float> %a0) ; <<4 x float>> [#uses=1]
ret <4 x float> %res
}
declare <4 x float> @llvm.x86.sse.rcp.ss(<4 x float>) nounwind readnone
define <4 x float> @test_x86_sse_rsqrt_ps(<4 x float> %a0) {
; CHECK: vrsqrtps
%res = call <4 x float> @llvm.x86.sse.rsqrt.ps(<4 x float> %a0) ; <<4 x float>> [#uses=1]
ret <4 x float> %res
}
declare <4 x float> @llvm.x86.sse.rsqrt.ps(<4 x float>) nounwind readnone
define <4 x float> @test_x86_sse_rsqrt_ss(<4 x float> %a0) {
; CHECK: vrsqrtss
%res = call <4 x float> @llvm.x86.sse.rsqrt.ss(<4 x float> %a0) ; <<4 x float>> [#uses=1]
ret <4 x float> %res
}
declare <4 x float> @llvm.x86.sse.rsqrt.ss(<4 x float>) nounwind readnone
define <4 x float> @test_x86_sse_sqrt_ps(<4 x float> %a0) {
; CHECK: vsqrtps
%res = call <4 x float> @llvm.x86.sse.sqrt.ps(<4 x float> %a0) ; <<4 x float>> [#uses=1]
ret <4 x float> %res
}
declare <4 x float> @llvm.x86.sse.sqrt.ps(<4 x float>) nounwind readnone
define <4 x float> @test_x86_sse_sqrt_ss(<4 x float> %a0) {
; CHECK: vsqrtss
%res = call <4 x float> @llvm.x86.sse.sqrt.ss(<4 x float> %a0) ; <<4 x float>> [#uses=1]
ret <4 x float> %res
}
declare <4 x float> @llvm.x86.sse.sqrt.ss(<4 x float>) nounwind readnone
define void @test_x86_sse_stmxcsr(i8* %a0) {
; CHECK: movl
; CHECK: vstmxcsr
call void @llvm.x86.sse.stmxcsr(i8* %a0)
ret void
}
declare void @llvm.x86.sse.stmxcsr(i8*) nounwind
define void @test_x86_sse_storeu_ps(i8* %a0, <4 x float> %a1) {
; CHECK: movl
; CHECK: vmovups
call void @llvm.x86.sse.storeu.ps(i8* %a0, <4 x float> %a1)
ret void
}
declare void @llvm.x86.sse.storeu.ps(i8*, <4 x float>) nounwind
define <4 x float> @test_x86_sse_sub_ss(<4 x float> %a0, <4 x float> %a1) {
; CHECK: vsubss
%res = call <4 x float> @llvm.x86.sse.sub.ss(<4 x float> %a0, <4 x float> %a1) ; <<4 x float>> [#uses=1]
ret <4 x float> %res
}
declare <4 x float> @llvm.x86.sse.sub.ss(<4 x float>, <4 x float>) nounwind readnone
define i32 @test_x86_sse_ucomieq_ss(<4 x float> %a0, <4 x float> %a1) {
; CHECK: vucomiss
; CHECK: sete
; CHECK: movzbl
%res = call i32 @llvm.x86.sse.ucomieq.ss(<4 x float> %a0, <4 x float> %a1) ; <i32> [#uses=1]
ret i32 %res
}
declare i32 @llvm.x86.sse.ucomieq.ss(<4 x float>, <4 x float>) nounwind readnone
define i32 @test_x86_sse_ucomige_ss(<4 x float> %a0, <4 x float> %a1) {
; CHECK: vucomiss
; CHECK: setae
; CHECK: movzbl
%res = call i32 @llvm.x86.sse.ucomige.ss(<4 x float> %a0, <4 x float> %a1) ; <i32> [#uses=1]
ret i32 %res
}
declare i32 @llvm.x86.sse.ucomige.ss(<4 x float>, <4 x float>) nounwind readnone
define i32 @test_x86_sse_ucomigt_ss(<4 x float> %a0, <4 x float> %a1) {
; CHECK: vucomiss
; CHECK: seta
; CHECK: movzbl
%res = call i32 @llvm.x86.sse.ucomigt.ss(<4 x float> %a0, <4 x float> %a1) ; <i32> [#uses=1]
ret i32 %res
}
declare i32 @llvm.x86.sse.ucomigt.ss(<4 x float>, <4 x float>) nounwind readnone
define i32 @test_x86_sse_ucomile_ss(<4 x float> %a0, <4 x float> %a1) {
; CHECK: vucomiss
; CHECK: setbe
; CHECK: movzbl
%res = call i32 @llvm.x86.sse.ucomile.ss(<4 x float> %a0, <4 x float> %a1) ; <i32> [#uses=1]
ret i32 %res
}
declare i32 @llvm.x86.sse.ucomile.ss(<4 x float>, <4 x float>) nounwind readnone
define i32 @test_x86_sse_ucomilt_ss(<4 x float> %a0, <4 x float> %a1) {
; CHECK: vucomiss
; CHECK: sbbl
%res = call i32 @llvm.x86.sse.ucomilt.ss(<4 x float> %a0, <4 x float> %a1) ; <i32> [#uses=1]
ret i32 %res
}
declare i32 @llvm.x86.sse.ucomilt.ss(<4 x float>, <4 x float>) nounwind readnone
define i32 @test_x86_sse_ucomineq_ss(<4 x float> %a0, <4 x float> %a1) {
; CHECK: vucomiss
; CHECK: setne
; CHECK: movzbl
%res = call i32 @llvm.x86.sse.ucomineq.ss(<4 x float> %a0, <4 x float> %a1) ; <i32> [#uses=1]
ret i32 %res
}
declare i32 @llvm.x86.sse.ucomineq.ss(<4 x float>, <4 x float>) nounwind readnone
define <16 x i8> @test_x86_ssse3_pabs_b_128(<16 x i8> %a0) {
; CHECK: vpabsb
%res = call <16 x i8> @llvm.x86.ssse3.pabs.b.128(<16 x i8> %a0) ; <<16 x i8>> [#uses=1]
ret <16 x i8> %res
}
declare <16 x i8> @llvm.x86.ssse3.pabs.b.128(<16 x i8>) nounwind readnone
define <4 x i32> @test_x86_ssse3_pabs_d_128(<4 x i32> %a0) {
; CHECK: vpabsd
%res = call <4 x i32> @llvm.x86.ssse3.pabs.d.128(<4 x i32> %a0) ; <<4 x i32>> [#uses=1]
ret <4 x i32> %res
}
declare <4 x i32> @llvm.x86.ssse3.pabs.d.128(<4 x i32>) nounwind readnone
define <8 x i16> @test_x86_ssse3_pabs_w_128(<8 x i16> %a0) {
; CHECK: vpabsw
%res = call <8 x i16> @llvm.x86.ssse3.pabs.w.128(<8 x i16> %a0) ; <<8 x i16>> [#uses=1]
ret <8 x i16> %res
}
declare <8 x i16> @llvm.x86.ssse3.pabs.w.128(<8 x i16>) nounwind readnone
define <4 x i32> @test_x86_ssse3_phadd_d_128(<4 x i32> %a0, <4 x i32> %a1) {
; CHECK: vphaddd
%res = call <4 x i32> @llvm.x86.ssse3.phadd.d.128(<4 x i32> %a0, <4 x i32> %a1) ; <<4 x i32>> [#uses=1]
ret <4 x i32> %res
}
declare <4 x i32> @llvm.x86.ssse3.phadd.d.128(<4 x i32>, <4 x i32>) nounwind readnone
define <8 x i16> @test_x86_ssse3_phadd_sw_128(<8 x i16> %a0, <8 x i16> %a1) {
; CHECK: vphaddsw
%res = call <8 x i16> @llvm.x86.ssse3.phadd.sw.128(<8 x i16> %a0, <8 x i16> %a1) ; <<8 x i16>> [#uses=1]
ret <8 x i16> %res
}
declare <8 x i16> @llvm.x86.ssse3.phadd.sw.128(<8 x i16>, <8 x i16>) nounwind readnone
define <8 x i16> @test_x86_ssse3_phadd_w_128(<8 x i16> %a0, <8 x i16> %a1) {
; CHECK: vphaddw
%res = call <8 x i16> @llvm.x86.ssse3.phadd.w.128(<8 x i16> %a0, <8 x i16> %a1) ; <<8 x i16>> [#uses=1]
ret <8 x i16> %res
}
declare <8 x i16> @llvm.x86.ssse3.phadd.w.128(<8 x i16>, <8 x i16>) nounwind readnone
define <4 x i32> @test_x86_ssse3_phsub_d_128(<4 x i32> %a0, <4 x i32> %a1) {
; CHECK: vphsubd
%res = call <4 x i32> @llvm.x86.ssse3.phsub.d.128(<4 x i32> %a0, <4 x i32> %a1) ; <<4 x i32>> [#uses=1]
