llvm-project/mlir/lib/IR/Operation.cpp

1011 lines
37 KiB
C++
Raw Normal View History

//===- Operation.cpp - Operation support code -----------------------------===//
//
// Copyright 2019 The MLIR Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// =============================================================================
#include "mlir/IR/Operation.h"
#include "mlir/IR/BlockAndValueMapping.h"
#include "mlir/IR/Diagnostics.h"
#include "mlir/IR/Dialect.h"
#include "mlir/IR/Function.h"
#include "mlir/IR/MLIRContext.h"
#include "mlir/IR/OpDefinition.h"
#include "mlir/IR/OpImplementation.h"
#include "mlir/IR/PatternMatch.h"
#include "mlir/IR/StandardTypes.h"
#include <numeric>
using namespace mlir;
/// Form the OperationName for an op with the specified string. This either is
/// a reference to an AbstractOperation if one is known, or a uniqued Identifier
/// if not.
OperationName::OperationName(StringRef name, MLIRContext *context) {
if (auto *op = AbstractOperation::lookup(name, context))
representation = op;
else
representation = Identifier::get(name, context);
}
/// Return the name of the dialect this operation is registered to.
StringRef OperationName::getDialect() const {
return getStringRef().split('.').first;
}
/// Return the name of this operation. This always succeeds.
StringRef OperationName::getStringRef() const {
if (auto *op = representation.dyn_cast<const AbstractOperation *>())
return op->name;
return representation.get<Identifier>().strref();
}
const AbstractOperation *OperationName::getAbstractOperation() const {
return representation.dyn_cast<const AbstractOperation *>();
}
OperationName OperationName::getFromOpaquePointer(void *pointer) {
return OperationName(RepresentationUnion::getFromOpaqueValue(pointer));
}
OpAsmParser::~OpAsmParser() {}
//===----------------------------------------------------------------------===//
// OpResult
//===----------------------------------------------------------------------===//
/// Return the result number of this result.
unsigned OpResult::getResultNumber() {
// Results are always stored consecutively, so use pointer subtraction to
// figure out what number this is.
return this - &getOwner()->getOpResults()[0];
}
//===----------------------------------------------------------------------===//
// OpOperand
//===----------------------------------------------------------------------===//
// TODO: This namespace is only required because of a bug in GCC<7.0.
namespace mlir {
/// Return which operand this is in the operand list.
template <> unsigned OpOperand::getOperandNumber() {
return this - &getOwner()->getOpOperands()[0];
}
} // end namespace mlir
//===----------------------------------------------------------------------===//
// BlockOperand
//===----------------------------------------------------------------------===//
// TODO: This namespace is only required because of a bug in GCC<7.0.
namespace mlir {
/// Return which operand this is in the operand list.
template <> unsigned BlockOperand::getOperandNumber() {
return this - &getOwner()->getBlockOperands()[0];
}
} // end namespace mlir
//===----------------------------------------------------------------------===//
// Operation
//===----------------------------------------------------------------------===//
/// Create a new Operation with the specific fields.
Operation *Operation::create(Location location, OperationName name,
ArrayRef<Value *> operands,
ArrayRef<Type> resultTypes,
ArrayRef<NamedAttribute> attributes,
ArrayRef<Block *> successors, unsigned numRegions,
bool resizableOperandList, MLIRContext *context) {
return create(location, name, operands, resultTypes,
NamedAttributeList(attributes), successors, numRegions,
resizableOperandList, context);
}
/// Create a new Operation from operation state.
Operation *Operation::create(const OperationState &state) {
unsigned numRegions = state.regions.size();
Operation *op = create(state.location, state.name, state.operands,
state.types, state.attributes, state.successors,
numRegions, state.resizableOperandList, state.context);
for (unsigned i = 0; i < numRegions; ++i)
if (state.regions[i])
op->getRegion(i).takeBody(*state.regions[i]);
return op;
}
/// Overload of create that takes an existing NamedAttributeList to avoid
/// unnecessarily uniquing a list of attributes.
Operation *Operation::create(Location location, OperationName name,
ArrayRef<Value *> operands,
ArrayRef<Type> resultTypes,
const NamedAttributeList &attributes,
ArrayRef<Block *> successors, unsigned numRegions,
bool resizableOperandList, MLIRContext *context) {
unsigned numSuccessors = successors.size();
// Input operands are nullptr-separated for each successor, the null operands
// aren't actually stored.
unsigned numOperands = operands.size() - numSuccessors;
// Compute the byte size for the operation and the operand storage.
auto byteSize = totalSizeToAlloc<OpResult, BlockOperand, unsigned, Region,
detail::OperandStorage>(
resultTypes.size(), numSuccessors, numSuccessors, numRegions,
/*detail::OperandStorage*/ 1);
byteSize += llvm::alignTo(detail::OperandStorage::additionalAllocSize(
numOperands, resizableOperandList),
alignof(Operation));
void *rawMem = malloc(byteSize);
// Create the new Operation.
auto op =
::new (rawMem) Operation(location, name, resultTypes.size(),
numSuccessors, numRegions, attributes, context);
assert((numSuccessors == 0 || !op->isKnownNonTerminator()) &&
"unexpected successors in a non-terminator operation");
// Initialize the regions.
for (unsigned i = 0; i != numRegions; ++i)
new (&op->getRegion(i)) Region(op);
// Initialize the results and operands.
