llvm-project/llvm/lib/CodeGen/SelectionDAG/LegalizeVectorOps.cpp

1063 lines
39 KiB
C++
Raw Normal View History

//===-- LegalizeVectorOps.cpp - Implement SelectionDAG::LegalizeVectors ---===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the SelectionDAG::LegalizeVectors method.
//
// The vector legalizer looks for vector operations which might need to be
// scalarized and legalizes them. This is a separate step from Legalize because
// scalarizing can introduce illegal types. For example, suppose we have an
// ISD::SDIV of type v2i64 on x86-32. The type is legal (for example, addition
// on a v2i64 is legal), but ISD::SDIV isn't legal, so we have to unroll the
// operation, which introduces nodes with the illegal type i64 which must be
// expanded. Similarly, suppose we have an ISD::SRA of type v16i8 on PowerPC;
// the operation must be unrolled, which introduces nodes with the illegal
// type i8 which must be promoted.
//
// This does not legalize vector manipulations like ISD::BUILD_VECTOR,
// or operations that happen to take a vector which are custom-lowered;
// the legalization for such operations never produces nodes
// with illegal types, so it's okay to put off legalizing them until
// SelectionDAG::Legalize runs.
//
//===----------------------------------------------------------------------===//
#include "llvm/CodeGen/SelectionDAG.h"
#include "llvm/Target/TargetLowering.h"
using namespace llvm;
namespace {
class VectorLegalizer {
SelectionDAG& DAG;
const TargetLowering &TLI;
bool Changed; // Keep track of whether anything changed
/// For nodes that are of legal width, and that have more than one use, this
/// map indicates what regularized operand to use. This allows us to avoid
/// legalizing the same thing more than once.
SmallDenseMap<SDValue, SDValue, 64> LegalizedNodes;
/// \brief Adds a node to the translation cache.
void AddLegalizedOperand(SDValue From, SDValue To) {
LegalizedNodes.insert(std::make_pair(From, To));
// If someone requests legalization of the new node, return itself.
if (From != To)
LegalizedNodes.insert(std::make_pair(To, To));
}
/// \brief Legalizes the given node.
SDValue LegalizeOp(SDValue Op);
/// \brief Assuming the node is legal, "legalize" the results.
SDValue TranslateLegalizeResults(SDValue Op, SDValue Result);
/// \brief Implements unrolling a VSETCC.
SDValue UnrollVSETCC(SDValue Op);
/// \brief Implement expand-based legalization of vector operations.
///
/// This is just a high-level routine to dispatch to specific code paths for
/// operations to legalize them.
SDValue Expand(SDValue Op);
/// \brief Implements expansion for FNEG; falls back to UnrollVectorOp if
/// FSUB isn't legal.
///
/// Implements expansion for UINT_TO_FLOAT; falls back to UnrollVectorOp if
/// SINT_TO_FLOAT and SHR on vectors isn't legal.
SDValue ExpandUINT_TO_FLOAT(SDValue Op);
/// \brief Implement expansion for SIGN_EXTEND_INREG using SRL and SRA.
SDValue ExpandSEXTINREG(SDValue Op);
/// \brief Implement expansion for ANY_EXTEND_VECTOR_INREG.
///
/// Shuffles the low lanes of the operand into place and bitcasts to the proper
/// type. The contents of the bits in the extended part of each element are
/// undef.
SDValue ExpandANY_EXTEND_VECTOR_INREG(SDValue Op);
/// \brief Implement expansion for SIGN_EXTEND_VECTOR_INREG.
///
/// Shuffles the low lanes of the operand into place, bitcasts to the proper
/// type, then shifts left and arithmetic shifts right to introduce a sign
/// extension.
SDValue ExpandSIGN_EXTEND_VECTOR_INREG(SDValue Op);
[x86] Add a ZERO_EXTEND_VECTOR_INREG DAG node and use it when widening vector types to be legal and a ZERO_EXTEND node is encountered. When we use widening to legalize vector types, extend nodes are a real challenge. Either the input or output is likely to be legal, but in many cases not both. As a consequence, we don't really have any way to represent this situation and the prior code in the widening legalization framework would just scalarize the extend operation completely. This patch introduces a new DAG node to represent doing a zero extend of a vector "in register". The core of the idea is to allow legal but different vector types in the input and output. The output vector must have fewer lanes but wider elements. The operation is defined to zero extend the low elements of the input to the size of the output elements, and drop all of the high elements which don't have a corresponding lane in the output vector. It also includes generic expansion of this node in terms of blending a zero vector into the high elements of the vector and bitcasting across. This in turn yields extremely nice code for x86 SSE2 when we use the new widening legalization logic in conjunction with the new shuffle lowering logic. There is still more to do here. We need to support sign extension, any extension, and potentially int-to-float conversions. My current plan is to continue using similar synthetic nodes to model each of these transitions with generic lowering code for each one. However, with this patch LLVM already reaches performance parity with GCC for the core C loops of the x264 code (assuming you disable the hand-written assembly versions) when compiling for SSE2 and SSE3 architectures and enabling the new widening and lowering logic for vectors. Differential Revision: http://reviews.llvm.org/D4405 llvm-svn: 212610
2014-07-09 18:58:18 +08:00
/// \brief Implement expansion for ZERO_EXTEND_VECTOR_INREG.
///
/// Shuffles the low lanes of the operand into place and blends zeros into
/// the remaining lanes, finally bitcasting to the proper type.
SDValue ExpandZERO_EXTEND_VECTOR_INREG(SDValue Op);
/// \brief Expand bswap of vectors into a shuffle if legal.
SDValue ExpandBSWAP(SDValue Op);
/// \brief Implement vselect in terms of XOR, AND, OR when blend is not
/// supported by the target.
SDValue ExpandVSELECT(SDValue Op);
SDValue ExpandSELECT(SDValue Op);
SDValue ExpandLoad(SDValue Op);
SDValue ExpandStore(SDValue Op);
SDValue ExpandFNEG(SDValue Op);
SDValue ExpandABSDIFF(SDValue Op);
/// \brief Implements vector promotion.
///
/// This is essentially just bitcasting the operands to a different type and
/// bitcasting the result back to the original type.
SDValue Promote(SDValue Op);
/// \brief Implements [SU]INT_TO_FP vector promotion.
///
/// This is a [zs]ext of the input operand to the next size up.
SDValue PromoteINT_TO_FP(SDValue Op);
/// \brief Implements FP_TO_[SU]INT vector promotion of the result type.
///
/// It is promoted to the next size up integer type. The result is then
/// truncated back to the original type.
SDValue PromoteFP_TO_INT(SDValue Op, bool isSigned);
public:
/// \brief Begin legalizer the vector operations in the DAG.
bool Run();
VectorLegalizer(SelectionDAG& dag) :
DAG(dag), TLI(dag.getTargetLoweringInfo()), Changed(false) {}
};
bool VectorLegalizer::Run() {
// Before we start legalizing vector nodes, check if there are any vectors.
bool HasVectors = false;
for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
E = std::prev(DAG.allnodes_end()); I != std::next(E); ++I) {
// Check if the values of the nodes contain vectors. We don't need to check
// the operands because we are going to check their values at some point.
for (SDNode::value_iterator J = I->value_begin(), E = I->value_end();
J != E; ++J)
HasVectors |= J->isVector();
// If we found a vector node we can start the legalization.
if (HasVectors)
break;
}
// If this basic block has no vectors then no need to legalize vectors.
if (!HasVectors)
return false;
// The legalize process is inherently a bottom-up recursive process (users
// legalize their uses before themselves). Given infinite stack space, we
// could just start legalizing on the root and traverse the whole graph. In
// practice however, this causes us to run out of stack space on large basic
// blocks. To avoid this problem, compute an ordering of the nodes where each
// node is only legalized after all of its operands are legalized.
