llvm-project/llvm/lib/CodeGen/RegAllocGreedy.cpp

1026 lines
36 KiB
C++
Raw Normal View History

//===-- RegAllocGreedy.cpp - greedy register allocator --------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the RAGreedy function pass for register allocation in
// optimized builds.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "regalloc"
#include "AllocationOrder.h"
#include "LiveIntervalUnion.h"
#include "LiveRangeEdit.h"
#include "RegAllocBase.h"
#include "Spiller.h"
#include "SpillPlacement.h"
#include "SplitKit.h"
#include "VirtRegMap.h"
#include "VirtRegRewriter.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Function.h"
#include "llvm/PassAnalysisSupport.h"
#include "llvm/CodeGen/CalcSpillWeights.h"
#include "llvm/CodeGen/EdgeBundles.h"
#include "llvm/CodeGen/LiveIntervalAnalysis.h"
#include "llvm/CodeGen/LiveStackAnalysis.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineLoopInfo.h"
#include "llvm/CodeGen/MachineLoopRanges.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/RegAllocRegistry.h"
#include "llvm/CodeGen/RegisterCoalescer.h"
#include "llvm/Target/TargetOptions.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Support/Timer.h"
using namespace llvm;
static RegisterRegAlloc greedyRegAlloc("greedy", "greedy register allocator",
createGreedyRegisterAllocator);
namespace {
class RAGreedy : public MachineFunctionPass, public RegAllocBase {
// context
MachineFunction *MF;
BitVector ReservedRegs;
// analyses
SlotIndexes *Indexes;
LiveStacks *LS;
MachineDominatorTree *DomTree;
MachineLoopInfo *Loops;
MachineLoopRanges *LoopRanges;
EdgeBundles *Bundles;
SpillPlacement *SpillPlacer;
// state
std::auto_ptr<Spiller> SpillerInstance;
std::auto_ptr<SplitAnalysis> SA;
// splitting state.
/// All basic blocks where the current register is live.
SmallVector<SpillPlacement::BlockConstraint, 8> SpillConstraints;
/// Additional information about basic blocks where the current variable is
/// live. Such a block will look like one of these templates:
///
/// 1. | o---x | Internal to block. Variable is only live in this block.
/// 2. |---x | Live-in, kill.
/// 3. | o---| Def, live-out.
/// 4. |---x o---| Live-in, kill, def, live-out.
/// 5. |---o---o---| Live-through with uses or defs.
/// 6. |-----------| Live-through without uses. Transparent.
///
struct BlockInfo {
MachineBasicBlock *MBB;
SlotIndex FirstUse; ///< First instr using current reg.
SlotIndex LastUse; ///< Last instr using current reg.
SlotIndex Kill; ///< Interval end point inside block.
SlotIndex Def; ///< Interval start point inside block.
bool Uses; ///< Current reg has uses or defs in block.
bool LiveThrough; ///< Live in whole block (Templ 5. or 6. above).
bool LiveIn; ///< Current reg is live in.
bool LiveOut; ///< Current reg is live out.
// Per-interference pattern scratch data.
bool OverlapEntry; ///< Interference overlaps entering interval.
bool OverlapExit; ///< Interference overlaps exiting interval.
};
/// Basic blocks where var is live. This array is parallel to
/// SpillConstraints.
SmallVector<BlockInfo, 8> LiveBlocks;
public:
RAGreedy();
/// Return the pass name.
virtual const char* getPassName() const {
return "Greedy Register Allocator";
}
/// RAGreedy analysis usage.
virtual void getAnalysisUsage(AnalysisUsage &AU) const;
virtual void releaseMemory();
virtual Spiller &spiller() { return *SpillerInstance; }
virtual float getPriority(LiveInterval *LI);
virtual unsigned selectOrSplit(LiveInterval&,
SmallVectorImpl<LiveInterval*>&);
/// Perform register allocation.