new (&op->getOperandStorage())
detail::OperandStorage(numOperands, resizableOperandList);
auto instResults = op->getOpResults();
for (unsigned i = 0, e = resultTypes.size(); i != e; ++i)
new (&instResults[i]) OpResult(resultTypes[i], op);
auto opOperands = op->getOpOperands();
// Initialize normal operands.
unsigned operandIt = 0, operandE = operands.size();
unsigned nextOperand = 0;
for (; operandIt != operandE; ++operandIt) {
// Null operands are used as sentinels between successor operand lists. If
// we encounter one here, break and handle the successor operands lists
// separately below.
if (!operands[operandIt])
break;
new (&opOperands[nextOperand++]) OpOperand(op, operands[operandIt]);
}
unsigned currentSuccNum = 0;
if (operandIt == operandE) {
// Verify that the amount of sentinel operands is equivalent to the number
// of successors.
assert(currentSuccNum == numSuccessors);
return op;
}
assert(!op->isKnownNonTerminator() &&
"Unexpected nullptr in operand list when creating non-terminator.");
auto instBlockOperands = op->getBlockOperands();
unsigned *succOperandCountIt = op->getTrailingObjects<unsigned>();
unsigned *succOperandCountE = succOperandCountIt + numSuccessors;
(void)succOperandCountE;
for (; operandIt != operandE; ++operandIt) {
// If we encounter a sentinel branch to the next operand update the count
// variable.
if (!operands[operandIt]) {
assert(currentSuccNum < numSuccessors);
// After the first iteration update the successor operand count
// variable.
if (currentSuccNum != 0) {
++succOperandCountIt;
assert(succOperandCountIt != succOperandCountE &&
"More sentinel operands than successors.");
}
new (&instBlockOperands[currentSuccNum])
BlockOperand(op, successors[currentSuccNum]);
*succOperandCountIt = 0;
++currentSuccNum;
continue;
}
new (&opOperands[nextOperand++]) OpOperand(op, operands[operandIt]);
++(*succOperandCountIt);
}
// Verify that the amount of sentinel operands is equivalent to the number of
// successors.
assert(currentSuccNum == numSuccessors);
return op;
}
Operation::Operation(Location location, OperationName name, unsigned numResults,
unsigned numSuccessors, unsigned numRegions,
const NamedAttributeList &attributes, MLIRContext *context)
: location(location), numResults(numResults), numSuccs(numSuccessors),
numRegions(numRegions), name(name), attrs(attributes) {}
// Operations are deleted through the destroy() member because they are
// allocated via malloc.
Operation::~Operation() {
assert(block == nullptr && "operation destroyed but still in a block");
// Explicitly run the destructors for the operands and results.
getOperandStorage().~OperandStorage();
for (auto &result : getOpResults())
result.~OpResult();
// Explicitly run the destructors for the successors.
for (auto &successor : getBlockOperands())
successor.~BlockOperand();
// Explicitly destroy the regions.
for (auto &region : getRegions())
region.~Region();
}
/// Destroy this operation or one of its subclasses.
void Operation::destroy() {
this->~Operation();
free(this);
}
/// Return the context this operation is associated with.
MLIRContext *Operation::getContext() { return location->getContext(); }
/// Return the dialact this operation is associated with, or nullptr if the
/// associated dialect is not registered.
Dialect *Operation::getDialect() {
if (auto *abstractOp = getAbstractOperation())
return &abstractOp->dialect;
// If this operation hasn't been registered or doesn't have abstract
// operation, try looking up the dialect name in the context.
return getContext()->getRegisteredDialect(getName().getDialect());
}
Region *Operation::getParentRegion() {
return block ? block->getParent() : nullptr;
}
Operation *Operation::getParentOp() {
return block ? block->getParentOp() : nullptr;
}
/// Replace any uses of 'from' with 'to' within this operation.
void Operation::replaceUsesOfWith(Value *from, Value *to) {
if (from == to)
return;
for (auto &operand : getOpOperands())
if (operand.get() == from)
operand.set(to);
}
//===----------------------------------------------------------------------===//
// Operation Walkers
//===----------------------------------------------------------------------===//
void Operation::walk(llvm::function_ref<void(Operation *)> callback) {
// Visit any internal operations.
for (auto &region : getRegions())
region.walk(callback);
// Visit the current operation.
callback(this);
}
//===----------------------------------------------------------------------===//
// Other
//===----------------------------------------------------------------------===//
/// Emit an error about fatal conditions with this operation, reporting up to
/// any diagnostic handlers that may be listening.
InFlightDiagnostic Operation::emitError(const Twine &message) {
return mlir::emitError(getLoc(), message);
}
/// Emit a warning about this operation, reporting up to any diagnostic
/// handlers that may be listening.