ret <4 x i32> %res
}
declare <4 x i32> @llvm.x86.ssse3.phsub.d.128(<4 x i32>, <4 x i32>) nounwind readnone
define <8 x i16> @test_x86_ssse3_phsub_sw_128(<8 x i16> %a0, <8 x i16> %a1) {
; CHECK: vphsubsw
%res = call <8 x i16> @llvm.x86.ssse3.phsub.sw.128(<8 x i16> %a0, <8 x i16> %a1) ; <<8 x i16>> [#uses=1]
ret <8 x i16> %res
}
declare <8 x i16> @llvm.x86.ssse3.phsub.sw.128(<8 x i16>, <8 x i16>) nounwind readnone
define <8 x i16> @test_x86_ssse3_phsub_w_128(<8 x i16> %a0, <8 x i16> %a1) {
; CHECK: vphsubw
%res = call <8 x i16> @llvm.x86.ssse3.phsub.w.128(<8 x i16> %a0, <8 x i16> %a1) ; <<8 x i16>> [#uses=1]
ret <8 x i16> %res
}
declare <8 x i16> @llvm.x86.ssse3.phsub.w.128(<8 x i16>, <8 x i16>) nounwind readnone
define <8 x i16> @test_x86_ssse3_pmadd_ub_sw_128(<16 x i8> %a0, <16 x i8> %a1) {
; CHECK: vpmaddubsw
%res = call <8 x i16> @llvm.x86.ssse3.pmadd.ub.sw.128(<16 x i8> %a0, <16 x i8> %a1) ; <<8 x i16>> [#uses=1]
ret <8 x i16> %res
}
declare <8 x i16> @llvm.x86.ssse3.pmadd.ub.sw.128(<16 x i8>, <16 x i8>) nounwind readnone
define <8 x i16> @test_x86_ssse3_pmul_hr_sw_128(<8 x i16> %a0, <8 x i16> %a1) {
; CHECK: vpmulhrsw
%res = call <8 x i16> @llvm.x86.ssse3.pmul.hr.sw.128(<8 x i16> %a0, <8 x i16> %a1) ; <<8 x i16>> [#uses=1]
ret <8 x i16> %res
}
declare <8 x i16> @llvm.x86.ssse3.pmul.hr.sw.128(<8 x i16>, <8 x i16>) nounwind readnone
define <16 x i8> @test_x86_ssse3_pshuf_b_128(<16 x i8> %a0, <16 x i8> %a1) {
; CHECK: vpshufb
%res = call <16 x i8> @llvm.x86.ssse3.pshuf.b.128(<16 x i8> %a0, <16 x i8> %a1) ; <<16 x i8>> [#uses=1]
ret <16 x i8> %res
}
declare <16 x i8> @llvm.x86.ssse3.pshuf.b.128(<16 x i8>, <16 x i8>) nounwind readnone
define <16 x i8> @test_x86_ssse3_psign_b_128(<16 x i8> %a0, <16 x i8> %a1) {
; CHECK: vpsignb
%res = call <16 x i8> @llvm.x86.ssse3.psign.b.128(<16 x i8> %a0, <16 x i8> %a1) ; <<16 x i8>> [#uses=1]
ret <16 x i8> %res
}
declare <16 x i8> @llvm.x86.ssse3.psign.b.128(<16 x i8>, <16 x i8>) nounwind readnone
define <4 x i32> @test_x86_ssse3_psign_d_128(<4 x i32> %a0, <4 x i32> %a1) {
; CHECK: vpsignd
%res = call <4 x i32> @llvm.x86.ssse3.psign.d.128(<4 x i32> %a0, <4 x i32> %a1) ; <<4 x i32>> [#uses=1]
ret <4 x i32> %res
}
declare <4 x i32> @llvm.x86.ssse3.psign.d.128(<4 x i32>, <4 x i32>) nounwind readnone
define <8 x i16> @test_x86_ssse3_psign_w_128(<8 x i16> %a0, <8 x i16> %a1) {
; CHECK: vpsignw
%res = call <8 x i16> @llvm.x86.ssse3.psign.w.128(<8 x i16> %a0, <8 x i16> %a1) ; <<8 x i16>> [#uses=1]
ret <8 x i16> %res
}
declare <8 x i16> @llvm.x86.ssse3.psign.w.128(<8 x i16>, <8 x i16>) nounwind readnone
define <4 x double> @test_x86_avx_addsub_pd_256(<4 x double> %a0, <4 x double> %a1) {
; CHECK: vaddsubpd
%res = call <4 x double> @llvm.x86.avx.addsub.pd.256(<4 x double> %a0, <4 x double> %a1) ; <<4 x double>> [#uses=1]
ret <4 x double> %res
}
declare <4 x double> @llvm.x86.avx.addsub.pd.256(<4 x double>, <4 x double>) nounwind readnone
define <8 x float> @test_x86_avx_addsub_ps_256(<8 x float> %a0, <8 x float> %a1) {
; CHECK: vaddsubps
%res = call <8 x float> @llvm.x86.avx.addsub.ps.256(<8 x float> %a0, <8 x float> %a1) ; <<8 x float>> [#uses=1]
ret <8 x float> %res
}
declare <8 x float> @llvm.x86.avx.addsub.ps.256(<8 x float>, <8 x float>) nounwind readnone
define <4 x double> @test_x86_avx_blendv_pd_256(<4 x double> %a0, <4 x double> %a1, <4 x double> %a2) {
; CHECK: vblendvpd
%res = call <4 x double> @llvm.x86.avx.blendv.pd.256(<4 x double> %a0, <4 x double> %a1, <4 x double> %a2) ; <<4 x double>> [#uses=1]
ret <4 x double> %res
}
declare <4 x double> @llvm.x86.avx.blendv.pd.256(<4 x double>, <4 x double>, <4 x double>) nounwind readnone
define <8 x float> @test_x86_avx_blendv_ps_256(<8 x float> %a0, <8 x float> %a1, <8 x float> %a2) {
; CHECK: vblendvps
%res = call <8 x float> @llvm.x86.avx.blendv.ps.256(<8 x float> %a0, <8 x float> %a1, <8 x float> %a2) ; <<8 x float>> [#uses=1]
ret <8 x float> %res
}
declare <8 x float> @llvm.x86.avx.blendv.ps.256(<8 x float>, <8 x float>, <8 x float>) nounwind readnone
define <4 x double> @test_x86_avx_cmp_pd_256(<4 x double> %a0, <4 x double> %a1) {
; CHECK: vcmpordpd
%res = call <4 x double> @llvm.x86.avx.cmp.pd.256(<4 x double> %a0, <4 x double> %a1, i8 7) ; <<4 x double>> [#uses=1]
ret <4 x double> %res
}
declare <4 x double> @llvm.x86.avx.cmp.pd.256(<4 x double>, <4 x double>, i8) nounwind readnone
define <8 x float> @test_x86_avx_cmp_ps_256(<8 x float> %a0, <8 x float> %a1) {
; CHECK: vcmpordps
%res = call <8 x float> @llvm.x86.avx.cmp.ps.256(<8 x float> %a0, <8 x float> %a1, i8 7) ; <<8 x float>> [#uses=1]
ret <8 x float> %res
}
define <8 x float> @test_x86_avx_cmp_ps_256_pseudo_op(<8 x float> %a0, <8 x float> %a1) {
; CHECK: vcmpeqps
%a2 = call <8 x float> @llvm.x86.avx.cmp.ps.256(<8 x float> %a0, <8 x float> %a1, i8 0) ; <<8 x float>> [#uses=1]
; CHECK: vcmpltps
%a3 = call <8 x float> @llvm.x86.avx.cmp.ps.256(<8 x float> %a0, <8 x float> %a2, i8 1) ; <<8 x float>> [#uses=1]
; CHECK: vcmpleps
%a4 = call <8 x float> @llvm.x86.avx.cmp.ps.256(<8 x float> %a0, <8 x float> %a3, i8 2) ; <<8 x float>> [#uses=1]
; CHECK: vcmpunordps
%a5 = call <8 x float> @llvm.x86.avx.cmp.ps.256(<8 x float> %a0, <8 x float> %a4, i8 3) ; <<8 x float>> [#uses=1]
; CHECK: vcmpneqps
%a6 = call <8 x float> @llvm.x86.avx.cmp.ps.256(<8 x float> %a0, <8 x float> %a5, i8 4) ; <<8 x float>> [#uses=1]
; CHECK: vcmpnltps
%a7 = call <8 x float> @llvm.x86.avx.cmp.ps.256(<8 x float> %a0, <8 x float> %a6, i8 5) ; <<8 x float>> [#uses=1]
; CHECK: vcmpnleps
%a8 = call <8 x float> @llvm.x86.avx.cmp.ps.256(<8 x float> %a0, <8 x float> %a7, i8 6) ; <<8 x float>> [#uses=1]
