llvm-project/llvm/lib/ExecutionEngine/Interpreter/ExternalFunctions.cpp

339 lines
11 KiB
C++
Raw Normal View History

//===-- ExternalMethods.cpp - Implement External Methods ------------------===//
//
// This file contains both code to deal with invoking "external" methods, but
// also contains code that implements "exported" external methods.
//
// External methods in LLI are implemented by dlopen'ing the lli executable and
// using dlsym to look op the methods that we want to invoke. If a method is
// found, then the arguments are mangled and passed in to the function call.
//
//===----------------------------------------------------------------------===//
#include "Interpreter.h"
#include "llvm/DerivedTypes.h"
#include <map>
#include <dlfcn.h>
#include <link.h>
#include <math.h>
#include <stdio.h>
typedef GenericValue (*ExFunc)(MethodType *, const vector<GenericValue> &);
static map<const Method *, ExFunc> Functions;
static map<string, ExFunc> FuncNames;
static Interpreter *TheInterpreter;
// getCurrentExecutablePath() - Return the directory that the lli executable
// lives in.
//
string Interpreter::getCurrentExecutablePath() const {
Dl_info Info;
if (dladdr(&TheInterpreter, &Info) == 0) return "";
string LinkAddr(Info.dli_fname);
unsigned SlashPos = LinkAddr.rfind('/');
if (SlashPos != string::npos)
LinkAddr.resize(SlashPos); // Trim the executable name off...
return LinkAddr;
}
static char getTypeID(const Type *Ty) {
switch (Ty->getPrimitiveID()) {
case Type::VoidTyID: return 'V';
case Type::BoolTyID: return 'o';
case Type::UByteTyID: return 'B';
case Type::SByteTyID: return 'b';
case Type::UShortTyID: return 'S';
case Type::ShortTyID: return 's';
case Type::UIntTyID: return 'I';
case Type::IntTyID: return 'i';
case Type::ULongTyID: return 'L';
case Type::LongTyID: return 'l';
case Type::FloatTyID: return 'F';
case Type::DoubleTyID: return 'D';
case Type::PointerTyID: return 'P';
case Type::MethodTyID: return 'M';
case Type::StructTyID: return 'T';
case Type::ArrayTyID: return 'A';
case Type::OpaqueTyID: return 'O';
default: return 'U';
}
}
static ExFunc lookupMethod(const Method *M) {
// Function not found, look it up... start by figuring out what the
// composite function name should be.
string ExtName = "lle_";
const MethodType *MT = M->getMethodType();
for (unsigned i = 0; const Type *Ty = MT->getContainedType(i); ++i)
ExtName += getTypeID(Ty);
ExtName += "_" + M->getName();
//cout << "Tried: '" << ExtName << "'\n";
ExFunc FnPtr = FuncNames[ExtName];
if (FnPtr == 0)
FnPtr = (ExFunc)dlsym(RTLD_DEFAULT, ExtName.c_str());
if (FnPtr == 0)
FnPtr = FuncNames["lle_X_"+M->getName()];
if (FnPtr == 0) // Try calling a generic function... if it exists...
FnPtr = (ExFunc)dlsym(RTLD_DEFAULT, ("lle_X_"+M->getName()).c_str());
if (FnPtr != 0)
Functions.insert(make_pair(M, FnPtr)); // Cache for later
return FnPtr;
}
GenericValue Interpreter::callExternalMethod(Method *M,
const vector<GenericValue> &ArgVals) {
TheInterpreter = this;
// Do a lookup to see if the method is in our cache... this should just be a
// defered annotation!
map<const Method *, ExFunc>::iterator FI = Functions.find(M);
ExFunc Fn = (FI == Functions.end()) ? lookupMethod(M) : FI->second;
if (Fn == 0) {
cout << "Tried to execute an unknown external method: "
<< M->getType()->getDescription() << " " << M->getName() << endl;
return GenericValue();
}
// TODO: FIXME when types are not const!
GenericValue Result = Fn(const_cast<MethodType*>(M->getMethodType()),ArgVals);
return Result;
}
//===----------------------------------------------------------------------===//
// Methods "exported" to the running application...
//
extern "C" { // Don't add C++ manglings to llvm mangling :)
// Implement void printstr([ubyte {x N}] *)
GenericValue lle_VP_printstr(MethodType *M, const vector<GenericValue> &ArgVal){
assert(ArgVal.size() == 1 && "printstr only takes one argument!");
cout << (char*)ArgVal[0].PointerVal;
return GenericValue();
}
// Implement 'void print(X)' for every type...