Introduce a new API for emitting diagnostics with Diagnostic and InFlightDiagnostic. The Diagnostic class contains all of the information necessary to report a diagnostic to the DiagnosticEngine. It should generally not be constructed directly, and instead used transitively via InFlightDiagnostic. A diagnostic is currently comprised of several different elements: * A severity level. * A source Location. * A list of DiagnosticArguments that help compose and comprise the output message. * A DiagnosticArgument represents any value that may be part of the diagnostic, e.g. string, integer, Type, Attribute, etc. * Arguments can be added to the diagnostic via the stream(<<) operator. * (In a future cl) A list of attached notes. * These are in the form of other diagnostics that provide supplemental information to the main diagnostic, but do not have context on their own. The InFlightDiagnostic class represents an RAII wrapper around a Diagnostic that is set to be reported with the diagnostic engine. This allows for the user to modify a diagnostic that is inflight. The internally wrapped diagnostic can be reported directly or automatically upon destruction. These classes allow for more natural composition of diagnostics by removing the restriction that the message of a diagnostic is comprised of a single Twine. They should also allow for nice incremental improvements to the diagnostics experience in the future, e.g. formatv style diagnostics. Simple Example: emitError(loc, "integer bitwidth is limited to " + Twine(IntegerType::kMaxWidth) + " bits"); emitError(loc) << "integer bitwidth is limited to " << IntegerType::kMaxWidth << " bits"; -- PiperOrigin-RevId: 246526439
2019-05-04 01:01:01 +08:00
InFlightDiagnostic Operation::emitWarning(const Twine &message) {
return mlir::emitWarning(getLoc(), message);
}
/// Emit a remark about this operation, reporting up to any diagnostic
/// handlers that may be listening.
InFlightDiagnostic Operation::emitRemark(const Twine &message) {
return mlir::emitRemark(getLoc(), message);
}
/// Given an operation 'other' that is within the same parent block, return
/// whether the current operation is before 'other' in the operation list
/// of the parent block.
/// Note: This function has an average complexity of O(1), but worst case may
/// take O(N) where N is the number of operations within the parent block.
bool Operation::isBeforeInBlock(Operation *other) {
assert(block && "Operations without parent blocks have no order.");
assert(other && other->block == block &&
"Expected other operation to have the same parent block.");
// Recompute the parent ordering if necessary.
if (!block->isInstOrderValid())
block->recomputeInstOrder();
return orderIndex < other->orderIndex;
}
//===----------------------------------------------------------------------===//
// ilist_traits for Operation
//===----------------------------------------------------------------------===//
auto llvm::ilist_detail::SpecificNodeAccess<
typename llvm::ilist_detail::compute_node_options<
::mlir::Operation>::type>::getNodePtr(pointer N) -> node_type * {
return NodeAccess::getNodePtr<OptionsT>(N);
}
auto llvm::ilist_detail::SpecificNodeAccess<
typename llvm::ilist_detail::compute_node_options<
::mlir::Operation>::type>::getNodePtr(const_pointer N)
-> const node_type * {
return NodeAccess::getNodePtr<OptionsT>(N);
}
auto llvm::ilist_detail::SpecificNodeAccess<
typename llvm::ilist_detail::compute_node_options<
::mlir::Operation>::type>::getValuePtr(node_type *N) -> pointer {
return NodeAccess::getValuePtr<OptionsT>(N);
}
auto llvm::ilist_detail::SpecificNodeAccess<
typename llvm::ilist_detail::compute_node_options<
::mlir::Operation>::type>::getValuePtr(const node_type *N)
-> const_pointer {
return NodeAccess::getValuePtr<OptionsT>(N);
}
void llvm::ilist_traits<::mlir::Operation>::deleteNode(Operation *op) {
op->destroy();
}
Block *llvm::ilist_traits<::mlir::Operation>::getContainingBlock() {
size_t Offset(size_t(&((Block *)nullptr->*Block::getSublistAccess(nullptr))));
iplist<Operation> *Anchor(static_cast<iplist<Operation> *>(this));
return reinterpret_cast<Block *>(reinterpret_cast<char *>(Anchor) - Offset);
}
/// This is a trait method invoked when a operation is added to a block. We
/// keep the block pointer up to date.
void llvm::ilist_traits<::mlir::Operation>::addNodeToList(Operation *op) {
assert(!op->getBlock() && "already in a operation block!");
op->block = getContainingBlock();
// Invalidate the block ordering.
op->block->invalidateInstOrder();
}
/// This is a trait method invoked when a operation is removed from a block.
/// We keep the block pointer up to date.
void llvm::ilist_traits<::mlir::Operation>::removeNodeFromList(Operation *op) {
assert(op->block && "not already in a operation block!");
op->block = nullptr;
}
/// This is a trait method invoked when a operation is moved from one block
/// to another. We keep the block pointer up to date.
void llvm::ilist_traits<::mlir::Operation>::transferNodesFromList(
ilist_traits<Operation> &otherList, op_iterator first, op_iterator last) {
Block *curParent = getContainingBlock();
// Invalidate the ordering of the parent block.
curParent->invalidateInstOrder();
// If we are transferring operations within the same block, the block
// pointer doesn't need to be updated.
if (curParent == otherList.getContainingBlock())
return;
// Update the 'block' member of each operation.
for (; first != last; ++first)
first->block = curParent;
}
/// Remove this operation (and its descendants) from its Block and delete
/// all of them.
void Operation::erase() {
if (auto *parent = getBlock())
parent->getOperations().erase(this);
else
destroy();
}
/// Unlink this operation from its current block and insert it right before
/// `existingInst` which may be in the same or another block in the same
/// function.
void Operation::moveBefore(Operation *existingInst) {
moveBefore(existingInst->getBlock(), existingInst->getIterator());
}
/// Unlink this operation from its current basic block and insert it right
/// before `iterator` in the specified basic block.