virtual bool runOnMachineFunction(MachineFunction &mf);
static char ID;
private:
bool checkUncachedInterference(LiveInterval&, unsigned);
LiveInterval *getSingleInterference(LiveInterval&, unsigned);
bool reassignVReg(LiveInterval &InterferingVReg, unsigned OldPhysReg);
bool reassignInterferences(LiveInterval &VirtReg, unsigned PhysReg);
float calcInterferenceWeight(LiveInterval&, unsigned);
void calcLiveBlockInfo(LiveInterval&);
float calcInterferenceInfo(LiveInterval&, unsigned);
float calcGlobalSplitCost(const BitVector&);
void splitAroundRegion(LiveInterval&, unsigned, const BitVector&,
SmallVectorImpl<LiveInterval*>&);
unsigned tryReassign(LiveInterval&, AllocationOrder&);
unsigned tryRegionSplit(LiveInterval&, AllocationOrder&,
SmallVectorImpl<LiveInterval*>&);
unsigned trySplit(LiveInterval&, AllocationOrder&,
SmallVectorImpl<LiveInterval*>&);
unsigned trySpillInterferences(LiveInterval&, AllocationOrder&,
SmallVectorImpl<LiveInterval*>&);
};
} // end anonymous namespace
char RAGreedy::ID = 0;
FunctionPass* llvm::createGreedyRegisterAllocator() {
return new RAGreedy();
}
RAGreedy::RAGreedy(): MachineFunctionPass(ID) {
initializeSlotIndexesPass(*PassRegistry::getPassRegistry());
initializeLiveIntervalsPass(*PassRegistry::getPassRegistry());
initializeSlotIndexesPass(*PassRegistry::getPassRegistry());
initializeStrongPHIEliminationPass(*PassRegistry::getPassRegistry());
initializeRegisterCoalescerAnalysisGroup(*PassRegistry::getPassRegistry());
initializeCalculateSpillWeightsPass(*PassRegistry::getPassRegistry());
initializeLiveStacksPass(*PassRegistry::getPassRegistry());
initializeMachineDominatorTreePass(*PassRegistry::getPassRegistry());
initializeMachineLoopInfoPass(*PassRegistry::getPassRegistry());
initializeMachineLoopRangesPass(*PassRegistry::getPassRegistry());
initializeVirtRegMapPass(*PassRegistry::getPassRegistry());
initializeEdgeBundlesPass(*PassRegistry::getPassRegistry());
initializeSpillPlacementPass(*PassRegistry::getPassRegistry());
}
void RAGreedy::getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesCFG();
AU.addRequired<AliasAnalysis>();
AU.addPreserved<AliasAnalysis>();
AU.addRequired<LiveIntervals>();
AU.addRequired<SlotIndexes>();
AU.addPreserved<SlotIndexes>();
if (StrongPHIElim)
AU.addRequiredID(StrongPHIEliminationID);
AU.addRequiredTransitive<RegisterCoalescer>();
AU.addRequired<CalculateSpillWeights>();
AU.addRequired<LiveStacks>();
AU.addPreserved<LiveStacks>();
AU.addRequired<MachineDominatorTree>();
AU.addPreserved<MachineDominatorTree>();
AU.addRequired<MachineLoopInfo>();
AU.addPreserved<MachineLoopInfo>();
AU.addRequired<MachineLoopRanges>();
AU.addPreserved<MachineLoopRanges>();
AU.addRequired<VirtRegMap>();
AU.addPreserved<VirtRegMap>();
AU.addRequired<EdgeBundles>();
AU.addRequired<SpillPlacement>();
MachineFunctionPass::getAnalysisUsage(AU);
}
void RAGreedy::releaseMemory() {
SpillerInstance.reset(0);
RegAllocBase::releaseMemory();
}
float RAGreedy::getPriority(LiveInterval *LI) {
float Priority = LI->weight;
// Prioritize hinted registers so they are allocated first.
std::pair<unsigned, unsigned> Hint;
if (Hint.first || Hint.second) {
// The hint can be target specific, a virtual register, or a physreg.
Priority *= 2;
// Prefer physreg hints above anything else.
if (Hint.first == 0 && TargetRegisterInfo::isPhysicalRegister(Hint.second))
Priority *= 2;
}
return Priority;
}
//===----------------------------------------------------------------------===//
// Register Reassignment
//===----------------------------------------------------------------------===//
// Check interference without using the cache.
bool RAGreedy::checkUncachedInterference(LiveInterval &VirtReg,
unsigned PhysReg) {
for (const unsigned *AliasI = TRI->getOverlaps(PhysReg); *AliasI; ++AliasI) {
LiveIntervalUnion::Query subQ(&VirtReg, &PhysReg2LiveUnion[*AliasI]);
if (subQ.checkInterference())
return true;
}
return false;
}
/// getSingleInterference - Return the single interfering virtual register
/// assigned to PhysReg. Return 0 if more than one virtual register is
/// interfering.
LiveInterval *RAGreedy::getSingleInterference(LiveInterval &VirtReg,
unsigned PhysReg) {
// Check physreg and aliases.
LiveInterval *Interference = 0;
for (const unsigned *AliasI = TRI->getOverlaps(PhysReg); *AliasI; ++AliasI) {
LiveIntervalUnion::Query &Q = query(VirtReg, *AliasI);
if (Q.checkInterference()) {
if (Interference)
return 0;
Q.collectInterferingVRegs(1);
if (!Q.seenAllInterferences())
return 0;
Interference = Q.interferingVRegs().front();
}
}
return Interference;
}
// Attempt to reassign this virtual register to a different physical register.
//
// FIXME: we are not yet caching these "second-level" interferences discovered
// in the sub-queries. These interferences can change with each call to
// selectOrSplit. However, we could implement a "may-interfere" cache that
// could be conservatively dirtied when we reassign or split.