DAG.AssignTopologicalOrder();
for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
E = std::prev(DAG.allnodes_end()); I != std::next(E); ++I)
LegalizeOp(SDValue(I, 0));
// Finally, it's possible the root changed. Get the new root.
SDValue OldRoot = DAG.getRoot();
assert(LegalizedNodes.count(OldRoot) && "Root didn't get legalized?");
DAG.setRoot(LegalizedNodes[OldRoot]);
LegalizedNodes.clear();
// Remove dead nodes now.
DAG.RemoveDeadNodes();
return Changed;
}
SDValue VectorLegalizer::TranslateLegalizeResults(SDValue Op, SDValue Result) {
// Generic legalization: just pass the operand through.
for (unsigned i = 0, e = Op.getNode()->getNumValues(); i != e; ++i)
AddLegalizedOperand(Op.getValue(i), Result.getValue(i));
return Result.getValue(Op.getResNo());
}
SDValue VectorLegalizer::LegalizeOp(SDValue Op) {
// Note that LegalizeOp may be reentered even from single-use nodes, which
// means that we always must cache transformed nodes.
DenseMap<SDValue, SDValue>::iterator I = LegalizedNodes.find(Op);
if (I != LegalizedNodes.end()) return I->second;
SDNode* Node = Op.getNode();
// Legalize the operands
SmallVector<SDValue, 8> Ops;
for (const SDValue &Op : Node->op_values())
Ops.push_back(LegalizeOp(Op));
SDValue Result = SDValue(DAG.UpdateNodeOperands(Op.getNode(), Ops), 0);
bool HasVectorValue = false;
if (Op.getOpcode() == ISD::LOAD) {
LoadSDNode *LD = cast<LoadSDNode>(Op.getNode());
ISD::LoadExtType ExtType = LD->getExtensionType();
[x86] Make vector legalization of extloads work more like the "normal" vector operation legalization with support for custom target lowering and fallback to expand when it fails, and use this to implement sext and anyext load lowering for x86 in a more principled way. Previously, the x86 backend relied on a target DAG combine to "combine away" sextload and extload nodes prior to legalization, or would expand them during legalization with terrible code. This is particularly problematic because the DAG combine relies on running over non-canonical DAG nodes at just the right time to match several common and important patterns. It used a combine rather than lowering because we didn't have good lowering support, and to expose some tricks being employed to more combine phases. With this change it becomes a proper lowering operation, the backend marks that it can lower these nodes, and I've added support for handling the canonical forms that don't have direct legal representations such as sextload of a v4i8 -> v4i64 on AVX1. With this change, our test cases for this behavior continue to pass even after the DAG combiner beigns running more systematically over every node. There is some noise caused by this in the test suite where we actually use vector extends instead of subregister extraction. This doesn't really seem like the right thing to do, but is unlikely to be a critical regression. We do regress in one case where by lowering to the target-specific patterns early we were able to combine away extraneous legal math nodes. However, this regression is completely addressed by switching to a widening based legalization which is what I'm working toward anyways, so I've just switched the test to that mode. Differential Revision: http://reviews.llvm.org/D4654 llvm-svn: 213897
2014-07-25 06:09:56 +08:00
if (LD->getMemoryVT().isVector() && ExtType != ISD::NON_EXTLOAD)
switch (TLI.getLoadExtAction(LD->getExtensionType(), LD->getValueType(0),
LD->getMemoryVT())) {
[x86] Make vector legalization of extloads work more like the "normal" vector operation legalization with support for custom target lowering and fallback to expand when it fails, and use this to implement sext and anyext load lowering for x86 in a more principled way. Previously, the x86 backend relied on a target DAG combine to "combine away" sextload and extload nodes prior to legalization, or would expand them during legalization with terrible code. This is particularly problematic because the DAG combine relies on running over non-canonical DAG nodes at just the right time to match several common and important patterns. It used a combine rather than lowering because we didn't have good lowering support, and to expose some tricks being employed to more combine phases. With this change it becomes a proper lowering operation, the backend marks that it can lower these nodes, and I've added support for handling the canonical forms that don't have direct legal representations such as sextload of a v4i8 -> v4i64 on AVX1. With this change, our test cases for this behavior continue to pass even after the DAG combiner beigns running more systematically over every node. There is some noise caused by this in the test suite where we actually use vector extends instead of subregister extraction. This doesn't really seem like the right thing to do, but is unlikely to be a critical regression. We do regress in one case where by lowering to the target-specific patterns early we were able to combine away extraneous legal math nodes. However, this regression is completely addressed by switching to a widening based legalization which is what I'm working toward anyways, so I've just switched the test to that mode. Differential Revision: http://reviews.llvm.org/D4654 llvm-svn: 213897
2014-07-25 06:09:56 +08:00
default: llvm_unreachable("This action is not supported yet!");
case TargetLowering::Legal:
return TranslateLegalizeResults(Op, Result);
[x86] Make vector legalization of extloads work more like the "normal" vector operation legalization with support for custom target lowering and fallback to expand when it fails, and use this to implement sext and anyext load lowering for x86 in a more principled way. Previously, the x86 backend relied on a target DAG combine to "combine away" sextload and extload nodes prior to legalization, or would expand them during legalization with terrible code. This is particularly problematic because the DAG combine relies on running over non-canonical DAG nodes at just the right time to match several common and important patterns. It used a combine rather than lowering because we didn't have good lowering support, and to expose some tricks being employed to more combine phases. With this change it becomes a proper lowering operation, the backend marks that it can lower these nodes, and I've added support for handling the canonical forms that don't have direct legal representations such as sextload of a v4i8 -> v4i64 on AVX1. With this change, our test cases for this behavior continue to pass even after the DAG combiner beigns running more systematically over every node. There is some noise caused by this in the test suite where we actually use vector extends instead of subregister extraction. This doesn't really seem like the right thing to do, but is unlikely to be a critical regression. We do regress in one case where by lowering to the target-specific patterns early we were able to combine away extraneous legal math nodes. However, this regression is completely addressed by switching to a widening based legalization which is what I'm working toward anyways, so I've just switched the test to that mode. Differential Revision: http://reviews.llvm.org/D4654 llvm-svn: 213897
2014-07-25 06:09:56 +08:00
case TargetLowering::Custom:
if (SDValue Lowered = TLI.LowerOperation(Result, DAG)) {
if (Lowered == Result)
return TranslateLegalizeResults(Op, Lowered);
[x86] Make vector legalization of extloads work more like the "normal" vector operation legalization with support for custom target lowering and fallback to expand when it fails, and use this to implement sext and anyext load lowering for x86 in a more principled way. Previously, the x86 backend relied on a target DAG combine to "combine away" sextload and extload nodes prior to legalization, or would expand them during legalization with terrible code. This is particularly problematic because the DAG combine relies on running over non-canonical DAG nodes at just the right time to match several common and important patterns. It used a combine rather than lowering because we didn't have good lowering support, and to expose some tricks being employed to more combine phases. With this change it becomes a proper lowering operation, the backend marks that it can lower these nodes, and I've added support for handling the canonical forms that don't have direct legal representations such as sextload of a v4i8 -> v4i64 on AVX1. With this change, our test cases for this behavior continue to pass even after the DAG combiner beigns running more systematically over every node. There is some noise caused by this in the test suite where we actually use vector extends instead of subregister extraction. This doesn't really seem like the right thing to do, but is unlikely to be a critical regression. We do regress in one case where by lowering to the target-specific patterns early we were able to combine away extraneous legal math nodes. However, this regression is completely addressed by switching to a widening based legalization which is what I'm working toward anyways, so I've just switched the test to that mode. Differential Revision: http://reviews.llvm.org/D4654 llvm-svn: 213897
2014-07-25 06:09:56 +08:00
Changed = true;
if (Lowered->getNumValues() != Op->getNumValues()) {
// This expanded to something other than the load. Assume the
// lowering code took care of any chain values, and just handle the
// returned value.