void Operation::moveBefore(Block *block,
llvm::iplist<Operation>::iterator iterator) {
block->getOperations().splice(iterator, getBlock()->getOperations(),
getIterator());
}
/// This drops all operand uses from this operation, which is an essential
/// step in breaking cyclic dependences between references when they are to
/// be deleted.
void Operation::dropAllReferences() {
for (auto &op : getOpOperands())
op.drop();
for (auto &region : getRegions())
region.dropAllReferences();
for (auto &dest : getBlockOperands())
dest.drop();
}
/// This drops all uses of any values defined by this operation or its nested
/// regions, wherever they are located.
void Operation::dropAllDefinedValueUses() {
for (auto &val : getOpResults())
val.dropAllUses();
for (auto &region : getRegions())
for (auto &block : region)
block.dropAllDefinedValueUses();
}
/// Return true if there are no users of any results of this operation.
bool Operation::use_empty() {
for (auto *result : getResults())
if (!result->use_empty())
return false;
return true;
}
void Operation::setSuccessor(Block *block, unsigned index) {
assert(index < getNumSuccessors());
getBlockOperands()[index].set(block);
}
auto Operation::getNonSuccessorOperands() -> operand_range {
return {operand_iterator(this, 0),
operand_iterator(this, hasSuccessors() ? getSuccessorOperandIndex(0)
: getNumOperands())};
}
/// Get the index of the first operand of the successor at the provided
/// index.
unsigned Operation::getSuccessorOperandIndex(unsigned index) {
assert(!isKnownNonTerminator() && "only terminators may have successors");
assert(index < getNumSuccessors());
// Count the number of operands for each of the successors after, and
// including, the one at 'index'. This is based upon the assumption that all
// non successor operands are placed at the beginning of the operand list.
auto *successorOpCountBegin = getTrailingObjects<unsigned>();
unsigned postSuccessorOpCount =
std::accumulate(successorOpCountBegin + index,
successorOpCountBegin + getNumSuccessors(), 0u);
return getNumOperands() - postSuccessorOpCount;
}
auto Operation::getSuccessorOperands(unsigned index) -> operand_range {
unsigned succOperandIndex = getSuccessorOperandIndex(index);
return {operand_iterator(this, succOperandIndex),
operand_iterator(this,
succOperandIndex + getNumSuccessorOperands(index))};
}
/// Attempt to fold this operation using the Op's registered foldHook.
LogicalResult Operation::fold(ArrayRef<Attribute> operands,
SmallVectorImpl<OpFoldResult> &results) {
// If we have a registered operation definition matching this one, use it to
// try to constant fold the operation.
auto *abstractOp = getAbstractOperation();
if (abstractOp && succeeded(abstractOp->foldHook(this, operands, results)))
return success();
// Otherwise, fall back on the dialect hook to handle it.
Dialect *dialect = getDialect();
if (!dialect)
return failure();
SmallVector<Attribute, 8> constants;
if (failed(dialect->constantFoldHook(this, operands, constants)))
return failure();
results.assign(constants.begin(), constants.end());
return success();
}
/// Emit an error with the op name prefixed, like "'dim' op " which is
/// convenient for verifiers.
Introduce a new API for emitting diagnostics with Diagnostic and InFlightDiagnostic. The Diagnostic class contains all of the information necessary to report a diagnostic to the DiagnosticEngine. It should generally not be constructed directly, and instead used transitively via InFlightDiagnostic. A diagnostic is currently comprised of several different elements: * A severity level. * A source Location. * A list of DiagnosticArguments that help compose and comprise the output message. * A DiagnosticArgument represents any value that may be part of the diagnostic, e.g. string, integer, Type, Attribute, etc. * Arguments can be added to the diagnostic via the stream(<<) operator. * (In a future cl) A list of attached notes. * These are in the form of other diagnostics that provide supplemental information to the main diagnostic, but do not have context on their own. The InFlightDiagnostic class represents an RAII wrapper around a Diagnostic that is set to be reported with the diagnostic engine. This allows for the user to modify a diagnostic that is inflight. The internally wrapped diagnostic can be reported directly or automatically upon destruction. These classes allow for more natural composition of diagnostics by removing the restriction that the message of a diagnostic is comprised of a single Twine. They should also allow for nice incremental improvements to the diagnostics experience in the future, e.g. formatv style diagnostics. Simple Example: emitError(loc, "integer bitwidth is limited to " + Twine(IntegerType::kMaxWidth) + " bits"); emitError(loc) << "integer bitwidth is limited to " << IntegerType::kMaxWidth << " bits"; -- PiperOrigin-RevId: 246526439
2019-05-04 01:01:01 +08:00
InFlightDiagnostic Operation::emitOpError(const Twine &message) {
return emitError() << "'" << getName() << "' op " << message;
}
//===----------------------------------------------------------------------===//
// Operation Cloning
//===----------------------------------------------------------------------===//
/// Create a deep copy of this operation but keep the operation regions empty.
/// Operands are remapped using `mapper` (if present), and `mapper` is updated
/// to contain the results.