//
// FIXME: This may result in a lot of alias queries. We could summarize alias
// live intervals in their parent register's live union, but it's messy.
bool RAGreedy::reassignVReg(LiveInterval &InterferingVReg,
unsigned WantedPhysReg) {
assert(TargetRegisterInfo::isVirtualRegister(InterferingVReg.reg) &&
"Can only reassign virtual registers");
assert(TRI->regsOverlap(WantedPhysReg, VRM->getPhys(InterferingVReg.reg)) &&
"inconsistent phys reg assigment");
AllocationOrder Order(InterferingVReg.reg, *VRM, ReservedRegs);
while (unsigned PhysReg = Order.next()) {
// Don't reassign to a WantedPhysReg alias.
if (TRI->regsOverlap(PhysReg, WantedPhysReg))
continue;
if (checkUncachedInterference(InterferingVReg, PhysReg))
continue;
// Reassign the interfering virtual reg to this physical reg.
unsigned OldAssign = VRM->getPhys(InterferingVReg.reg);
DEBUG(dbgs() << "reassigning: " << InterferingVReg << " from " <<
TRI->getName(OldAssign) << " to " << TRI->getName(PhysReg) << '\n');
PhysReg2LiveUnion[OldAssign].extract(InterferingVReg);
VRM->clearVirt(InterferingVReg.reg);
VRM->assignVirt2Phys(InterferingVReg.reg, PhysReg);
PhysReg2LiveUnion[PhysReg].unify(InterferingVReg);
return true;
}
return false;
}
/// reassignInterferences - Reassign all interferences to different physical
/// registers such that Virtreg can be assigned to PhysReg.
/// Currently this only works with a single interference.
/// @param VirtReg Currently unassigned virtual register.
/// @param PhysReg Physical register to be cleared.
/// @return True on success, false if nothing was changed.
bool RAGreedy::reassignInterferences(LiveInterval &VirtReg, unsigned PhysReg) {
LiveInterval *InterferingVReg = getSingleInterference(VirtReg, PhysReg);
if (!InterferingVReg)
return false;
if (TargetRegisterInfo::isPhysicalRegister(InterferingVReg->reg))
return false;
return reassignVReg(*InterferingVReg, PhysReg);
}
/// tryReassign - Try to reassign interferences to different physregs.
/// @param VirtReg Currently unassigned virtual register.
/// @param Order Physregs to try.
/// @return Physreg to assign VirtReg, or 0.
unsigned RAGreedy::tryReassign(LiveInterval &VirtReg, AllocationOrder &Order) {
NamedRegionTimer T("Reassign", TimerGroupName, TimePassesIsEnabled);
Order.rewind();
while (unsigned PhysReg = Order.next())
if (reassignInterferences(VirtReg, PhysReg))
return PhysReg;
return 0;
}
//===----------------------------------------------------------------------===//
// Region Splitting
//===----------------------------------------------------------------------===//
/// calcLiveBlockInfo - Fill the LiveBlocks array with information about blocks
/// where VirtReg is live.
/// The SpillConstraints array is minimally initialized with MBB->getNumber().
void RAGreedy::calcLiveBlockInfo(LiveInterval &VirtReg) {
LiveBlocks.clear();
SpillConstraints.clear();
assert(!VirtReg.empty() && "Cannot allocate an empty interval");
LiveInterval::const_iterator LVI = VirtReg.begin();
LiveInterval::const_iterator LVE = VirtReg.end();
SmallVectorImpl<SlotIndex>::const_iterator UseI, UseE;
UseI = SA->UseSlots.begin();
UseE = SA->UseSlots.end();
// Loop over basic blocks where VirtReg is live.
MachineFunction::iterator MFI = Indexes->getMBBFromIndex(LVI->start);
for (;;) {
// Block constraints depend on the interference pattern.
// Just allocate them here, don't compute anything.
SpillPlacement::BlockConstraint BC;
BC.Number = MFI->getNumber();
SpillConstraints.push_back(BC);
BlockInfo BI;
BI.MBB = MFI;
SlotIndex Start, Stop;
tie(Start, Stop) = Indexes->getMBBRange(BI.MBB);
// LVI is the first live segment overlapping MBB.
BI.LiveIn = LVI->start <= Start;
if (!BI.LiveIn)
BI.Def = LVI->start;
// Find the first and last uses in the block.
BI.Uses = SA->hasUses(MFI);
if (BI.Uses && UseI != UseE) {
BI.FirstUse = *UseI;
assert(BI.FirstUse >= Start);
do ++UseI;
while (UseI != UseE && *UseI < Stop);
BI.LastUse = UseI[-1];
assert(BI.LastUse < Stop);
}
// Look for gaps in the live range.
bool hasGap = false;
BI.LiveOut = true;
while (LVI->end < Stop) {
SlotIndex LastStop = LVI->end;
if (++LVI == LVE || LVI->start >= Stop) {
BI.Kill = LastStop;
BI.LiveOut = false;
break;
}
if (LastStop < LVI->start) {
hasGap = true;
BI.Kill = LastStop;
BI.Def = LVI->start;
}
}
// Don't set LiveThrough when the block has a gap.