assert(Result.getValue(1).use_empty() &&
"There are still live users of the old chain!");
return LegalizeOp(Lowered);
} else {
return TranslateLegalizeResults(Op, Lowered);
}
}
case TargetLowering::Expand:
Changed = true;
return LegalizeOp(ExpandLoad(Op));
}
} else if (Op.getOpcode() == ISD::STORE) {
StoreSDNode *ST = cast<StoreSDNode>(Op.getNode());
EVT StVT = ST->getMemoryVT();
MVT ValVT = ST->getValue().getSimpleValueType();
if (StVT.isVector() && ST->isTruncatingStore())
switch (TLI.getTruncStoreAction(ValVT, StVT.getSimpleVT())) {
default: llvm_unreachable("This action is not supported yet!");
case TargetLowering::Legal:
return TranslateLegalizeResults(Op, Result);
case TargetLowering::Custom: {
SDValue Lowered = TLI.LowerOperation(Result, DAG);
Changed = Lowered != Result;
return TranslateLegalizeResults(Op, Lowered);
}
case TargetLowering::Expand:
Changed = true;
return LegalizeOp(ExpandStore(Op));
}
} else if (Op.getOpcode() == ISD::MSCATTER)
HasVectorValue = true;
for (SDNode::value_iterator J = Node->value_begin(), E = Node->value_end();
J != E;
++J)
HasVectorValue |= J->isVector();
if (!HasVectorValue)
return TranslateLegalizeResults(Op, Result);
EVT QueryType;
switch (Op.getOpcode()) {
default:
return TranslateLegalizeResults(Op, Result);
case ISD::ADD:
case ISD::SUB:
case ISD::MUL:
case ISD::SDIV:
case ISD::UDIV:
case ISD::SREM:
case ISD::UREM:
case ISD::FADD:
case ISD::FSUB:
case ISD::FMUL:
case ISD::FDIV:
case ISD::FREM:
case ISD::AND:
case ISD::OR:
case ISD::XOR:
case ISD::SHL:
case ISD::SRA:
case ISD::SRL:
case ISD::ROTL:
case ISD::ROTR:
case ISD::BSWAP:
case ISD::CTLZ:
case ISD::CTTZ:
case ISD::CTLZ_ZERO_UNDEF:
case ISD::CTTZ_ZERO_UNDEF:
case ISD::CTPOP:
case ISD::SELECT:
case ISD::VSELECT:
case ISD::SELECT_CC:
case ISD::SETCC:
case ISD::ZERO_EXTEND:
case ISD::ANY_EXTEND:
case ISD::TRUNCATE:
case ISD::SIGN_EXTEND:
case ISD::FP_TO_SINT:
case ISD::FP_TO_UINT:
case ISD::FNEG:
case ISD::FABS:
case ISD::FMINNUM:
case ISD::FMAXNUM:
case ISD::FMINNAN:
case ISD::FMAXNAN:
case ISD::FCOPYSIGN:
case ISD::FSQRT:
case ISD::FSIN:
case ISD::FCOS:
case ISD::FPOWI:
case ISD::FPOW:
case ISD::FLOG:
case ISD::FLOG2:
case ISD::FLOG10:
case ISD::FEXP:
case ISD::FEXP2:
case ISD::FCEIL:
case ISD::FTRUNC:
case ISD::FRINT:
case ISD::FNEARBYINT:
case ISD::FROUND:
case ISD::FFLOOR:
case ISD::FP_ROUND:
case ISD::FP_EXTEND:
case ISD::FMA:
case ISD::SIGN_EXTEND_INREG:
case ISD::ANY_EXTEND_VECTOR_INREG:
case ISD::SIGN_EXTEND_VECTOR_INREG:
[x86] Add a ZERO_EXTEND_VECTOR_INREG DAG node and use it when widening vector types to be legal and a ZERO_EXTEND node is encountered. When we use widening to legalize vector types, extend nodes are a real challenge. Either the input or output is likely to be legal, but in many cases not both. As a consequence, we don't really have any way to represent this situation and the prior code in the widening legalization framework would just scalarize the extend operation completely. This patch introduces a new DAG node to represent doing a zero extend of a vector "in register". The core of the idea is to allow legal but different vector types in the input and output. The output vector must have fewer lanes but wider elements. The operation is defined to zero extend the low elements of the input to the size of the output elements, and drop all of the high elements which don't have a corresponding lane in the output vector. It also includes generic expansion of this node in terms of blending a zero vector into the high elements of the vector and bitcasting across. This in turn yields extremely nice code for x86 SSE2 when we use the new widening legalization logic in conjunction with the new shuffle lowering logic. There is still more to do here. We need to support sign extension, any extension, and potentially int-to-float conversions. My current plan is to continue using similar synthetic nodes to model each of these transitions with generic lowering code for each one. However, with this patch LLVM already reaches performance parity with GCC for the core C loops of the x264 code (assuming you disable the hand-written assembly versions) when compiling for SSE2 and SSE3 architectures and enabling the new widening and lowering logic for vectors. Differential Revision: http://reviews.llvm.org/D4405 llvm-svn: 212610
2014-07-09 18:58:18 +08:00
case ISD::ZERO_EXTEND_VECTOR_INREG:
case ISD::SMIN:
case ISD::SMAX:
case ISD::UMIN:
case ISD::UMAX:
case ISD::UABSDIFF:
case ISD::SABSDIFF:
QueryType = Node->getValueType(0);
break;
case ISD::FP_ROUND_INREG:
QueryType = cast<VTSDNode>(Node->getOperand(1))->getVT();
break;
case ISD::SINT_TO_FP:
case ISD::UINT_TO_FP:
QueryType = Node->getOperand(0).getValueType();
break;
case ISD::MSCATTER:
QueryType = cast<MaskedScatterSDNode>(Node)->getValue().getValueType();
break;
}
switch (TLI.getOperationAction(Node->getOpcode(), QueryType)) {
case TargetLowering::Promote:
Result = Promote(Op);
Changed = true;
break;
case TargetLowering::Legal:
break;
case TargetLowering::Custom: {
SDValue Tmp1 = TLI.LowerOperation(Op, DAG);
if (Tmp1.getNode()) {
Result = Tmp1;
break;
}
// FALL THROUGH
}
case TargetLowering::Expand:
Result = Expand(Op);
}
// Make sure that the generated code is itself legal.
if (Result != Op) {
Result = LegalizeOp(Result);
Changed = true;
}
// Note that LegalizeOp may be reentered even from single-use nodes, which
// means that we always must cache transformed nodes.