Operation *Operation::cloneWithoutRegions(BlockAndValueMapping &mapper) {
SmallVector<Value *, 8> operands;
SmallVector<Block *, 2> successors;
operands.reserve(getNumOperands() + getNumSuccessors());
if (getNumSuccessors() == 0) {
// Non-branching operations can just add all the operands.
for (auto *opValue : getOperands())
operands.push_back(mapper.lookupOrDefault(opValue));
} else {
// We add the operands separated by nullptr's for each successor.
unsigned firstSuccOperand =
getNumSuccessors() ? getSuccessorOperandIndex(0) : getNumOperands();
auto opOperands = getOpOperands();
unsigned i = 0;
for (; i != firstSuccOperand; ++i)
operands.push_back(mapper.lookupOrDefault(opOperands[i].get()));
successors.reserve(getNumSuccessors());
for (unsigned succ = 0, e = getNumSuccessors(); succ != e; ++succ) {
successors.push_back(mapper.lookupOrDefault(getSuccessor(succ)));
// Add sentinel to delineate successor operands.
operands.push_back(nullptr);
// Remap the successors operands.
for (auto *operand : getSuccessorOperands(succ))
operands.push_back(mapper.lookupOrDefault(operand));
}
}
SmallVector<Type, 8> resultTypes(getResultTypes());
unsigned numRegions = getNumRegions();
auto *newOp = Operation::create(getLoc(), getName(), operands, resultTypes,
attrs, successors, numRegions,
hasResizableOperandsList(), getContext());
// Remember the mapping of any results.
for (unsigned i = 0, e = getNumResults(); i != e; ++i)
mapper.map(getResult(i), newOp->getResult(i));
return newOp;
}
Operation *Operation::cloneWithoutRegions() {
BlockAndValueMapping mapper;
return cloneWithoutRegions(mapper);
}
/// Create a deep copy of this operation, remapping any operands that use
/// values outside of the operation using the map that is provided (leaving
/// them alone if no entry is present). Replaces references to cloned
/// sub-operations to the corresponding operation that is copied, and adds
/// those mappings to the map.
Operation *Operation::clone(BlockAndValueMapping &mapper) {
auto *newOp = cloneWithoutRegions(mapper);
// Clone the regions.
for (unsigned i = 0; i != numRegions; ++i)
getRegion(i).cloneInto(&newOp->getRegion(i), mapper);
return newOp;
}
Operation *Operation::clone() {
BlockAndValueMapping mapper;
return clone(mapper);
}
//===----------------------------------------------------------------------===//
// OpState trait class.
//===----------------------------------------------------------------------===//
// The fallback for the parser is to reject the custom assembly form.
ParseResult OpState::parse(OpAsmParser *parser, OperationState *result) {
return parser->emitError(parser->getNameLoc(), "has no custom assembly form");
}
// The fallback for the printer is to print in the generic assembly form.
void OpState::print(OpAsmPrinter *p) { p->printGenericOp(getOperation()); }
/// Emit an error about fatal conditions with this operation, reporting up to
Introduce a new API for emitting diagnostics with Diagnostic and InFlightDiagnostic. The Diagnostic class contains all of the information necessary to report a diagnostic to the DiagnosticEngine. It should generally not be constructed directly, and instead used transitively via InFlightDiagnostic. A diagnostic is currently comprised of several different elements: * A severity level. * A source Location. * A list of DiagnosticArguments that help compose and comprise the output message. * A DiagnosticArgument represents any value that may be part of the diagnostic, e.g. string, integer, Type, Attribute, etc. * Arguments can be added to the diagnostic via the stream(<<) operator. * (In a future cl) A list of attached notes. * These are in the form of other diagnostics that provide supplemental information to the main diagnostic, but do not have context on their own. The InFlightDiagnostic class represents an RAII wrapper around a Diagnostic that is set to be reported with the diagnostic engine. This allows for the user to modify a diagnostic that is inflight. The internally wrapped diagnostic can be reported directly or automatically upon destruction. These classes allow for more natural composition of diagnostics by removing the restriction that the message of a diagnostic is comprised of a single Twine. They should also allow for nice incremental improvements to the diagnostics experience in the future, e.g. formatv style diagnostics. Simple Example: emitError(loc, "integer bitwidth is limited to " + Twine(IntegerType::kMaxWidth) + " bits"); emitError(loc) << "integer bitwidth is limited to " << IntegerType::kMaxWidth << " bits"; -- PiperOrigin-RevId: 246526439
2019-05-04 01:01:01 +08:00
/// any diagnostic handlers that may be listening.
InFlightDiagnostic OpState::emitError(const Twine &message) {
return getOperation()->emitError(message);
}
/// Emit an error with the op name prefixed, like "'dim' op " which is
/// convenient for verifiers.
Introduce a new API for emitting diagnostics with Diagnostic and InFlightDiagnostic. The Diagnostic class contains all of the information necessary to report a diagnostic to the DiagnosticEngine. It should generally not be constructed directly, and instead used transitively via InFlightDiagnostic. A diagnostic is currently comprised of several different elements: * A severity level. * A source Location. * A list of DiagnosticArguments that help compose and comprise the output message. * A DiagnosticArgument represents any value that may be part of the diagnostic, e.g. string, integer, Type, Attribute, etc. * Arguments can be added to the diagnostic via the stream(<<) operator. * (In a future cl) A list of attached notes. * These are in the form of other diagnostics that provide supplemental information to the main diagnostic, but do not have context on their own. The InFlightDiagnostic class represents an RAII wrapper around a Diagnostic that is set to be reported with the diagnostic engine. This allows for the user to modify a diagnostic that is inflight. The internally wrapped diagnostic can be reported directly or automatically upon destruction. These classes allow for more natural composition of diagnostics by removing the restriction that the message of a diagnostic is comprised of a single Twine. They should also allow for nice incremental improvements to the diagnostics experience in the future, e.g. formatv style diagnostics. Simple Example: emitError(loc, "integer bitwidth is limited to " + Twine(IntegerType::kMaxWidth) + " bits"); emitError(loc) << "integer bitwidth is limited to " << IntegerType::kMaxWidth << " bits"; -- PiperOrigin-RevId: 246526439
2019-05-04 01:01:01 +08:00
InFlightDiagnostic OpState::emitOpError(const Twine &message) {
return getOperation()->emitOpError(message);
}
/// Emit a warning about this operation, reporting up to any diagnostic
/// handlers that may be listening.
