llvm-project/llvm/lib/Target/XCore/XCoreISelLowering.cpp

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

1941 lines
75 KiB
C++
Raw Normal View History

//===-- XCoreISelLowering.cpp - XCore DAG Lowering Implementation ---------===//
2008-11-07 18:59:00 +08:00
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
2008-11-07 18:59:00 +08:00
//
//===----------------------------------------------------------------------===//
//
// This file implements the XCoreTargetLowering class.
//
//===----------------------------------------------------------------------===//
#include "XCoreISelLowering.h"
#include "XCore.h"
#include "XCoreMachineFunctionInfo.h"
2008-11-07 18:59:00 +08:00
#include "XCoreSubtarget.h"
#include "XCoreTargetMachine.h"
#include "XCoreTargetObjectFile.h"
2008-11-07 18:59:00 +08:00
#include "llvm/CodeGen/CallingConvLower.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineJumpTableInfo.h"
2008-11-07 18:59:00 +08:00
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/SelectionDAGISel.h"
#include "llvm/CodeGen/ValueTypes.h"
#include "llvm/IR/CallingConv.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GlobalAlias.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/IntrinsicsXCore.h"
2008-11-07 18:59:00 +08:00
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/KnownBits.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
2008-11-07 18:59:00 +08:00
using namespace llvm;
#define DEBUG_TYPE "xcore-lower"
2008-11-07 18:59:00 +08:00
const char *XCoreTargetLowering::
getTargetNodeName(unsigned Opcode) const
2008-11-07 18:59:00 +08:00
{
switch ((XCoreISD::NodeType)Opcode)
2008-11-07 18:59:00 +08:00
{
case XCoreISD::FIRST_NUMBER : break;
2008-11-07 18:59:00 +08:00
case XCoreISD::BL : return "XCoreISD::BL";
case XCoreISD::PCRelativeWrapper : return "XCoreISD::PCRelativeWrapper";
case XCoreISD::DPRelativeWrapper : return "XCoreISD::DPRelativeWrapper";
case XCoreISD::CPRelativeWrapper : return "XCoreISD::CPRelativeWrapper";
case XCoreISD::LDWSP : return "XCoreISD::LDWSP";
2008-11-07 18:59:00 +08:00
case XCoreISD::STWSP : return "XCoreISD::STWSP";
case XCoreISD::RETSP : return "XCoreISD::RETSP";
case XCoreISD::LADD : return "XCoreISD::LADD";
case XCoreISD::LSUB : return "XCoreISD::LSUB";
case XCoreISD::LMUL : return "XCoreISD::LMUL";
case XCoreISD::MACCU : return "XCoreISD::MACCU";
case XCoreISD::MACCS : return "XCoreISD::MACCS";
case XCoreISD::CRC8 : return "XCoreISD::CRC8";
case XCoreISD::BR_JT : return "XCoreISD::BR_JT";
case XCoreISD::BR_JT32 : return "XCoreISD::BR_JT32";
case XCoreISD::FRAME_TO_ARGS_OFFSET : return "XCoreISD::FRAME_TO_ARGS_OFFSET";
case XCoreISD::EH_RETURN : return "XCoreISD::EH_RETURN";
case XCoreISD::MEMBARRIER : return "XCoreISD::MEMBARRIER";
2008-11-07 18:59:00 +08:00
}
return nullptr;
2008-11-07 18:59:00 +08:00
}
XCoreTargetLowering::XCoreTargetLowering(const TargetMachine &TM,
const XCoreSubtarget &Subtarget)
: TargetLowering(TM), TM(TM), Subtarget(Subtarget) {
2008-11-07 18:59:00 +08:00
// Set up the register classes.
addRegisterClass(MVT::i32, &XCore::GRRegsRegClass);
2008-11-07 18:59:00 +08:00
// Compute derived properties from the register classes
computeRegisterProperties(Subtarget.getRegisterInfo());
2008-11-07 18:59:00 +08:00
setStackPointerRegisterToSaveRestore(XCore::SP);
setSchedulingPreference(Sched::Source);
2008-11-07 18:59:00 +08:00
// Use i32 for setcc operations results (slt, sgt, ...).
setBooleanContents(ZeroOrOneBooleanContent);
setBooleanVectorContents(ZeroOrOneBooleanContent); // FIXME: Is this correct?
2008-11-07 18:59:00 +08:00
// XCore does not have the NodeTypes below.
setOperationAction(ISD::BR_CC, MVT::i32, Expand);
setOperationAction(ISD::SELECT_CC, MVT::i32, Expand);
2008-11-07 18:59:00 +08:00
// 64bit
setOperationAction(ISD::ADD, MVT::i64, Custom);
setOperationAction(ISD::SUB, MVT::i64, Custom);
setOperationAction(ISD::SMUL_LOHI, MVT::i32, Custom);
setOperationAction(ISD::UMUL_LOHI, MVT::i32, Custom);
setOperationAction(ISD::MULHS, MVT::i32, Expand);
setOperationAction(ISD::MULHU, MVT::i32, Expand);
setOperationAction(ISD::SHL_PARTS, MVT::i32, Expand);
setOperationAction(ISD::SRA_PARTS, MVT::i32, Expand);
setOperationAction(ISD::SRL_PARTS, MVT::i32, Expand);
2008-11-07 18:59:00 +08:00
// Bit Manipulation
setOperationAction(ISD::CTPOP, MVT::i32, Expand);
setOperationAction(ISD::ROTL , MVT::i32, Expand);
setOperationAction(ISD::ROTR , MVT::i32, Expand);
setOperationAction(ISD::TRAP, MVT::Other, Legal);
// Jump tables.
setOperationAction(ISD::BR_JT, MVT::Other, Custom);
2008-11-07 18:59:00 +08:00
setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
setOperationAction(ISD::BlockAddress, MVT::i32 , Custom);
2008-11-07 18:59:00 +08:00
// Conversion of i64 -> double produces constantpool nodes
setOperationAction(ISD::ConstantPool, MVT::i32, Custom);
2008-11-07 18:59:00 +08:00
// Loads
for (MVT VT : MVT::integer_valuetypes()) {
setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote);
setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
2008-11-07 18:59:00 +08:00
setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Expand);
setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i16, Expand);
}
// Custom expand misaligned loads / stores.
setOperationAction(ISD::LOAD, MVT::i32, Custom);
setOperationAction(ISD::STORE, MVT::i32, Custom);
2008-11-07 18:59:00 +08:00
// Varargs
setOperationAction(ISD::VAEND, MVT::Other, Expand);
setOperationAction(ISD::VACOPY, MVT::Other, Expand);
setOperationAction(ISD::VAARG, MVT::Other, Custom);
setOperationAction(ISD::VASTART, MVT::Other, Custom);
2008-11-07 18:59:00 +08:00
// Dynamic stack
setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
// Exception handling
setOperationAction(ISD::EH_RETURN, MVT::Other, Custom);
setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom);
// Atomic operations
// We request a fence for ATOMIC_* instructions, to reduce them to Monotonic.
// As we are always Sequential Consistent, an ATOMIC_FENCE becomes a no OP.
setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom);
setOperationAction(ISD::ATOMIC_LOAD, MVT::i32, Custom);
setOperationAction(ISD::ATOMIC_STORE, MVT::i32, Custom);
// TRAMPOLINE is custom lowered.
setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom);
setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom);
// We want to custom lower some of our intrinsics.
setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
MaxStoresPerMemset = MaxStoresPerMemsetOptSize = 4;
MaxStoresPerMemmove = MaxStoresPerMemmoveOptSize
= MaxStoresPerMemcpy = MaxStoresPerMemcpyOptSize = 2;
// We have target-specific dag combine patterns for the following nodes:
setTargetDAGCombine(ISD::STORE);
setTargetDAGCombine(ISD::ADD);
setTargetDAGCombine(ISD::INTRINSIC_VOID);
setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
setMinFunctionAlignment(Align(2));
setPrefFunctionAlignment(Align(4));
2008-11-07 18:59:00 +08:00
}
bool XCoreTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
if (Val.getOpcode() != ISD::LOAD)
return false;
EVT VT1 = Val.getValueType();
if (!VT1.isSimple() || !VT1.isInteger() ||
!VT2.isSimple() || !VT2.isInteger())
return false;
switch (VT1.getSimpleVT().SimpleTy) {
default: break;
case MVT::i8:
return true;
}
return false;
}
2008-11-07 18:59:00 +08:00
SDValue XCoreTargetLowering::
LowerOperation(SDValue Op, SelectionDAG &DAG) const {
switch (Op.getOpcode())
2008-11-07 18:59:00 +08:00
{
case ISD::EH_RETURN: return LowerEH_RETURN(Op, DAG);
case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG);
case ISD::BlockAddress: return LowerBlockAddress(Op, DAG);
case ISD::ConstantPool: return LowerConstantPool(Op, DAG);
case ISD::BR_JT: return LowerBR_JT(Op, DAG);
case ISD::LOAD: return LowerLOAD(Op, DAG);
case ISD::STORE: return LowerSTORE(Op, DAG);
case ISD::VAARG: return LowerVAARG(Op, DAG);
case ISD::VASTART: return LowerVASTART(Op, DAG);
case ISD::SMUL_LOHI: return LowerSMUL_LOHI(Op, DAG);
case ISD::UMUL_LOHI: return LowerUMUL_LOHI(Op, DAG);
2008-11-07 18:59:00 +08:00
// FIXME: Remove these when LegalizeDAGTypes lands.
case ISD::ADD:
case ISD::SUB: return ExpandADDSUB(Op.getNode(), DAG);
case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG);
case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG);
case ISD::FRAME_TO_ARGS_OFFSET: return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
case ISD::INIT_TRAMPOLINE: return LowerINIT_TRAMPOLINE(Op, DAG);
case ISD::ADJUST_TRAMPOLINE: return LowerADJUST_TRAMPOLINE(Op, DAG);
case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
case ISD::ATOMIC_FENCE: return LowerATOMIC_FENCE(Op, DAG);
case ISD::ATOMIC_LOAD: return LowerATOMIC_LOAD(Op, DAG);
case ISD::ATOMIC_STORE: return LowerATOMIC_STORE(Op, DAG);
2008-11-07 18:59:00 +08:00
default:
llvm_unreachable("unimplemented operand");
2008-11-07 18:59:00 +08:00
}
}
/// ReplaceNodeResults - Replace the results of node with an illegal result
/// type with new values built out of custom code.
