llvm-project/llvm/lib/MC/MCMachOStreamer.cpp

465 lines
17 KiB
C++
Raw Normal View History

//===-- MCMachOStreamer.cpp - MachO Streamer ------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "llvm/MC/MCStreamer.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/MC/MCAsmBackend.h"
#include "llvm/MC/MCAssembler.h"
#include "llvm/MC/MCCodeEmitter.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCDwarf.h"
#include "llvm/MC/MCExpr.h"
#include "llvm/MC/MCInst.h"
#include "llvm/MC/MCLinkerOptimizationHint.h"
#include "llvm/MC/MCMachOSymbolFlags.h"
#include "llvm/MC/MCObjectFileInfo.h"
#include "llvm/MC/MCObjectStreamer.h"
#include "llvm/MC/MCSection.h"
#include "llvm/MC/MCSectionMachO.h"
#include "llvm/MC/MCSymbol.h"
#include "llvm/Support/Dwarf.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;
namespace {
class MCMachOStreamer : public MCObjectStreamer {
private:
/// LabelSections - true if each section change should emit a linker local
/// label for use in relocations for assembler local references. Obviates the
/// need for local relocations. False by default.
bool LabelSections;
/// HasSectionLabel - map of which sections have already had a non-local
/// label emitted to them. Used so we don't emit extraneous linker local
/// labels in the middle of the section.
DenseMap<const MCSection*, bool> HasSectionLabel;
void EmitInstToData(const MCInst &Inst, const MCSubtargetInfo &STI) override;
void EmitDataRegion(DataRegionData::KindTy Kind);
void EmitDataRegionEnd();
public:
MCMachOStreamer(MCContext &Context, MCAsmBackend &MAB, raw_ostream &OS,
MCCodeEmitter *Emitter, bool label)
: MCObjectStreamer(Context, MAB, OS, Emitter),
LabelSections(label) {}
/// state management
void reset() override {
HasSectionLabel.clear();
MCObjectStreamer::reset();
}
/// @name MCStreamer Interface
/// @{
void ChangeSection(const MCSection *Sect, const MCExpr *Subsect) override;
void EmitLabel(MCSymbol *Symbol) override;
void EmitEHSymAttributes(const MCSymbol *Symbol, MCSymbol *EHSymbol) override;
void EmitAssemblerFlag(MCAssemblerFlag Flag) override;
void EmitLinkerOptions(ArrayRef<std::string> Options) override;
void EmitDataRegion(MCDataRegionType Kind) override;
void EmitVersionMin(MCVersionMinType Kind, unsigned Major,
unsigned Minor, unsigned Update) override;
void EmitThumbFunc(MCSymbol *Func) override;
bool EmitSymbolAttribute(MCSymbol *Symbol, MCSymbolAttr Attribute) override;
void EmitSymbolDesc(MCSymbol *Symbol, unsigned DescValue) override;
void EmitCommonSymbol(MCSymbol *Symbol, uint64_t Size,
unsigned ByteAlignment) override;
void BeginCOFFSymbolDef(const MCSymbol *Symbol) override {
llvm_unreachable("macho doesn't support this directive");
}
void EmitCOFFSymbolStorageClass(int StorageClass) override {
llvm_unreachable("macho doesn't support this directive");
}
void EmitCOFFSymbolType(int Type) override {
llvm_unreachable("macho doesn't support this directive");
}
void EndCOFFSymbolDef() override {
llvm_unreachable("macho doesn't support this directive");
}
void EmitELFSize(MCSymbol *Symbol, const MCExpr *Value) override {
llvm_unreachable("macho doesn't support this directive");
}
void EmitLocalCommonSymbol(MCSymbol *Symbol, uint64_t Size,
unsigned ByteAlignment) override;
void EmitZerofill(const MCSection *Section, MCSymbol *Symbol = nullptr,
uint64_t Size = 0, unsigned ByteAlignment = 0) override;
void EmitTBSSSymbol(const MCSection *Section, MCSymbol *Symbol, uint64_t Size,
unsigned ByteAlignment = 0) override;
void EmitFileDirective(StringRef Filename) override {
// FIXME: Just ignore the .file; it isn't important enough to fail the
// entire assembly.
// report_fatal_error("unsupported directive: '.file'");
}
void EmitIdent(StringRef IdentString) override {
llvm_unreachable("macho doesn't support this directive");
}
void EmitLOHDirective(MCLOHType Kind, const MCLOHArgs &Args) override {
getAssembler().getLOHContainer().addDirective(Kind, Args);
}
void FinishImpl() override;
};
} // end anonymous namespace.
void MCMachOStreamer::ChangeSection(const MCSection *Section,
const MCExpr *Subsection) {
// Change the section normally.