BI.LiveThrough = !hasGap && BI.LiveIn && BI.LiveOut;
LiveBlocks.push_back(BI);
// LVI is now at LVE or LVI->end >= Stop.
if (LVI == LVE)
break;
// Live segment ends exactly at Stop. Move to the next segment.
if (LVI->end == Stop && ++LVI == LVE)
break;
// Pick the next basic block.
if (LVI->start < Stop)
++MFI;
else
MFI = Indexes->getMBBFromIndex(LVI->start);
}
}
/// calcInterferenceInfo - Compute per-block outgoing and ingoing constraints
/// when considering interference from PhysReg. Also compute an optimistic local
/// cost of this interference pattern.
///
/// The final cost of a split is the local cost + global cost of preferences
/// broken by SpillPlacement.
///
float RAGreedy::calcInterferenceInfo(LiveInterval &VirtReg, unsigned PhysReg) {
// Reset interference dependent info.
for (unsigned i = 0, e = LiveBlocks.size(); i != e; ++i) {
BlockInfo &BI = LiveBlocks[i];
SpillPlacement::BlockConstraint &BC = SpillConstraints[i];
BC.Entry = (BI.Uses && BI.LiveIn) ?
SpillPlacement::PrefReg : SpillPlacement::DontCare;
BC.Exit = (BI.Uses && BI.LiveOut) ?
SpillPlacement::PrefReg : SpillPlacement::DontCare;
BI.OverlapEntry = BI.OverlapExit = false;
}
// Add interference info from each PhysReg alias.
for (const unsigned *AI = TRI->getOverlaps(PhysReg); *AI; ++AI) {
if (!query(VirtReg, *AI).checkInterference())
continue;
DEBUG(PhysReg2LiveUnion[*AI].print(dbgs(), TRI));
LiveIntervalUnion::SegmentIter IntI =
PhysReg2LiveUnion[*AI].find(VirtReg.beginIndex());
if (!IntI.valid())
continue;
for (unsigned i = 0, e = LiveBlocks.size(); i != e; ++i) {
BlockInfo &BI = LiveBlocks[i];
SpillPlacement::BlockConstraint &BC = SpillConstraints[i];
SlotIndex Start, Stop;
tie(Start, Stop) = Indexes->getMBBRange(BI.MBB);
// Skip interference-free blocks.
if (IntI.start() >= Stop)
continue;
// Handle transparent blocks with interference separately.
// Transparent blocks never incur any fixed cost.
if (BI.LiveThrough && !BI.Uses) {
// Check if interference is live-in - force spill.
if (BC.Entry != SpillPlacement::MustSpill) {
BC.Entry = SpillPlacement::PrefSpill;
IntI.advanceTo(Start);
if (IntI.valid() && IntI.start() <= Start)
BC.Entry = SpillPlacement::MustSpill;
}
// Check if interference is live-out - force spill.
if (BC.Exit != SpillPlacement::MustSpill) {
BC.Exit = SpillPlacement::PrefSpill;
IntI.advanceTo(Stop);
if (IntI.valid() && IntI.start() < Stop)
BC.Exit = SpillPlacement::MustSpill;
}
// Nothing more to do for this transparent block.
if (!IntI.valid())
break;
continue;
}
// Now we only have blocks with uses left.
// Check if the interference overlaps the uses.
assert(BI.Uses && "Non-transparent block without any uses");
// Check interference on entry.
if (BI.LiveIn && BC.Entry != SpillPlacement::MustSpill) {
IntI.advanceTo(Start);
if (!IntI.valid())
break;
// Interference is live-in - force spill.
if (IntI.start() <= Start)
BC.Entry = SpillPlacement::MustSpill;
// Not live in, but before the first use.
else if (IntI.start() < BI.FirstUse)
BC.Entry = SpillPlacement::PrefSpill;
}
// Does interference overlap the uses in the entry segment
// [FirstUse;Kill)?
if (BI.LiveIn && !BI.OverlapEntry) {
IntI.advanceTo(BI.FirstUse);
if (!IntI.valid())
break;
// A live-through interval has no kill.
// Check [FirstUse;LastUse) instead.
if (IntI.start() < (BI.LiveThrough ? BI.LastUse : BI.Kill))
BI.OverlapEntry = true;
}
// Does interference overlap the uses in the exit segment [Def;LastUse)?
if (BI.LiveOut && !BI.LiveThrough && !BI.OverlapExit) {
IntI.advanceTo(BI.Def);
if (!IntI.valid())
break;
if (IntI.start() < BI.LastUse)
BI.OverlapExit = true;
}
// Check interference on exit.
if (BI.LiveOut && BC.Exit != SpillPlacement::MustSpill) {
// Check interference between LastUse and Stop.
if (BC.Exit != SpillPlacement::PrefSpill) {
IntI.advanceTo(BI.LastUse);
if (!IntI.valid())
break;
if (IntI.start() < Stop)
BC.Exit = SpillPlacement::PrefSpill;
}
// Is the interference live-out?
