llvm-project/lld/ELF/OutputSections.cpp

1838 lines
62 KiB
C++
Raw Normal View History

//===- OutputSections.cpp -------------------------------------------------===//
//
// The LLVM Linker
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "OutputSections.h"
#include "Config.h"
#include "LinkerScript.h"
#include "SymbolTable.h"
#include "Target.h"
#include "lld/Core/Parallel.h"
#include "llvm/Support/Dwarf.h"
#include "llvm/Support/MD5.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/SHA1.h"
#include <map>
using namespace llvm;
using namespace llvm::dwarf;
using namespace llvm::object;
using namespace llvm::support::endian;
using namespace llvm::ELF;
using namespace lld;
2016-02-28 08:25:54 +08:00
using namespace lld::elf;
static bool isAlpha(char C) {
return ('a' <= C && C <= 'z') || ('A' <= C && C <= 'Z') || C == '_';
}
static bool isAlnum(char C) { return isAlpha(C) || ('0' <= C && C <= '9'); }
// Returns true if S is valid as a C language identifier.
2016-02-28 08:25:54 +08:00
bool elf::isValidCIdentifier(StringRef S) {
2016-02-26 23:42:06 +08:00
return !S.empty() && isAlpha(S[0]) &&
std::all_of(S.begin() + 1, S.end(), isAlnum);
}
template <class ELFT>
OutputSectionBase<ELFT>::OutputSectionBase(StringRef Name, uint32_t Type,
uintX_t Flags)
: Name(Name) {
memset(&Header, 0, sizeof(Elf_Shdr));
Header.sh_type = Type;
Header.sh_flags = Flags;
}
template <class ELFT>
void OutputSectionBase<ELFT>::writeHeaderTo(Elf_Shdr *Shdr) {
*Shdr = Header;
}
template <class ELFT>
GotPltSection<ELFT>::GotPltSection()
: OutputSectionBase<ELFT>(".got.plt", SHT_PROGBITS, SHF_ALLOC | SHF_WRITE) {
this->Header.sh_addralign = sizeof(uintX_t);
}
template <class ELFT> void GotPltSection<ELFT>::addEntry(SymbolBody &Sym) {
Sym.GotPltIndex = Target->GotPltHeaderEntriesNum + Entries.size();
Entries.push_back(&Sym);
}
template <class ELFT> bool GotPltSection<ELFT>::empty() const {
return Entries.empty();
}
template <class ELFT> void GotPltSection<ELFT>::finalize() {
this->Header.sh_size =
(Target->GotPltHeaderEntriesNum + Entries.size()) * sizeof(uintX_t);
}
template <class ELFT> void GotPltSection<ELFT>::writeTo(uint8_t *Buf) {
Target->writeGotPltHeader(Buf);
Buf += Target->GotPltHeaderEntriesNum * sizeof(uintX_t);
for (const SymbolBody *B : Entries) {
Target->writeGotPlt(Buf, B->getPltVA<ELFT>());
Buf += sizeof(uintX_t);
}
}
template <class ELFT>
GotSection<ELFT>::GotSection()
: OutputSectionBase<ELFT>(".got", SHT_PROGBITS, SHF_ALLOC | SHF_WRITE) {
if (Config->EMachine == EM_MIPS)
this->Header.sh_flags |= SHF_MIPS_GPREL;
this->Header.sh_addralign = sizeof(uintX_t);
}
template <class ELFT> void GotSection<ELFT>::addEntry(SymbolBody &Sym) {
if (Config->EMachine == EM_MIPS) {
// For "true" local symbols which can be referenced from the same module
// only compiler creates two instructions for address loading:
//
// lw $8, 0($gp) # R_MIPS_GOT16
// addi $8, $8, 0 # R_MIPS_LO16
//
// The first instruction loads high 16 bits of the symbol address while
// the second adds an offset. That allows to reduce number of required
// GOT entries because only one global offset table entry is necessary
// for every 64 KBytes of local data. So for local symbols we need to
// allocate number of GOT entries to hold all required "page" addresses.
//
// All global symbols (hidden and regular) considered by compiler uniformly.
// It always generates a single `lw` instruction and R_MIPS_GOT16 relocation
// to load address of the symbol. So for each such symbol we need to
// allocate dedicated GOT entry to store its address.
//
// If a symbol is preemptible we need help of dynamic linker to get its
// final address. The corresponding GOT entries are allocated in the
// "global" part of GOT. Entries for non preemptible global symbol allocated
// in the "local" part of GOT.