void XCoreTargetLowering::ReplaceNodeResults(SDNode *N,
SmallVectorImpl<SDValue>&Results,
SelectionDAG &DAG) const {
2008-11-07 18:59:00 +08:00
switch (N->getOpcode()) {
default:
llvm_unreachable("Don't know how to custom expand this!");
case ISD::ADD:
case ISD::SUB:
Results.push_back(ExpandADDSUB(N, DAG));
return;
2008-11-07 18:59:00 +08:00
}
}
//===----------------------------------------------------------------------===//
// Misc Lower Operation implementation
//===----------------------------------------------------------------------===//
SDValue XCoreTargetLowering::getGlobalAddressWrapper(SDValue GA,
const GlobalValue *GV,
SelectionDAG &DAG) const {
// FIXME there is no actual debug info here
SDLoc dl(GA);
if (GV->getValueType()->isFunctionTy())
return DAG.getNode(XCoreISD::PCRelativeWrapper, dl, MVT::i32, GA);
const auto *GVar = dyn_cast<GlobalVariable>(GV);
if ((GV->hasSection() && GV->getSection().startswith(".cp.")) ||
(GVar && GVar->isConstant() && GV->hasLocalLinkage()))
return DAG.getNode(XCoreISD::CPRelativeWrapper, dl, MVT::i32, GA);
return DAG.getNode(XCoreISD::DPRelativeWrapper, dl, MVT::i32, GA);
2008-11-07 18:59:00 +08:00
}
static bool IsSmallObject(const GlobalValue *GV, const XCoreTargetLowering &XTL) {
if (XTL.getTargetMachine().getCodeModel() == CodeModel::Small)
return true;
Type *ObjType = GV->getValueType();
if (!ObjType->isSized())
return false;
auto &DL = GV->getParent()->getDataLayout();
unsigned ObjSize = DL.getTypeAllocSize(ObjType);
return ObjSize < CodeModelLargeSize && ObjSize != 0;
}
2008-11-07 18:59:00 +08:00
SDValue XCoreTargetLowering::
LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const
2008-11-07 18:59:00 +08:00
{
const GlobalAddressSDNode *GN = cast<GlobalAddressSDNode>(Op);
const GlobalValue *GV = GN->getGlobal();
SDLoc DL(GN);
int64_t Offset = GN->getOffset();
if (IsSmallObject(GV, *this)) {
// We can only fold positive offsets that are a multiple of the word size.
int64_t FoldedOffset = std::max(Offset & ~3, (int64_t)0);
SDValue GA = DAG.getTargetGlobalAddress(GV, DL, MVT::i32, FoldedOffset);
GA = getGlobalAddressWrapper(GA, GV, DAG);
// Handle the rest of the offset.
if (Offset != FoldedOffset) {
SDValue Remaining = DAG.getConstant(Offset - FoldedOffset, DL, MVT::i32);
GA = DAG.getNode(ISD::ADD, DL, MVT::i32, GA, Remaining);
}
return GA;
} else {
// Ideally we would not fold in offset with an index <= 11.
Type *Ty = Type::getInt8PtrTy(*DAG.getContext());
Constant *GA = ConstantExpr::getBitCast(const_cast<GlobalValue*>(GV), Ty);
Ty = Type::getInt32Ty(*DAG.getContext());
Constant *Idx = ConstantInt::get(Ty, Offset);
Constant *GAI = ConstantExpr::getGetElementPtr(
Type::getInt8Ty(*DAG.getContext()), GA, Idx);
SDValue CP = DAG.getConstantPool(GAI, MVT::i32);
return DAG.getLoad(getPointerTy(DAG.getDataLayout()), DL,
DAG.getEntryNode(), CP, MachinePointerInfo());
}
2008-11-07 18:59:00 +08:00
}
SDValue XCoreTargetLowering::
LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const
{
SDLoc DL(Op);
auto PtrVT = getPointerTy(DAG.getDataLayout());
const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
SDValue Result = DAG.getTargetBlockAddress(BA, PtrVT);
return DAG.getNode(XCoreISD::PCRelativeWrapper, DL, PtrVT, Result);
}
2008-11-07 18:59:00 +08:00
SDValue XCoreTargetLowering::
LowerConstantPool(SDValue Op, SelectionDAG &DAG) const
2008-11-07 18:59:00 +08:00
{
ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
// FIXME there isn't really debug info here
SDLoc dl(CP);
EVT PtrVT = Op.getValueType();
SDValue Res;
if (CP->isMachineConstantPoolEntry()) {
Res = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT,
CP->getAlignment(), CP->getOffset());
2008-11-07 18:59:00 +08:00
} else {
Res = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT,
CP->getAlignment(), CP->getOffset());
2008-11-07 18:59:00 +08:00
}
return DAG.getNode(XCoreISD::CPRelativeWrapper, dl, MVT::i32, Res);
2008-11-07 18:59:00 +08:00
}
unsigned XCoreTargetLowering::getJumpTableEncoding() const {
return MachineJumpTableInfo::EK_Inline;
}
SDValue XCoreTargetLowering::
LowerBR_JT(SDValue Op, SelectionDAG &DAG) const
{
SDValue Chain = Op.getOperand(0);
SDValue Table = Op.getOperand(1);
SDValue Index = Op.getOperand(2);
SDLoc dl(Op);
JumpTableSDNode *JT = cast<JumpTableSDNode>(Table);
unsigned JTI = JT->getIndex();
MachineFunction &MF = DAG.getMachineFunction();
const MachineJumpTableInfo *MJTI = MF.getJumpTableInfo();
SDValue TargetJT = DAG.getTargetJumpTable(JT->getIndex(), MVT::i32);
unsigned NumEntries = MJTI->getJumpTables()[JTI].MBBs.size();
if (NumEntries <= 32) {
return DAG.getNode(XCoreISD::BR_JT, dl, MVT::Other, Chain, TargetJT, Index);
}
assert((NumEntries >> 31) == 0);
SDValue ScaledIndex = DAG.getNode(ISD::SHL, dl, MVT::i32, Index,
DAG.getConstant(1, dl, MVT::i32));
return DAG.getNode(XCoreISD::BR_JT32, dl, MVT::Other, Chain, TargetJT,
ScaledIndex);
}
SDValue XCoreTargetLowering::lowerLoadWordFromAlignedBasePlusOffset(
const SDLoc &DL, SDValue Chain, SDValue Base, int64_t Offset,
SelectionDAG &DAG) const {
auto PtrVT = getPointerTy(DAG.getDataLayout());
if ((Offset & 0x3) == 0) {
return DAG.getLoad(PtrVT, DL, Chain, Base, MachinePointerInfo());
}
// Lower to pair of consecutive word aligned loads plus some bit shifting.
int32_t HighOffset = alignTo(Offset, 4);
int32_t LowOffset = HighOffset - 4;
SDValue LowAddr, HighAddr;
if (GlobalAddressSDNode *GASD =
dyn_cast<GlobalAddressSDNode>(Base.getNode())) {
LowAddr = DAG.getGlobalAddress(GASD->getGlobal(), DL, Base.getValueType(),
LowOffset);
HighAddr = DAG.getGlobalAddress(GASD->getGlobal(), DL, Base.getValueType(),
HighOffset);
} else {
LowAddr = DAG.getNode(ISD::ADD, DL, MVT::i32, Base,
DAG.getConstant(LowOffset, DL, MVT::i32));
HighAddr = DAG.getNode(ISD::ADD, DL, MVT::i32, Base,
DAG.getConstant(HighOffset, DL, MVT::i32));
}
SDValue LowShift = DAG.getConstant((Offset - LowOffset) * 8, DL, MVT::i32);
SDValue HighShift = DAG.getConstant((HighOffset - Offset) * 8, DL, MVT::i32);
SDValue Low = DAG.getLoad(PtrVT, DL, Chain, LowAddr, MachinePointerInfo());
SDValue High = DAG.getLoad(PtrVT, DL, Chain, HighAddr, MachinePointerInfo());
SDValue LowShifted = DAG.getNode(ISD::SRL, DL, MVT::i32, Low, LowShift);
SDValue HighShifted = DAG.getNode(ISD::SHL, DL, MVT::i32, High, HighShift);
SDValue Result = DAG.getNode(ISD::OR, DL, MVT::i32, LowShifted, HighShifted);
Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Low.getValue(1),
High.getValue(1));
SDValue Ops[] = { Result, Chain };
return DAG.getMergeValues(Ops, DL);
}
static bool isWordAligned(SDValue Value, SelectionDAG &DAG)
{
KnownBits Known = DAG.computeKnownBits(Value);
return Known.countMinTrailingZeros() >= 2;
}
SDValue XCoreTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
LLVMContext &Context = *DAG.getContext();
LoadSDNode *LD = cast<LoadSDNode>(Op);
assert(LD->getExtensionType() == ISD::NON_EXTLOAD &&
"Unexpected extension type");
assert(LD->getMemoryVT() == MVT::i32 && "Unexpected load EVT");
if (allowsMemoryAccessForAlignment(Context, DAG.getDataLayout(),
LD->getMemoryVT(), *LD->getMemOperand()))
return SDValue();
SDValue Chain = LD->getChain();
SDValue BasePtr = LD->getBasePtr();
SDLoc DL(Op);
if (!LD->isVolatile()) {
const GlobalValue *GV;
int64_t Offset = 0;
if (DAG.isBaseWithConstantOffset(BasePtr) &&
isWordAligned(BasePtr->getOperand(0), DAG)) {
SDValue NewBasePtr = BasePtr->getOperand(0);
Offset = cast<ConstantSDNode>(BasePtr->getOperand(1))->getSExtValue();
return lowerLoadWordFromAlignedBasePlusOffset(DL, Chain, NewBasePtr,
Offset, DAG);
}
if (TLI.isGAPlusOffset(BasePtr.getNode(), GV, Offset) &&
MinAlign(GV->getAlignment(), 4) == 4) {
SDValue NewBasePtr = DAG.getGlobalAddress(GV, DL,
BasePtr->getValueType(0));
return lowerLoadWordFromAlignedBasePlusOffset(DL, Chain, NewBasePtr,
Offset, DAG);
}
}
if (LD->getAlignment() == 2) {
SDValue Low =
DAG.getExtLoad(ISD::ZEXTLOAD, DL, MVT::i32, Chain, BasePtr,
LD->getPointerInfo(), MVT::i16,
/* Alignment = */ 2, LD->getMemOperand()->getFlags());
SDValue HighAddr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr,
DAG.getConstant(2, DL, MVT::i32));
SDValue High =
DAG.getExtLoad(ISD::EXTLOAD, DL, MVT::i32, Chain, HighAddr,
LD->getPointerInfo().getWithOffset(2), MVT::i16,
/* Alignment = */ 2, LD->getMemOperand()->getFlags());
SDValue HighShifted = DAG.getNode(ISD::SHL, DL, MVT::i32, High,
DAG.getConstant(16, DL, MVT::i32));
SDValue Result = DAG.getNode(ISD::OR, DL, MVT::i32, Low, HighShifted);
Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Low.getValue(1),
High.getValue(1));
SDValue Ops[] = { Result, Chain };
return DAG.getMergeValues(Ops, DL);
}
// Lower to a call to __misaligned_load(BasePtr).
Type *IntPtrTy = DAG.getDataLayout().getIntPtrType(Context);
TargetLowering::ArgListTy Args;
TargetLowering::ArgListEntry Entry;
Entry.Ty = IntPtrTy;
Entry.Node = BasePtr;
Args.push_back(Entry);
TargetLowering::CallLoweringInfo CLI(DAG);
CLI.setDebugLoc(DL).setChain(Chain).setLibCallee(
CallingConv::C, IntPtrTy,
DAG.getExternalSymbol("__misaligned_load",
getPointerTy(DAG.getDataLayout())),
std::move(Args));
std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
SDValue Ops[] = { CallResult.first, CallResult.second };
return DAG.getMergeValues(Ops, DL);
}
SDValue XCoreTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
LLVMContext &Context = *DAG.getContext();
StoreSDNode *ST = cast<StoreSDNode>(Op);
assert(!ST->isTruncatingStore() && "Unexpected store type");
assert(ST->getMemoryVT() == MVT::i32 && "Unexpected store EVT");
if (allowsMemoryAccessForAlignment(Context, DAG.getDataLayout(),
ST->getMemoryVT(), *ST->getMemOperand()))
return SDValue();
SDValue Chain = ST->getChain();
SDValue BasePtr = ST->getBasePtr();
SDValue Value = ST->getValue();
SDLoc dl(Op);
if (ST->getAlignment() == 2) {
SDValue Low = Value;
SDValue High = DAG.getNode(ISD::SRL, dl, MVT::i32, Value,
DAG.getConstant(16, dl, MVT::i32));
SDValue StoreLow = DAG.getTruncStore(
Chain, dl, Low, BasePtr, ST->getPointerInfo(), MVT::i16,
/* Alignment = */ 2, ST->getMemOperand()->getFlags());
SDValue HighAddr = DAG.getNode(ISD::ADD, dl, MVT::i32, BasePtr,
DAG.getConstant(2, dl, MVT::i32));
SDValue StoreHigh = DAG.getTruncStore(
Chain, dl, High, HighAddr, ST->getPointerInfo().getWithOffset(2),
MVT::i16, /* Alignment = */ 2, ST->getMemOperand()->getFlags());
return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, StoreLow, StoreHigh);
}
// Lower to a call to __misaligned_store(BasePtr, Value).