GenericValue lle_X_print(MethodType *M, const vector<GenericValue> &ArgVals) {
assert(ArgVals.size() == 1 && "generic print only takes one argument!");
Interpreter::print(M->getParamTypes()[0], ArgVals[0]);
return GenericValue();
}
// Implement 'void printVal(X)' for every type...
GenericValue lle_X_printVal(MethodType *M, const vector<GenericValue> &ArgVal) {
assert(ArgVal.size() == 1 && "generic print only takes one argument!");
// Specialize print([ubyte {x N} ] *) and print(sbyte *)
if (PointerType *PTy = dyn_cast<PointerType>(M->getParamTypes()[0].get()))
if (PTy->getValueType() == Type::SByteTy ||
isa<ArrayType>(PTy->getValueType())) {
return lle_VP_printstr(M, ArgVal);
}
Interpreter::printValue(M->getParamTypes()[0], ArgVal[0]);
return GenericValue();
}
// Implement 'void printString(X)'
// Argument must be [ubyte {x N} ] * or sbyte *
GenericValue lle_X_printString(MethodType *M, const vector<GenericValue> &ArgVal) {
assert(ArgVal.size() == 1 && "generic print only takes one argument!");
return lle_VP_printstr(M, ArgVal);
}
// Implement 'void print<TYPE>(X)' for each primitive type or pointer type
#define PRINT_TYPE_FUNC(TYPENAME,TYPEID) \
GenericValue lle_X_print##TYPENAME(MethodType *M,\
const vector<GenericValue> &ArgVal) {\
assert(ArgVal.size() == 1 && "generic print only takes one argument!");\
assert(M->getParamTypes()[0].get()->getPrimitiveID() == Type::##TYPEID);\
Interpreter::printValue(M->getParamTypes()[0], ArgVal[0]);\
return GenericValue();\
}
PRINT_TYPE_FUNC(SByte, SByteTyID)
PRINT_TYPE_FUNC(UByte, UByteTyID)
PRINT_TYPE_FUNC(Short, ShortTyID)
PRINT_TYPE_FUNC(UShort, UShortTyID)
PRINT_TYPE_FUNC(Int, IntTyID)
PRINT_TYPE_FUNC(UInt, UIntTyID)
PRINT_TYPE_FUNC(Long, LongTyID)
PRINT_TYPE_FUNC(ULong, ULongTyID)
PRINT_TYPE_FUNC(Float, FloatTyID)
PRINT_TYPE_FUNC(Double, DoubleTyID)
PRINT_TYPE_FUNC(Pointer, PointerTyID)
// void "putchar"(sbyte)
GenericValue lle_Vb_putchar(MethodType *M, const vector<GenericValue> &Args) {
cout << Args[0].SByteVal;
return GenericValue();
}
// int "putchar"(int)
GenericValue lle_ii_putchar(MethodType *M, const vector<GenericValue> &Args) {
cout << ((char)Args[0].IntVal) << flush;
return Args[0];
}
// void "putchar"(ubyte)
GenericValue lle_VB_putchar(MethodType *M, const vector<GenericValue> &Args) {
cout << Args[0].SByteVal << flush;
return Args[0];
}
// void "__main"()
GenericValue lle_V___main(MethodType *M, const vector<GenericValue> &Args) {
return GenericValue();
}
// void "exit"(int)
GenericValue lle_X_exit(MethodType *M, const vector<GenericValue> &Args) {
TheInterpreter->exitCalled(Args[0]);
return GenericValue();
}
// void *malloc(uint)
GenericValue lle_X_malloc(MethodType *M, const vector<GenericValue> &Args) {
assert(Args.size() == 1 && "Malloc expects one argument!");
GenericValue GV;
GV.PointerVal = (uint64_t)malloc(Args[0].UIntVal);
return GV;
}
// void free(void *)
GenericValue lle_X_free(MethodType *M, const vector<GenericValue> &Args) {
assert(Args.size() == 1);
free((void*)Args[0].PointerVal);
return GenericValue();
}
// double pow(double, double)
GenericValue lle_X_pow(MethodType *M, const vector<GenericValue> &Args) {
assert(Args.size() == 2);
GenericValue GV;
GV.DoubleVal = pow(Args[0].DoubleVal, Args[1].DoubleVal);
return GV;
}
// double sqrt(double)
GenericValue lle_X_sqrt(MethodType *M, const vector<GenericValue> &Args) {
assert(Args.size() == 1);
GenericValue GV;
GV.DoubleVal = sqrt(Args[0].DoubleVal);
return GV;
}
// double log(double)
GenericValue lle_X_log(MethodType *M, const vector<GenericValue> &Args) {
assert(Args.size() == 1);
GenericValue GV;
GV.DoubleVal = log(Args[0].DoubleVal);
return GV;
}
// double drand48()
GenericValue lle_X_drand48(MethodType *M, const vector<GenericValue> &Args) {
assert(Args.size() == 0);
GenericValue GV;
GV.DoubleVal = drand48();
return GV;
}
// int printf(sbyte *, ...) - a very rough implementation to make output useful.