AddLegalizedOperand(Op, Result);
return Result;
}
SDValue VectorLegalizer::Promote(SDValue Op) {
// For a few operations there is a specific concept for promotion based on
// the operand's type.
switch (Op.getOpcode()) {
case ISD::SINT_TO_FP:
case ISD::UINT_TO_FP:
// "Promote" the operation by extending the operand.
return PromoteINT_TO_FP(Op);
case ISD::FP_TO_UINT:
case ISD::FP_TO_SINT:
// Promote the operation by extending the operand.
return PromoteFP_TO_INT(Op, Op->getOpcode() == ISD::FP_TO_SINT);
}
// There are currently two cases of vector promotion:
// 1) Bitcasting a vector of integers to a different type to a vector of the
// same overall length. For example, x86 promotes ISD::AND v2i32 to v1i64.
// 2) Extending a vector of floats to a vector of the same number of larger
// floats. For example, AArch64 promotes ISD::FADD on v4f16 to v4f32.
MVT VT = Op.getSimpleValueType();
assert(Op.getNode()->getNumValues() == 1 &&
"Can't promote a vector with multiple results!");
MVT NVT = TLI.getTypeToPromoteTo(Op.getOpcode(), VT);
SDLoc dl(Op);
SmallVector<SDValue, 4> Operands(Op.getNumOperands());
for (unsigned j = 0; j != Op.getNumOperands(); ++j) {
if (Op.getOperand(j).getValueType().isVector())
if (Op.getOperand(j)
.getValueType()
.getVectorElementType()
.isFloatingPoint() &&
NVT.isVector() && NVT.getVectorElementType().isFloatingPoint())
Operands[j] = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Op.getOperand(j));
else
Operands[j] = DAG.getNode(ISD::BITCAST, dl, NVT, Op.getOperand(j));
else
Operands[j] = Op.getOperand(j);
}
Op = DAG.getNode(Op.getOpcode(), dl, NVT, Operands, Op.getNode()->getFlags());
if ((VT.isFloatingPoint() && NVT.isFloatingPoint()) ||
(VT.isVector() && VT.getVectorElementType().isFloatingPoint() &&
NVT.isVector() && NVT.getVectorElementType().isFloatingPoint()))
return DAG.getNode(ISD::FP_ROUND, dl, VT, Op, DAG.getIntPtrConstant(0, dl));
else
return DAG.getNode(ISD::BITCAST, dl, VT, Op);
}
SDValue VectorLegalizer::PromoteINT_TO_FP(SDValue Op) {
// INT_TO_FP operations may require the input operand be promoted even
// when the type is otherwise legal.
EVT VT = Op.getOperand(0).getValueType();
assert(Op.getNode()->getNumValues() == 1 &&
"Can't promote a vector with multiple results!");
// Normal getTypeToPromoteTo() doesn't work here, as that will promote
// by widening the vector w/ the same element width and twice the number
// of elements. We want the other way around, the same number of elements,
// each twice the width.
//
// Increase the bitwidth of the element to the next pow-of-two
// (which is greater than 8 bits).
EVT NVT = VT.widenIntegerVectorElementType(*DAG.getContext());
assert(NVT.isSimple() && "Promoting to a non-simple vector type!");
SDLoc dl(Op);
SmallVector<SDValue, 4> Operands(Op.getNumOperands());
unsigned Opc = Op.getOpcode() == ISD::UINT_TO_FP ? ISD::ZERO_EXTEND :
ISD::SIGN_EXTEND;
for (unsigned j = 0; j != Op.getNumOperands(); ++j) {
if (Op.getOperand(j).getValueType().isVector())
Operands[j] = DAG.getNode(Opc, dl, NVT, Op.getOperand(j));
else
Operands[j] = Op.getOperand(j);
}
return DAG.getNode(Op.getOpcode(), dl, Op.getValueType(), Operands);
}
// For FP_TO_INT we promote the result type to a vector type with wider
// elements and then truncate the result. This is different from the default
// PromoteVector which uses bitcast to promote thus assumning that the
// promoted vector type has the same overall size.
SDValue VectorLegalizer::PromoteFP_TO_INT(SDValue Op, bool isSigned) {
assert(Op.getNode()->getNumValues() == 1 &&
"Can't promote a vector with multiple results!");
EVT VT = Op.getValueType();
EVT NewVT;
unsigned NewOpc;
while (1) {
NewVT = VT.widenIntegerVectorElementType(*DAG.getContext());
assert(NewVT.isSimple() && "Promoting to a non-simple vector type!");
if (TLI.isOperationLegalOrCustom(ISD::FP_TO_SINT, NewVT)) {
NewOpc = ISD::FP_TO_SINT;
break;
}
if (!isSigned && TLI.isOperationLegalOrCustom(ISD::FP_TO_UINT, NewVT)) {
NewOpc = ISD::FP_TO_UINT;
break;
}
}
SDLoc loc(Op);
SDValue promoted = DAG.getNode(NewOpc, SDLoc(Op), NewVT, Op.getOperand(0));
return DAG.getNode(ISD::TRUNCATE, SDLoc(Op), VT, promoted);
}
SDValue VectorLegalizer::ExpandLoad(SDValue Op) {
SDLoc dl(Op);
LoadSDNode *LD = cast<LoadSDNode>(Op.getNode());
SDValue Chain = LD->getChain();
SDValue BasePTR = LD->getBasePtr();
EVT SrcVT = LD->getMemoryVT();
ISD::LoadExtType ExtType = LD->getExtensionType();
SmallVector<SDValue, 8> Vals;
SmallVector<SDValue, 8> LoadChains;
unsigned NumElem = SrcVT.getVectorNumElements();
EVT SrcEltVT = SrcVT.getScalarType();
EVT DstEltVT = Op.getNode()->getValueType(0).getScalarType();
if (SrcVT.getVectorNumElements() > 1 && !SrcEltVT.isByteSized()) {
// When elements in a vector is not byte-addressable, we cannot directly
// load each element by advancing pointer, which could only address bytes.
// Instead, we load all significant words, mask bits off, and concatenate
// them to form each element. Finally, they are extended to destination
// scalar type to build the destination vector.
EVT WideVT = TLI.getPointerTy(DAG.getDataLayout());
assert(WideVT.isRound() &&
"Could not handle the sophisticated case when the widest integer is"
" not power of 2.");
assert(WideVT.bitsGE(SrcEltVT) &&
"Type is not legalized?");
unsigned WideBytes = WideVT.getStoreSize();
unsigned Offset = 0;
unsigned RemainingBytes = SrcVT.getStoreSize();
SmallVector<SDValue, 8> LoadVals;
while (RemainingBytes > 0) {
SDValue ScalarLoad;
unsigned LoadBytes = WideBytes;
if (RemainingBytes >= LoadBytes) {
ScalarLoad = DAG.getLoad(WideVT, dl, Chain, BasePTR,
LD->getPointerInfo().getWithOffset(Offset),
LD->isVolatile(), LD->isNonTemporal(),
LD->isInvariant(),
MinAlign(LD->getAlignment(), Offset),
LD->getAAInfo());
} else {
EVT LoadVT = WideVT;
while (RemainingBytes < LoadBytes) {
LoadBytes >>= 1; // Reduce the load size by half.