Type *IntPtrTy = DAG.getDataLayout().getIntPtrType(Context);
TargetLowering::ArgListTy Args;
TargetLowering::ArgListEntry Entry;
Entry.Ty = IntPtrTy;
Entry.Node = BasePtr;
Args.push_back(Entry);
Entry.Node = Value;
Args.push_back(Entry);
TargetLowering::CallLoweringInfo CLI(DAG);
CLI.setDebugLoc(dl).setChain(Chain).setCallee(
CallingConv::C, Type::getVoidTy(Context),
DAG.getExternalSymbol("__misaligned_store",
getPointerTy(DAG.getDataLayout())),
std::move(Args));
std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
return CallResult.second;
}
SDValue XCoreTargetLowering::
LowerSMUL_LOHI(SDValue Op, SelectionDAG &DAG) const
{
assert(Op.getValueType() == MVT::i32 && Op.getOpcode() == ISD::SMUL_LOHI &&
"Unexpected operand to lower!");
SDLoc dl(Op);
SDValue LHS = Op.getOperand(0);
SDValue RHS = Op.getOperand(1);
SDValue Zero = DAG.getConstant(0, dl, MVT::i32);
SDValue Hi = DAG.getNode(XCoreISD::MACCS, dl,
DAG.getVTList(MVT::i32, MVT::i32), Zero, Zero,
LHS, RHS);
SDValue Lo(Hi.getNode(), 1);
SDValue Ops[] = { Lo, Hi };
return DAG.getMergeValues(Ops, dl);
}
SDValue XCoreTargetLowering::
LowerUMUL_LOHI(SDValue Op, SelectionDAG &DAG) const
{
assert(Op.getValueType() == MVT::i32 && Op.getOpcode() == ISD::UMUL_LOHI &&
"Unexpected operand to lower!");
SDLoc dl(Op);
SDValue LHS = Op.getOperand(0);
SDValue RHS = Op.getOperand(1);
SDValue Zero = DAG.getConstant(0, dl, MVT::i32);
SDValue Hi = DAG.getNode(XCoreISD::LMUL, dl,
DAG.getVTList(MVT::i32, MVT::i32), LHS, RHS,
Zero, Zero);
SDValue Lo(Hi.getNode(), 1);
SDValue Ops[] = { Lo, Hi };
return DAG.getMergeValues(Ops, dl);
}
/// isADDADDMUL - Return whether Op is in a form that is equivalent to
/// add(add(mul(x,y),a),b). If requireIntermediatesHaveOneUse is true then
/// each intermediate result in the calculation must also have a single use.
/// If the Op is in the correct form the constituent parts are written to Mul0,
/// Mul1, Addend0 and Addend1.
static bool
isADDADDMUL(SDValue Op, SDValue &Mul0, SDValue &Mul1, SDValue &Addend0,
SDValue &Addend1, bool requireIntermediatesHaveOneUse)
{
if (Op.getOpcode() != ISD::ADD)
return false;
SDValue N0 = Op.getOperand(0);
SDValue N1 = Op.getOperand(1);
SDValue AddOp;
SDValue OtherOp;
if (N0.getOpcode() == ISD::ADD) {
AddOp = N0;
OtherOp = N1;
} else if (N1.getOpcode() == ISD::ADD) {
AddOp = N1;
OtherOp = N0;
} else {
return false;
}
if (requireIntermediatesHaveOneUse && !AddOp.hasOneUse())
return false;
if (OtherOp.getOpcode() == ISD::MUL) {
// add(add(a,b),mul(x,y))
if (requireIntermediatesHaveOneUse && !OtherOp.hasOneUse())
return false;
Mul0 = OtherOp.getOperand(0);
Mul1 = OtherOp.getOperand(1);
Addend0 = AddOp.getOperand(0);
Addend1 = AddOp.getOperand(1);
return true;
}
if (AddOp.getOperand(0).getOpcode() == ISD::MUL) {
// add(add(mul(x,y),a),b)
if (requireIntermediatesHaveOneUse && !AddOp.getOperand(0).hasOneUse())
return false;
Mul0 = AddOp.getOperand(0).getOperand(0);
Mul1 = AddOp.getOperand(0).getOperand(1);
Addend0 = AddOp.getOperand(1);
Addend1 = OtherOp;
return true;
}
if (AddOp.getOperand(1).getOpcode() == ISD::MUL) {
// add(add(a,mul(x,y)),b)
if (requireIntermediatesHaveOneUse && !AddOp.getOperand(1).hasOneUse())
return false;
Mul0 = AddOp.getOperand(1).getOperand(0);
Mul1 = AddOp.getOperand(1).getOperand(1);
Addend0 = AddOp.getOperand(0);
Addend1 = OtherOp;
return true;
}
return false;
}
SDValue XCoreTargetLowering::
TryExpandADDWithMul(SDNode *N, SelectionDAG &DAG) const
{
SDValue Mul;
SDValue Other;
if (N->getOperand(0).getOpcode() == ISD::MUL) {
Mul = N->getOperand(0);
Other = N->getOperand(1);
} else if (N->getOperand(1).getOpcode() == ISD::MUL) {
Mul = N->getOperand(1);
Other = N->getOperand(0);
} else {
return SDValue();
}
SDLoc dl(N);
SDValue LL, RL, AddendL, AddendH;
LL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
Mul.getOperand(0), DAG.getConstant(0, dl, MVT::i32));
RL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
Mul.getOperand(1), DAG.getConstant(0, dl, MVT::i32));
AddendL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
Other, DAG.getConstant(0, dl, MVT::i32));
AddendH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
Other, DAG.getConstant(1, dl, MVT::i32));
APInt HighMask = APInt::getHighBitsSet(64, 32);
unsigned LHSSB = DAG.ComputeNumSignBits(Mul.getOperand(0));
unsigned RHSSB = DAG.ComputeNumSignBits(Mul.getOperand(1));
if (DAG.MaskedValueIsZero(Mul.getOperand(0), HighMask) &&
DAG.MaskedValueIsZero(Mul.getOperand(1), HighMask)) {
// The inputs are both zero-extended.
SDValue Hi = DAG.getNode(XCoreISD::MACCU, dl,
DAG.getVTList(MVT::i32, MVT::i32), AddendH,
AddendL, LL, RL);
SDValue Lo(Hi.getNode(), 1);
return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
}
if (LHSSB > 32 && RHSSB > 32) {
// The inputs are both sign-extended.
SDValue Hi = DAG.getNode(XCoreISD::MACCS, dl,
DAG.getVTList(MVT::i32, MVT::i32), AddendH,
AddendL, LL, RL);
SDValue Lo(Hi.getNode(), 1);
return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
}
SDValue LH, RH;
LH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
Mul.getOperand(0), DAG.getConstant(1, dl, MVT::i32));
RH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
Mul.getOperand(1), DAG.getConstant(1, dl, MVT::i32));
SDValue Hi = DAG.getNode(XCoreISD::MACCU, dl,
DAG.getVTList(MVT::i32, MVT::i32), AddendH,
AddendL, LL, RL);
SDValue Lo(Hi.getNode(), 1);
RH = DAG.getNode(ISD::MUL, dl, MVT::i32, LL, RH);
LH = DAG.getNode(ISD::MUL, dl, MVT::i32, LH, RL);
Hi = DAG.getNode(ISD::ADD, dl, MVT::i32, Hi, RH);
Hi = DAG.getNode(ISD::ADD, dl, MVT::i32, Hi, LH);
return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
}
SDValue XCoreTargetLowering::
ExpandADDSUB(SDNode *N, SelectionDAG &DAG) const
2008-11-07 18:59:00 +08:00
{
assert(N->getValueType(0) == MVT::i64 &&
2008-11-07 18:59:00 +08:00
(N->getOpcode() == ISD::ADD || N->getOpcode() == ISD::SUB) &&
"Unknown operand to lower!");
if (N->getOpcode() == ISD::ADD)
if (SDValue Result = TryExpandADDWithMul(N, DAG))
2010-03-11 00:27:11 +08:00
return Result;
SDLoc dl(N);
2008-11-07 18:59:00 +08:00
// Extract components
SDValue LHSL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
N->getOperand(0),
DAG.getConstant(0, dl, MVT::i32));
SDValue LHSH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
N->getOperand(0),
DAG.getConstant(1, dl, MVT::i32));
SDValue RHSL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
N->getOperand(1),
DAG.getConstant(0, dl, MVT::i32));
SDValue RHSH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
N->getOperand(1),
DAG.getConstant(1, dl, MVT::i32));
2008-11-07 18:59:00 +08:00
// Expand
unsigned Opcode = (N->getOpcode() == ISD::ADD) ? XCoreISD::LADD :
XCoreISD::LSUB;
SDValue Zero = DAG.getConstant(0, dl, MVT::i32);
SDValue Lo = DAG.getNode(Opcode, dl, DAG.getVTList(MVT::i32, MVT::i32),
LHSL, RHSL, Zero);
SDValue Carry(Lo.getNode(), 1);
SDValue Hi = DAG.getNode(Opcode, dl, DAG.getVTList(MVT::i32, MVT::i32),
LHSH, RHSH, Carry);
SDValue Ignored(Hi.getNode(), 1);
2008-11-07 18:59:00 +08:00
// Merge the pieces
return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
2008-11-07 18:59:00 +08:00
}
SDValue XCoreTargetLowering::
LowerVAARG(SDValue Op, SelectionDAG &DAG) const
2008-11-07 18:59:00 +08:00
{
// Whist llvm does not support aggregate varargs we can ignore
// the possibility of the ValueType being an implicit byVal vararg.
2008-11-07 18:59:00 +08:00
SDNode *Node = Op.getNode();
EVT VT = Node->getValueType(0); // not an aggregate
SDValue InChain = Node->getOperand(0);
SDValue VAListPtr = Node->getOperand(1);
EVT PtrVT = VAListPtr.getValueType();
const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
SDLoc dl(Node);
SDValue VAList =
DAG.getLoad(PtrVT, dl, InChain, VAListPtr, MachinePointerInfo(SV));
2008-11-07 18:59:00 +08:00
// Increment the pointer, VAList, to the next vararg
SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAList,
DAG.getIntPtrConstant(VT.getSizeInBits() / 8,
dl));
2008-11-07 18:59:00 +08:00
// Store the incremented VAList to the legalized pointer
InChain = DAG.getStore(VAList.getValue(1), dl, nextPtr, VAListPtr,
MachinePointerInfo(SV));
2008-11-07 18:59:00 +08:00
// Load the actual argument out of the pointer VAList
return DAG.getLoad(VT, dl, InChain, VAList, MachinePointerInfo());
2008-11-07 18:59:00 +08:00
}
SDValue XCoreTargetLowering::
LowerVASTART(SDValue Op, SelectionDAG &DAG) const
2008-11-07 18:59:00 +08:00
{
SDLoc dl(Op);
2008-11-07 18:59:00 +08:00
// vastart stores the address of the VarArgsFrameIndex slot into the
// memory location argument
MachineFunction &MF = DAG.getMachineFunction();
XCoreFunctionInfo *XFI = MF.getInfo<XCoreFunctionInfo>();
SDValue Addr = DAG.getFrameIndex(XFI->getVarArgsFrameIndex(), MVT::i32);
return DAG.getStore(Op.getOperand(0), dl, Addr, Op.getOperand(1),
MachinePointerInfo());
2008-11-07 18:59:00 +08:00
}
SDValue XCoreTargetLowering::LowerFRAMEADDR(SDValue Op,
SelectionDAG &DAG) const {
// This nodes represent llvm.frameaddress on the DAG.