GenericValue lle_X_printf(MethodType *M, const vector<GenericValue> &Args) {
const char *FmtStr = (const char *)Args[0].PointerVal;
unsigned ArgNo = 1;
// printf should return # chars printed. This is completely incorrect, but
// close enough for now.
GenericValue GV; GV.IntVal = strlen(FmtStr);
while (1) {
switch (*FmtStr) {
case 0: return GV; // Null terminator...
default: // Normal nonspecial character
cout << *FmtStr++;
break;
case '\\': { // Handle escape codes
char Buffer[3];
Buffer[0] = *FmtStr++;
Buffer[1] = *FmtStr++;
Buffer[2] = 0;
cout << Buffer;
break;
}
case '%': { // Handle format specifiers
bool isLong = false;
++FmtStr;
if (*FmtStr == 'l') {
isLong = true;
FmtStr++;
}
if (*FmtStr == '%')
cout << *FmtStr; // %%
else {
char Fmt[] = "%d", Buffer[1000] = "";
Fmt[1] = *FmtStr;
switch (*FmtStr) {
case 'c':
sprintf(Buffer, Fmt, Args[ArgNo++].SByteVal); break;
case 'd': case 'i':
case 'u': case 'o':
case 'x': case 'X':
sprintf(Buffer, Fmt, Args[ArgNo++].IntVal); break;
case 'e': case 'E': case 'g': case 'G': case 'f':
sprintf(Buffer, Fmt, Args[ArgNo++].DoubleVal); break;
case 'p':
sprintf(Buffer, Fmt, (void*)Args[ArgNo++].PointerVal); break;
case 's': cout << (char*)Args[ArgNo++].PointerVal; break; // %s
default: cout << "<unknown printf code '" << *FmtStr << "'!>";
ArgNo++; break;
}
cout << Buffer;
}
++FmtStr;
break;
}
}
}
}
} // End extern "C"
void Interpreter::initializeExternalMethods() {
FuncNames["lle_VP_printstr"] = lle_VP_printstr;
FuncNames["lle_X_print"] = lle_X_print;
FuncNames["lle_X_printVal"] = lle_X_printVal;
FuncNames["lle_X_printString"] = lle_X_printString;
FuncNames["lle_X_printUByte"] = lle_X_printUByte;
FuncNames["lle_X_printSByte"] = lle_X_printSByte;
FuncNames["lle_X_printUShort"] = lle_X_printUShort;
FuncNames["lle_X_printShort"] = lle_X_printShort;
FuncNames["lle_X_printInt"] = lle_X_printInt;
FuncNames["lle_X_printUInt"] = lle_X_printUInt;
FuncNames["lle_X_printLong"] = lle_X_printLong;
FuncNames["lle_X_printULong"] = lle_X_printULong;
FuncNames["lle_X_printFloat"] = lle_X_printFloat;
FuncNames["lle_X_printDouble"] = lle_X_printDouble;
FuncNames["lle_X_printPointer"] = lle_X_printPointer;
FuncNames["lle_Vb_putchar"] = lle_Vb_putchar;
FuncNames["lle_ii_putchar"] = lle_ii_putchar;
FuncNames["lle_VB_putchar"] = lle_VB_putchar;
FuncNames["lle_V___main"] = lle_V___main;
FuncNames["lle_X_exit"] = lle_X_exit;
FuncNames["lle_X_malloc"] = lle_X_malloc;
FuncNames["lle_X_free"] = lle_X_free;
FuncNames["lle_X_pow"] = lle_X_pow;
FuncNames["lle_X_sqrt"] = lle_X_sqrt;
FuncNames["lle_X_printf"] = lle_X_printf;
}