llvm-project/polly/lib/ScheduleOptimizer.cpp

330 lines
11 KiB
C++
Raw Normal View History

//===- Schedule.cpp - Calculate an optimized schedule ---------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This pass the isl to calculate a schedule that is optimized for parallelism
// and tileablility. The algorithm used in isl is an optimized version of the
// algorithm described in following paper:
//
// U. Bondhugula, A. Hartono, J. Ramanujam, and P. Sadayappan.
// A Practical Automatic Polyhedral Parallelizer and Locality Optimizer.
// In Proceedings of the 2008 ACM SIGPLAN Conference On Programming Language
// Design and Implementation, PLDI 08, pages 101113. ACM, 2008.
//===----------------------------------------------------------------------===//
#include "polly/Cloog.h"
#include "polly/LinkAllPasses.h"
#include "polly/Support/GICHelper.h"
#include "polly/Dependences.h"
#include "polly/ScopInfo.h"
#include "isl/dim.h"
#include "isl/map.h"
#include "isl/constraint.h"
#include "isl/schedule.h"
#include "isl/band.h"
#define DEBUG_TYPE "polly-optimize-isl"
#include "llvm/Support/Debug.h"
using namespace llvm;
using namespace polly;
namespace {
class ScheduleOptimizer : public ScopPass {
public:
static char ID;
explicit ScheduleOptimizer() : ScopPass(ID) {}
virtual bool runOnScop(Scop &S);
void printScop(llvm::raw_ostream &OS) const;
void getAnalysisUsage(AnalysisUsage &AU) const;
};
}
char ScheduleOptimizer::ID = 0;
static int getSingleMap(__isl_take isl_map *map, void *user) {
isl_map **singleMap = (isl_map **) user;
*singleMap = map;
return 0;
}
static void extendScattering(Scop &S, unsigned scatDimensions) {
for (Scop::iterator SI = S.begin(), SE = S.end(); SI != SE; ++SI) {
ScopStmt *stmt = *SI;
if (stmt->isFinalRead())
continue;
isl_map *scattering = stmt->getScattering();
isl_dim *dim = isl_dim_alloc(isl_map_get_ctx(scattering),
isl_map_n_param(scattering),
isl_map_n_out(scattering),
scatDimensions);
isl_basic_map *changeScattering = isl_basic_map_universe(isl_dim_copy(dim));
for (unsigned i = 0; i < isl_map_n_out(scattering); i++) {
isl_constraint *c = isl_equality_alloc(isl_dim_copy(dim));
isl_constraint_set_coefficient_si(c, isl_dim_in, i, 1);
isl_constraint_set_coefficient_si(c, isl_dim_out, i, -1);
changeScattering = isl_basic_map_add_constraint(changeScattering, c);
}
for (unsigned i = isl_map_n_out(scattering); i < scatDimensions; i++) {
isl_constraint *c = isl_equality_alloc(isl_dim_copy(dim));
isl_constraint_set_coefficient_si(c, isl_dim_out, i, 1);
changeScattering = isl_basic_map_add_constraint(changeScattering, c);
}
isl_map *changeScatteringMap = isl_map_from_basic_map(changeScattering);
stmt->setScattering(isl_map_apply_range(scattering, changeScatteringMap));
}
}
// getTileMap - Create a map that describes a n-dimensonal tiling.
//
// getTileMap creates a map from a n-dimensional scattering space into an
// 2*n-dimensional scattering space. The map describes a rectangular tiling.