LoadVT = EVT::getIntegerVT(*DAG.getContext(), LoadBytes << 3);
}
ScalarLoad = DAG.getExtLoad(ISD::EXTLOAD, dl, WideVT, Chain, BasePTR,
LD->getPointerInfo().getWithOffset(Offset),
LoadVT, LD->isVolatile(),
LD->isNonTemporal(), LD->isInvariant(),
MinAlign(LD->getAlignment(), Offset),
LD->getAAInfo());
}
RemainingBytes -= LoadBytes;
Offset += LoadBytes;
BasePTR = DAG.getNode(ISD::ADD, dl, BasePTR.getValueType(), BasePTR,
DAG.getConstant(LoadBytes, dl,
BasePTR.getValueType()));
LoadVals.push_back(ScalarLoad.getValue(0));
LoadChains.push_back(ScalarLoad.getValue(1));
}
// Extract bits, pack and extend/trunc them into destination type.
unsigned SrcEltBits = SrcEltVT.getSizeInBits();
SDValue SrcEltBitMask = DAG.getConstant((1U << SrcEltBits) - 1, dl, WideVT);
unsigned BitOffset = 0;
unsigned WideIdx = 0;
unsigned WideBits = WideVT.getSizeInBits();
for (unsigned Idx = 0; Idx != NumElem; ++Idx) {
SDValue Lo, Hi, ShAmt;
if (BitOffset < WideBits) {
ShAmt = DAG.getConstant(
BitOffset, dl, TLI.getShiftAmountTy(WideVT, DAG.getDataLayout()));
Lo = DAG.getNode(ISD::SRL, dl, WideVT, LoadVals[WideIdx], ShAmt);
Lo = DAG.getNode(ISD::AND, dl, WideVT, Lo, SrcEltBitMask);
}
BitOffset += SrcEltBits;
if (BitOffset >= WideBits) {
WideIdx++;
BitOffset -= WideBits;
if (BitOffset > 0) {
ShAmt = DAG.getConstant(
SrcEltBits - BitOffset, dl,
TLI.getShiftAmountTy(WideVT, DAG.getDataLayout()));
Hi = DAG.getNode(ISD::SHL, dl, WideVT, LoadVals[WideIdx], ShAmt);
Hi = DAG.getNode(ISD::AND, dl, WideVT, Hi, SrcEltBitMask);
}
}
if (Hi.getNode())
Lo = DAG.getNode(ISD::OR, dl, WideVT, Lo, Hi);
switch (ExtType) {
default: llvm_unreachable("Unknown extended-load op!");
case ISD::EXTLOAD:
Lo = DAG.getAnyExtOrTrunc(Lo, dl, DstEltVT);
break;
case ISD::ZEXTLOAD:
Lo = DAG.getZExtOrTrunc(Lo, dl, DstEltVT);
break;
case ISD::SEXTLOAD:
ShAmt =
DAG.getConstant(WideBits - SrcEltBits, dl,
TLI.getShiftAmountTy(WideVT, DAG.getDataLayout()));
Lo = DAG.getNode(ISD::SHL, dl, WideVT, Lo, ShAmt);
Lo = DAG.getNode(ISD::SRA, dl, WideVT, Lo, ShAmt);
Lo = DAG.getSExtOrTrunc(Lo, dl, DstEltVT);
break;
}
Vals.push_back(Lo);
}
} else {
unsigned Stride = SrcVT.getScalarType().getSizeInBits()/8;
for (unsigned Idx=0; Idx<NumElem; Idx++) {
SDValue ScalarLoad = DAG.getExtLoad(ExtType, dl,
Op.getNode()->getValueType(0).getScalarType(),
Chain, BasePTR, LD->getPointerInfo().getWithOffset(Idx * Stride),
SrcVT.getScalarType(),
LD->isVolatile(), LD->isNonTemporal(), LD->isInvariant(),
MinAlign(LD->getAlignment(), Idx * Stride), LD->getAAInfo());
BasePTR = DAG.getNode(ISD::ADD, dl, BasePTR.getValueType(), BasePTR,
DAG.getConstant(Stride, dl, BasePTR.getValueType()));
Vals.push_back(ScalarLoad.getValue(0));
LoadChains.push_back(ScalarLoad.getValue(1));
}
}
SDValue NewChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
SDValue Value = DAG.getNode(ISD::BUILD_VECTOR, dl,
Op.getNode()->getValueType(0), Vals);
AddLegalizedOperand(Op.getValue(0), Value);
AddLegalizedOperand(Op.getValue(1), NewChain);
return (Op.getResNo() ? NewChain : Value);
}
SDValue VectorLegalizer::ExpandStore(SDValue Op) {
SDLoc dl(Op);
StoreSDNode *ST = cast<StoreSDNode>(Op.getNode());
SDValue Chain = ST->getChain();
SDValue BasePTR = ST->getBasePtr();
SDValue Value = ST->getValue();
EVT StVT = ST->getMemoryVT();
unsigned Alignment = ST->getAlignment();
bool isVolatile = ST->isVolatile();
bool isNonTemporal = ST->isNonTemporal();
AAMDNodes AAInfo = ST->getAAInfo();
unsigned NumElem = StVT.getVectorNumElements();
// The type of the data we want to save
EVT RegVT = Value.getValueType();
EVT RegSclVT = RegVT.getScalarType();
// The type of data as saved in memory.
EVT MemSclVT = StVT.getScalarType();
// Cast floats into integers
unsigned ScalarSize = MemSclVT.getSizeInBits();
// Round odd types to the next pow of two.
if (!isPowerOf2_32(ScalarSize))
ScalarSize = NextPowerOf2(ScalarSize);
// Store Stride in bytes
unsigned Stride = ScalarSize/8;
// Extract each of the elements from the original vector
// and save them into memory individually.
SmallVector<SDValue, 8> Stores;
for (unsigned Idx = 0; Idx < NumElem; Idx++) {
SDValue Ex = DAG.getNode(
ISD::EXTRACT_VECTOR_ELT, dl, RegSclVT, Value,
DAG.getConstant(Idx, dl, TLI.getVectorIdxTy(DAG.getDataLayout())));
// This scalar TruncStore may be illegal, but we legalize it later.
SDValue Store = DAG.getTruncStore(Chain, dl, Ex, BasePTR,
ST->getPointerInfo().getWithOffset(Idx*Stride), MemSclVT,
isVolatile, isNonTemporal, MinAlign(Alignment, Idx*Stride),
AAInfo);
BasePTR = DAG.getNode(ISD::ADD, dl, BasePTR.getValueType(), BasePTR,
DAG.getConstant(Stride, dl, BasePTR.getValueType()));
Stores.push_back(Store);
}
SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
AddLegalizedOperand(Op, TF);
return TF;
}
SDValue VectorLegalizer::Expand(SDValue Op) {
switch (Op->getOpcode()) {
case ISD::SIGN_EXTEND_INREG:
return ExpandSEXTINREG(Op);
case ISD::ANY_EXTEND_VECTOR_INREG:
return ExpandANY_EXTEND_VECTOR_INREG(Op);
case ISD::SIGN_EXTEND_VECTOR_INREG:
return ExpandSIGN_EXTEND_VECTOR_INREG(Op);
[x86] Add a ZERO_EXTEND_VECTOR_INREG DAG node and use it when widening vector types to be legal and a ZERO_EXTEND node is encountered. When we use widening to legalize vector types, extend nodes are a real challenge. Either the input or output is likely to be legal, but in many cases not both. As a consequence, we don't really have any way to represent this situation and the prior code in the widening legalization framework would just scalarize the extend operation completely. This patch introduces a new DAG node to represent doing a zero extend of a vector "in register". The core of the idea is to allow legal but different vector types in the input and output. The output vector must have fewer lanes but wider elements. The operation is defined to zero extend the low elements of the input to the size of the output elements, and drop all of the high elements which don't have a corresponding lane in the output vector. It also includes generic expansion of this node in terms of blending a zero vector into the high elements of the vector and bitcasting across. This in turn yields extremely nice code for x86 SSE2 when we use the new widening legalization logic in conjunction with the new shuffle lowering logic. There is still more to do here. We need to support sign extension, any extension, and potentially int-to-float conversions. My current plan is to continue using similar synthetic nodes to model each of these transitions with generic lowering code for each one. However, with this patch LLVM already reaches performance parity with GCC for the core C loops of the x264 code (assuming you disable the hand-written assembly versions) when compiling for SSE2 and SSE3 architectures and enabling the new widening and lowering logic for vectors. Differential Revision: http://reviews.llvm.org/D4405 llvm-svn: 212610
2014-07-09 18:58:18 +08:00
case ISD::ZERO_EXTEND_VECTOR_INREG:
return ExpandZERO_EXTEND_VECTOR_INREG(Op);
case ISD::BSWAP:
return ExpandBSWAP(Op);
case ISD::VSELECT:
return ExpandVSELECT(Op);
case ISD::SELECT:
return ExpandSELECT(Op);
case ISD::UINT_TO_FP:
return ExpandUINT_TO_FLOAT(Op);
case ISD::FNEG:
return ExpandFNEG(Op);
case ISD::SETCC:
return UnrollVSETCC(Op);
case ISD::UABSDIFF:
case ISD::SABSDIFF:
return ExpandABSDIFF(Op);
default:
return DAG.UnrollVectorOp(Op.getNode());
}
}
SDValue VectorLegalizer::ExpandABSDIFF(SDValue Op) {
SDLoc dl(Op);
SDValue Op0 = Op.getOperand(0);
SDValue Op1 = Op.getOperand(1);
EVT VT = Op.getValueType();
// For unsigned intrinsic, promote the type to handle unsigned overflow.