Introduce a new API for emitting diagnostics with Diagnostic and InFlightDiagnostic. The Diagnostic class contains all of the information necessary to report a diagnostic to the DiagnosticEngine. It should generally not be constructed directly, and instead used transitively via InFlightDiagnostic. A diagnostic is currently comprised of several different elements: * A severity level. * A source Location. * A list of DiagnosticArguments that help compose and comprise the output message. * A DiagnosticArgument represents any value that may be part of the diagnostic, e.g. string, integer, Type, Attribute, etc. * Arguments can be added to the diagnostic via the stream(<<) operator. * (In a future cl) A list of attached notes. * These are in the form of other diagnostics that provide supplemental information to the main diagnostic, but do not have context on their own. The InFlightDiagnostic class represents an RAII wrapper around a Diagnostic that is set to be reported with the diagnostic engine. This allows for the user to modify a diagnostic that is inflight. The internally wrapped diagnostic can be reported directly or automatically upon destruction. These classes allow for more natural composition of diagnostics by removing the restriction that the message of a diagnostic is comprised of a single Twine. They should also allow for nice incremental improvements to the diagnostics experience in the future, e.g. formatv style diagnostics. Simple Example: emitError(loc, "integer bitwidth is limited to " + Twine(IntegerType::kMaxWidth) + " bits"); emitError(loc) << "integer bitwidth is limited to " << IntegerType::kMaxWidth << " bits"; -- PiperOrigin-RevId: 246526439
2019-05-04 01:01:01 +08:00
InFlightDiagnostic OpState::emitWarning(const Twine &message) {
return getOperation()->emitWarning(message);
}
/// Emit a remark about this operation, reporting up to any diagnostic
/// handlers that may be listening.
Introduce a new API for emitting diagnostics with Diagnostic and InFlightDiagnostic. The Diagnostic class contains all of the information necessary to report a diagnostic to the DiagnosticEngine. It should generally not be constructed directly, and instead used transitively via InFlightDiagnostic. A diagnostic is currently comprised of several different elements: * A severity level. * A source Location. * A list of DiagnosticArguments that help compose and comprise the output message. * A DiagnosticArgument represents any value that may be part of the diagnostic, e.g. string, integer, Type, Attribute, etc. * Arguments can be added to the diagnostic via the stream(<<) operator. * (In a future cl) A list of attached notes. * These are in the form of other diagnostics that provide supplemental information to the main diagnostic, but do not have context on their own. The InFlightDiagnostic class represents an RAII wrapper around a Diagnostic that is set to be reported with the diagnostic engine. This allows for the user to modify a diagnostic that is inflight. The internally wrapped diagnostic can be reported directly or automatically upon destruction. These classes allow for more natural composition of diagnostics by removing the restriction that the message of a diagnostic is comprised of a single Twine. They should also allow for nice incremental improvements to the diagnostics experience in the future, e.g. formatv style diagnostics. Simple Example: emitError(loc, "integer bitwidth is limited to " + Twine(IntegerType::kMaxWidth) + " bits"); emitError(loc) << "integer bitwidth is limited to " << IntegerType::kMaxWidth << " bits"; -- PiperOrigin-RevId: 246526439
2019-05-04 01:01:01 +08:00
InFlightDiagnostic OpState::emitRemark(const Twine &message) {
return getOperation()->emitRemark(message);
}
//===----------------------------------------------------------------------===//
// Op Trait implementations
//===----------------------------------------------------------------------===//
LogicalResult OpTrait::impl::verifyZeroOperands(Operation *op) {
if (op->getNumOperands() != 0)
return op->emitOpError() << "requires zero operands";
return success();
}
LogicalResult OpTrait::impl::verifyOneOperand(Operation *op) {
if (op->getNumOperands() != 1)
return op->emitOpError() << "requires a single operand";
return success();
}
LogicalResult OpTrait::impl::verifyNOperands(Operation *op,
unsigned numOperands) {
if (op->getNumOperands() != numOperands) {
return op->emitOpError() << "expected " << numOperands
<< " operands, but found " << op->getNumOperands();
}
return success();
}
LogicalResult OpTrait::impl::verifyAtLeastNOperands(Operation *op,
unsigned numOperands) {
if (op->getNumOperands() < numOperands)
return op->emitOpError()
<< "expected " << numOperands << " or more operands";
return success();
}
/// If this is a vector type, or a tensor type, return the scalar element type
/// that it is built around, otherwise return the type unmodified.
static Type getTensorOrVectorElementType(Type type) {
if (auto vec = type.dyn_cast<VectorType>())
return vec.getElementType();
// Look through tensor<vector<...>> to find the underlying element type.