// It takes one operand, the index of the frame address to return.
// An index of zero corresponds to the current function's frame address.
// An index of one to the parent's frame address, and so on.
// Depths > 0 not supported yet!
2008-11-07 18:59:00 +08:00
if (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() > 0)
return SDValue();
2008-11-07 18:59:00 +08:00
MachineFunction &MF = DAG.getMachineFunction();
const TargetRegisterInfo *RegInfo = Subtarget.getRegisterInfo();
return DAG.getCopyFromReg(DAG.getEntryNode(), SDLoc(Op),
RegInfo->getFrameRegister(MF), MVT::i32);
2008-11-07 18:59:00 +08:00
}
SDValue XCoreTargetLowering::
LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const {
// This nodes represent llvm.returnaddress on the DAG.
// It takes one operand, the index of the return address to return.
// An index of zero corresponds to the current function's return address.
// An index of one to the parent's return address, and so on.
// Depths > 0 not supported yet!
if (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() > 0)
return SDValue();
MachineFunction &MF = DAG.getMachineFunction();
XCoreFunctionInfo *XFI = MF.getInfo<XCoreFunctionInfo>();
int FI = XFI->createLRSpillSlot(MF);
SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
return DAG.getLoad(getPointerTy(DAG.getDataLayout()), SDLoc(Op),
DAG.getEntryNode(), FIN,
MachinePointerInfo::getFixedStack(MF, FI));
}
SDValue XCoreTargetLowering::
LowerFRAME_TO_ARGS_OFFSET(SDValue Op, SelectionDAG &DAG) const {
// This node represents offset from frame pointer to first on-stack argument.
// This is needed for correct stack adjustment during unwind.
// However, we don't know the offset until after the frame has be finalised.
// This is done during the XCoreFTAOElim pass.
return DAG.getNode(XCoreISD::FRAME_TO_ARGS_OFFSET, SDLoc(Op), MVT::i32);
}
SDValue XCoreTargetLowering::
LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const {
// OUTCHAIN = EH_RETURN(INCHAIN, OFFSET, HANDLER)
// This node represents 'eh_return' gcc dwarf builtin, which is used to
// return from exception. The general meaning is: adjust stack by OFFSET and
// pass execution to HANDLER.
MachineFunction &MF = DAG.getMachineFunction();
SDValue Chain = Op.getOperand(0);
SDValue Offset = Op.getOperand(1);
SDValue Handler = Op.getOperand(2);
SDLoc dl(Op);
// Absolute SP = (FP + FrameToArgs) + Offset
const TargetRegisterInfo *RegInfo = Subtarget.getRegisterInfo();
SDValue Stack = DAG.getCopyFromReg(DAG.getEntryNode(), dl,
RegInfo->getFrameRegister(MF), MVT::i32);
SDValue FrameToArgs = DAG.getNode(XCoreISD::FRAME_TO_ARGS_OFFSET, dl,
MVT::i32);
Stack = DAG.getNode(ISD::ADD, dl, MVT::i32, Stack, FrameToArgs);
Stack = DAG.getNode(ISD::ADD, dl, MVT::i32, Stack, Offset);
// R0=ExceptionPointerRegister R1=ExceptionSelectorRegister
// which leaves 2 caller saved registers, R2 & R3 for us to use.
unsigned StackReg = XCore::R2;
unsigned HandlerReg = XCore::R3;
SDValue OutChains[] = {
DAG.getCopyToReg(Chain, dl, StackReg, Stack),
DAG.getCopyToReg(Chain, dl, HandlerReg, Handler)
};
Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
return DAG.getNode(XCoreISD::EH_RETURN, dl, MVT::Other, Chain,
DAG.getRegister(StackReg, MVT::i32),
DAG.getRegister(HandlerReg, MVT::i32));
}
SDValue XCoreTargetLowering::
LowerADJUST_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const {
return Op.getOperand(0);
}
SDValue XCoreTargetLowering::
LowerINIT_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const {
SDValue Chain = Op.getOperand(0);
SDValue Trmp = Op.getOperand(1); // trampoline
SDValue FPtr = Op.getOperand(2); // nested function
SDValue Nest = Op.getOperand(3); // 'nest' parameter value
const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
// .align 4
// LDAPF_u10 r11, nest
// LDW_2rus r11, r11[0]
// STWSP_ru6 r11, sp[0]
// LDAPF_u10 r11, fptr
// LDW_2rus r11, r11[0]
// BAU_1r r11
// nest:
// .word nest
// fptr:
// .word fptr
SDValue OutChains[5];
SDValue Addr = Trmp;
SDLoc dl(Op);
OutChains[0] =
DAG.getStore(Chain, dl, DAG.getConstant(0x0a3cd805, dl, MVT::i32), Addr,
MachinePointerInfo(TrmpAddr));
Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
DAG.getConstant(4, dl, MVT::i32));
OutChains[1] =
DAG.getStore(Chain, dl, DAG.getConstant(0xd80456c0, dl, MVT::i32), Addr,
MachinePointerInfo(TrmpAddr, 4));
Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
DAG.getConstant(8, dl, MVT::i32));
OutChains[2] =
DAG.getStore(Chain, dl, DAG.getConstant(0x27fb0a3c, dl, MVT::i32), Addr,
MachinePointerInfo(TrmpAddr, 8));
Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
DAG.getConstant(12, dl, MVT::i32));
OutChains[3] =
DAG.getStore(Chain, dl, Nest, Addr, MachinePointerInfo(TrmpAddr, 12));
Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
DAG.getConstant(16, dl, MVT::i32));
OutChains[4] =
DAG.getStore(Chain, dl, FPtr, Addr, MachinePointerInfo(TrmpAddr, 16));
return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
}
SDValue XCoreTargetLowering::
LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const {
SDLoc DL(Op);
unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
switch (IntNo) {
case Intrinsic::xcore_crc8:
EVT VT = Op.getValueType();
SDValue Data =
DAG.getNode(XCoreISD::CRC8, DL, DAG.getVTList(VT, VT),
Op.getOperand(1), Op.getOperand(2) , Op.getOperand(3));
SDValue Crc(Data.getNode(), 1);
SDValue Results[] = { Crc, Data };
return DAG.getMergeValues(Results, DL);
}
return SDValue();
}
SDValue XCoreTargetLowering::
LowerATOMIC_FENCE(SDValue Op, SelectionDAG &DAG) const {
SDLoc DL(Op);
return DAG.getNode(XCoreISD::MEMBARRIER, DL, MVT::Other, Op.getOperand(0));
}
SDValue XCoreTargetLowering::
LowerATOMIC_LOAD(SDValue Op, SelectionDAG &DAG) const {
AtomicSDNode *N = cast<AtomicSDNode>(Op);
assert(N->getOpcode() == ISD::ATOMIC_LOAD && "Bad Atomic OP");
assert((N->getOrdering() == AtomicOrdering::Unordered ||
N->getOrdering() == AtomicOrdering::Monotonic) &&
"setInsertFencesForAtomic(true) expects unordered / monotonic");
if (N->getMemoryVT() == MVT::i32) {
if (N->getAlignment() < 4)
report_fatal_error("atomic load must be aligned");
return DAG.getLoad(getPointerTy(DAG.getDataLayout()), SDLoc(Op),
N->getChain(), N->getBasePtr(), N->getPointerInfo(),
N->getAlignment(), N->getMemOperand()->getFlags(),
N->getAAInfo(), N->getRanges());
}
if (N->getMemoryVT() == MVT::i16) {
if (N->getAlignment() < 2)
report_fatal_error("atomic load must be aligned");
return DAG.getExtLoad(ISD::EXTLOAD, SDLoc(Op), MVT::i32, N->getChain(),
N->getBasePtr(), N->getPointerInfo(), MVT::i16,
N->getAlignment(), N->getMemOperand()->getFlags(),
N->getAAInfo());
}
if (N->getMemoryVT() == MVT::i8)
return DAG.getExtLoad(ISD::EXTLOAD, SDLoc(Op), MVT::i32, N->getChain(),
N->getBasePtr(), N->getPointerInfo(), MVT::i8,
N->getAlignment(), N->getMemOperand()->getFlags(),
N->getAAInfo());
return SDValue();
}
SDValue XCoreTargetLowering::
LowerATOMIC_STORE(SDValue Op, SelectionDAG &DAG) const {
AtomicSDNode *N = cast<AtomicSDNode>(Op);
assert(N->getOpcode() == ISD::ATOMIC_STORE && "Bad Atomic OP");
assert((N->getOrdering() == AtomicOrdering::Unordered ||
N->getOrdering() == AtomicOrdering::Monotonic) &&
"setInsertFencesForAtomic(true) expects unordered / monotonic");
if (N->getMemoryVT() == MVT::i32) {
if (N->getAlignment() < 4)
report_fatal_error("atomic store must be aligned");
return DAG.getStore(N->getChain(), SDLoc(Op), N->getVal(), N->getBasePtr(),
N->getPointerInfo(), N->getAlignment(),
N->getMemOperand()->getFlags(), N->getAAInfo());
}
if (N->getMemoryVT() == MVT::i16) {
if (N->getAlignment() < 2)
report_fatal_error("atomic store must be aligned");
return DAG.getTruncStore(N->getChain(), SDLoc(Op), N->getVal(),
N->getBasePtr(), N->getPointerInfo(), MVT::i16,
N->getAlignment(), N->getMemOperand()->getFlags(),
N->getAAInfo());
}
if (N->getMemoryVT() == MVT::i8)
return DAG.getTruncStore(N->getChain(), SDLoc(Op), N->getVal(),
N->getBasePtr(), N->getPointerInfo(), MVT::i8,
N->getAlignment(), N->getMemOperand()->getFlags(),
N->getAAInfo());
return SDValue();
}
Seperate volatility and atomicity/ordering in SelectionDAG At the moment, we mark every atomic memory access as being also volatile. This is unnecessarily conservative and prohibits many legal transforms (DCE, folding, etc..). This patch removes MOVolatile from the MachineMemOperands of atomic, but not volatile, instructions. This should be strictly NFC after a series of previous patches which have gone in to ensure backend code is conservative about handling of isAtomic MMOs. Once it's in and baked for a bit, we'll start working through removing unnecessary bailouts one by one. We applied this same strategy to the middle end a few years ago, with good success. To make sure this patch itself is NFC, it is build on top of a series of other patches which adjust code to (for the moment) be as conservative for an atomic access as for a volatile access and build up a test corpus (mostly in test/CodeGen/X86/atomics-unordered.ll).. Previously landed D57593 Fix a bug in the definition of isUnordered on MachineMemOperand D57596 [CodeGen] Be conservative about atomic accesses as for volatile D57802 Be conservative about unordered accesses for the moment rL353959: [Tests] First batch of cornercase tests for unordered atomics. rL353966: [Tests] RMW folding tests w/unordered atomic operations. rL353972: [Tests] More unordered atomic lowering tests. rL353989: [SelectionDAG] Inline a single use helper function, and remove last non-MMO interface rL354740: [Hexagon, SystemZ] Be super conservative about atomics rL354800: [Lanai] Be super conservative about atomics rL354845: [ARM] Be super conservative about atomics Attention Out of Tree Backend Owners: This patch may break you. If it does, you can use the TLI getMMOFlags hook to restore the MOVolatile to any instruction you need to. (See llvm-dev thread titled "PSA: Changes to how atomics are handled in backends" started Feb 27, 2019.) Differential Revision: https://reviews.llvm.org/D57601 llvm-svn: 355025
2019-02-28 04:20:08 +08:00
MachineMemOperand::Flags
XCoreTargetLowering::getTargetMMOFlags(const Instruction &I) const {