; CHECK: vcmpordps
%a9 = call <8 x float> @llvm.x86.avx.cmp.ps.256(<8 x float> %a0, <8 x float> %a8, i8 7) ; <<8 x float>> [#uses=1]
; CHECK: vcmpeq_uqps
%a10 = call <8 x float> @llvm.x86.avx.cmp.ps.256(<8 x float> %a0, <8 x float> %a9, i8 8) ; <<8 x float>> [#uses=1]
; CHECK: vcmpngeps
%a11 = call <8 x float> @llvm.x86.avx.cmp.ps.256(<8 x float> %a0, <8 x float> %a10, i8 9) ; <<8 x float>> [#uses=1]
; CHECK: vcmpngtps
%a12 = call <8 x float> @llvm.x86.avx.cmp.ps.256(<8 x float> %a0, <8 x float> %a11, i8 10) ; <<8 x float>> [#uses=1]
; CHECK: vcmpfalseps
%a13 = call <8 x float> @llvm.x86.avx.cmp.ps.256(<8 x float> %a0, <8 x float> %a12, i8 11) ; <<8 x float>> [#uses=1]
; CHECK: vcmpneq_oqps
%a14 = call <8 x float> @llvm.x86.avx.cmp.ps.256(<8 x float> %a0, <8 x float> %a13, i8 12) ; <<8 x float>> [#uses=1]
; CHECK: vcmpgeps
%a15 = call <8 x float> @llvm.x86.avx.cmp.ps.256(<8 x float> %a0, <8 x float> %a14, i8 13) ; <<8 x float>> [#uses=1]
; CHECK: vcmpgtps
%a16 = call <8 x float> @llvm.x86.avx.cmp.ps.256(<8 x float> %a0, <8 x float> %a15, i8 14) ; <<8 x float>> [#uses=1]
; CHECK: vcmptrueps
%a17 = call <8 x float> @llvm.x86.avx.cmp.ps.256(<8 x float> %a0, <8 x float> %a16, i8 15) ; <<8 x float>> [#uses=1]
; CHECK: vcmpeq_osps
%a18 = call <8 x float> @llvm.x86.avx.cmp.ps.256(<8 x float> %a0, <8 x float> %a17, i8 16) ; <<8 x float>> [#uses=1]
; CHECK: vcmplt_oqps
%a19 = call <8 x float> @llvm.x86.avx.cmp.ps.256(<8 x float> %a0, <8 x float> %a18, i8 17) ; <<8 x float>> [#uses=1]
; CHECK: vcmple_oqps
%a20 = call <8 x float> @llvm.x86.avx.cmp.ps.256(<8 x float> %a0, <8 x float> %a19, i8 18) ; <<8 x float>> [#uses=1]
; CHECK: vcmpunord_sps
%a21 = call <8 x float> @llvm.x86.avx.cmp.ps.256(<8 x float> %a0, <8 x float> %a20, i8 19) ; <<8 x float>> [#uses=1]
; CHECK: vcmpneq_usps
%a22 = call <8 x float> @llvm.x86.avx.cmp.ps.256(<8 x float> %a0, <8 x float> %a21, i8 20) ; <<8 x float>> [#uses=1]
; CHECK: vcmpnlt_uqps
%a23 = call <8 x float> @llvm.x86.avx.cmp.ps.256(<8 x float> %a0, <8 x float> %a22, i8 21) ; <<8 x float>> [#uses=1]
; CHECK: vcmpnle_uqps
%a24 = call <8 x float> @llvm.x86.avx.cmp.ps.256(<8 x float> %a0, <8 x float> %a23, i8 22) ; <<8 x float>> [#uses=1]
; CHECK: vcmpord_sps
%a25 = call <8 x float> @llvm.x86.avx.cmp.ps.256(<8 x float> %a0, <8 x float> %a24, i8 23) ; <<8 x float>> [#uses=1]
; CHECK: vcmpeq_usps
%a26 = call <8 x float> @llvm.x86.avx.cmp.ps.256(<8 x float> %a0, <8 x float> %a25, i8 24) ; <<8 x float>> [#uses=1]
; CHECK: vcmpnge_uqps
%a27 = call <8 x float> @llvm.x86.avx.cmp.ps.256(<8 x float> %a0, <8 x float> %a26, i8 25) ; <<8 x float>> [#uses=1]
; CHECK: vcmpngt_uqps
%a28 = call <8 x float> @llvm.x86.avx.cmp.ps.256(<8 x float> %a0, <8 x float> %a27, i8 26) ; <<8 x float>> [#uses=1]
; CHECK: vcmpfalse_osps
%a29 = call <8 x float> @llvm.x86.avx.cmp.ps.256(<8 x float> %a0, <8 x float> %a28, i8 27) ; <<8 x float>> [#uses=1]
; CHECK: vcmpneq_osps
%a30 = call <8 x float> @llvm.x86.avx.cmp.ps.256(<8 x float> %a0, <8 x float> %a29, i8 28) ; <<8 x float>> [#uses=1]
; CHECK: vcmpge_oqps
%a31 = call <8 x float> @llvm.x86.avx.cmp.ps.256(<8 x float> %a0, <8 x float> %a30, i8 29) ; <<8 x float>> [#uses=1]
; CHECK: vcmpgt_oqps
%a32 = call <8 x float> @llvm.x86.avx.cmp.ps.256(<8 x float> %a0, <8 x float> %a31, i8 30) ; <<8 x float>> [#uses=1]
; CHECK: vcmptrue_usps
%res = call <8 x float> @llvm.x86.avx.cmp.ps.256(<8 x float> %a0, <8 x float> %a32, i8 31) ; <<8 x float>> [#uses=1]
ret <8 x float> %res
}
declare <8 x float> @llvm.x86.avx.cmp.ps.256(<8 x float>, <8 x float>, i8) nounwind readnone
define <4 x float> @test_x86_avx_cvt_pd2_ps_256(<4 x double> %a0) {
; CHECK: vcvtpd2psy
%res = call <4 x float> @llvm.x86.avx.cvt.pd2.ps.256(<4 x double> %a0) ; <<4 x float>> [#uses=1]
ret <4 x float> %res
}
declare <4 x float> @llvm.x86.avx.cvt.pd2.ps.256(<4 x double>) nounwind readnone
define <4 x i32> @test_x86_avx_cvt_pd2dq_256(<4 x double> %a0) {
; CHECK: vcvtpd2dqy
%res = call <4 x i32> @llvm.x86.avx.cvt.pd2dq.256(<4 x double> %a0) ; <<4 x i32>> [#uses=1]
ret <4 x i32> %res
}
declare <4 x i32> @llvm.x86.avx.cvt.pd2dq.256(<4 x double>) nounwind readnone
define <4 x double> @test_x86_avx_cvt_ps2_pd_256(<4 x float> %a0) {
; CHECK: vcvtps2pd
%res = call <4 x double> @llvm.x86.avx.cvt.ps2.pd.256(<4 x float> %a0) ; <<4 x double>> [#uses=1]
ret <4 x double> %res
}
declare <4 x double> @llvm.x86.avx.cvt.ps2.pd.256(<4 x float>) nounwind readnone
define <8 x i32> @test_x86_avx_cvt_ps2dq_256(<8 x float> %a0) {
; CHECK: vcvtps2dq
%res = call <8 x i32> @llvm.x86.avx.cvt.ps2dq.256(<8 x float> %a0) ; <<8 x i32>> [#uses=1]
ret <8 x i32> %res
}
declare <8 x i32> @llvm.x86.avx.cvt.ps2dq.256(<8 x float>) nounwind readnone
define <4 x double> @test_x86_avx_cvtdq2_pd_256(<4 x i32> %a0) {
; CHECK: vcvtdq2pd
%res = call <4 x double> @llvm.x86.avx.cvtdq2.pd.256(<4 x i32> %a0) ; <<4 x double>> [#uses=1]
ret <4 x double> %res
}
declare <4 x double> @llvm.x86.avx.cvtdq2.pd.256(<4 x i32>) nounwind readnone
define <8 x float> @test_x86_avx_cvtdq2_ps_256(<8 x i32> %a0) {
; CHECK: vcvtdq2ps
%res = call <8 x float> @llvm.x86.avx.cvtdq2.ps.256(<8 x i32> %a0) ; <<8 x float>> [#uses=1]
ret <8 x float> %res
}
declare <8 x float> @llvm.x86.avx.cvtdq2.ps.256(<8 x i32>) nounwind readnone
define <4 x i32> @test_x86_avx_cvtt_pd2dq_256(<4 x double> %a0) {
; CHECK: vcvttpd2dqy
%res = call <4 x i32> @llvm.x86.avx.cvtt.pd2dq.256(<4 x double> %a0) ; <<4 x i32>> [#uses=1]
ret <4 x i32> %res
}
declare <4 x i32> @llvm.x86.avx.cvtt.pd2dq.256(<4 x double>) nounwind readnone
define <8 x i32> @test_x86_avx_cvtt_ps2dq_256(<8 x float> %a0) {