//
// See "Global Offset Table" in Chapter 5:
// ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
if (Sym.isLocal()) {
// At this point we do not know final symbol value so to reduce number
// of allocated GOT entries do the following trick. Save all output
// sections referenced by GOT relocations. Then later in the `finalize`
// method calculate number of "pages" required to cover all saved output
// section and allocate appropriate number of GOT entries.
auto *OutSec = cast<DefinedRegular<ELFT>>(&Sym)->Section->OutSec;
MipsOutSections.insert(OutSec);
return;
}
if (!Sym.isPreemptible()) {
// In case of non-local symbols require an entry in the local part
// of MIPS GOT, we set GotIndex to 1 just to accent that this symbol
// has the GOT entry and escape creation more redundant GOT entries.
// FIXME (simon): We can try to store such symbols in the `Entries`
// container. But in that case we have to sort out that container
// and update GotIndex assigned to symbols.
Sym.GotIndex = 1;
++MipsLocalEntries;
return;
}
}
Sym.GotIndex = Entries.size();
Entries.push_back(&Sym);
}
template <class ELFT> bool GotSection<ELFT>::addDynTlsEntry(SymbolBody &Sym) {
ELF: New symbol table design. This patch implements a new design for the symbol table that stores SymbolBodies within a memory region of the Symbol object. Symbols are mutated by constructing SymbolBodies in place over existing SymbolBodies, rather than by mutating pointers. As mentioned in the initial proposal [1], this memory layout helps reduce the cache miss rate by improving memory locality. Performance numbers: old(s) new(s) Without debug info: chrome 7.178 6.432 (-11.5%) LLVMgold.so 0.505 0.502 (-0.5%) clang 0.954 0.827 (-15.4%) llvm-as 0.052 0.045 (-15.5%) With debug info: scylla 5.695 5.613 (-1.5%) clang 14.396 14.143 (-1.8%) Performance counter results show that the fewer required indirections is indeed the cause of the improved performance. For example, when linking chrome, stalled cycles decreases from 14,556,444,002 to 12,959,238,310, and instructions per cycle increases from 0.78 to 0.83. We are also executing many fewer instructions (15,516,401,933 down to 15,002,434,310), probably because we spend less time allocating SymbolBodies. The new mechanism by which symbols are added to the symbol table is by calling add* functions on the SymbolTable. In this patch, I handle local symbols by storing them inside "unparented" SymbolBodies. This is suboptimal, but if we do want to try to avoid allocating these SymbolBodies, we can probably do that separately. I also removed a few members from the SymbolBody class that were only being used to pass information from the input file to the symbol table. This patch implements the new design for the ELF linker only. I intend to prepare a similar patch for the COFF linker. [1] http://lists.llvm.org/pipermail/llvm-dev/2016-April/098832.html Differential Revision: http://reviews.llvm.org/D19752 llvm-svn: 268178
2016-05-01 12:55:03 +08:00
if (Sym.symbol()->GlobalDynIndex != -1U)
return false;
ELF: New symbol table design. This patch implements a new design for the symbol table that stores SymbolBodies within a memory region of the Symbol object. Symbols are mutated by constructing SymbolBodies in place over existing SymbolBodies, rather than by mutating pointers. As mentioned in the initial proposal [1], this memory layout helps reduce the cache miss rate by improving memory locality. Performance numbers: old(s) new(s) Without debug info: chrome 7.178 6.432 (-11.5%) LLVMgold.so 0.505 0.502 (-0.5%) clang 0.954 0.827 (-15.4%) llvm-as 0.052 0.045 (-15.5%) With debug info: scylla 5.695 5.613 (-1.5%) clang 14.396 14.143 (-1.8%) Performance counter results show that the fewer required indirections is indeed the cause of the improved performance. For example, when linking chrome, stalled cycles decreases from 14,556,444,002 to 12,959,238,310, and instructions per cycle increases from 0.78 to 0.83. We are also executing many fewer instructions (15,516,401,933 down to 15,002,434,310), probably because we spend less time allocating SymbolBodies. The new mechanism by which symbols are added to the symbol table is by calling add* functions on the SymbolTable. In this patch, I handle local symbols by storing them inside "unparented" SymbolBodies. This is suboptimal, but if we do want to try to avoid allocating these SymbolBodies, we can probably do that separately. I also removed a few members from the SymbolBody class that were only being used to pass information from the input file to the symbol table. This patch implements the new design for the ELF linker only. I intend to prepare a similar patch for the COFF linker. [1] http://lists.llvm.org/pipermail/llvm-dev/2016-April/098832.html Differential Revision: http://reviews.llvm.org/D19752 llvm-svn: 268178
2016-05-01 12:55:03 +08:00
Sym.symbol()->GlobalDynIndex = Entries.size();
// Global Dynamic TLS entries take two GOT slots.