Seperate volatility and atomicity/ordering in SelectionDAG At the moment, we mark every atomic memory access as being also volatile. This is unnecessarily conservative and prohibits many legal transforms (DCE, folding, etc..). This patch removes MOVolatile from the MachineMemOperands of atomic, but not volatile, instructions. This should be strictly NFC after a series of previous patches which have gone in to ensure backend code is conservative about handling of isAtomic MMOs. Once it's in and baked for a bit, we'll start working through removing unnecessary bailouts one by one. We applied this same strategy to the middle end a few years ago, with good success. To make sure this patch itself is NFC, it is build on top of a series of other patches which adjust code to (for the moment) be as conservative for an atomic access as for a volatile access and build up a test corpus (mostly in test/CodeGen/X86/atomics-unordered.ll).. Previously landed D57593 Fix a bug in the definition of isUnordered on MachineMemOperand D57596 [CodeGen] Be conservative about atomic accesses as for volatile D57802 Be conservative about unordered accesses for the moment rL353959: [Tests] First batch of cornercase tests for unordered atomics. rL353966: [Tests] RMW folding tests w/unordered atomic operations. rL353972: [Tests] More unordered atomic lowering tests. rL353989: [SelectionDAG] Inline a single use helper function, and remove last non-MMO interface rL354740: [Hexagon, SystemZ] Be super conservative about atomics rL354800: [Lanai] Be super conservative about atomics rL354845: [ARM] Be super conservative about atomics Attention Out of Tree Backend Owners: This patch may break you. If it does, you can use the TLI getMMOFlags hook to restore the MOVolatile to any instruction you need to. (See llvm-dev thread titled "PSA: Changes to how atomics are handled in backends" started Feb 27, 2019.) Differential Revision: https://reviews.llvm.org/D57601 llvm-svn: 355025
2019-02-28 04:20:08 +08:00
// Because of how we convert atomic_load and atomic_store to normal loads and
// stores in the DAG, we need to ensure that the MMOs are marked volatile
// since DAGCombine hasn't been updated to account for atomic, but non
// volatile loads. (See D57601)
if (auto *SI = dyn_cast<StoreInst>(&I))
if (SI->isAtomic())
return MachineMemOperand::MOVolatile;
if (auto *LI = dyn_cast<LoadInst>(&I))
if (LI->isAtomic())
return MachineMemOperand::MOVolatile;
if (auto *AI = dyn_cast<AtomicRMWInst>(&I))
if (AI->isAtomic())
return MachineMemOperand::MOVolatile;
if (auto *AI = dyn_cast<AtomicCmpXchgInst>(&I))
if (AI->isAtomic())
return MachineMemOperand::MOVolatile;
return MachineMemOperand::MONone;
}
2008-11-07 18:59:00 +08:00
//===----------------------------------------------------------------------===//
// Calling Convention Implementation
//===----------------------------------------------------------------------===//
#include "XCoreGenCallingConv.inc"
//===----------------------------------------------------------------------===//
// Call Calling Convention Implementation
2008-11-07 18:59:00 +08:00
//===----------------------------------------------------------------------===//
/// XCore call implementation
SDValue
XCoreTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
SmallVectorImpl<SDValue> &InVals) const {
SelectionDAG &DAG = CLI.DAG;
SDLoc &dl = CLI.DL;
SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
SDValue Chain = CLI.Chain;
SDValue Callee = CLI.Callee;
bool &isTailCall = CLI.IsTailCall;
CallingConv::ID CallConv = CLI.CallConv;
bool isVarArg = CLI.IsVarArg;
// XCore target does not yet support tail call optimization.
isTailCall = false;
2008-11-07 18:59:00 +08:00
// For now, only CallingConv::C implemented
switch (CallConv)
2008-11-07 18:59:00 +08:00
{
default:
report_fatal_error("Unsupported calling convention");
2008-11-07 18:59:00 +08:00
case CallingConv::Fast:
case CallingConv::C:
return LowerCCCCallTo(Chain, Callee, CallConv, isVarArg, isTailCall,
Outs, OutVals, Ins, dl, DAG, InVals);
2008-11-07 18:59:00 +08:00
}
}
/// LowerCallResult - Lower the result values of a call into the
/// appropriate copies out of appropriate physical registers / memory locations.
static SDValue LowerCallResult(SDValue Chain, SDValue InFlag,
const SmallVectorImpl<CCValAssign> &RVLocs,
const SDLoc &dl, SelectionDAG &DAG,
SmallVectorImpl<SDValue> &InVals) {
SmallVector<std::pair<int, unsigned>, 4> ResultMemLocs;
// Copy results out of physical registers.
for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
const CCValAssign &VA = RVLocs[i];
if (VA.isRegLoc()) {
Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), VA.getValVT(),
InFlag).getValue(1);
InFlag = Chain.getValue(2);
InVals.push_back(Chain.getValue(0));
} else {
assert(VA.isMemLoc());
ResultMemLocs.push_back(std::make_pair(VA.getLocMemOffset(),
InVals.size()));
// Reserve space for this result.
InVals.push_back(SDValue());
}
}
// Copy results out of memory.
SmallVector<SDValue, 4> MemOpChains;
for (unsigned i = 0, e = ResultMemLocs.size(); i != e; ++i) {
int offset = ResultMemLocs[i].first;
unsigned index = ResultMemLocs[i].second;
SDVTList VTs = DAG.getVTList(MVT::i32, MVT::Other);
SDValue Ops[] = { Chain, DAG.getConstant(offset / 4, dl, MVT::i32) };
SDValue load = DAG.getNode(XCoreISD::LDWSP, dl, VTs, Ops);
InVals[index] = load;
MemOpChains.push_back(load.getValue(1));
}
// Transform all loads nodes into one single node because
// all load nodes are independent of each other.
if (!MemOpChains.empty())
Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
return Chain;
}
2008-11-07 18:59:00 +08:00
/// LowerCCCCallTo - functions arguments are copied from virtual
/// regs to (physical regs)/(stack frame), CALLSEQ_START and
/// CALLSEQ_END are emitted.
/// TODO: isTailCall, sret.
SDValue XCoreTargetLowering::LowerCCCCallTo(
SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg,
bool isTailCall, const SmallVectorImpl<ISD::OutputArg> &Outs,
const SmallVectorImpl<SDValue> &OutVals,
const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
2008-11-07 18:59:00 +08:00
// Analyze operands of the call, assigning locations to each operand.
SmallVector<CCValAssign, 16> ArgLocs;
CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
*DAG.getContext());
2008-11-07 18:59:00 +08:00
// The ABI dictates there should be one stack slot available to the callee
// on function entry (for saving lr).
CCInfo.AllocateStack(4, 4);
CCInfo.AnalyzeCallOperands(Outs, CC_XCore);
2008-11-07 18:59:00 +08:00
SmallVector<CCValAssign, 16> RVLocs;
// Analyze return values to determine the number of bytes of stack required.
CCState RetCCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
*DAG.getContext());
RetCCInfo.AllocateStack(CCInfo.getNextStackOffset(), 4);
RetCCInfo.AnalyzeCallResult(Ins, RetCC_XCore);
2008-11-07 18:59:00 +08:00
// Get a count of how many bytes are to be pushed on the stack.
unsigned NumBytes = RetCCInfo.getNextStackOffset();
auto PtrVT = getPointerTy(DAG.getDataLayout());
2008-11-07 18:59:00 +08:00
Add extra operand to CALLSEQ_START to keep frame part set up previously Using arguments with attribute inalloca creates problems for verification of machine representation. This attribute instructs the backend that the argument is prepared in stack prior to CALLSEQ_START..CALLSEQ_END sequence (see http://llvm.org/docs/InAlloca.htm for details). Frame size stored in CALLSEQ_START in this case does not count the size of this argument. However CALLSEQ_END still keeps total frame size, as caller can be responsible for cleanup of entire frame. So CALLSEQ_START and CALLSEQ_END keep different frame size and the difference is treated by MachineVerifier as stack error. Currently there is no way to distinguish this case from actual errors. This patch adds additional argument to CALLSEQ_START and its target-specific counterparts to keep size of stack that is set up prior to the call frame sequence. This argument allows MachineVerifier to calculate actual frame size associated with frame setup instruction and correctly process the case of inalloca arguments. The changes made by the patch are: - Frame setup instructions get the second mandatory argument. It affects all targets that use frame pseudo instructions and touched many files although the changes are uniform. - Access to frame properties are implemented using special instructions rather than calls getOperand(N).getImm(). For X86 and ARM such replacement was made previously. - Changes that reflect appearance of additional argument of frame setup instruction. These involve proper instruction initialization and methods that access instruction arguments. - MachineVerifier retrieves frame size using method, which reports sum of frame parts initialized inside frame instruction pair and outside it. The patch implements approach proposed by Quentin Colombet in https://bugs.llvm.org/show_bug.cgi?id=27481#c1. It fixes 9 tests failed with machine verifier enabled and listed in PR27481. Differential Revision: https://reviews.llvm.org/D32394 llvm-svn: 302527
2017-05-09 21:35:13 +08:00
Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
2008-11-07 18:59:00 +08:00
SmallVector<std::pair<unsigned, SDValue>, 4> RegsToPass;
SmallVector<SDValue, 12> MemOpChains;
// Walk the register/memloc assignments, inserting copies/loads.
for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
CCValAssign &VA = ArgLocs[i];
SDValue Arg = OutVals[i];
2008-11-07 18:59:00 +08:00
// Promote the value if needed.
switch (VA.getLocInfo()) {
default: llvm_unreachable("Unknown loc info!");
2008-11-07 18:59:00 +08:00
case CCValAssign::Full: break;
case CCValAssign::SExt:
Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
2008-11-07 18:59:00 +08:00
break;
case CCValAssign::ZExt:
Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
2008-11-07 18:59:00 +08:00
break;
case CCValAssign::AExt:
Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
2008-11-07 18:59:00 +08:00
break;
}
// Arguments that can be passed on register must be kept at
2008-11-07 18:59:00 +08:00
// RegsToPass vector
if (VA.isRegLoc()) {
RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
} else {
assert(VA.isMemLoc());
int Offset = VA.getLocMemOffset();
MemOpChains.push_back(DAG.getNode(XCoreISD::STWSP, dl, MVT::Other,
Chain, Arg,
DAG.getConstant(Offset/4, dl,
MVT::i32)));
2008-11-07 18:59:00 +08:00
}
}
// Transform all store nodes into one single node because
// all store nodes are independent of each other.
if (!MemOpChains.empty())
Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
2008-11-07 18:59:00 +08:00
// Build a sequence of copy-to-reg nodes chained together with token
2008-11-07 18:59:00 +08:00
// chain and flag operands which copy the outgoing args into registers.