; CHECK: vcvttps2dq
%res = call <8 x i32> @llvm.x86.avx.cvtt.ps2dq.256(<8 x float> %a0) ; <<8 x i32>> [#uses=1]
ret <8 x i32> %res
}
declare <8 x i32> @llvm.x86.avx.cvtt.ps2dq.256(<8 x float>) nounwind readnone
define <8 x float> @test_x86_avx_dp_ps_256(<8 x float> %a0, <8 x float> %a1) {
; CHECK: vdpps
[x86] Fix a pretty horrible bug and inconsistency in the x86 asm parsing (and latent bug in the instruction definitions). This is effectively a revert of r136287 which tried to address a specific and narrow case of immediate operands failing to be accepted by x86 instructions with a pretty heavy hammer: it introduced a new kind of operand that behaved differently. All of that is removed with this commit, but the test cases are both preserved and enhanced. The core problem that r136287 and this commit are trying to handle is that gas accepts both of the following instructions: insertps $192, %xmm0, %xmm1 insertps $-64, %xmm0, %xmm1 These will encode to the same byte sequence, with the immediate occupying an 8-bit entry. The first form was fixed by r136287 but that broke the prior handling of the second form! =[ Ironically, we would still emit the second form in some cases and then be unable to re-assemble the output. The reason why the first instruction failed to be handled is because prior to r136287 the operands ere marked 'i32i8imm' which forces them to be sign-extenable. Clearly, that won't work for 192 in a single byte. However, making thim zero-extended or "unsigned" doesn't really address the core issue either because it breaks negative immediates. The correct fix is to make these operands 'i8imm' reflecting that they can be either signed or unsigned but must be 8-bit immediates. This patch backs out r136287 and then changes those places as well as some others to use 'i8imm' rather than one of the extended variants. Naturally, this broke something else. The custom DAG nodes had to be updated to have a much more accurate type constraint of an i8 node, and a bunch of Pat immediates needed to be specified as i8 values. The fallout didn't end there though. We also then ceased to be able to match the instruction-specific intrinsics to the instructions so modified. Digging, this is because they too used i32 rather than i8 in their signature. So I've also switched those intrinsics to i8 arguments in line with the instructions. In order to make the intrinsic adjustments of course, I also had to add auto upgrading for the intrinsics. I suspect that the intrinsic argument types may have led everything down this rabbit hole. Pretty happy with the result. llvm-svn: 217310
2014-09-06 18:00:01 +08:00
%res = call <8 x float> @llvm.x86.avx.dp.ps.256(<8 x float> %a0, <8 x float> %a1, i8 7) ; <<8 x float>> [#uses=1]
ret <8 x float> %res
}
[x86] Fix a pretty horrible bug and inconsistency in the x86 asm parsing (and latent bug in the instruction definitions). This is effectively a revert of r136287 which tried to address a specific and narrow case of immediate operands failing to be accepted by x86 instructions with a pretty heavy hammer: it introduced a new kind of operand that behaved differently. All of that is removed with this commit, but the test cases are both preserved and enhanced. The core problem that r136287 and this commit are trying to handle is that gas accepts both of the following instructions: insertps $192, %xmm0, %xmm1 insertps $-64, %xmm0, %xmm1 These will encode to the same byte sequence, with the immediate occupying an 8-bit entry. The first form was fixed by r136287 but that broke the prior handling of the second form! =[ Ironically, we would still emit the second form in some cases and then be unable to re-assemble the output. The reason why the first instruction failed to be handled is because prior to r136287 the operands ere marked 'i32i8imm' which forces them to be sign-extenable. Clearly, that won't work for 192 in a single byte. However, making thim zero-extended or "unsigned" doesn't really address the core issue either because it breaks negative immediates. The correct fix is to make these operands 'i8imm' reflecting that they can be either signed or unsigned but must be 8-bit immediates. This patch backs out r136287 and then changes those places as well as some others to use 'i8imm' rather than one of the extended variants. Naturally, this broke something else. The custom DAG nodes had to be updated to have a much more accurate type constraint of an i8 node, and a bunch of Pat immediates needed to be specified as i8 values. The fallout didn't end there though. We also then ceased to be able to match the instruction-specific intrinsics to the instructions so modified. Digging, this is because they too used i32 rather than i8 in their signature. So I've also switched those intrinsics to i8 arguments in line with the instructions. In order to make the intrinsic adjustments of course, I also had to add auto upgrading for the intrinsics. I suspect that the intrinsic argument types may have led everything down this rabbit hole. Pretty happy with the result. llvm-svn: 217310
2014-09-06 18:00:01 +08:00
declare <8 x float> @llvm.x86.avx.dp.ps.256(<8 x float>, <8 x float>, i8) nounwind readnone
define <4 x double> @test_x86_avx_hadd_pd_256(<4 x double> %a0, <4 x double> %a1) {
; CHECK: vhaddpd
%res = call <4 x double> @llvm.x86.avx.hadd.pd.256(<4 x double> %a0, <4 x double> %a1) ; <<4 x double>> [#uses=1]
ret <4 x double> %res
}
declare <4 x double> @llvm.x86.avx.hadd.pd.256(<4 x double>, <4 x double>) nounwind readnone
define <8 x float> @test_x86_avx_hadd_ps_256(<8 x float> %a0, <8 x float> %a1) {