MCObjectStreamer::ChangeSection(Section, Subsection);
// Output a linker-local symbol so we don't need section-relative local
// relocations. The linker hates us when we do that.
if (LabelSections && !HasSectionLabel[Section]) {
MCSymbol *Label = getContext().CreateLinkerPrivateTempSymbol();
EmitLabel(Label);
HasSectionLabel[Section] = true;
}
}
void MCMachOStreamer::EmitEHSymAttributes(const MCSymbol *Symbol,
MCSymbol *EHSymbol) {
MCSymbolData &SD =
getAssembler().getOrCreateSymbolData(*Symbol);
if (SD.isExternal())
EmitSymbolAttribute(EHSymbol, MCSA_Global);
if (SD.getFlags() & SF_WeakDefinition)
EmitSymbolAttribute(EHSymbol, MCSA_WeakDefinition);
if (SD.isPrivateExtern())
EmitSymbolAttribute(EHSymbol, MCSA_PrivateExtern);
}
void MCMachOStreamer::EmitLabel(MCSymbol *Symbol) {
assert(Symbol->isUndefined() && "Cannot define a symbol twice!");
// isSymbolLinkerVisible uses the section.
AssignSection(Symbol, getCurrentSection().first);
// We have to create a new fragment if this is an atom defining symbol,
// fragments cannot span atoms.
if (getAssembler().isSymbolLinkerVisible(*Symbol))
insert(new MCDataFragment());
MCObjectStreamer::EmitLabel(Symbol);
MCSymbolData &SD = getAssembler().getSymbolData(*Symbol);
// This causes the reference type flag to be cleared. Darwin 'as' was "trying"
// to clear the weak reference and weak definition bits too, but the
// implementation was buggy. For now we just try to match 'as', for
// diffability.
//
// FIXME: Cleanup this code, these bits should be emitted based on semantic
// properties, not on the order of definition, etc.
SD.setFlags(SD.getFlags() & ~SF_ReferenceTypeMask);
}
void MCMachOStreamer::EmitDataRegion(DataRegionData::KindTy Kind) {
if (!getAssembler().getBackend().hasDataInCodeSupport())
return;
// Create a temporary label to mark the start of the data region.
MCSymbol *Start = getContext().CreateTempSymbol();
EmitLabel(Start);
// Record the region for the object writer to use.
DataRegionData Data = { Kind, Start, nullptr };
std::vector<DataRegionData> &Regions = getAssembler().getDataRegions();
Regions.push_back(Data);
}
void MCMachOStreamer::EmitDataRegionEnd() {
if (!getAssembler().getBackend().hasDataInCodeSupport())
return;
std::vector<DataRegionData> &Regions = getAssembler().getDataRegions();
assert(Regions.size() && "Mismatched .end_data_region!");
DataRegionData &Data = Regions.back();
assert(!Data.End && "Mismatched .end_data_region!");
// Create a temporary label to mark the end of the data region.
Data.End = getContext().CreateTempSymbol();
EmitLabel(Data.End);
}
void MCMachOStreamer::EmitAssemblerFlag(MCAssemblerFlag Flag) {
// Let the target do whatever target specific stuff it needs to do.
getAssembler().getBackend().handleAssemblerFlag(Flag);
// Do any generic stuff we need to do.
switch (Flag) {
case MCAF_SyntaxUnified: return; // no-op here.
case MCAF_Code16: return; // Change parsing mode; no-op here.
case MCAF_Code32: return; // Change parsing mode; no-op here.
case MCAF_Code64: return; // Change parsing mode; no-op here.
case MCAF_SubsectionsViaSymbols:
getAssembler().setSubsectionsViaSymbols(true);
return;
}
}
void MCMachOStreamer::EmitLinkerOptions(ArrayRef<std::string> Options) {
getAssembler().getLinkerOptions().push_back(Options);
}
void MCMachOStreamer::EmitDataRegion(MCDataRegionType Kind) {
switch (Kind) {
case MCDR_DataRegion:
EmitDataRegion(DataRegionData::Data);
return;
case MCDR_DataRegionJT8:
EmitDataRegion(DataRegionData::JumpTable8);
return;
case MCDR_DataRegionJT16:
EmitDataRegion(DataRegionData::JumpTable16);
return;
case MCDR_DataRegionJT32:
EmitDataRegion(DataRegionData::JumpTable32);
return;
case MCDR_DataRegionEnd:
EmitDataRegionEnd();
return;
}
}
void MCMachOStreamer::EmitVersionMin(MCVersionMinType Kind, unsigned Major,
unsigned Minor, unsigned Update) {
getAssembler().setVersionMinInfo(Kind, Major, Minor, Update);
}
void MCMachOStreamer::EmitThumbFunc(MCSymbol *Symbol) {
// Remember that the function is a thumb function. Fixup and relocation
// values will need adjusted.