bool isUabsdiff = (Op->getOpcode() == ISD::UABSDIFF);
if (isUabsdiff) {
VT = VT.widenIntegerVectorElementType(*DAG.getContext());
Op0 = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op0);
Op1 = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op1);
}
SDNodeFlags Flags;
Flags.setNoSignedWrap(!isUabsdiff);
SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, Op0, Op1, &Flags);
if (isUabsdiff)
return DAG.getNode(ISD::TRUNCATE, dl, Op.getValueType(), Sub);
SDValue Cmp =
DAG.getNode(ISD::SETCC, dl, TLI.getSetCCResultType(DAG.getDataLayout(),
*DAG.getContext(), VT),
Sub, DAG.getConstant(0, dl, VT), DAG.getCondCode(ISD::SETGE));
SDValue Neg = DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(0, dl, VT), Sub, &Flags);
return DAG.getNode(ISD::VSELECT, dl, VT, Cmp, Sub, Neg);
}
SDValue VectorLegalizer::ExpandSELECT(SDValue Op) {
// Lower a select instruction where the condition is a scalar and the
// operands are vectors. Lower this select to VSELECT and implement it
// using XOR AND OR. The selector bit is broadcasted.
EVT VT = Op.getValueType();
SDLoc DL(Op);
SDValue Mask = Op.getOperand(0);
SDValue Op1 = Op.getOperand(1);
SDValue Op2 = Op.getOperand(2);
assert(VT.isVector() && !Mask.getValueType().isVector()
&& Op1.getValueType() == Op2.getValueType() && "Invalid type");
unsigned NumElem = VT.getVectorNumElements();
// If we can't even use the basic vector operations of
// AND,OR,XOR, we will have to scalarize the op.
// Notice that the operation may be 'promoted' which means that it is
// 'bitcasted' to another type which is handled.
// Also, we need to be able to construct a splat vector using BUILD_VECTOR.
if (TLI.getOperationAction(ISD::AND, VT) == TargetLowering::Expand ||
TLI.getOperationAction(ISD::XOR, VT) == TargetLowering::Expand ||
TLI.getOperationAction(ISD::OR, VT) == TargetLowering::Expand ||
TLI.getOperationAction(ISD::BUILD_VECTOR, VT) == TargetLowering::Expand)
return DAG.UnrollVectorOp(Op.getNode());
// Generate a mask operand.
EVT MaskTy = VT.changeVectorElementTypeToInteger();
// What is the size of each element in the vector mask.
EVT BitTy = MaskTy.getScalarType();
Mask = DAG.getSelect(DL, BitTy, Mask,
DAG.getConstant(APInt::getAllOnesValue(BitTy.getSizeInBits()), DL,
BitTy),
DAG.getConstant(0, DL, BitTy));
// Broadcast the mask so that the entire vector is all-one or all zero.
SmallVector<SDValue, 8> Ops(NumElem, Mask);
Mask = DAG.getNode(ISD::BUILD_VECTOR, DL, MaskTy, Ops);
// Bitcast the operands to be the same type as the mask.
// This is needed when we select between FP types because
// the mask is a vector of integers.
Op1 = DAG.getNode(ISD::BITCAST, DL, MaskTy, Op1);
Op2 = DAG.getNode(ISD::BITCAST, DL, MaskTy, Op2);
SDValue AllOnes = DAG.getConstant(
APInt::getAllOnesValue(BitTy.getSizeInBits()), DL, MaskTy);
SDValue NotMask = DAG.getNode(ISD::XOR, DL, MaskTy, Mask, AllOnes);
Op1 = DAG.getNode(ISD::AND, DL, MaskTy, Op1, Mask);
Op2 = DAG.getNode(ISD::AND, DL, MaskTy, Op2, NotMask);
SDValue Val = DAG.getNode(ISD::OR, DL, MaskTy, Op1, Op2);
return DAG.getNode(ISD::BITCAST, DL, Op.getValueType(), Val);
}
SDValue VectorLegalizer::ExpandSEXTINREG(SDValue Op) {
EVT VT = Op.getValueType();
// Make sure that the SRA and SHL instructions are available.
if (TLI.getOperationAction(ISD::SRA, VT) == TargetLowering::Expand ||
TLI.getOperationAction(ISD::SHL, VT) == TargetLowering::Expand)
return DAG.UnrollVectorOp(Op.getNode());
SDLoc DL(Op);
EVT OrigTy = cast<VTSDNode>(Op->getOperand(1))->getVT();
unsigned BW = VT.getScalarType().getSizeInBits();
unsigned OrigBW = OrigTy.getScalarType().getSizeInBits();
SDValue ShiftSz = DAG.getConstant(BW - OrigBW, DL, VT);
Op = Op.getOperand(0);
Op = DAG.getNode(ISD::SHL, DL, VT, Op, ShiftSz);
return DAG.getNode(ISD::SRA, DL, VT, Op, ShiftSz);
}
// Generically expand a vector anyext in register to a shuffle of the relevant
// lanes into the appropriate locations, with other lanes left undef.
SDValue VectorLegalizer::ExpandANY_EXTEND_VECTOR_INREG(SDValue Op) {
SDLoc DL(Op);
EVT VT = Op.getValueType();
int NumElements = VT.getVectorNumElements();
SDValue Src = Op.getOperand(0);
EVT SrcVT = Src.getValueType();
int NumSrcElements = SrcVT.getVectorNumElements();
// Build a base mask of undef shuffles.
SmallVector<int, 16> ShuffleMask;
ShuffleMask.resize(NumSrcElements, -1);
// Place the extended lanes into the correct locations.
int ExtLaneScale = NumSrcElements / NumElements;
int EndianOffset = DAG.getDataLayout().isBigEndian() ? ExtLaneScale - 1 : 0;
for (int i = 0; i < NumElements; ++i)
ShuffleMask[i * ExtLaneScale + EndianOffset] = i;
return DAG.getNode(
ISD::BITCAST, DL, VT,
DAG.getVectorShuffle(SrcVT, DL, Src, DAG.getUNDEF(SrcVT), ShuffleMask));
}
SDValue VectorLegalizer::ExpandSIGN_EXTEND_VECTOR_INREG(SDValue Op) {
SDLoc DL(Op);
EVT VT = Op.getValueType();
SDValue Src = Op.getOperand(0);
EVT SrcVT = Src.getValueType();
// First build an any-extend node which can be legalized above when we
// recurse through it.