Entries.push_back(&Sym);
Entries.push_back(nullptr);
return true;
}
// Reserves TLS entries for a TLS module ID and a TLS block offset.
// In total it takes two GOT slots.
template <class ELFT> bool GotSection<ELFT>::addTlsIndex() {
if (TlsIndexOff != uint32_t(-1))
return false;
TlsIndexOff = Entries.size() * sizeof(uintX_t);
Entries.push_back(nullptr);
Entries.push_back(nullptr);
return true;
}
template <class ELFT>
typename GotSection<ELFT>::uintX_t
GotSection<ELFT>::getMipsLocalPageOffset(uintX_t EntryValue) {
// Initialize the entry by the %hi(EntryValue) expression
// but without right-shifting.
return getMipsLocalEntryOffset((EntryValue + 0x8000) & ~0xffff);
}
template <class ELFT>
typename GotSection<ELFT>::uintX_t
GotSection<ELFT>::getMipsLocalEntryOffset(uintX_t EntryValue) {
// Take into account MIPS GOT header.
// See comment in the GotSection::writeTo.
size_t NewIndex = MipsLocalGotPos.size() + 2;
auto P = MipsLocalGotPos.insert(std::make_pair(EntryValue, NewIndex));
assert(!P.second || MipsLocalGotPos.size() <= MipsLocalEntries);
return (uintX_t)P.first->second * sizeof(uintX_t) - MipsGPOffset;
}
template <class ELFT>
typename GotSection<ELFT>::uintX_t
GotSection<ELFT>::getGlobalDynAddr(const SymbolBody &B) const {
ELF: New symbol table design. This patch implements a new design for the symbol table that stores SymbolBodies within a memory region of the Symbol object. Symbols are mutated by constructing SymbolBodies in place over existing SymbolBodies, rather than by mutating pointers. As mentioned in the initial proposal [1], this memory layout helps reduce the cache miss rate by improving memory locality. Performance numbers: old(s) new(s) Without debug info: chrome 7.178 6.432 (-11.5%) LLVMgold.so 0.505 0.502 (-0.5%) clang 0.954 0.827 (-15.4%) llvm-as 0.052 0.045 (-15.5%) With debug info: scylla 5.695 5.613 (-1.5%) clang 14.396 14.143 (-1.8%) Performance counter results show that the fewer required indirections is indeed the cause of the improved performance. For example, when linking chrome, stalled cycles decreases from 14,556,444,002 to 12,959,238,310, and instructions per cycle increases from 0.78 to 0.83. We are also executing many fewer instructions (15,516,401,933 down to 15,002,434,310), probably because we spend less time allocating SymbolBodies. The new mechanism by which symbols are added to the symbol table is by calling add* functions on the SymbolTable. In this patch, I handle local symbols by storing them inside "unparented" SymbolBodies. This is suboptimal, but if we do want to try to avoid allocating these SymbolBodies, we can probably do that separately. I also removed a few members from the SymbolBody class that were only being used to pass information from the input file to the symbol table. This patch implements the new design for the ELF linker only. I intend to prepare a similar patch for the COFF linker. [1] http://lists.llvm.org/pipermail/llvm-dev/2016-April/098832.html Differential Revision: http://reviews.llvm.org/D19752 llvm-svn: 268178
2016-05-01 12:55:03 +08:00
return this->getVA() + B.symbol()->GlobalDynIndex * sizeof(uintX_t);
}
template <class ELFT>
typename GotSection<ELFT>::uintX_t
GotSection<ELFT>::getGlobalDynOffset(const SymbolBody &B) const {
ELF: New symbol table design. This patch implements a new design for the symbol table that stores SymbolBodies within a memory region of the Symbol object. Symbols are mutated by constructing SymbolBodies in place over existing SymbolBodies, rather than by mutating pointers. As mentioned in the initial proposal [1], this memory layout helps reduce the cache miss rate by improving memory locality. Performance numbers: old(s) new(s) Without debug info: chrome 7.178 6.432 (-11.5%) LLVMgold.so 0.505 0.502 (-0.5%) clang 0.954 0.827 (-15.4%) llvm-as 0.052 0.045 (-15.5%) With debug info: scylla 5.695 5.613 (-1.5%) clang 14.396 14.143 (-1.8%) Performance counter results show that the fewer required indirections is indeed the cause of the improved performance. For example, when linking chrome, stalled cycles decreases from 14,556,444,002 to 12,959,238,310, and instructions per cycle increases from 0.78 to 0.83. We are also executing many fewer instructions (15,516,401,933 down to 15,002,434,310), probably because we spend less time allocating SymbolBodies. The new mechanism by which symbols are added to the symbol table is by calling add* functions on the SymbolTable. In this patch, I handle local symbols by storing them inside "unparented" SymbolBodies. This is suboptimal, but if we do want to try to avoid allocating these SymbolBodies, we can probably do that separately. I also removed a few members from the SymbolBody class that were only being used to pass information from the input file to the symbol table. This patch implements the new design for the ELF linker only. I intend to prepare a similar patch for the COFF linker. [1] http://lists.llvm.org/pipermail/llvm-dev/2016-April/098832.html Differential Revision: http://reviews.llvm.org/D19752 llvm-svn: 268178
2016-05-01 12:55:03 +08:00
return B.symbol()->GlobalDynIndex * sizeof(uintX_t);
}
template <class ELFT>
const SymbolBody *GotSection<ELFT>::getMipsFirstGlobalEntry() const {
return Entries.empty() ? nullptr : Entries.front();
}
template <class ELFT>
unsigned GotSection<ELFT>::getMipsLocalEntriesNum() const {
return MipsLocalEntries;
}
template <class ELFT> void GotSection<ELFT>::finalize() {
if (Config->EMachine == EM_MIPS)
// Take into account MIPS GOT header.