; CHECK: vhaddps
%res = call <8 x float> @llvm.x86.avx.hadd.ps.256(<8 x float> %a0, <8 x float> %a1) ; <<8 x float>> [#uses=1]
ret <8 x float> %res
}
declare <8 x float> @llvm.x86.avx.hadd.ps.256(<8 x float>, <8 x float>) nounwind readnone
define <4 x double> @test_x86_avx_hsub_pd_256(<4 x double> %a0, <4 x double> %a1) {
; CHECK: vhsubpd
%res = call <4 x double> @llvm.x86.avx.hsub.pd.256(<4 x double> %a0, <4 x double> %a1) ; <<4 x double>> [#uses=1]
ret <4 x double> %res
}
declare <4 x double> @llvm.x86.avx.hsub.pd.256(<4 x double>, <4 x double>) nounwind readnone
define <8 x float> @test_x86_avx_hsub_ps_256(<8 x float> %a0, <8 x float> %a1) {
; CHECK: vhsubps
%res = call <8 x float> @llvm.x86.avx.hsub.ps.256(<8 x float> %a0, <8 x float> %a1) ; <<8 x float>> [#uses=1]
ret <8 x float> %res
}
declare <8 x float> @llvm.x86.avx.hsub.ps.256(<8 x float>, <8 x float>) nounwind readnone
define <32 x i8> @test_x86_avx_ldu_dq_256(i8* %a0) {
; CHECK: vlddqu
%res = call <32 x i8> @llvm.x86.avx.ldu.dq.256(i8* %a0) ; <<32 x i8>> [#uses=1]
ret <32 x i8> %res
}
declare <32 x i8> @llvm.x86.avx.ldu.dq.256(i8*) nounwind readonly
define <2 x double> @test_x86_avx_maskload_pd(i8* %a0, <2 x double> %a1) {
; CHECK: vmaskmovpd
%res = call <2 x double> @llvm.x86.avx.maskload.pd(i8* %a0, <2 x double> %a1) ; <<2 x double>> [#uses=1]
ret <2 x double> %res
}
declare <2 x double> @llvm.x86.avx.maskload.pd(i8*, <2 x double>) nounwind readonly
define <4 x double> @test_x86_avx_maskload_pd_256(i8* %a0, <4 x double> %a1) {
; CHECK: vmaskmovpd
%res = call <4 x double> @llvm.x86.avx.maskload.pd.256(i8* %a0, <4 x double> %a1) ; <<4 x double>> [#uses=1]
ret <4 x double> %res
}
declare <4 x double> @llvm.x86.avx.maskload.pd.256(i8*, <4 x double>) nounwind readonly
define <4 x float> @test_x86_avx_maskload_ps(i8* %a0, <4 x float> %a1) {
; CHECK: vmaskmovps
%res = call <4 x float> @llvm.x86.avx.maskload.ps(i8* %a0, <4 x float> %a1) ; <<4 x float>> [#uses=1]
ret <4 x float> %res
}
declare <4 x float> @llvm.x86.avx.maskload.ps(i8*, <4 x float>) nounwind readonly
define <8 x float> @test_x86_avx_maskload_ps_256(i8* %a0, <8 x float> %a1) {
; CHECK: vmaskmovps
%res = call <8 x float> @llvm.x86.avx.maskload.ps.256(i8* %a0, <8 x float> %a1) ; <<8 x float>> [#uses=1]
ret <8 x float> %res
}
declare <8 x float> @llvm.x86.avx.maskload.ps.256(i8*, <8 x float>) nounwind readonly
define void @test_x86_avx_maskstore_pd(i8* %a0, <2 x double> %a1, <2 x double> %a2) {
; CHECK: vmaskmovpd
call void @llvm.x86.avx.maskstore.pd(i8* %a0, <2 x double> %a1, <2 x double> %a2)
ret void
}
declare void @llvm.x86.avx.maskstore.pd(i8*, <2 x double>, <2 x double>) nounwind
define void @test_x86_avx_maskstore_pd_256(i8* %a0, <4 x double> %a1, <4 x double> %a2) {
; CHECK: vmaskmovpd
call void @llvm.x86.avx.maskstore.pd.256(i8* %a0, <4 x double> %a1, <4 x double> %a2)
ret void
}
declare void @llvm.x86.avx.maskstore.pd.256(i8*, <4 x double>, <4 x double>) nounwind
define void @test_x86_avx_maskstore_ps(i8* %a0, <4 x float> %a1, <4 x float> %a2) {
; CHECK: vmaskmovps
call void @llvm.x86.avx.maskstore.ps(i8* %a0, <4 x float> %a1, <4 x float> %a2)
ret void
}
declare void @llvm.x86.avx.maskstore.ps(i8*, <4 x float>, <4 x float>) nounwind
define void @test_x86_avx_maskstore_ps_256(i8* %a0, <8 x float> %a1, <8 x float> %a2) {
; CHECK: vmaskmovps
call void @llvm.x86.avx.maskstore.ps.256(i8* %a0, <8 x float> %a1, <8 x float> %a2)
ret void
}
declare void @llvm.x86.avx.maskstore.ps.256(i8*, <8 x float>, <8 x float>) nounwind
define <4 x double> @test_x86_avx_max_pd_256(<4 x double> %a0, <4 x double> %a1) {
; CHECK: vmaxpd
%res = call <4 x double> @llvm.x86.avx.max.pd.256(<4 x double> %a0, <4 x double> %a1) ; <<4 x double>> [#uses=1]
ret <4 x double> %res
}
declare <4 x double> @llvm.x86.avx.max.pd.256(<4 x double>, <4 x double>) nounwind readnone
define <8 x float> @test_x86_avx_max_ps_256(<8 x float> %a0, <8 x float> %a1) {
; CHECK: vmaxps
%res = call <8 x float> @llvm.x86.avx.max.ps.256(<8 x float> %a0, <8 x float> %a1) ; <<8 x float>> [#uses=1]
ret <8 x float> %res
}
declare <8 x float> @llvm.x86.avx.max.ps.256(<8 x float>, <8 x float>) nounwind readnone
define <4 x double> @test_x86_avx_min_pd_256(<4 x double> %a0, <4 x double> %a1) {
; CHECK: vminpd
%res = call <4 x double> @llvm.x86.avx.min.pd.256(<4 x double> %a0, <4 x double> %a1) ; <<4 x double>> [#uses=1]
ret <4 x double> %res
}
declare <4 x double> @llvm.x86.avx.min.pd.256(<4 x double>, <4 x double>) nounwind readnone
define <8 x float> @test_x86_avx_min_ps_256(<8 x float> %a0, <8 x float> %a1) {
; CHECK: vminps
%res = call <8 x float> @llvm.x86.avx.min.ps.256(<8 x float> %a0, <8 x float> %a1) ; <<8 x float>> [#uses=1]
ret <8 x float> %res
}
declare <8 x float> @llvm.x86.avx.min.ps.256(<8 x float>, <8 x float>) nounwind readnone
define i32 @test_x86_avx_movmsk_pd_256(<4 x double> %a0) {
; CHECK: vmovmskpd
%res = call i32 @llvm.x86.avx.movmsk.pd.256(<4 x double> %a0) ; <i32> [#uses=1]
ret i32 %res
}
declare i32 @llvm.x86.avx.movmsk.pd.256(<4 x double>) nounwind readnone
define i32 @test_x86_avx_movmsk_ps_256(<8 x float> %a0) {
; CHECK: vmovmskps
%res = call i32 @llvm.x86.avx.movmsk.ps.256(<8 x float> %a0) ; <i32> [#uses=1]
ret i32 %res
}
declare i32 @llvm.x86.avx.movmsk.ps.256(<8 x float>) nounwind readnone
define i32 @test_x86_avx_ptestc_256(<4 x i64> %a0, <4 x i64> %a1) {
; CHECK: vptest
; CHECK: sbbl
%res = call i32 @llvm.x86.avx.ptestc.256(<4 x i64> %a0, <4 x i64> %a1) ; <i32> [#uses=1]
ret i32 %res
}
declare i32 @llvm.x86.avx.ptestc.256(<4 x i64>, <4 x i64>) nounwind readnone