getAssembler().setIsThumbFunc(Symbol);
}
bool MCMachOStreamer::EmitSymbolAttribute(MCSymbol *Symbol,
MCSymbolAttr Attribute) {
// Indirect symbols are handled differently, to match how 'as' handles
// them. This makes writing matching .o files easier.
if (Attribute == MCSA_IndirectSymbol) {
// Note that we intentionally cannot use the symbol data here; this is
// important for matching the string table that 'as' generates.
IndirectSymbolData ISD;
ISD.Symbol = Symbol;
ISD.SectionData = getCurrentSectionData();
getAssembler().getIndirectSymbols().push_back(ISD);
return true;
}
// Adding a symbol attribute always introduces the symbol, note that an
// important side effect of calling getOrCreateSymbolData here is to register
// the symbol with the assembler.
MCSymbolData &SD = getAssembler().getOrCreateSymbolData(*Symbol);
// The implementation of symbol attributes is designed to match 'as', but it
// leaves much to desired. It doesn't really make sense to arbitrarily add and
// remove flags, but 'as' allows this (in particular, see .desc).
//
// In the future it might be worth trying to make these operations more well
// defined.
switch (Attribute) {
case MCSA_Invalid:
case MCSA_ELF_TypeFunction:
case MCSA_ELF_TypeIndFunction:
case MCSA_ELF_TypeObject:
case MCSA_ELF_TypeTLS:
case MCSA_ELF_TypeCommon:
case MCSA_ELF_TypeNoType:
case MCSA_ELF_TypeGnuUniqueObject:
case MCSA_Hidden:
case MCSA_IndirectSymbol:
case MCSA_Internal:
case MCSA_Protected:
case MCSA_Weak:
case MCSA_Local:
return false;
case MCSA_Global:
SD.setExternal(true);
// This effectively clears the undefined lazy bit, in Darwin 'as', although
// it isn't very consistent because it implements this as part of symbol
// lookup.
//
// FIXME: Cleanup this code, these bits should be emitted based on semantic
// properties, not on the order of definition, etc.
SD.setFlags(SD.getFlags() & ~SF_ReferenceTypeUndefinedLazy);
break;
case MCSA_LazyReference:
// FIXME: This requires -dynamic.
SD.setFlags(SD.getFlags() | SF_NoDeadStrip);
if (Symbol->isUndefined())
SD.setFlags(SD.getFlags() | SF_ReferenceTypeUndefinedLazy);
break;
// Since .reference sets the no dead strip bit, it is equivalent to
// .no_dead_strip in practice.
case MCSA_Reference:
case MCSA_NoDeadStrip:
SD.setFlags(SD.getFlags() | SF_NoDeadStrip);
break;
case MCSA_SymbolResolver:
SD.setFlags(SD.getFlags() | SF_SymbolResolver);
break;
case MCSA_PrivateExtern:
SD.setExternal(true);
SD.setPrivateExtern(true);
break;
case MCSA_WeakReference:
// FIXME: This requires -dynamic.
if (Symbol->isUndefined())
SD.setFlags(SD.getFlags() | SF_WeakReference);
break;
case MCSA_WeakDefinition:
// FIXME: 'as' enforces that this is defined and global. The manual claims
// it has to be in a coalesced section, but this isn't enforced.
SD.setFlags(SD.getFlags() | SF_WeakDefinition);
break;
case MCSA_WeakDefAutoPrivate:
SD.setFlags(SD.getFlags() | SF_WeakDefinition | SF_WeakReference);
break;
}
return true;
}
void MCMachOStreamer::EmitSymbolDesc(MCSymbol *Symbol, unsigned DescValue) {
// Encode the 'desc' value into the lowest implementation defined bits.
assert(DescValue == (DescValue & SF_DescFlagsMask) &&
"Invalid .desc value!");
getAssembler().getOrCreateSymbolData(*Symbol).setFlags(
DescValue & SF_DescFlagsMask);
}
void MCMachOStreamer::EmitCommonSymbol(MCSymbol *Symbol, uint64_t Size,
unsigned ByteAlignment) {
// FIXME: Darwin 'as' does appear to allow redef of a .comm by itself.