IntI.advanceTo(Stop);
if (!IntI.valid())
break;
if (IntI.start() < Stop)
BC.Exit = SpillPlacement::MustSpill;
}
}
}
// Accumulate a local cost of this interference pattern.
float LocalCost = 0;
for (unsigned i = 0, e = LiveBlocks.size(); i != e; ++i) {
BlockInfo &BI = LiveBlocks[i];
if (!BI.Uses)
continue;
SpillPlacement::BlockConstraint &BC = SpillConstraints[i];
unsigned Inserts = 0;
// Do we need spill code for the entry segment?
if (BI.LiveIn)
Inserts += BI.OverlapEntry || BC.Entry != SpillPlacement::PrefReg;
// For the exit segment?
if (BI.LiveOut)
Inserts += BI.OverlapExit || BC.Exit != SpillPlacement::PrefReg;
// The local cost of spill code in this block is the block frequency times
// the number of spill instructions inserted.
if (Inserts)
LocalCost += Inserts * SpillPlacer->getBlockFrequency(BI.MBB);
}
DEBUG(dbgs() << "Local cost of " << PrintReg(PhysReg, TRI) << " = "
<< LocalCost << '\n');
return LocalCost;
}
/// calcGlobalSplitCost - Return the global split cost of following the split
/// pattern in LiveBundles. This cost should be added to the local cost of the
/// interference pattern in SpillConstraints.
///
float RAGreedy::calcGlobalSplitCost(const BitVector &LiveBundles) {
float GlobalCost = 0;
for (unsigned i = 0, e = LiveBlocks.size(); i != e; ++i) {
SpillPlacement::BlockConstraint &BC = SpillConstraints[i];
unsigned Inserts = 0;
// Broken entry preference?
Inserts += LiveBundles[Bundles->getBundle(BC.Number, 0)] !=
(BC.Entry == SpillPlacement::PrefReg);
// Broken exit preference?
Inserts += LiveBundles[Bundles->getBundle(BC.Number, 1)] !=
(BC.Exit == SpillPlacement::PrefReg);
if (Inserts)
GlobalCost += Inserts * SpillPlacer->getBlockFrequency(LiveBlocks[i].MBB);
}
DEBUG(dbgs() << "Global cost = " << GlobalCost << '\n');
return GlobalCost;
}
/// splitAroundRegion - Split VirtReg around the region determined by
/// LiveBundles. Make an effort to avoid interference from PhysReg.
///
/// The 'register' interval is going to contain as many uses as possible while
/// avoiding interference. The 'stack' interval is the complement constructed by
/// SplitEditor. It will contain the rest.
///
void RAGreedy::splitAroundRegion(LiveInterval &VirtReg, unsigned PhysReg,
const BitVector &LiveBundles,
SmallVectorImpl<LiveInterval*> &NewVRegs) {
DEBUG({
dbgs() << "Splitting around region for " << PrintReg(PhysReg, TRI)
<< " with bundles";
for (int i = LiveBundles.find_first(); i>=0; i = LiveBundles.find_next(i))
dbgs() << " EB#" << i;
dbgs() << ".\n";
});
// First compute interference ranges in the live blocks.
typedef std::pair<SlotIndex, SlotIndex> IndexPair;
SmallVector<IndexPair, 8> InterferenceRanges;
InterferenceRanges.resize(LiveBlocks.size());
for (const unsigned *AI = TRI->getOverlaps(PhysReg); *AI; ++AI) {
if (!query(VirtReg, *AI).checkInterference())
continue;
LiveIntervalUnion::SegmentIter IntI =
PhysReg2LiveUnion[*AI].find(VirtReg.beginIndex());
if (!IntI.valid())
continue;
for (unsigned i = 0, e = LiveBlocks.size(); i != e; ++i) {
const BlockInfo &BI = LiveBlocks[i];
IndexPair &IP = InterferenceRanges[i];
SlotIndex Start, Stop;
tie(Start, Stop) = Indexes->getMBBRange(BI.MBB);
// Skip interference-free blocks.
if (IntI.start() >= Stop)
continue;
// First interference in block.
if (BI.LiveIn) {
IntI.advanceTo(Start);
if (!IntI.valid())
break;
if (IntI.start() >= Stop)
continue;
if (!IP.first.isValid() || IntI.start() < IP.first)
IP.first = IntI.start();
}
// Last interference in block.
if (BI.LiveOut) {
IntI.advanceTo(Stop);
if (!IntI.valid() || IntI.start() >= Stop)
--IntI;
if (IntI.stop() <= Start)
continue;
if (!IP.second.isValid() || IntI.stop() > IP.second)
IP.second = IntI.stop();
}
}
}
SmallVector<LiveInterval*, 4> SpillRegs;
LiveRangeEdit LREdit(VirtReg, NewVRegs, SpillRegs);
SplitEditor SE(*SA, *LIS, *VRM, *DomTree, LREdit);
// Create the main cross-block interval.