if (auto tensor = type.dyn_cast<TensorType>())
return getTensorOrVectorElementType(tensor.getElementType());
return type;
}
LogicalResult OpTrait::impl::verifyOperandsAreIntegerLike(Operation *op) {
for (auto opType : op->getOperandTypes()) {
auto type = getTensorOrVectorElementType(opType);
if (!type.isIntOrIndex())
return op->emitOpError() << "requires an integer or index type";
}
return success();
}
LogicalResult OpTrait::impl::verifyOperandsAreFloatLike(Operation *op) {
for (auto opType : op->getOperandTypes()) {
auto type = getTensorOrVectorElementType(opType);
if (!type.isa<FloatType>())
return op->emitOpError("requires a float type");
}
return success();
}
LogicalResult OpTrait::impl::verifySameTypeOperands(Operation *op) {
// Zero or one operand always have the "same" type.
unsigned nOperands = op->getNumOperands();
if (nOperands < 2)
return success();
auto type = op->getOperand(0)->getType();
for (auto opType : llvm::drop_begin(op->getOperandTypes(), 1))
if (opType != type)
return op->emitOpError() << "requires all operands to have the same type";
return success();
}
LogicalResult OpTrait::impl::verifyZeroResult(Operation *op) {
if (op->getNumResults() != 0)
return op->emitOpError() << "requires zero results";
return success();
}
LogicalResult OpTrait::impl::verifyOneResult(Operation *op) {
if (op->getNumResults() != 1)
return op->emitOpError() << "requires one result";
return success();
}
LogicalResult OpTrait::impl::verifyNResults(Operation *op,
unsigned numOperands) {
if (op->getNumResults() != numOperands)
return op->emitOpError() << "expected " << numOperands << " results";
return success();
}
LogicalResult OpTrait::impl::verifyAtLeastNResults(Operation *op,
unsigned numOperands) {
if (op->getNumResults() < numOperands)
return op->emitOpError()
<< "expected " << numOperands << " or more results";
return success();
}
/// Returns success if the given two types have the same shape. That is,
/// they are both scalars (not shaped), or they are both shaped types and at
/// least one is unranked or they have the same shape. The element type does not
/// matter.
static LogicalResult verifyShapeMatch(Type type1, Type type2) {
auto sType1 = type1.dyn_cast<ShapedType>();
auto sType2 = type2.dyn_cast<ShapedType>();
// Either both or neither type should be shaped.
if (!sType1)
return success(!sType2);
if (!sType2)
return failure();
if (!sType1.hasRank() || !sType2.hasRank())
return success();
return success(sType1.getShape() == sType2.getShape());
}
LogicalResult OpTrait::impl::verifySameOperandsAndResultShape(Operation *op) {
if (op->getNumOperands() == 0 || op->getNumResults() == 0)
return failure();
auto type = op->getOperand(0)->getType();
for (auto resultType : op->getResultTypes()) {
if (failed(verifyShapeMatch(resultType, type)))
return op->emitOpError()
<< "requires the same shape for all operands and results";
}
for (auto opType : llvm::drop_begin(op->getOperandTypes(), 1)) {
if (failed(verifyShapeMatch(opType, type)))
return op->emitOpError()
<< "requires the same shape for all operands and results";
}
return success();
}
LogicalResult
OpTrait::impl::verifySameOperandsAndResultElementType(Operation *op) {
if (op->getNumOperands() == 0 || op->getNumResults() == 0)
return failure();
auto type = op->getResult(0)->getType().dyn_cast<ShapedType>();
if (!type)
return op->emitOpError("requires shaped type results");
auto elementType = type.getElementType();
// Verify result element type matches first result's element type.
for (auto result : drop_begin(op->getResults(), 1)) {
auto resultType = result->getType().dyn_cast<ShapedType>();
if (!resultType)
return op->emitOpError("requires shaped type results");
if (resultType.getElementType() != elementType)
return op->emitOpError(
"requires the same element type for all operands and results");
}
// Verify operand's element type matches first result's element type.
for (auto operand : op->getOperands()) {
auto operandType = operand->getType().dyn_cast<ShapedType>();
if (!operandType)
return op->emitOpError("requires shaped type operands");
if (operandType.getElementType() != elementType)
return op->emitOpError(
"requires the same element type for all operands and results");
}
return success();
}
LogicalResult OpTrait::impl::verifySameOperandsAndResultType(Operation *op) {
if (op->getNumOperands() == 0 || op->getNumResults() == 0)
return failure();
auto type = op->getResult(0)->getType();
for (auto resultType : llvm::drop_begin(op->getResultTypes(), 1)) {
if (resultType != type)
return op->emitOpError()
<< "requires the same type for all operands and results";
}
for (auto opType : op->getOperandTypes()) {
if (opType != type)
return op->emitOpError()
<< "requires the same type for all operands and results";
}
return success();
}
static LogicalResult verifyBBArguments(Operation::operand_range operands,
Block *destBB, Operation *op) {
unsigned operandCount = std::distance(operands.begin(), operands.end());
if (operandCount != destBB->getNumArguments())
return op->emitError() << "branch has " << operandCount
<< " operands, but target block has "
<< destBB->getNumArguments();
auto operandIt = operands.begin();
for (unsigned i = 0, e = operandCount; i != e; ++i, ++operandIt) {
if ((*operandIt)->getType() != destBB->getArgument(i)->getType())
return op->emitError() << "type mismatch in bb argument #" << i;
}
return success();
}
static LogicalResult verifyTerminatorSuccessors(Operation *op) {
auto *parent = op->getParentRegion();
// Verify that the operands lines up with the BB arguments in the successor.