define i32 @test_x86_avx_ptestnzc_256(<4 x i64> %a0, <4 x i64> %a1) {
; CHECK: vptest
; CHECK: seta
; CHECK: movzbl
%res = call i32 @llvm.x86.avx.ptestnzc.256(<4 x i64> %a0, <4 x i64> %a1) ; <i32> [#uses=1]
ret i32 %res
}
declare i32 @llvm.x86.avx.ptestnzc.256(<4 x i64>, <4 x i64>) nounwind readnone
define i32 @test_x86_avx_ptestz_256(<4 x i64> %a0, <4 x i64> %a1) {
; CHECK: vptest
; CHECK: sete
; CHECK: movzbl
%res = call i32 @llvm.x86.avx.ptestz.256(<4 x i64> %a0, <4 x i64> %a1) ; <i32> [#uses=1]
ret i32 %res
}
declare i32 @llvm.x86.avx.ptestz.256(<4 x i64>, <4 x i64>) nounwind readnone
define <8 x float> @test_x86_avx_rcp_ps_256(<8 x float> %a0) {
; CHECK: vrcpps
%res = call <8 x float> @llvm.x86.avx.rcp.ps.256(<8 x float> %a0) ; <<8 x float>> [#uses=1]
ret <8 x float> %res
}
declare <8 x float> @llvm.x86.avx.rcp.ps.256(<8 x float>) nounwind readnone
define <4 x double> @test_x86_avx_round_pd_256(<4 x double> %a0) {
; CHECK: vroundpd
%res = call <4 x double> @llvm.x86.avx.round.pd.256(<4 x double> %a0, i32 7) ; <<4 x double>> [#uses=1]
ret <4 x double> %res
}
declare <4 x double> @llvm.x86.avx.round.pd.256(<4 x double>, i32) nounwind readnone
define <8 x float> @test_x86_avx_round_ps_256(<8 x float> %a0) {
; CHECK: vroundps
%res = call <8 x float> @llvm.x86.avx.round.ps.256(<8 x float> %a0, i32 7) ; <<8 x float>> [#uses=1]
ret <8 x float> %res
}
declare <8 x float> @llvm.x86.avx.round.ps.256(<8 x float>, i32) nounwind readnone
define <8 x float> @test_x86_avx_rsqrt_ps_256(<8 x float> %a0) {
; CHECK: vrsqrtps
%res = call <8 x float> @llvm.x86.avx.rsqrt.ps.256(<8 x float> %a0) ; <<8 x float>> [#uses=1]
ret <8 x float> %res
}
declare <8 x float> @llvm.x86.avx.rsqrt.ps.256(<8 x float>) nounwind readnone
define <4 x double> @test_x86_avx_sqrt_pd_256(<4 x double> %a0) {
; CHECK: vsqrtpd
%res = call <4 x double> @llvm.x86.avx.sqrt.pd.256(<4 x double> %a0) ; <<4 x double>> [#uses=1]
ret <4 x double> %res
}
declare <4 x double> @llvm.x86.avx.sqrt.pd.256(<4 x double>) nounwind readnone
define <8 x float> @test_x86_avx_sqrt_ps_256(<8 x float> %a0) {
; CHECK: vsqrtps
%res = call <8 x float> @llvm.x86.avx.sqrt.ps.256(<8 x float> %a0) ; <<8 x float>> [#uses=1]
ret <8 x float> %res
}
declare <8 x float> @llvm.x86.avx.sqrt.ps.256(<8 x float>) nounwind readnone
define void @test_x86_avx_storeu_dq_256(i8* %a0, <32 x i8> %a1) {
; FIXME: unfortunately the execution domain fix pass changes this to vmovups and its hard to force with no 256-bit integer instructions
; CHECK: vmovups
; add operation forces the execution domain.
%a2 = add <32 x i8> %a1, <i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1>
call void @llvm.x86.avx.storeu.dq.256(i8* %a0, <32 x i8> %a2)
ret void
}
declare void @llvm.x86.avx.storeu.dq.256(i8*, <32 x i8>) nounwind
define void @test_x86_avx_storeu_pd_256(i8* %a0, <4 x double> %a1) {
; CHECK: vmovupd
; add operation forces the execution domain.
%a2 = fadd <4 x double> %a1, <double 0x0, double 0x0, double 0x0, double 0x0>
call void @llvm.x86.avx.storeu.pd.256(i8* %a0, <4 x double> %a2)
ret void
}
declare void @llvm.x86.avx.storeu.pd.256(i8*, <4 x double>) nounwind
define void @test_x86_avx_storeu_ps_256(i8* %a0, <8 x float> %a1) {
; CHECK: vmovups
call void @llvm.x86.avx.storeu.ps.256(i8* %a0, <8 x float> %a1)
ret void
}
declare void @llvm.x86.avx.storeu.ps.256(i8*, <8 x float>) nounwind
define <4 x double> @test_x86_avx_vbroadcastf128_pd_256(i8* %a0) {
; CHECK: vbroadcastf128
%res = call <4 x double> @llvm.x86.avx.vbroadcastf128.pd.256(i8* %a0) ; <<4 x double>> [#uses=1]
ret <4 x double> %res
}
declare <4 x double> @llvm.x86.avx.vbroadcastf128.pd.256(i8*) nounwind readonly
define <8 x float> @test_x86_avx_vbroadcastf128_ps_256(i8* %a0) {
; CHECK: vbroadcastf128
%res = call <8 x float> @llvm.x86.avx.vbroadcastf128.ps.256(i8* %a0) ; <<8 x float>> [#uses=1]
ret <8 x float> %res
}
declare <8 x float> @llvm.x86.avx.vbroadcastf128.ps.256(i8*) nounwind readonly
define <4 x double> @test_x86_avx_vperm2f128_pd_256(<4 x double> %a0, <4 x double> %a1) {
; CHECK: vperm2f128
%res = call <4 x double> @llvm.x86.avx.vperm2f128.pd.256(<4 x double> %a0, <4 x double> %a1, i8 7) ; <<4 x double>> [#uses=1]
ret <4 x double> %res
}
declare <4 x double> @llvm.x86.avx.vperm2f128.pd.256(<4 x double>, <4 x double>, i8) nounwind readnone
define <8 x float> @test_x86_avx_vperm2f128_ps_256(<8 x float> %a0, <8 x float> %a1) {
; CHECK: vperm2f128
%res = call <8 x float> @llvm.x86.avx.vperm2f128.ps.256(<8 x float> %a0, <8 x float> %a1, i8 7) ; <<8 x float>> [#uses=1]
ret <8 x float> %res
}
declare <8 x float> @llvm.x86.avx.vperm2f128.ps.256(<8 x float>, <8 x float>, i8) nounwind readnone
define <8 x i32> @test_x86_avx_vperm2f128_si_256(<8 x i32> %a0, <8 x i32> %a1) {
; CHECK: vperm2f128
%res = call <8 x i32> @llvm.x86.avx.vperm2f128.si.256(<8 x i32> %a0, <8 x i32> %a1, i8 7) ; <<8 x i32>> [#uses=1]
ret <8 x i32> %res
}
declare <8 x i32> @llvm.x86.avx.vperm2f128.si.256(<8 x i32>, <8 x i32>, i8) nounwind readnone
define <2 x double> @test_x86_avx_vpermil_pd(<2 x double> %a0) {
; CHECK: vpermilpd
%res = call <2 x double> @llvm.x86.avx.vpermil.pd(<2 x double> %a0, i8 1) ; <<2 x double>> [#uses=1]
ret <2 x double> %res
}
declare <2 x double> @llvm.x86.avx.vpermil.pd(<2 x double>, i8) nounwind readnone
define <4 x double> @test_x86_avx_vpermil_pd_256(<4 x double> %a0) {
; CHECK: vpermilpd
%res = call <4 x double> @llvm.x86.avx.vpermil.pd.256(<4 x double> %a0, i8 7) ; <<4 x double>> [#uses=1]
ret <4 x double> %res
}
declare <4 x double> @llvm.x86.avx.vpermil.pd.256(<4 x double>, i8) nounwind readnone
define <4 x float> @test_x86_avx_vpermil_ps(<4 x float> %a0) {