// The InFlag in necessary since all emitted instructions must be
2008-11-07 18:59:00 +08:00
// stuck together.
SDValue InFlag;
for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2008-11-07 18:59:00 +08:00
RegsToPass[i].second, InFlag);
InFlag = Chain.getValue(1);
}
// If the callee is a GlobalAddress node (quite common, every direct call is)
// turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
// Likewise ExternalSymbol -> TargetExternalSymbol.
if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
2010-07-07 06:08:15 +08:00
Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl, MVT::i32);
2008-11-07 18:59:00 +08:00
else if (ExternalSymbolSDNode *E = dyn_cast<ExternalSymbolSDNode>(Callee))
Callee = DAG.getTargetExternalSymbol(E->getSymbol(), MVT::i32);
2008-11-07 18:59:00 +08:00
// XCoreBranchLink = #chain, #target_address, #opt_in_flags...
// = Chain, Callee, Reg#1, Reg#2, ...
2008-11-07 18:59:00 +08:00
//
// Returns a chain & a flag for retval copy to use.
SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
2008-11-07 18:59:00 +08:00
SmallVector<SDValue, 8> Ops;
Ops.push_back(Chain);
Ops.push_back(Callee);
// Add argument registers to the end of the list so that they are
2008-11-07 18:59:00 +08:00
// known live into the call.
for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
Ops.push_back(DAG.getRegister(RegsToPass[i].first,
RegsToPass[i].second.getValueType()));
if (InFlag.getNode())
Ops.push_back(InFlag);
Chain = DAG.getNode(XCoreISD::BL, dl, NodeTys, Ops);
2008-11-07 18:59:00 +08:00
InFlag = Chain.getValue(1);
// Create the CALLSEQ_END node.
Chain = DAG.getCALLSEQ_END(Chain, DAG.getConstant(NumBytes, dl, PtrVT, true),
DAG.getConstant(0, dl, PtrVT, true), InFlag, dl);
2008-11-07 18:59:00 +08:00
InFlag = Chain.getValue(1);
// Handle result values, copying them out of physregs into vregs that we
// return.
return LowerCallResult(Chain, InFlag, RVLocs, dl, DAG, InVals);
2008-11-07 18:59:00 +08:00
}
//===----------------------------------------------------------------------===//
// Formal Arguments Calling Convention Implementation
2008-11-07 18:59:00 +08:00
//===----------------------------------------------------------------------===//
namespace {
struct ArgDataPair { SDValue SDV; ISD::ArgFlagsTy Flags; };
}
/// XCore formal arguments implementation
SDValue XCoreTargetLowering::LowerFormalArguments(
SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
switch (CallConv)
2008-11-07 18:59:00 +08:00
{
default:
report_fatal_error("Unsupported calling convention");
2008-11-07 18:59:00 +08:00
case CallingConv::C:
case CallingConv::Fast:
return LowerCCCArguments(Chain, CallConv, isVarArg,
Ins, dl, DAG, InVals);
2008-11-07 18:59:00 +08:00
}
}
/// LowerCCCArguments - transform physical registers into
/// virtual registers and generate load operations for
/// arguments places on the stack.
/// TODO: sret
SDValue XCoreTargetLowering::LowerCCCArguments(
SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
2008-11-07 18:59:00 +08:00
MachineFunction &MF = DAG.getMachineFunction();
MachineFrameInfo &MFI = MF.getFrameInfo();
2008-11-07 18:59:00 +08:00
MachineRegisterInfo &RegInfo = MF.getRegInfo();
XCoreFunctionInfo *XFI = MF.getInfo<XCoreFunctionInfo>();
2008-11-07 18:59:00 +08:00
// Assign locations to all of the incoming arguments.
SmallVector<CCValAssign, 16> ArgLocs;
CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
*DAG.getContext());
2008-11-07 18:59:00 +08:00
CCInfo.AnalyzeFormalArguments(Ins, CC_XCore);
2008-11-07 18:59:00 +08:00
unsigned StackSlotSize = XCoreFrameLowering::stackSlotSize();
2008-11-07 18:59:00 +08:00
unsigned LRSaveSize = StackSlotSize;
if (!isVarArg)
XFI->setReturnStackOffset(CCInfo.getNextStackOffset() + LRSaveSize);
// All getCopyFromReg ops must precede any getMemcpys to prevent the
// scheduler clobbering a register before it has been copied.
// The stages are:
// 1. CopyFromReg (and load) arg & vararg registers.
// 2. Chain CopyFromReg nodes into a TokenFactor.
// 3. Memcpy 'byVal' args & push final InVals.
// 4. Chain mem ops nodes into a TokenFactor.
SmallVector<SDValue, 4> CFRegNode;
SmallVector<ArgDataPair, 4> ArgData;
SmallVector<SDValue, 4> MemOps;
// 1a. CopyFromReg (and load) arg registers.
2008-11-07 18:59:00 +08:00
for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
CCValAssign &VA = ArgLocs[i];
SDValue ArgIn;
2008-11-07 18:59:00 +08:00
if (VA.isRegLoc()) {
// Arguments passed in registers
EVT RegVT = VA.getLocVT();
switch (RegVT.getSimpleVT().SimpleTy) {
2008-11-07 18:59:00 +08:00
default:
{
#ifndef NDEBUG
errs() << "LowerFormalArguments Unhandled argument type: "
<< RegVT.getEVTString() << "\n";
#endif
2014-04-28 12:05:08 +08:00
llvm_unreachable(nullptr);
}
case MVT::i32:
Apply llvm-prefer-register-over-unsigned from clang-tidy to LLVM Summary: This clang-tidy check is looking for unsigned integer variables whose initializer starts with an implicit cast from llvm::Register and changes the type of the variable to llvm::Register (dropping the llvm:: where possible). Partial reverts in: X86FrameLowering.cpp - Some functions return unsigned and arguably should be MCRegister X86FixupLEAs.cpp - Some functions return unsigned and arguably should be MCRegister X86FrameLowering.cpp - Some functions return unsigned and arguably should be MCRegister HexagonBitSimplify.cpp - Function takes BitTracker::RegisterRef which appears to be unsigned& MachineVerifier.cpp - Ambiguous operator==() given MCRegister and const Register PPCFastISel.cpp - No Register::operator-=() PeepholeOptimizer.cpp - TargetInstrInfo::optimizeLoadInstr() takes an unsigned& MachineTraceMetrics.cpp - MachineTraceMetrics lacks a suitable constructor Manual fixups in: ARMFastISel.cpp - ARMEmitLoad() now takes a Register& instead of unsigned& HexagonSplitDouble.cpp - Ternary operator was ambiguous between unsigned/Register HexagonConstExtenders.cpp - Has a local class named Register, used llvm::Register instead of Register. PPCFastISel.cpp - PPCEmitLoad() now takes a Register& instead of unsigned& Depends on D65919 Reviewers: arsenm, bogner, craig.topper, RKSimon Reviewed By: arsenm Subscribers: RKSimon, craig.topper, lenary, aemerson, wuzish, jholewinski, MatzeB, qcolombet, dschuff, jyknight, dylanmckay, sdardis, nemanjai, jvesely, wdng, nhaehnle, sbc100, jgravelle-google, kristof.beyls, hiraditya, aheejin, kbarton, fedor.sergeev, javed.absar, asb, rbar, johnrusso, simoncook, apazos, sabuasal, niosHD, jrtc27, MaskRay, zzheng, edward-jones, atanasyan, rogfer01, MartinMosbeck, brucehoult, the_o, tpr, PkmX, jocewei, jsji, Petar.Avramovic, asbirlea, Jim, s.egerton, llvm-commits Tags: #llvm Differential Revision: https://reviews.llvm.org/D65962 llvm-svn: 369041
2019-08-16 03:22:08 +08:00
Register VReg = RegInfo.createVirtualRegister(&XCore::GRRegsRegClass);
2008-11-07 18:59:00 +08:00
RegInfo.addLiveIn(VA.getLocReg(), VReg);
ArgIn = DAG.getCopyFromReg(Chain, dl, VReg, RegVT);
CFRegNode.push_back(ArgIn.getValue(ArgIn->getNumValues() - 1));
2008-11-07 18:59:00 +08:00
}
} else {
// sanity check
assert(VA.isMemLoc());
// Load the argument to a virtual register
unsigned ObjSize = VA.getLocVT().getSizeInBits()/8;
if (ObjSize > StackSlotSize) {
errs() << "LowerFormalArguments Unhandled argument type: "
<< EVT(VA.getLocVT()).getEVTString()
<< "\n";
2008-11-07 18:59:00 +08:00
}
// Create the frame index object for this incoming parameter...
int FI = MFI.CreateFixedObject(ObjSize,
LRSaveSize + VA.getLocMemOffset(),
true);
2008-11-07 18:59:00 +08:00
// Create the SelectionDAG nodes corresponding to a load
//from this parameter
SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
ArgIn = DAG.getLoad(VA.getLocVT(), dl, Chain, FIN,
MachinePointerInfo::getFixedStack(MF, FI));
2008-11-07 18:59:00 +08:00
}
const ArgDataPair ADP = { ArgIn, Ins[i].Flags };
ArgData.push_back(ADP);
2008-11-07 18:59:00 +08:00
}
// 1b. CopyFromReg vararg registers.
2008-11-07 18:59:00 +08:00
if (isVarArg) {
// Argument registers
static const MCPhysReg ArgRegs[] = {
2008-11-07 18:59:00 +08:00
XCore::R0, XCore::R1, XCore::R2, XCore::R3
};
XCoreFunctionInfo *XFI = MF.getInfo<XCoreFunctionInfo>();
unsigned FirstVAReg = CCInfo.getFirstUnallocated(ArgRegs);
2008-11-07 18:59:00 +08:00
if (FirstVAReg < array_lengthof(ArgRegs)) {
int offset = 0;
// Save remaining registers, storing higher register numbers at a higher
// address
for (int i = array_lengthof(ArgRegs) - 1; i >= (int)FirstVAReg; --i) {
2008-11-07 18:59:00 +08:00
// Create a stack slot
int FI = MFI.CreateFixedObject(4, offset, true);
if (i == (int)FirstVAReg) {
2008-11-07 18:59:00 +08:00
XFI->setVarArgsFrameIndex(FI);
}
offset -= StackSlotSize;
SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
2008-11-07 18:59:00 +08:00
// Move argument from phys reg -> virt reg
Apply llvm-prefer-register-over-unsigned from clang-tidy to LLVM Summary: This clang-tidy check is looking for unsigned integer variables whose initializer starts with an implicit cast from llvm::Register and changes the type of the variable to llvm::Register (dropping the llvm:: where possible). Partial reverts in: X86FrameLowering.cpp - Some functions return unsigned and arguably should be MCRegister X86FixupLEAs.cpp - Some functions return unsigned and arguably should be MCRegister X86FrameLowering.cpp - Some functions return unsigned and arguably should be MCRegister HexagonBitSimplify.cpp - Function takes BitTracker::RegisterRef which appears to be unsigned& MachineVerifier.cpp - Ambiguous operator==() given MCRegister and const Register PPCFastISel.cpp - No Register::operator-=() PeepholeOptimizer.cpp - TargetInstrInfo::optimizeLoadInstr() takes an unsigned& MachineTraceMetrics.cpp - MachineTraceMetrics lacks a suitable constructor Manual fixups in: ARMFastISel.cpp - ARMEmitLoad() now takes a Register& instead of unsigned& HexagonSplitDouble.cpp - Ternary operator was ambiguous between unsigned/Register HexagonConstExtenders.cpp - Has a local class named Register, used llvm::Register instead of Register. PPCFastISel.cpp - PPCEmitLoad() now takes a Register& instead of unsigned& Depends on D65919 Reviewers: arsenm, bogner, craig.topper, RKSimon Reviewed By: arsenm Subscribers: RKSimon, craig.topper, lenary, aemerson, wuzish, jholewinski, MatzeB, qcolombet, dschuff, jyknight, dylanmckay, sdardis, nemanjai, jvesely, wdng, nhaehnle, sbc100, jgravelle-google, kristof.beyls, hiraditya, aheejin, kbarton, fedor.sergeev, javed.absar, asb, rbar, johnrusso, simoncook, apazos, sabuasal, niosHD, jrtc27, MaskRay, zzheng, edward-jones, atanasyan, rogfer01, MartinMosbeck, brucehoult, the_o, tpr, PkmX, jocewei, jsji, Petar.Avramovic, asbirlea, Jim, s.egerton, llvm-commits Tags: #llvm Differential Revision: https://reviews.llvm.org/D65962 llvm-svn: 369041
2019-08-16 03:22:08 +08:00
Register VReg = RegInfo.createVirtualRegister(&XCore::GRRegsRegClass);
2008-11-07 18:59:00 +08:00
RegInfo.addLiveIn(ArgRegs[i], VReg);
SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
CFRegNode.push_back(Val.getValue(Val->getNumValues() - 1));
2008-11-07 18:59:00 +08:00
// Move argument from virt reg -> stack
SDValue Store =
DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
2008-11-07 18:59:00 +08:00
MemOps.push_back(Store);
}
} else {
// This will point to the next argument passed via stack.