Op = DAG.getAnyExtendVectorInReg(Src, DL, VT);
// Now we need sign extend. Do this by shifting the elements. Even if these
// aren't legal operations, they have a better chance of being legalized
// without full scalarization than the sign extension does.
unsigned EltWidth = VT.getVectorElementType().getSizeInBits();
unsigned SrcEltWidth = SrcVT.getVectorElementType().getSizeInBits();
SDValue ShiftAmount = DAG.getConstant(EltWidth - SrcEltWidth, DL, VT);
return DAG.getNode(ISD::SRA, DL, VT,
DAG.getNode(ISD::SHL, DL, VT, Op, ShiftAmount),
ShiftAmount);
}
[x86] Add a ZERO_EXTEND_VECTOR_INREG DAG node and use it when widening vector types to be legal and a ZERO_EXTEND node is encountered. When we use widening to legalize vector types, extend nodes are a real challenge. Either the input or output is likely to be legal, but in many cases not both. As a consequence, we don't really have any way to represent this situation and the prior code in the widening legalization framework would just scalarize the extend operation completely. This patch introduces a new DAG node to represent doing a zero extend of a vector "in register". The core of the idea is to allow legal but different vector types in the input and output. The output vector must have fewer lanes but wider elements. The operation is defined to zero extend the low elements of the input to the size of the output elements, and drop all of the high elements which don't have a corresponding lane in the output vector. It also includes generic expansion of this node in terms of blending a zero vector into the high elements of the vector and bitcasting across. This in turn yields extremely nice code for x86 SSE2 when we use the new widening legalization logic in conjunction with the new shuffle lowering logic. There is still more to do here. We need to support sign extension, any extension, and potentially int-to-float conversions. My current plan is to continue using similar synthetic nodes to model each of these transitions with generic lowering code for each one. However, with this patch LLVM already reaches performance parity with GCC for the core C loops of the x264 code (assuming you disable the hand-written assembly versions) when compiling for SSE2 and SSE3 architectures and enabling the new widening and lowering logic for vectors. Differential Revision: http://reviews.llvm.org/D4405 llvm-svn: 212610
2014-07-09 18:58:18 +08:00
// Generically expand a vector zext in register to a shuffle of the relevant
// lanes into the appropriate locations, a blend of zero into the high bits,
// and a bitcast to the wider element type.
SDValue VectorLegalizer::ExpandZERO_EXTEND_VECTOR_INREG(SDValue Op) {
SDLoc DL(Op);
EVT VT = Op.getValueType();
int NumElements = VT.getVectorNumElements();
SDValue Src = Op.getOperand(0);
EVT SrcVT = Src.getValueType();
int NumSrcElements = SrcVT.getVectorNumElements();
// Build up a zero vector to blend into this one.
EVT SrcScalarVT = SrcVT.getScalarType();
SDValue ScalarZero = DAG.getTargetConstant(0, DL, SrcScalarVT);
[x86] Add a ZERO_EXTEND_VECTOR_INREG DAG node and use it when widening vector types to be legal and a ZERO_EXTEND node is encountered. When we use widening to legalize vector types, extend nodes are a real challenge. Either the input or output is likely to be legal, but in many cases not both. As a consequence, we don't really have any way to represent this situation and the prior code in the widening legalization framework would just scalarize the extend operation completely. This patch introduces a new DAG node to represent doing a zero extend of a vector "in register". The core of the idea is to allow legal but different vector types in the input and output. The output vector must have fewer lanes but wider elements. The operation is defined to zero extend the low elements of the input to the size of the output elements, and drop all of the high elements which don't have a corresponding lane in the output vector. It also includes generic expansion of this node in terms of blending a zero vector into the high elements of the vector and bitcasting across. This in turn yields extremely nice code for x86 SSE2 when we use the new widening legalization logic in conjunction with the new shuffle lowering logic. There is still more to do here. We need to support sign extension, any extension, and potentially int-to-float conversions. My current plan is to continue using similar synthetic nodes to model each of these transitions with generic lowering code for each one. However, with this patch LLVM already reaches performance parity with GCC for the core C loops of the x264 code (assuming you disable the hand-written assembly versions) when compiling for SSE2 and SSE3 architectures and enabling the new widening and lowering logic for vectors. Differential Revision: http://reviews.llvm.org/D4405 llvm-svn: 212610
2014-07-09 18:58:18 +08:00
SmallVector<SDValue, 4> BuildVectorOperands(NumSrcElements, ScalarZero);
SDValue Zero = DAG.getNode(ISD::BUILD_VECTOR, DL, SrcVT, BuildVectorOperands);
// Shuffle the incoming lanes into the correct position, and pull all other
// lanes from the zero vector.
SmallVector<int, 16> ShuffleMask;
ShuffleMask.reserve(NumSrcElements);
for (int i = 0; i < NumSrcElements; ++i)
ShuffleMask.push_back(i);
int ExtLaneScale = NumSrcElements / NumElements;
int EndianOffset = DAG.getDataLayout().isBigEndian() ? ExtLaneScale - 1 : 0;
[x86] Add a ZERO_EXTEND_VECTOR_INREG DAG node and use it when widening vector types to be legal and a ZERO_EXTEND node is encountered. When we use widening to legalize vector types, extend nodes are a real challenge. Either the input or output is likely to be legal, but in many cases not both. As a consequence, we don't really have any way to represent this situation and the prior code in the widening legalization framework would just scalarize the extend operation completely. This patch introduces a new DAG node to represent doing a zero extend of a vector "in register". The core of the idea is to allow legal but different vector types in the input and output. The output vector must have fewer lanes but wider elements. The operation is defined to zero extend the low elements of the input to the size of the output elements, and drop all of the high elements which don't have a corresponding lane in the output vector. It also includes generic expansion of this node in terms of blending a zero vector into the high elements of the vector and bitcasting across. This in turn yields extremely nice code for x86 SSE2 when we use the new widening legalization logic in conjunction with the new shuffle lowering logic. There is still more to do here. We need to support sign extension, any extension, and potentially int-to-float conversions. My current plan is to continue using similar synthetic nodes to model each of these transitions with generic lowering code for each one. However, with this patch LLVM already reaches performance parity with GCC for the core C loops of the x264 code (assuming you disable the hand-written assembly versions) when compiling for SSE2 and SSE3 architectures and enabling the new widening and lowering logic for vectors. Differential Revision: http://reviews.llvm.org/D4405 llvm-svn: 212610
2014-07-09 18:58:18 +08:00
for (int i = 0; i < NumElements; ++i)
ShuffleMask[i * ExtLaneScale + EndianOffset] = NumSrcElements + i;
return DAG.getNode(ISD::BITCAST, DL, VT,
DAG.getVectorShuffle(SrcVT, DL, Zero, Src, ShuffleMask));
}
SDValue VectorLegalizer::ExpandBSWAP(SDValue Op) {
EVT VT = Op.getValueType();
// Generate a byte wise shuffle mask for the BSWAP.