[x86] Enable the new vector shuffle lowering by default. Update the entire regression test suite for the new shuffles. Remove most of the old testing which was devoted to the old shuffle lowering path and is no longer relevant really. Also remove a few other random tests that only really exercised shuffles and only incidently or without any interesting aspects to them. Benchmarking that I have done shows a few small regressions with this on LNT, zero measurable regressions on real, large applications, and for several benchmarks where the loop vectorizer fires in the hot path it shows 5% to 40% improvements for SSE2 and SSE3 code running on Sandy Bridge machines. Running on AMD machines shows even more dramatic improvements. When using newer ISA vector extensions the gains are much more modest, but the code is still better on the whole. There are a few regressions being tracked (PR21137, PR21138, PR21139) but by and large this is expected to be a win for x86 generated code performance. It is also more correct than the code it replaces. I have fuzz tested this extensively with ISA extensions up through AVX2 and found no crashes or miscompiles (yet...). The old lowering had a few miscompiles and crashers after a somewhat smaller amount of fuzz testing. There is one significant area where the new code path lags behind and that is in AVX-512 support. However, there was *extremely little* support for that already and so this isn't a significant step backwards and the new framework will probably make it easier to implement lowering that uses the full power of AVX-512's table-based shuffle+blend (IMO). Many thanks to Quentin, Andrea, Robert, and others for benchmarking assistance. Thanks to Adam and others for help with AVX-512. Thanks to Hal, Eric, and *many* others for answering my incessant questions about how the backend actually works. =] I will leave the old code path in the tree until the 3 PRs above are at least resolved to folks' satisfaction. Then I will rip it (and 1000s of lines of code) out. =] I don't expect this flag to stay around for very long. It may not survive next week. llvm-svn: 219046
2014-10-04 11:52:55 +08:00
; CHECK: vpermilps
%res = call <4 x float> @llvm.x86.avx.vpermil.ps(<4 x float> %a0, i8 7) ; <<4 x float>> [#uses=1]
ret <4 x float> %res
}
declare <4 x float> @llvm.x86.avx.vpermil.ps(<4 x float>, i8) nounwind readnone
define <8 x float> @test_x86_avx_vpermil_ps_256(<8 x float> %a0) {
; CHECK: vpermilps
%res = call <8 x float> @llvm.x86.avx.vpermil.ps.256(<8 x float> %a0, i8 7) ; <<8 x float>> [#uses=1]
ret <8 x float> %res
}
declare <8 x float> @llvm.x86.avx.vpermil.ps.256(<8 x float>, i8) nounwind readnone
define <2 x double> @test_x86_avx_vpermilvar_pd(<2 x double> %a0, <2 x i64> %a1) {
; CHECK: vpermilpd
%res = call <2 x double> @llvm.x86.avx.vpermilvar.pd(<2 x double> %a0, <2 x i64> %a1) ; <<2 x double>> [#uses=1]
ret <2 x double> %res
}
declare <2 x double> @llvm.x86.avx.vpermilvar.pd(<2 x double>, <2 x i64>) nounwind readnone
define <4 x double> @test_x86_avx_vpermilvar_pd_256(<4 x double> %a0, <4 x i64> %a1) {
; CHECK: vpermilpd
%res = call <4 x double> @llvm.x86.avx.vpermilvar.pd.256(<4 x double> %a0, <4 x i64> %a1) ; <<4 x double>> [#uses=1]
ret <4 x double> %res
}
declare <4 x double> @llvm.x86.avx.vpermilvar.pd.256(<4 x double>, <4 x i64>) nounwind readnone
define <4 x float> @test_x86_avx_vpermilvar_ps(<4 x float> %a0, <4 x i32> %a1) {
; CHECK: vpermilps
%res = call <4 x float> @llvm.x86.avx.vpermilvar.ps(<4 x float> %a0, <4 x i32> %a1) ; <<4 x float>> [#uses=1]
ret <4 x float> %res
}
define <4 x float> @test_x86_avx_vpermilvar_ps_load(<4 x float> %a0, <4 x i32>* %a1) {
; CHECK: vpermilps
%a2 = load <4 x i32>, <4 x i32>* %a1
%res = call <4 x float> @llvm.x86.avx.vpermilvar.ps(<4 x float> %a0, <4 x i32> %a2) ; <<4 x float>> [#uses=1]
ret <4 x float> %res
}
declare <4 x float> @llvm.x86.avx.vpermilvar.ps(<4 x float>, <4 x i32>) nounwind readnone
define <8 x float> @test_x86_avx_vpermilvar_ps_256(<8 x float> %a0, <8 x i32> %a1) {
; CHECK: vpermilps
%res = call <8 x float> @llvm.x86.avx.vpermilvar.ps.256(<8 x float> %a0, <8 x i32> %a1) ; <<8 x float>> [#uses=1]
ret <8 x float> %res
}
declare <8 x float> @llvm.x86.avx.vpermilvar.ps.256(<8 x float>, <8 x i32>) nounwind readnone
define i32 @test_x86_avx_vtestc_pd(<2 x double> %a0, <2 x double> %a1) {
; CHECK: vtestpd
; CHECK: sbbl
%res = call i32 @llvm.x86.avx.vtestc.pd(<2 x double> %a0, <2 x double> %a1) ; <i32> [#uses=1]
ret i32 %res
}
declare i32 @llvm.x86.avx.vtestc.pd(<2 x double>, <2 x double>) nounwind readnone
define i32 @test_x86_avx_vtestc_pd_256(<4 x double> %a0, <4 x double> %a1) {
; CHECK: vtestpd
; CHECK: sbbl
%res = call i32 @llvm.x86.avx.vtestc.pd.256(<4 x double> %a0, <4 x double> %a1) ; <i32> [#uses=1]
ret i32 %res
}
declare i32 @llvm.x86.avx.vtestc.pd.256(<4 x double>, <4 x double>) nounwind readnone
define i32 @test_x86_avx_vtestc_ps(<4 x float> %a0, <4 x float> %a1) {
; CHECK: vtestps
; CHECK: sbbl
%res = call i32 @llvm.x86.avx.vtestc.ps(<4 x float> %a0, <4 x float> %a1) ; <i32> [#uses=1]
ret i32 %res
}
declare i32 @llvm.x86.avx.vtestc.ps(<4 x float>, <4 x float>) nounwind readnone
define i32 @test_x86_avx_vtestc_ps_256(<8 x float> %a0, <8 x float> %a1) {
; CHECK: vtestps
; CHECK: sbbl
%res = call i32 @llvm.x86.avx.vtestc.ps.256(<8 x float> %a0, <8 x float> %a1) ; <i32> [#uses=1]
ret i32 %res
}
declare i32 @llvm.x86.avx.vtestc.ps.256(<8 x float>, <8 x float>) nounwind readnone
define i32 @test_x86_avx_vtestnzc_pd(<2 x double> %a0, <2 x double> %a1) {
; CHECK: vtestpd
; CHECK: seta
; CHECK: movzbl