assert(Symbol->isUndefined() && "Cannot define a symbol twice!");
AssignSection(Symbol, nullptr);
MCSymbolData &SD = getAssembler().getOrCreateSymbolData(*Symbol);
SD.setExternal(true);
SD.setCommon(Size, ByteAlignment);
}
void MCMachOStreamer::EmitLocalCommonSymbol(MCSymbol *Symbol, uint64_t Size,
unsigned ByteAlignment) {
// '.lcomm' is equivalent to '.zerofill'.
return EmitZerofill(getContext().getObjectFileInfo()->getDataBSSSection(),
Symbol, Size, ByteAlignment);
}
void MCMachOStreamer::EmitZerofill(const MCSection *Section, MCSymbol *Symbol,
uint64_t Size, unsigned ByteAlignment) {
MCSectionData &SectData = getAssembler().getOrCreateSectionData(*Section);
// The symbol may not be present, which only creates the section.
if (!Symbol)
return;
// On darwin all virtual sections have zerofill type.
assert(Section->isVirtualSection() && "Section does not have zerofill type!");
assert(Symbol->isUndefined() && "Cannot define a symbol twice!");
MCSymbolData &SD = getAssembler().getOrCreateSymbolData(*Symbol);
// Emit an align fragment if necessary.
if (ByteAlignment != 1)
new MCAlignFragment(ByteAlignment, 0, 0, ByteAlignment, &SectData);
MCFragment *F = new MCFillFragment(0, 0, Size, &SectData);
SD.setFragment(F);
AssignSection(Symbol, Section);
// Update the maximum alignment on the zero fill section if necessary.
if (ByteAlignment > SectData.getAlignment())
SectData.setAlignment(ByteAlignment);
}
2010-05-22 07:03:53 +08:00
// This should always be called with the thread local bss section. Like the
// .zerofill directive this doesn't actually switch sections on us.
void MCMachOStreamer::EmitTBSSSymbol(const MCSection *Section, MCSymbol *Symbol,
uint64_t Size, unsigned ByteAlignment) {
EmitZerofill(Section, Symbol, Size, ByteAlignment);
return;
}
void MCMachOStreamer::EmitInstToData(const MCInst &Inst,
const MCSubtargetInfo &STI) {
MCDataFragment *DF = getOrCreateDataFragment();
SmallVector<MCFixup, 4> Fixups;
SmallString<256> Code;
raw_svector_ostream VecOS(Code);
getAssembler().getEmitter().EncodeInstruction(Inst, VecOS, Fixups, STI);
VecOS.flush();
// Add the fixups and data.
for (unsigned i = 0, e = Fixups.size(); i != e; ++i) {
Fixups[i].setOffset(Fixups[i].getOffset() + DF->getContents().size());
DF->getFixups().push_back(Fixups[i]);
}
DF->getContents().append(Code.begin(), Code.end());
}
void MCMachOStreamer::FinishImpl() {
EmitFrames(&getAssembler().getBackend());
// We have to set the fragment atom associations so we can relax properly for
// Mach-O.
// First, scan the symbol table to build a lookup table from fragments to
// defining symbols.
DenseMap<const MCFragment*, MCSymbolData*> DefiningSymbolMap;
for (MCSymbolData &SD : getAssembler().symbols()) {
if (getAssembler().isSymbolLinkerVisible(SD.getSymbol()) &&
SD.getFragment()) {
// An atom defining symbol should never be internal to a fragment.
assert(SD.getOffset() == 0 && "Invalid offset in atom defining symbol!");
DefiningSymbolMap[SD.getFragment()] = &SD;
}
}
// Set the fragment atom associations by tracking the last seen atom defining
// symbol.
for (MCAssembler::iterator it = getAssembler().begin(),
ie = getAssembler().end(); it != ie; ++it) {
MCSymbolData *CurrentAtom = nullptr;
for (MCSectionData::iterator it2 = it->begin(),
ie2 = it->end(); it2 != ie2; ++it2) {
if (MCSymbolData *SD = DefiningSymbolMap.lookup(it2))
CurrentAtom = SD;
it2->setAtom(CurrentAtom);
}
}
this->MCObjectStreamer::FinishImpl();
}
MCStreamer *llvm::createMachOStreamer(MCContext &Context, MCAsmBackend &MAB,
raw_ostream &OS, MCCodeEmitter *CE,
bool RelaxAll,
bool LabelSections) {
MCMachOStreamer *S = new MCMachOStreamer(Context, MAB, OS, CE, LabelSections);
if (RelaxAll)
S->getAssembler().setRelaxAll(true);
return S;
}