SE.openIntv();
// First add all defs that are live out of a block.
for (unsigned i = 0, e = LiveBlocks.size(); i != e; ++i) {
BlockInfo &BI = LiveBlocks[i];
bool RegIn = LiveBundles[Bundles->getBundle(BI.MBB->getNumber(), 0)];
bool RegOut = LiveBundles[Bundles->getBundle(BI.MBB->getNumber(), 1)];
// Should the register be live out?
if (!BI.LiveOut || !RegOut)
continue;
IndexPair &IP = InterferenceRanges[i];
SlotIndex Start, Stop;
tie(Start, Stop) = Indexes->getMBBRange(BI.MBB);
DEBUG(dbgs() << "BB#" << BI.MBB->getNumber() << " -> EB#"
<< Bundles->getBundle(BI.MBB->getNumber(), 1)
<< " intf [" << IP.first << ';' << IP.second << ')');
// The interference interval should either be invalid or overlap MBB.
assert((!IP.first.isValid() || IP.first < Stop) && "Bad interference");
assert((!IP.second.isValid() || IP.second > Start) && "Bad interference");
// Check interference leaving the block.
if (!IP.second.isValid()) {
// Block is interference-free.
DEBUG(dbgs() << ", no interference");
if (!BI.Uses) {
assert(BI.LiveThrough && "No uses, but not live through block?");
// Block is live-through without interference.
DEBUG(dbgs() << ", no uses"
<< (RegIn ? ", live-through.\n" : ", stack in.\n"));
if (!RegIn)
SE.enterIntvAtEnd(*BI.MBB);
continue;
}
if (!BI.LiveThrough) {
DEBUG(dbgs() << ", not live-through.\n");
SE.useIntv(SE.enterIntvBefore(BI.Def), Stop);
continue;
}
if (!RegIn) {
// Block is live-through, but entry bundle is on the stack.
// Reload just before the first use.
DEBUG(dbgs() << ", not live-in, enter before first use.\n");
SE.useIntv(SE.enterIntvBefore(BI.FirstUse), Stop);
continue;
}
DEBUG(dbgs() << ", live-through.\n");
continue;
}
// Block has interference.
DEBUG(dbgs() << ", interference to " << IP.second);
if (!BI.Uses) {
// No uses in block, avoid interference by reloading as late as possible.
DEBUG(dbgs() << ", no uses.\n");
SE.enterIntvAtEnd(*BI.MBB);
continue;
}
if (IP.second < BI.LastUse) {
// There are interference-free uses at the end of the block.
// Find the first use that can get the live-out register.
SmallVectorImpl<SlotIndex>::const_iterator UI =
std::lower_bound(SA->UseSlots.begin(), SA->UseSlots.end(), IP.second);
assert(UI != SA->UseSlots.end() && "Couldn't find last use");
SlotIndex Use = *UI;
DEBUG(dbgs() << ", free use at " << Use << ".\n");
assert(Use <= BI.LastUse && "Couldn't find last use");
SE.useIntv(SE.enterIntvBefore(Use), Stop);
continue;
}
// Interference is after the last use.
DEBUG(dbgs() << " after last use.\n");
SE.enterIntvAtEnd(*BI.MBB);
}
// Now all defs leading to live bundles are handled, do everything else.
for (unsigned i = 0, e = LiveBlocks.size(); i != e; ++i) {
BlockInfo &BI = LiveBlocks[i];
bool RegIn = LiveBundles[Bundles->getBundle(BI.MBB->getNumber(), 0)];
bool RegOut = LiveBundles[Bundles->getBundle(BI.MBB->getNumber(), 1)];
// Is the register live-in?
if (!BI.LiveIn || !RegIn)
continue;
// We have an incoming register. Check for interference.
IndexPair &IP = InterferenceRanges[i];
SlotIndex Start, Stop;
tie(Start, Stop) = Indexes->getMBBRange(BI.MBB);
DEBUG(dbgs() << "EB#" << Bundles->getBundle(BI.MBB->getNumber(), 0)
<< " -> BB#" << BI.MBB->getNumber());
// Check interference entering the block.
if (!IP.first.isValid()) {
// Block is interference-free.
DEBUG(dbgs() << ", no interference");
if (!BI.Uses) {
assert(BI.LiveThrough && "No uses, but not live through block?");
// Block is live-through without interference.
if (RegOut) {
DEBUG(dbgs() << ", no uses, live-through.\n");
SE.useIntv(Start, Stop);
} else {
DEBUG(dbgs() << ", no uses, stack-out.\n");
SE.leaveIntvAtTop(*BI.MBB);
}
continue;
}
if (!BI.LiveThrough) {
DEBUG(dbgs() << ", killed in block.\n");
SE.useIntv(Start, SE.leaveIntvAfter(BI.Kill));
continue;
}
if (!RegOut) {
// Block is live-through, but exit bundle is on the stack.