//
// Example:
// scheduleDimensions = 2, parameterDimensions = 1, tileSize = 32
//
// tileMap := [p0] -> {[s0, s1] -> [t0, t1, s0, s1]:
// t0 % 32 = 0 and t0 <= s0 < t0 + 32 and
// t1 % 32 = 0 and t1 <= s1 < t1 + 32}
//
// Before tiling:
//
// for (i = 0; i < N; i++)
// for (j = 0; j < M; j++)
// S(i,j)
//
// After tiling:
//
// for (t_i = 0; t_i < N; i+=32)
// for (t_j = 0; t_j < M; j+=32)
// for (i = t_i; i < min(t_i + 32, N); i++) | Unknown that N % 32 = 0
// for (j = t_j; j < t_j + 32; j++) | Known that M % 32 = 0
// S(i,j)
//
static isl_basic_map *getTileMap(isl_ctx *ctx, int scheduleDimensions,
int parameterDimensions, int tileSize = 32) {
// We construct
//
// tileMap := [p0] -> {[s0, s1] -> [t0, t1, p0, p1, a0, a1]:
// s0 = a0 * 32 and s0 = p0 and t0 <= p0 < t0 + 32 and
// s1 = a1 * 32 and s1 = p1 and t1 <= p1 < t1 + 32}
//
// and project out the auxilary dimensions a0 and a1.
isl_dim *dim = isl_dim_alloc(ctx, parameterDimensions, scheduleDimensions,
scheduleDimensions * 3);
isl_basic_map *tileMap = isl_basic_map_universe(isl_dim_copy(dim));
for (int x = 0; x < scheduleDimensions; x++) {
int sX = x;
int tX = x;
int pX = scheduleDimensions + x;
int aX = 2 * scheduleDimensions + x;
isl_constraint *c;
// sX = aX * tileSize;
c = isl_equality_alloc(isl_dim_copy(dim));
isl_constraint_set_coefficient_si(c, isl_dim_out, sX, 1);
isl_constraint_set_coefficient_si(c, isl_dim_out, aX, -tileSize);
tileMap = isl_basic_map_add_constraint(tileMap, c);
// pX = sX;
c = isl_equality_alloc(isl_dim_copy(dim));
isl_constraint_set_coefficient_si(c, isl_dim_out, pX, 1);
isl_constraint_set_coefficient_si(c, isl_dim_in, sX, -1);
tileMap = isl_basic_map_add_constraint(tileMap, c);
// tX <= pX
c = isl_inequality_alloc(isl_dim_copy(dim));
isl_constraint_set_coefficient_si(c, isl_dim_out, pX, 1);
isl_constraint_set_coefficient_si(c, isl_dim_out, tX, -1);
tileMap = isl_basic_map_add_constraint(tileMap, c);
// pX <= tX + (tileSize - 1)
c = isl_inequality_alloc(isl_dim_copy(dim));
isl_constraint_set_coefficient_si(c, isl_dim_out, tX, 1);
isl_constraint_set_coefficient_si(c, isl_dim_out, pX, -1);
isl_constraint_set_constant_si(c, tileSize - 1);
tileMap = isl_basic_map_add_constraint(tileMap, c);
}
// Project out auxilary dimensions.
//
// The auxilary dimensions are transformed into existentially quantified ones.
// This reduces the number of visible scattering dimensions and allows Cloog
// to produces better code.
tileMap = isl_basic_map_project_out(tileMap, isl_dim_out,
2 * scheduleDimensions,
scheduleDimensions);
isl_dim_free(dim);
return tileMap;
}
isl_union_map *getTiledPartialSchedule(isl_band *band) {
isl_union_map *partialSchedule;
int scheduleDimensions, parameterDimensions;
isl_ctx *ctx;
isl_dim *dim;
isl_basic_map *tileMap;
isl_union_map *tileUnionMap;
partialSchedule = isl_band_get_partial_schedule(band);
ctx = isl_union_map_get_ctx(partialSchedule);
dim = isl_union_map_get_dim(partialSchedule);
scheduleDimensions = isl_band_n_member(band);
parameterDimensions = isl_dim_size(dim, isl_dim_param);
tileMap = getTileMap(ctx, scheduleDimensions, parameterDimensions);
tileUnionMap = isl_union_map_from_map(isl_map_from_basic_map(tileMap));
partialSchedule = isl_union_map_apply_range(partialSchedule, tileUnionMap);
isl_dim_free(dim);
isl_ctx_free(ctx);
return partialSchedule;
}
// tileBandList - Tile all bands contained in a band forest.