XFI->setVarArgsFrameIndex(
MFI.CreateFixedObject(4, LRSaveSize + CCInfo.getNextStackOffset(),
true));
2008-11-07 18:59:00 +08:00
}
}
// 2. chain CopyFromReg nodes into a TokenFactor.
if (!CFRegNode.empty())
Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, CFRegNode);
// 3. Memcpy 'byVal' args & push final InVals.
// Aggregates passed "byVal" need to be copied by the callee.
// The callee will use a pointer to this copy, rather than the original
// pointer.
for (SmallVectorImpl<ArgDataPair>::const_iterator ArgDI = ArgData.begin(),
ArgDE = ArgData.end();
ArgDI != ArgDE; ++ArgDI) {
if (ArgDI->Flags.isByVal() && ArgDI->Flags.getByValSize()) {
unsigned Size = ArgDI->Flags.getByValSize();
Align Alignment =
std::max(Align(StackSlotSize), ArgDI->Flags.getNonZeroByValAlign());
// Create a new object on the stack and copy the pointee into it.
int FI = MFI.CreateStackObject(Size, Alignment, false);
SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
InVals.push_back(FIN);
MemOps.push_back(DAG.getMemcpy(
Chain, dl, FIN, ArgDI->SDV, DAG.getConstant(Size, dl, MVT::i32),
Alignment, false, false, false, MachinePointerInfo(),
MachinePointerInfo()));
} else {
InVals.push_back(ArgDI->SDV);
}
}
// 4, chain mem ops nodes into a TokenFactor.
if (!MemOps.empty()) {
MemOps.push_back(Chain);
Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
}
return Chain;
2008-11-07 18:59:00 +08:00
}
//===----------------------------------------------------------------------===//
// Return Value Calling Convention Implementation
//===----------------------------------------------------------------------===//
bool XCoreTargetLowering::
CanLowerReturn(CallingConv::ID CallConv, MachineFunction &MF,
2012-07-19 08:11:40 +08:00
bool isVarArg,
const SmallVectorImpl<ISD::OutputArg> &Outs,
LLVMContext &Context) const {
SmallVector<CCValAssign, 16> RVLocs;
CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context);
if (!CCInfo.CheckReturn(Outs, RetCC_XCore))
return false;
if (CCInfo.getNextStackOffset() != 0 && isVarArg)
return false;
return true;
}
SDValue
XCoreTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
bool isVarArg,
const SmallVectorImpl<ISD::OutputArg> &Outs,
const SmallVectorImpl<SDValue> &OutVals,
const SDLoc &dl, SelectionDAG &DAG) const {
XCoreFunctionInfo *XFI =
DAG.getMachineFunction().getInfo<XCoreFunctionInfo>();
MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
2008-11-07 18:59:00 +08:00
// CCValAssign - represent the assignment of
// the return value to a location
SmallVector<CCValAssign, 16> RVLocs;
// CCState - Info about the registers and stack slot.
CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
*DAG.getContext());
2008-11-07 18:59:00 +08:00
// Analyze return values.
if (!isVarArg)
CCInfo.AllocateStack(XFI->getReturnStackOffset(), 4);
CCInfo.AnalyzeReturn(Outs, RetCC_XCore);
2008-11-07 18:59:00 +08:00
SDValue Flag;
SmallVector<SDValue, 4> RetOps(1, Chain);
// Return on XCore is always a "retsp 0"
RetOps.push_back(DAG.getConstant(0, dl, MVT::i32));
2008-11-07 18:59:00 +08:00
SmallVector<SDValue, 4> MemOpChains;
// Handle return values that must be copied to memory.
for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
2008-11-07 18:59:00 +08:00
CCValAssign &VA = RVLocs[i];
if (VA.isRegLoc())
continue;
assert(VA.isMemLoc());
if (isVarArg) {
report_fatal_error("Can't return value from vararg function in memory");
}
2008-11-07 18:59:00 +08:00
int Offset = VA.getLocMemOffset();
unsigned ObjSize = VA.getLocVT().getSizeInBits() / 8;
// Create the frame index object for the memory location.
int FI = MFI.CreateFixedObject(ObjSize, Offset, false);
// Create a SelectionDAG node corresponding to a store
// to this memory location.
SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
MemOpChains.push_back(DAG.getStore(
Chain, dl, OutVals[i], FIN,
MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI)));
}
// Transform all store nodes into one single node because
// all stores are independent of each other.
if (!MemOpChains.empty())
Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
// Now handle return values copied to registers.
for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
CCValAssign &VA = RVLocs[i];
if (!VA.isRegLoc())
continue;
// Copy the result values into the output registers.
Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), OutVals[i], Flag);
2008-11-07 18:59:00 +08:00
// guarantee that all emitted copies are
// stuck together, avoiding something bad
Flag = Chain.getValue(1);
RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
2008-11-07 18:59:00 +08:00
}
RetOps[0] = Chain; // Update chain.
// Add the flag if we have it.
2008-11-07 18:59:00 +08:00
if (Flag.getNode())
RetOps.push_back(Flag);
return DAG.getNode(XCoreISD::RETSP, dl, MVT::Other, RetOps);
2008-11-07 18:59:00 +08:00
}
//===----------------------------------------------------------------------===//
// Other Lowering Code
//===----------------------------------------------------------------------===//
MachineBasicBlock *
XCoreTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
MachineBasicBlock *BB) const {
const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
DebugLoc dl = MI.getDebugLoc();
assert((MI.getOpcode() == XCore::SELECT_CC) &&
2008-11-07 18:59:00 +08:00
"Unexpected instr type to insert");
2008-11-07 18:59:00 +08:00
// To "insert" a SELECT_CC instruction, we actually have to insert the diamond
// control-flow pattern. The incoming instruction knows the destination vreg
// to set, the condition code register to branch on, the true/false values to
// select between, and a branch opcode to use.
const BasicBlock *LLVM_BB = BB->getBasicBlock();
MachineFunction::iterator It = ++BB->getIterator();
2008-11-07 18:59:00 +08:00
// thisMBB:
// ...
// TrueVal = ...
// cmpTY ccX, r1, r2
// bCC copy1MBB
// fallthrough --> copy0MBB
MachineBasicBlock *thisMBB = BB;
MachineFunction *F = BB->getParent();
MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
F->insert(It, copy0MBB);
F->insert(It, sinkMBB);
// Transfer the remainder of BB and its successor edges to sinkMBB.
sinkMBB->splice(sinkMBB->begin(), BB,
std::next(MachineBasicBlock::iterator(MI)), BB->end());
sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
2008-11-07 18:59:00 +08:00
// Next, add the true and fallthrough blocks as its successors.
BB->addSuccessor(copy0MBB);
BB->addSuccessor(sinkMBB);
BuildMI(BB, dl, TII.get(XCore::BRFT_lru6))
.addReg(MI.getOperand(1).getReg())
.addMBB(sinkMBB);
2008-11-07 18:59:00 +08:00
// copy0MBB:
// %FalseValue = ...
// # fallthrough to sinkMBB
BB = copy0MBB;
2008-11-07 18:59:00 +08:00
// Update machine-CFG edges
BB->addSuccessor(sinkMBB);
2008-11-07 18:59:00 +08:00
// sinkMBB:
// %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
// ...
BB = sinkMBB;
BuildMI(*BB, BB->begin(), dl, TII.get(XCore::PHI), MI.getOperand(0).getReg())
.addReg(MI.getOperand(3).getReg())
.addMBB(copy0MBB)
.addReg(MI.getOperand(2).getReg())
.addMBB(thisMBB);
MI.eraseFromParent(); // The pseudo instruction is gone now.
2008-11-07 18:59:00 +08:00
return BB;
}
//===----------------------------------------------------------------------===//
// Target Optimization Hooks
//===----------------------------------------------------------------------===//
SDValue XCoreTargetLowering::PerformDAGCombine(SDNode *N,
DAGCombinerInfo &DCI) const {
SelectionDAG &DAG = DCI.DAG;
SDLoc dl(N);
switch (N->getOpcode()) {
default: break;
case ISD::INTRINSIC_VOID:
switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
case Intrinsic::xcore_outt:
case Intrinsic::xcore_outct:
case Intrinsic::xcore_chkct: {
SDValue OutVal = N->getOperand(3);
// These instructions ignore the high bits.
if (OutVal.hasOneUse()) {
unsigned BitWidth = OutVal.getValueSizeInBits();
APInt DemandedMask = APInt::getLowBitsSet(BitWidth, 8);
KnownBits Known;
TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
!DCI.isBeforeLegalizeOps());
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
if (TLI.ShrinkDemandedConstant(OutVal, DemandedMask, TLO) ||
TLI.SimplifyDemandedBits(OutVal, DemandedMask, Known, TLO))
DCI.CommitTargetLoweringOpt(TLO);
}
break;
}
case Intrinsic::xcore_setpt: {
SDValue Time = N->getOperand(3);
// This instruction ignores the high bits.