SmallVector<int, 16> ShuffleMask;
int ScalarSizeInBytes = VT.getScalarSizeInBits() / 8;
for (int I = 0, E = VT.getVectorNumElements(); I != E; ++I)
for (int J = ScalarSizeInBytes - 1; J >= 0; --J)
ShuffleMask.push_back((I * ScalarSizeInBytes) + J);
EVT ByteVT = EVT::getVectorVT(*DAG.getContext(), MVT::i8, ShuffleMask.size());
// Only emit a shuffle if the mask is legal.
if (!TLI.isShuffleMaskLegal(ShuffleMask, ByteVT))
return DAG.UnrollVectorOp(Op.getNode());
SDLoc DL(Op);
Op = DAG.getNode(ISD::BITCAST, DL, ByteVT, Op.getOperand(0));
Op = DAG.getVectorShuffle(ByteVT, DL, Op, DAG.getUNDEF(ByteVT),
ShuffleMask.data());
return DAG.getNode(ISD::BITCAST, DL, VT, Op);
}
SDValue VectorLegalizer::ExpandVSELECT(SDValue Op) {
// Implement VSELECT in terms of XOR, AND, OR
// on platforms which do not support blend natively.
SDLoc DL(Op);
SDValue Mask = Op.getOperand(0);
SDValue Op1 = Op.getOperand(1);
SDValue Op2 = Op.getOperand(2);
EVT VT = Mask.getValueType();
// If we can't even use the basic vector operations of
// AND,OR,XOR, we will have to scalarize the op.
// Notice that the operation may be 'promoted' which means that it is
// 'bitcasted' to another type which is handled.
// This operation also isn't safe with AND, OR, XOR when the boolean
// type is 0/1 as we need an all ones vector constant to mask with.
// FIXME: Sign extend 1 to all ones if thats legal on the target.
if (TLI.getOperationAction(ISD::AND, VT) == TargetLowering::Expand ||
TLI.getOperationAction(ISD::XOR, VT) == TargetLowering::Expand ||
TLI.getOperationAction(ISD::OR, VT) == TargetLowering::Expand ||
TLI.getBooleanContents(Op1.getValueType()) !=
TargetLowering::ZeroOrNegativeOneBooleanContent)
return DAG.UnrollVectorOp(Op.getNode());
// If the mask and the type are different sizes, unroll the vector op. This
// can occur when getSetCCResultType returns something that is different in
// size from the operand types. For example, v4i8 = select v4i32, v4i8, v4i8.
if (VT.getSizeInBits() != Op1.getValueType().getSizeInBits())
return DAG.UnrollVectorOp(Op.getNode());
// Bitcast the operands to be the same type as the mask.
// This is needed when we select between FP types because
// the mask is a vector of integers.
Op1 = DAG.getNode(ISD::BITCAST, DL, VT, Op1);
Op2 = DAG.getNode(ISD::BITCAST, DL, VT, Op2);
SDValue AllOnes = DAG.getConstant(
APInt::getAllOnesValue(VT.getScalarType().getSizeInBits()), DL, VT);
SDValue NotMask = DAG.getNode(ISD::XOR, DL, VT, Mask, AllOnes);
Op1 = DAG.getNode(ISD::AND, DL, VT, Op1, Mask);
Op2 = DAG.getNode(ISD::AND, DL, VT, Op2, NotMask);
SDValue Val = DAG.getNode(ISD::OR, DL, VT, Op1, Op2);
return DAG.getNode(ISD::BITCAST, DL, Op.getValueType(), Val);
}
SDValue VectorLegalizer::ExpandUINT_TO_FLOAT(SDValue Op) {
EVT VT = Op.getOperand(0).getValueType();
SDLoc DL(Op);
// Make sure that the SINT_TO_FP and SRL instructions are available.
if (TLI.getOperationAction(ISD::SINT_TO_FP, VT) == TargetLowering::Expand ||
TLI.getOperationAction(ISD::SRL, VT) == TargetLowering::Expand)
return DAG.UnrollVectorOp(Op.getNode());
EVT SVT = VT.getScalarType();
assert((SVT.getSizeInBits() == 64 || SVT.getSizeInBits() == 32) &&
"Elements in vector-UINT_TO_FP must be 32 or 64 bits wide");
unsigned BW = SVT.getSizeInBits();
SDValue HalfWord = DAG.getConstant(BW/2, DL, VT);
// Constants to clear the upper part of the word.
// Notice that we can also use SHL+SHR, but using a constant is slightly
// faster on x86.
uint64_t HWMask = (SVT.getSizeInBits()==64)?0x00000000FFFFFFFF:0x0000FFFF;
SDValue HalfWordMask = DAG.getConstant(HWMask, DL, VT);
// Two to the power of half-word-size.
SDValue TWOHW = DAG.getConstantFP(1 << (BW/2), DL, Op.getValueType());
// Clear upper part of LO, lower HI
SDValue HI = DAG.getNode(ISD::SRL, DL, VT, Op.getOperand(0), HalfWord);
SDValue LO = DAG.getNode(ISD::AND, DL, VT, Op.getOperand(0), HalfWordMask);
// Convert hi and lo to floats
// Convert the hi part back to the upper values
// TODO: Can any fast-math-flags be set on these nodes?
SDValue fHI = DAG.getNode(ISD::SINT_TO_FP, DL, Op.getValueType(), HI);
fHI = DAG.getNode(ISD::FMUL, DL, Op.getValueType(), fHI, TWOHW);
SDValue fLO = DAG.getNode(ISD::SINT_TO_FP, DL, Op.getValueType(), LO);
// Add the two halves
return DAG.getNode(ISD::FADD, DL, Op.getValueType(), fHI, fLO);
}
SDValue VectorLegalizer::ExpandFNEG(SDValue Op) {
if (TLI.isOperationLegalOrCustom(ISD::FSUB, Op.getValueType())) {
SDLoc DL(Op);
SDValue Zero = DAG.getConstantFP(-0.0, DL, Op.getValueType());
// TODO: If FNEG had fast-math-flags, they'd get propagated to this FSUB.
return DAG.getNode(ISD::FSUB, DL, Op.getValueType(),
Zero, Op.getOperand(0));
}
return DAG.UnrollVectorOp(Op.getNode());
}
SDValue VectorLegalizer::UnrollVSETCC(SDValue Op) {
EVT VT = Op.getValueType();
unsigned NumElems = VT.getVectorNumElements();
EVT EltVT = VT.getVectorElementType();
SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1), CC = Op.getOperand(2);
EVT TmpEltVT = LHS.getValueType().getVectorElementType();
SDLoc dl(Op);
SmallVector<SDValue, 8> Ops(NumElems);
for (unsigned i = 0; i < NumElems; ++i) {
SDValue LHSElem = DAG.getNode(
ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, LHS,
DAG.getConstant(i, dl, TLI.getVectorIdxTy(DAG.getDataLayout())));
SDValue RHSElem = DAG.getNode(
ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, RHS,
DAG.getConstant(i, dl, TLI.getVectorIdxTy(DAG.getDataLayout())));
Ops[i] = DAG.getNode(ISD::SETCC, dl,
TLI.getSetCCResultType(DAG.getDataLayout(),
*DAG.getContext(), TmpEltVT),
LHSElem, RHSElem, CC);
Ops[i] = DAG.getSelect(dl, EltVT, Ops[i],
DAG.getConstant(APInt::getAllOnesValue
(EltVT.getSizeInBits()), dl, EltVT),
DAG.getConstant(0, dl, EltVT));
}
return DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops);
}
}
bool SelectionDAG::LegalizeVectors() {
return VectorLegalizer(*this).Run();
}