// Spill immediately after the last use.
DEBUG(dbgs() << ", uses, stack-out.\n");
SE.useIntv(Start, SE.leaveIntvAfter(BI.LastUse));
continue;
}
// Register is live-through.
DEBUG(dbgs() << ", uses, live-through.\n");
SE.useIntv(Start, Stop);
continue;
}
// Block has interference.
DEBUG(dbgs() << ", interference from " << IP.first);
if (!BI.Uses) {
// No uses in block, avoid interference by spilling as soon as possible.
DEBUG(dbgs() << ", no uses.\n");
SE.leaveIntvAtTop(*BI.MBB);
continue;
}
if (IP.first > BI.FirstUse) {
// There are interference-free uses at the beginning of the block.
// Find the last use that can get the register.
SmallVectorImpl<SlotIndex>::const_iterator UI =
std::lower_bound(SA->UseSlots.begin(), SA->UseSlots.end(), IP.first);
assert(UI != SA->UseSlots.begin() && "Couldn't find first use");
SlotIndex Use = (--UI)->getBoundaryIndex();
DEBUG(dbgs() << ", free use at " << *UI << ".\n");
assert(Use >= BI.FirstUse && Use < IP.first);
SE.useIntv(Start, SE.leaveIntvAfter(Use));
continue;
}
// Interference is before the first use.
DEBUG(dbgs() << " before first use.\n");
SE.leaveIntvAtTop(*BI.MBB);
}
SE.closeIntv();
// FIXME: Should we be more aggressive about splitting the stack region into
// per-block segments? The current approach allows the stack region to
// separate into connected components. Some components may be allocatable.
SE.finish();
if (VerifyEnabled)
MF->verify(this, "After splitting live range around region");
}
unsigned RAGreedy::tryRegionSplit(LiveInterval &VirtReg, AllocationOrder &Order,
SmallVectorImpl<LiveInterval*> &NewVRegs) {
calcLiveBlockInfo(VirtReg);
BitVector LiveBundles, BestBundles;
float BestCost = 0;
unsigned BestReg = 0;
Order.rewind();
while (unsigned PhysReg = Order.next()) {
float Cost = calcInterferenceInfo(VirtReg, PhysReg);
if (BestReg && Cost >= BestCost)
continue;
SpillPlacer->placeSpills(SpillConstraints, LiveBundles);
// No live bundles, defer to splitSingleBlocks().
if (!LiveBundles.any())
continue;
Cost += calcGlobalSplitCost(LiveBundles);
if (!BestReg || Cost < BestCost) {
BestReg = PhysReg;
BestCost = Cost;
BestBundles.swap(LiveBundles);
}
}
if (!BestReg)
return 0;
splitAroundRegion(VirtReg, BestReg, BestBundles, NewVRegs);
return 0;
}
//===----------------------------------------------------------------------===//
// Live Range Splitting
//===----------------------------------------------------------------------===//
/// trySplit - Try to split VirtReg or one of its interferences, making it
/// assignable.
/// @return Physreg when VirtReg may be assigned and/or new NewVRegs.
unsigned RAGreedy::trySplit(LiveInterval &VirtReg, AllocationOrder &Order,
SmallVectorImpl<LiveInterval*>&NewVRegs) {
NamedRegionTimer T("Splitter", TimerGroupName, TimePassesIsEnabled);
SA->analyze(&VirtReg);
// Don't attempt splitting on local intervals for now. TBD.
if (LIS->intervalIsInOneMBB(VirtReg))
return 0;
// First try to split around a region spanning multiple blocks.
unsigned PhysReg = tryRegionSplit(VirtReg, Order, NewVRegs);
if (PhysReg || !NewVRegs.empty())
return PhysReg;
// Then isolate blocks with multiple uses.
SplitAnalysis::BlockPtrSet Blocks;
if (SA->getMultiUseBlocks(Blocks)) {
SmallVector<LiveInterval*, 4> SpillRegs;
LiveRangeEdit LREdit(VirtReg, NewVRegs, SpillRegs);
SplitEditor(*SA, *LIS, *VRM, *DomTree, LREdit).splitSingleBlocks(Blocks);
if (VerifyEnabled)
MF->verify(this, "After splitting live range around basic blocks");
}
// Don't assign any physregs.
return 0;
}
//===----------------------------------------------------------------------===//
// Spilling
//===----------------------------------------------------------------------===//
/// calcInterferenceWeight - Calculate the combined spill weight of
/// interferences when assigning VirtReg to PhysReg.
float RAGreedy::calcInterferenceWeight(LiveInterval &VirtReg, unsigned PhysReg){
float Sum = 0;
for (const unsigned *AI = TRI->getOverlaps(PhysReg); *AI; ++AI) {
LiveIntervalUnion::Query &Q = query(VirtReg, *AI);
Q.collectInterferingVRegs();
if (Q.seenUnspillableVReg())
return HUGE_VALF;
for (unsigned i = 0, e = Q.interferingVRegs().size(); i != e; ++i)
Sum += Q.interferingVRegs()[i]->weight;
}
return Sum;
}
/// trySpillInterferences - Try to spill interfering registers instead of the
/// current one. Only do it if the accumulated spill weight is smaller than the
/// current spill weight.