for (unsigned i = 0, e = op->getNumSuccessors(); i != e; ++i) {
auto *succ = op->getSuccessor(i);
if (succ->getParent() != parent)
return op->emitError("reference to block defined in another region");
if (failed(verifyBBArguments(op->getSuccessorOperands(i), succ, op)))
return failure();
}
return success();
}
LogicalResult OpTrait::impl::verifyIsTerminator(Operation *op) {
Block *block = op->getBlock();
// Verify that the operation is at the end of the respective parent block.
if (!block || &block->back() != op)
return op->emitOpError("must be the last operation in the parent block");
// Verify the state of the successor blocks.
if (op->getNumSuccessors() != 0 && failed(verifyTerminatorSuccessors(op)))
return failure();
return success();
}
LogicalResult OpTrait::impl::verifyResultsAreBoolLike(Operation *op) {
for (auto resultType : op->getResultTypes()) {
auto elementType = getTensorOrVectorElementType(resultType);
bool isBoolType = elementType.isInteger(1);
if (!isBoolType)
return op->emitOpError() << "requires a bool result type";
}
return success();
}
LogicalResult OpTrait::impl::verifyResultsAreFloatLike(Operation *op) {
for (auto resultType : op->getResultTypes())
if (!getTensorOrVectorElementType(resultType).isa<FloatType>())
return op->emitOpError() << "requires a floating point type";
return success();
}
LogicalResult OpTrait::impl::verifyResultsAreIntegerLike(Operation *op) {
for (auto resultType : op->getResultTypes())
if (!getTensorOrVectorElementType(resultType).isIntOrIndex())
return op->emitOpError() << "requires an integer or index type";
return success();
}
//===----------------------------------------------------------------------===//
// BinaryOp implementation
//===----------------------------------------------------------------------===//
// These functions are out-of-line implementations of the methods in BinaryOp,
// which avoids them being template instantiated/duplicated.
void impl::buildBinaryOp(Builder *builder, OperationState *result, Value *lhs,
Value *rhs) {
assert(lhs->getType() == rhs->getType());
result->addOperands({lhs, rhs});
result->types.push_back(lhs->getType());
}
ParseResult impl::parseBinaryOp(OpAsmParser *parser, OperationState *result) {
SmallVector<OpAsmParser::OperandType, 2> ops;
Type type;
return failure(parser->parseOperandList(ops, 2) ||
parser->parseOptionalAttributeDict(result->attributes) ||
parser->parseColonType(type) ||
parser->resolveOperands(ops, type, result->operands) ||
parser->addTypeToList(type, result->types));
}
void impl::printBinaryOp(Operation *op, OpAsmPrinter *p) {
assert(op->getNumOperands() == 2 && "binary op should have two operands");
assert(op->getNumResults() == 1 && "binary op should have one result");
// If not all the operand and result types are the same, just use the
// generic assembly form to avoid omitting information in printing.
auto resultType = op->getResult(0)->getType();
if (op->getOperand(0)->getType() != resultType ||
op->getOperand(1)->getType() != resultType) {
p->printGenericOp(op);
return;
}
*p << op->getName() << ' ' << *op->getOperand(0) << ", "
<< *op->getOperand(1);
p->printOptionalAttrDict(op->getAttrs());
// Now we can output only one type for all operands and the result.
*p << " : " << op->getResult(0)->getType();
}
//===----------------------------------------------------------------------===//
// CastOp implementation
//===----------------------------------------------------------------------===//
void impl::buildCastOp(Builder *builder, OperationState *result, Value *source,
Type destType) {
result->addOperands(source);
result->addTypes(destType);
}
ParseResult impl::parseCastOp(OpAsmParser *parser, OperationState *result) {
OpAsmParser::OperandType srcInfo;
Type srcType, dstType;
return failure(parser->parseOperand(srcInfo) ||
parser->parseOptionalAttributeDict(result->attributes) ||
parser->parseColonType(srcType) ||
parser->resolveOperand(srcInfo, srcType, result->operands) ||
parser->parseKeywordType("to", dstType) ||
parser->addTypeToList(dstType, result->types));
}
void impl::printCastOp(Operation *op, OpAsmPrinter *p) {
*p << op->getName() << ' ' << *op->getOperand(0);
p->printOptionalAttrDict(op->getAttrs());
*p << " : " << op->getOperand(0)->getType() << " to "
<< op->getResult(0)->getType();
}
Value *impl::foldCastOp(Operation *op) {
// Identity cast
if (op->getOperand(0)->getType() == op->getResult(0)->getType())
return op->getOperand(0);
return nullptr;
}
//===----------------------------------------------------------------------===//
// CastOp implementation
//===----------------------------------------------------------------------===//
/// Insert an operation, generated by `buildTerminatorOp`, at the end of the
/// region's only block if it does not have a terminator already. If the region
/// is empty, insert a new block first. `buildTerminatorOp` should return the
/// terminator operation to insert.
void impl::ensureRegionTerminator(
Region &region, Location loc,
llvm::function_ref<Operation *()> buildTerminatorOp) {
if (region.empty())
region.push_back(new Block);
Block &block = region.back();
if (!block.empty() && block.back().isKnownTerminator())
return;
block.push_back(buildTerminatorOp());
}