//
// Recursively walk the band forest and tile all bands in the forest. Return
// a schedule that describes the tiled scattering.
static isl_union_map *tileBandList(isl_band_list *blist) {
int numBands = isl_band_list_n_band(blist);
isl_union_map *finalSchedule = 0;
for (int i = 0; i < numBands; i++) {
isl_band *band;
isl_union_map *partialSchedule;
band = isl_band_list_get_band(blist, i);
partialSchedule = getTiledPartialSchedule(band);
if (isl_band_has_children(band)) {
isl_band_list *children = isl_band_get_children(band);
isl_union_map *suffixSchedule = tileBandList(children);
partialSchedule = isl_union_map_flat_range_product(partialSchedule,
suffixSchedule);
}
if (finalSchedule)
isl_union_map_union(finalSchedule, partialSchedule);
else
finalSchedule = partialSchedule;
isl_band_free(band);
}
return finalSchedule;
}
static isl_union_map *tileSchedule(isl_schedule *schedule) {
isl_band_list *blist = isl_schedule_get_band_forest(schedule);
isl_union_map *tiledSchedule = tileBandList(blist);
isl_band_list_free(blist);
return tiledSchedule;
}
bool ScheduleOptimizer::runOnScop(Scop &S) {
Dependences *D = &getAnalysis<Dependences>();
// Build input data.
int dependencyKinds = Dependences::TYPE_RAW
| Dependences::TYPE_WAR
| Dependences::TYPE_WAW;
isl_union_map *validity = D->getDependences(dependencyKinds);
isl_union_map *proximity = D->getDependences(dependencyKinds);
isl_union_set *domain = NULL;
for (Scop::iterator SI = S.begin(), SE = S.end(); SI != SE; ++SI)
if ((*SI)->isFinalRead())
continue;
else if (!domain)
domain = isl_union_set_from_set((*SI)->getDomain());
else
domain = isl_union_set_union(domain,
isl_union_set_from_set((*SI)->getDomain()));
if (!domain)
return false;
DEBUG(dbgs() << "\n\nCompute schedule from: ");
DEBUG(dbgs() << "Domain := "; isl_union_set_dump(domain); dbgs() << ";\n");
DEBUG(dbgs() << "Proximity := "; isl_union_map_dump(proximity);
dbgs() << ";\n");
DEBUG(dbgs() << "Validity := "; isl_union_map_dump(validity);
dbgs() << ";\n");
isl_schedule *schedule;
schedule = isl_union_set_compute_schedule(domain, validity, proximity);
DEBUG(dbgs() << "Computed schedule: ");
DEBUG(dbgs() << stringFromIslObj(schedule));
DEBUG(dbgs() << "Individual bands: ");
isl_union_map *tiledSchedule = tileSchedule(schedule);
for (Scop::iterator SI = S.begin(), SE = S.end(); SI != SE; ++SI) {
ScopStmt *stmt = *SI;
if (stmt->isFinalRead())
continue;
isl_set *domain = stmt->getDomain();
isl_union_map *stmtBand;
stmtBand = isl_union_map_intersect_domain(isl_union_map_copy(tiledSchedule),
isl_union_set_from_set(domain));
isl_map *stmtSchedule;
isl_union_map_foreach_map(stmtBand, getSingleMap, &stmtSchedule);
stmt->setScattering(stmtSchedule);
}
isl_union_map_free(tiledSchedule);
isl_schedule_free(schedule);
unsigned maxScatDims = 0;
for (Scop::iterator SI = S.begin(), SE = S.end(); SI != SE; ++SI)
maxScatDims = std::max(isl_map_n_out((*SI)->getScattering()), maxScatDims);
extendScattering(S, maxScatDims);
return false;
}
void ScheduleOptimizer::printScop(raw_ostream &OS) const {
}
void ScheduleOptimizer::getAnalysisUsage(AnalysisUsage &AU) const {
ScopPass::getAnalysisUsage(AU);
AU.addRequired<Dependences>();
}
static RegisterPass<ScheduleOptimizer> A("polly-optimize-isl",
"Polly - Calculate optimized "
"schedules using the isl schedule "
"calculator");
Pass* polly::createScheduleOptimizerPass() {
return new ScheduleOptimizer();
}