unsigned RAGreedy::trySpillInterferences(LiveInterval &VirtReg,
AllocationOrder &Order,
SmallVectorImpl<LiveInterval*> &NewVRegs) {
NamedRegionTimer T("Spill Interference", TimerGroupName, TimePassesIsEnabled);
unsigned BestPhys = 0;
float BestWeight = 0;
Order.rewind();
while (unsigned PhysReg = Order.next()) {
float Weight = calcInterferenceWeight(VirtReg, PhysReg);
if (Weight == HUGE_VALF || Weight >= VirtReg.weight)
continue;
if (!BestPhys || Weight < BestWeight)
BestPhys = PhysReg, BestWeight = Weight;
}
// No candidates found.
if (!BestPhys)
return 0;
// Collect all interfering registers.
SmallVector<LiveInterval*, 8> Spills;
for (const unsigned *AI = TRI->getOverlaps(BestPhys); *AI; ++AI) {
LiveIntervalUnion::Query &Q = query(VirtReg, *AI);
Spills.append(Q.interferingVRegs().begin(), Q.interferingVRegs().end());
for (unsigned i = 0, e = Q.interferingVRegs().size(); i != e; ++i) {
LiveInterval *VReg = Q.interferingVRegs()[i];
PhysReg2LiveUnion[*AI].extract(*VReg);
VRM->clearVirt(VReg->reg);
}
}
// Spill them all.
DEBUG(dbgs() << "spilling " << Spills.size() << " interferences with weight "
<< BestWeight << '\n');
for (unsigned i = 0, e = Spills.size(); i != e; ++i)
spiller().spill(Spills[i], NewVRegs, Spills);
return BestPhys;
}
//===----------------------------------------------------------------------===//
// Main Entry Point
//===----------------------------------------------------------------------===//
unsigned RAGreedy::selectOrSplit(LiveInterval &VirtReg,
SmallVectorImpl<LiveInterval*> &NewVRegs) {
// First try assigning a free register.
AllocationOrder Order(VirtReg.reg, *VRM, ReservedRegs);
while (unsigned PhysReg = Order.next()) {
if (!checkPhysRegInterference(VirtReg, PhysReg))
return PhysReg;
}
// Try to reassign interferences.
if (unsigned PhysReg = tryReassign(VirtReg, Order))
return PhysReg;
assert(NewVRegs.empty() && "Cannot append to existing NewVRegs");
// Try splitting VirtReg or interferences.
unsigned PhysReg = trySplit(VirtReg, Order, NewVRegs);
if (PhysReg || !NewVRegs.empty())
return PhysReg;
// Try to spill another interfering reg with less spill weight.
PhysReg = trySpillInterferences(VirtReg, Order, NewVRegs);
if (PhysReg)
return PhysReg;
// Finally spill VirtReg itself.
NamedRegionTimer T("Spiller", TimerGroupName, TimePassesIsEnabled);
SmallVector<LiveInterval*, 1> pendingSpills;
spiller().spill(&VirtReg, NewVRegs, pendingSpills);
// The live virtual register requesting allocation was spilled, so tell
// the caller not to allocate anything during this round.
return 0;
}
bool RAGreedy::runOnMachineFunction(MachineFunction &mf) {
DEBUG(dbgs() << "********** GREEDY REGISTER ALLOCATION **********\n"
<< "********** Function: "
<< ((Value*)mf.getFunction())->getName() << '\n');
MF = &mf;
if (VerifyEnabled)
MF->verify(this, "Before greedy register allocator");
RegAllocBase::init(getAnalysis<VirtRegMap>(), getAnalysis<LiveIntervals>());
Indexes = &getAnalysis<SlotIndexes>();
DomTree = &getAnalysis<MachineDominatorTree>();
ReservedRegs = TRI->getReservedRegs(*MF);
SpillerInstance.reset(createInlineSpiller(*this, *MF, *VRM));
Loops = &getAnalysis<MachineLoopInfo>();
LoopRanges = &getAnalysis<MachineLoopRanges>();
Bundles = &getAnalysis<EdgeBundles>();
SpillPlacer = &getAnalysis<SpillPlacement>();
SA.reset(new SplitAnalysis(*MF, *LIS, *Loops));
allocatePhysRegs();
addMBBLiveIns(MF);
// Run rewriter
{
NamedRegionTimer T("Rewriter", TimerGroupName, TimePassesIsEnabled);
std::auto_ptr<VirtRegRewriter> rewriter(createVirtRegRewriter());
rewriter->runOnMachineFunction(*MF, *VRM, LIS);
}
// The pass output is in VirtRegMap. Release all the transient data.
releaseMemory();
return true;
}