if (Time.hasOneUse()) {
unsigned BitWidth = Time.getValueSizeInBits();
APInt DemandedMask = APInt::getLowBitsSet(BitWidth, 16);
KnownBits Known;
TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
!DCI.isBeforeLegalizeOps());
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
if (TLI.ShrinkDemandedConstant(Time, DemandedMask, TLO) ||
TLI.SimplifyDemandedBits(Time, DemandedMask, Known, TLO))
DCI.CommitTargetLoweringOpt(TLO);
}
break;
}
}
break;
case XCoreISD::LADD: {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
SDValue N2 = N->getOperand(2);
ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
EVT VT = N0.getValueType();
// canonicalize constant to RHS
if (N0C && !N1C)
return DAG.getNode(XCoreISD::LADD, dl, DAG.getVTList(VT, VT), N1, N0, N2);
// fold (ladd 0, 0, x) -> 0, x & 1
if (N0C && N0C->isNullValue() && N1C && N1C->isNullValue()) {
SDValue Carry = DAG.getConstant(0, dl, VT);
SDValue Result = DAG.getNode(ISD::AND, dl, VT, N2,
DAG.getConstant(1, dl, VT));
SDValue Ops[] = { Result, Carry };
return DAG.getMergeValues(Ops, dl);
}
// fold (ladd x, 0, y) -> 0, add x, y iff carry is unused and y has only the
// low bit set
if (N1C && N1C->isNullValue() && N->hasNUsesOfValue(0, 1)) {
APInt Mask = APInt::getHighBitsSet(VT.getSizeInBits(),
VT.getSizeInBits() - 1);
KnownBits Known = DAG.computeKnownBits(N2);
if ((Known.Zero & Mask) == Mask) {
SDValue Carry = DAG.getConstant(0, dl, VT);
SDValue Result = DAG.getNode(ISD::ADD, dl, VT, N0, N2);
SDValue Ops[] = { Result, Carry };
return DAG.getMergeValues(Ops, dl);
}
}
}
break;
case XCoreISD::LSUB: {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
SDValue N2 = N->getOperand(2);
ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
EVT VT = N0.getValueType();
// fold (lsub 0, 0, x) -> x, -x iff x has only the low bit set
if (N0C && N0C->isNullValue() && N1C && N1C->isNullValue()) {
APInt Mask = APInt::getHighBitsSet(VT.getSizeInBits(),
VT.getSizeInBits() - 1);
KnownBits Known = DAG.computeKnownBits(N2);
if ((Known.Zero & Mask) == Mask) {
SDValue Borrow = N2;
SDValue Result = DAG.getNode(ISD::SUB, dl, VT,
DAG.getConstant(0, dl, VT), N2);
SDValue Ops[] = { Result, Borrow };
return DAG.getMergeValues(Ops, dl);
}
}
// fold (lsub x, 0, y) -> 0, sub x, y iff borrow is unused and y has only the
// low bit set
if (N1C && N1C->isNullValue() && N->hasNUsesOfValue(0, 1)) {
APInt Mask = APInt::getHighBitsSet(VT.getSizeInBits(),
VT.getSizeInBits() - 1);
KnownBits Known = DAG.computeKnownBits(N2);
if ((Known.Zero & Mask) == Mask) {
SDValue Borrow = DAG.getConstant(0, dl, VT);
SDValue Result = DAG.getNode(ISD::SUB, dl, VT, N0, N2);
SDValue Ops[] = { Result, Borrow };
return DAG.getMergeValues(Ops, dl);
}
}
}
break;
case XCoreISD::LMUL: {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
SDValue N2 = N->getOperand(2);
SDValue N3 = N->getOperand(3);
ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
EVT VT = N0.getValueType();
// Canonicalize multiplicative constant to RHS. If both multiplicative
// operands are constant canonicalize smallest to RHS.
if ((N0C && !N1C) ||
(N0C && N1C && N0C->getZExtValue() < N1C->getZExtValue()))
return DAG.getNode(XCoreISD::LMUL, dl, DAG.getVTList(VT, VT),
N1, N0, N2, N3);
// lmul(x, 0, a, b)
if (N1C && N1C->isNullValue()) {
// If the high result is unused fold to add(a, b)
if (N->hasNUsesOfValue(0, 0)) {
SDValue Lo = DAG.getNode(ISD::ADD, dl, VT, N2, N3);
SDValue Ops[] = { Lo, Lo };
return DAG.getMergeValues(Ops, dl);
}
// Otherwise fold to ladd(a, b, 0)
SDValue Result =
DAG.getNode(XCoreISD::LADD, dl, DAG.getVTList(VT, VT), N2, N3, N1);
SDValue Carry(Result.getNode(), 1);
SDValue Ops[] = { Carry, Result };
return DAG.getMergeValues(Ops, dl);
}
}
break;
case ISD::ADD: {
// Fold 32 bit expressions such as add(add(mul(x,y),a),b) ->
// lmul(x, y, a, b). The high result of lmul will be ignored.
// This is only profitable if the intermediate results are unused
// elsewhere.
SDValue Mul0, Mul1, Addend0, Addend1;
if (N->getValueType(0) == MVT::i32 &&
isADDADDMUL(SDValue(N, 0), Mul0, Mul1, Addend0, Addend1, true)) {
SDValue Ignored = DAG.getNode(XCoreISD::LMUL, dl,
DAG.getVTList(MVT::i32, MVT::i32), Mul0,
Mul1, Addend0, Addend1);
SDValue Result(Ignored.getNode(), 1);
return Result;
}
APInt HighMask = APInt::getHighBitsSet(64, 32);
// Fold 64 bit expression such as add(add(mul(x,y),a),b) ->
// lmul(x, y, a, b) if all operands are zero-extended. We do this
// before type legalization as it is messy to match the operands after
// that.
if (N->getValueType(0) == MVT::i64 &&
isADDADDMUL(SDValue(N, 0), Mul0, Mul1, Addend0, Addend1, false) &&
DAG.MaskedValueIsZero(Mul0, HighMask) &&
DAG.MaskedValueIsZero(Mul1, HighMask) &&
DAG.MaskedValueIsZero(Addend0, HighMask) &&
DAG.MaskedValueIsZero(Addend1, HighMask)) {
SDValue Mul0L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
Mul0, DAG.getConstant(0, dl, MVT::i32));
SDValue Mul1L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
Mul1, DAG.getConstant(0, dl, MVT::i32));
SDValue Addend0L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
Addend0, DAG.getConstant(0, dl, MVT::i32));
SDValue Addend1L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
Addend1, DAG.getConstant(0, dl, MVT::i32));
SDValue Hi = DAG.getNode(XCoreISD::LMUL, dl,
DAG.getVTList(MVT::i32, MVT::i32), Mul0L, Mul1L,
Addend0L, Addend1L);
SDValue Lo(Hi.getNode(), 1);
return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
}
}
break;
case ISD::STORE: {
// Replace unaligned store of unaligned load with memmove.
StoreSDNode *ST = cast<StoreSDNode>(N);
if (!DCI.isBeforeLegalize() ||
allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
ST->getMemoryVT(),
*ST->getMemOperand()) ||
ST->isVolatile() || ST->isIndexed()) {
break;
}
SDValue Chain = ST->getChain();
unsigned StoreBits = ST->getMemoryVT().getStoreSizeInBits();
assert((StoreBits % 8) == 0 &&
"Store size in bits must be a multiple of 8");
unsigned Alignment = ST->getAlignment();
if (LoadSDNode *LD = dyn_cast<LoadSDNode>(ST->getValue())) {
if (LD->hasNUsesOfValue(1, 0) && ST->getMemoryVT() == LD->getMemoryVT() &&
LD->getAlignment() == Alignment &&
!LD->isVolatile() && !LD->isIndexed() &&
Chain.reachesChainWithoutSideEffects(SDValue(LD, 1))) {
bool isTail = isInTailCallPosition(DAG, ST, Chain);
return DAG.getMemmove(Chain, dl, ST->getBasePtr(), LD->getBasePtr(),
DAG.getConstant(StoreBits / 8, dl, MVT::i32),
Align(Alignment), false, isTail,
ST->getPointerInfo(), LD->getPointerInfo());
}
}
break;
}
}
return SDValue();
}
void XCoreTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
KnownBits &Known,
const APInt &DemandedElts,
const SelectionDAG &DAG,
unsigned Depth) const {
Known.resetAll();
switch (Op.getOpcode()) {
default: break;
case XCoreISD::LADD:
case XCoreISD::LSUB:
if (Op.getResNo() == 1) {
// Top bits of carry / borrow are clear.
Known.Zero = APInt::getHighBitsSet(Known.getBitWidth(),
Known.getBitWidth() - 1);
}
break;
case ISD::INTRINSIC_W_CHAIN:
{
unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
switch (IntNo) {
case Intrinsic::xcore_getts:
// High bits are known to be zero.
Known.Zero = APInt::getHighBitsSet(Known.getBitWidth(),
Known.getBitWidth() - 16);
break;
case Intrinsic::xcore_int:
case Intrinsic::xcore_inct:
// High bits are known to be zero.
Known.Zero = APInt::getHighBitsSet(Known.getBitWidth(),
Known.getBitWidth() - 8);
break;
case Intrinsic::xcore_testct:
// Result is either 0 or 1.
Known.Zero = APInt::getHighBitsSet(Known.getBitWidth(),
Known.getBitWidth() - 1);
break;
case Intrinsic::xcore_testwct:
// Result is in the range 0 - 4.
Known.Zero = APInt::getHighBitsSet(Known.getBitWidth(),
Known.getBitWidth() - 3);
break;
}
}
break;
}
}
2008-11-07 18:59:00 +08:00
//===----------------------------------------------------------------------===//
// Addressing mode description hooks
//===----------------------------------------------------------------------===//
static inline bool isImmUs(int64_t val)
{
return (val >= 0 && val <= 11);
}
static inline bool isImmUs2(int64_t val)
{
return (val%2 == 0 && isImmUs(val/2));
}
static inline bool isImmUs4(int64_t val)
{
return (val%4 == 0 && isImmUs(val/4));
}
/// isLegalAddressingMode - Return true if the addressing mode represented
/// by AM is legal for this target, for a load/store of the specified type.
bool XCoreTargetLowering::isLegalAddressingMode(const DataLayout &DL,
const AddrMode &AM, Type *Ty,
unsigned AS,
Instruction *I) const {
if (Ty->getTypeID() == Type::VoidTyID)
return AM.Scale == 0 && isImmUs(AM.BaseOffs) && isImmUs4(AM.BaseOffs);
unsigned Size = DL.getTypeAllocSize(Ty);
2008-11-07 18:59:00 +08:00
if (AM.BaseGV) {
return Size >= 4 && !AM.HasBaseReg && AM.Scale == 0 &&
2008-11-07 18:59:00 +08:00
AM.BaseOffs%4 == 0;
}
switch (Size) {
case 1:
2008-11-07 18:59:00 +08:00
// reg + imm
if (AM.Scale == 0) {
return isImmUs(AM.BaseOffs);
}
// reg + reg
2008-11-07 18:59:00 +08:00
return AM.Scale == 1 && AM.BaseOffs == 0;
case 2:
case 3:
2008-11-07 18:59:00 +08:00
// reg + imm
if (AM.Scale == 0) {
return isImmUs2(AM.BaseOffs);
}
// reg + reg<<1
2008-11-07 18:59:00 +08:00
return AM.Scale == 2 && AM.BaseOffs == 0;
default:
2008-11-07 18:59:00 +08:00
// reg + imm
if (AM.Scale == 0) {
return isImmUs4(AM.BaseOffs);
}
// reg + reg<<2
return AM.Scale == 4 && AM.BaseOffs == 0;
}
}
//===----------------------------------------------------------------------===//
// XCore Inline Assembly Support
//===----------------------------------------------------------------------===//
std::pair<unsigned, const TargetRegisterClass *>
XCoreTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
StringRef Constraint,
MVT VT) const {
if (Constraint.size() == 1) {
switch (Constraint[0]) {
2008-11-07 18:59:00 +08:00
default : break;
case 'r':
return std::make_pair(0U, &XCore::GRRegsRegClass);
}
2008-11-07 18:59:00 +08:00
}
// Use the default implementation in TargetLowering to convert the register
// constraint into a member of a register class.
return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
2008-11-07 18:59:00 +08:00
}