%res = call i32 @llvm.x86.avx.vtestnzc.pd(<2 x double> %a0, <2 x double> %a1) ; <i32> [#uses=1]
ret i32 %res
}
declare i32 @llvm.x86.avx.vtestnzc.pd(<2 x double>, <2 x double>) nounwind readnone
define i32 @test_x86_avx_vtestnzc_pd_256(<4 x double> %a0, <4 x double> %a1) {
; CHECK: vtestpd
; CHECK: seta
; CHECK: movzbl
%res = call i32 @llvm.x86.avx.vtestnzc.pd.256(<4 x double> %a0, <4 x double> %a1) ; <i32> [#uses=1]
ret i32 %res
}
declare i32 @llvm.x86.avx.vtestnzc.pd.256(<4 x double>, <4 x double>) nounwind readnone
define i32 @test_x86_avx_vtestnzc_ps(<4 x float> %a0, <4 x float> %a1) {
; CHECK: vtestps
; CHECK: seta
; CHECK: movzbl
%res = call i32 @llvm.x86.avx.vtestnzc.ps(<4 x float> %a0, <4 x float> %a1) ; <i32> [#uses=1]
ret i32 %res
}
declare i32 @llvm.x86.avx.vtestnzc.ps(<4 x float>, <4 x float>) nounwind readnone
define i32 @test_x86_avx_vtestnzc_ps_256(<8 x float> %a0, <8 x float> %a1) {
; CHECK: vtestps
; CHECK: seta
; CHECK: movzbl
%res = call i32 @llvm.x86.avx.vtestnzc.ps.256(<8 x float> %a0, <8 x float> %a1) ; <i32> [#uses=1]
ret i32 %res
}
declare i32 @llvm.x86.avx.vtestnzc.ps.256(<8 x float>, <8 x float>) nounwind readnone
define i32 @test_x86_avx_vtestz_pd(<2 x double> %a0, <2 x double> %a1) {
; CHECK: vtestpd
; CHECK: sete
; CHECK: movzbl
%res = call i32 @llvm.x86.avx.vtestz.pd(<2 x double> %a0, <2 x double> %a1) ; <i32> [#uses=1]
ret i32 %res
}
declare i32 @llvm.x86.avx.vtestz.pd(<2 x double>, <2 x double>) nounwind readnone
define i32 @test_x86_avx_vtestz_pd_256(<4 x double> %a0, <4 x double> %a1) {
; CHECK: vtestpd
; CHECK: sete
; CHECK: movzbl
%res = call i32 @llvm.x86.avx.vtestz.pd.256(<4 x double> %a0, <4 x double> %a1) ; <i32> [#uses=1]
ret i32 %res
}
declare i32 @llvm.x86.avx.vtestz.pd.256(<4 x double>, <4 x double>) nounwind readnone
define i32 @test_x86_avx_vtestz_ps(<4 x float> %a0, <4 x float> %a1) {
; CHECK: vtestps
; CHECK: sete
; CHECK: movzbl
%res = call i32 @llvm.x86.avx.vtestz.ps(<4 x float> %a0, <4 x float> %a1) ; <i32> [#uses=1]
ret i32 %res
}
declare i32 @llvm.x86.avx.vtestz.ps(<4 x float>, <4 x float>) nounwind readnone
define i32 @test_x86_avx_vtestz_ps_256(<8 x float> %a0, <8 x float> %a1) {
; CHECK: vtestps
; CHECK: sete
; CHECK: movzbl
%res = call i32 @llvm.x86.avx.vtestz.ps.256(<8 x float> %a0, <8 x float> %a1) ; <i32> [#uses=1]
ret i32 %res
}
declare i32 @llvm.x86.avx.vtestz.ps.256(<8 x float>, <8 x float>) nounwind readnone
define void @test_x86_avx_vzeroall() {
; CHECK: vzeroall
call void @llvm.x86.avx.vzeroall()
ret void
}
declare void @llvm.x86.avx.vzeroall() nounwind
define void @test_x86_avx_vzeroupper() {
; CHECK: vzeroupper
call void @llvm.x86.avx.vzeroupper()
ret void
}
declare void @llvm.x86.avx.vzeroupper() nounwind
; Make sure instructions with no AVX equivalents, but are associated with SSEX feature flags still work
; CHECK: monitor
define void @monitor(i8* %P, i32 %E, i32 %H) nounwind {
entry:
tail call void @llvm.x86.sse3.monitor(i8* %P, i32 %E, i32 %H)
ret void
}
declare void @llvm.x86.sse3.monitor(i8*, i32, i32) nounwind
; CHECK: mwait
define void @mwait(i32 %E, i32 %H) nounwind {
entry:
tail call void @llvm.x86.sse3.mwait(i32 %E, i32 %H)
ret void
}
declare void @llvm.x86.sse3.mwait(i32, i32) nounwind
; CHECK: sfence
define void @sfence() nounwind {
entry:
tail call void @llvm.x86.sse.sfence()
ret void
}
declare void @llvm.x86.sse.sfence() nounwind
; CHECK: lfence
define void @lfence() nounwind {
entry:
tail call void @llvm.x86.sse2.lfence()
ret void
}
declare void @llvm.x86.sse2.lfence() nounwind
; CHECK: mfence
define void @mfence() nounwind {
entry:
tail call void @llvm.x86.sse2.mfence()
ret void
}
declare void @llvm.x86.sse2.mfence() nounwind
; CHECK: clflush
define void @clflush(i8* %p) nounwind {
entry:
tail call void @llvm.x86.sse2.clflush(i8* %p)
ret void
}
declare void @llvm.x86.sse2.clflush(i8*) nounwind
; CHECK: crc32b
define i32 @crc32_32_8(i32 %a, i8 %b) nounwind {
%tmp = call i32 @llvm.x86.sse42.crc32.32.8(i32 %a, i8 %b)
ret i32 %tmp
}
declare i32 @llvm.x86.sse42.crc32.32.8(i32, i8) nounwind
; CHECK: crc32w
define i32 @crc32_32_16(i32 %a, i16 %b) nounwind {
%tmp = call i32 @llvm.x86.sse42.crc32.32.16(i32 %a, i16 %b)
ret i32 %tmp
}
declare i32 @llvm.x86.sse42.crc32.32.16(i32, i16) nounwind
; CHECK: crc32l
define i32 @crc32_32_32(i32 %a, i32 %b) nounwind {
%tmp = call i32 @llvm.x86.sse42.crc32.32.32(i32 %a, i32 %b)
ret i32 %tmp
}
declare i32 @llvm.x86.sse42.crc32.32.32(i32, i32) nounwind
; CHECK: movntdq
define void @movnt_dq(i8* %p, <4 x i64> %a1) nounwind {
%a2 = add <4 x i64> %a1, <i64 1, i64 1, i64 1, i64 1>
tail call void @llvm.x86.avx.movnt.dq.256(i8* %p, <4 x i64> %a2) nounwind
ret void
}
declare void @llvm.x86.avx.movnt.dq.256(i8*, <4 x i64>) nounwind
; CHECK: movntps
define void @movnt_ps(i8* %p, <8 x float> %a) nounwind {
tail call void @llvm.x86.avx.movnt.ps.256(i8* %p, <8 x float> %a) nounwind
ret void
}
declare void @llvm.x86.avx.movnt.ps.256(i8*, <8 x float>) nounwind
; CHECK: movntpd
define void @movnt_pd(i8* %p, <4 x double> %a1) nounwind {
; add operation forces the execution domain.
%a2 = fadd <4 x double> %a1, <double 0x0, double 0x0, double 0x0, double 0x0>
tail call void @llvm.x86.avx.movnt.pd.256(i8* %p, <4 x double> %a2) nounwind
ret void
}
declare void @llvm.x86.avx.movnt.pd.256(i8*, <4 x double>) nounwind
; Check for pclmulqdq
define <2 x i64> @test_x86_pclmulqdq(<2 x i64> %a0, <2 x i64> %a1) {
; CHECK: vpclmulqdq
%res = call <2 x i64> @llvm.x86.pclmulqdq(<2 x i64> %a0, <2 x i64> %a1, i8 0) ; <<2 x i64>> [#uses=1]
ret <2 x i64> %res
}
declare <2 x i64> @llvm.x86.pclmulqdq(<2 x i64>, <2 x i64>, i8) nounwind readnone