// See comment in the GotSection::writeTo.
MipsLocalEntries += 2;
for (const OutputSectionBase<ELFT> *OutSec : MipsOutSections) {
// Calculate an upper bound of MIPS GOT entries required to store page
// addresses of local symbols. We assume the worst case - each 64kb
// page of the output section has at least one GOT relocation against it.
// Add 0x8000 to the section's size because the page address stored
// in the GOT entry is calculated as (value + 0x8000) & ~0xffff.
MipsLocalEntries += (OutSec->getSize() + 0x8000 + 0xfffe) / 0xffff;
}
this->Header.sh_size = (MipsLocalEntries + Entries.size()) * sizeof(uintX_t);
}
template <class ELFT> void GotSection<ELFT>::writeTo(uint8_t *Buf) {
if (Config->EMachine == EM_MIPS) {
// Set the MSB of the second GOT slot. This is not required by any
// MIPS ABI documentation, though.
//
// There is a comment in glibc saying that "The MSB of got[1] of a
// gnu object is set to identify gnu objects," and in GNU gold it
// says "the second entry will be used by some runtime loaders".
// But how this field is being used is unclear.
//
// We are not really willing to mimic other linkers behaviors
// without understanding why they do that, but because all files
// generated by GNU tools have this special GOT value, and because
// we've been doing this for years, it is probably a safe bet to
// keep doing this for now. We really need to revisit this to see
// if we had to do this.
auto *P = reinterpret_cast<typename ELFT::Off *>(Buf);
P[1] = uintX_t(1) << (ELFT::Is64Bits ? 63 : 31);
}
for (std::pair<uintX_t, size_t> &L : MipsLocalGotPos) {
uint8_t *Entry = Buf + L.second * sizeof(uintX_t);
write<uintX_t, ELFT::TargetEndianness, sizeof(uintX_t)>(Entry, L.first);
}
Buf += MipsLocalEntries * sizeof(uintX_t);
for (const SymbolBody *B : Entries) {
uint8_t *Entry = Buf;
Buf += sizeof(uintX_t);
if (!B)
continue;
// MIPS has special rules to fill up GOT entries.
// See "Global Offset Table" in Chapter 5 in the following document
// for detailed description:
// ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
// As the first approach, we can just store addresses for all symbols.
if (Config->EMachine != EM_MIPS && B->isPreemptible())
continue; // The dynamic linker will take care of it.
uintX_t VA = B->getVA<ELFT>();
write<uintX_t, ELFT::TargetEndianness, sizeof(uintX_t)>(Entry, VA);
}
}
template <class ELFT>
PltSection<ELFT>::PltSection()
: OutputSectionBase<ELFT>(".plt", SHT_PROGBITS, SHF_ALLOC | SHF_EXECINSTR) {
this->Header.sh_addralign = 16;
}
template <class ELFT> void PltSection<ELFT>::writeTo(uint8_t *Buf) {
// At beginning of PLT, we have code to call the dynamic linker
// to resolve dynsyms at runtime. Write such code.
Target->writePltZero(Buf);
2016-05-21 05:39:07 +08:00
size_t Off = Target->PltZeroSize;
for (auto &I : Entries) {
const SymbolBody *B = I.first;
unsigned RelOff = I.second;
uint64_t Got = B->getGotPltVA<ELFT>();
uint64_t Plt = this->getVA() + Off;
Target->writePlt(Buf + Off, Got, Plt, B->PltIndex, RelOff);
Off += Target->PltEntrySize;
}
}
template <class ELFT> void PltSection<ELFT>::addEntry(SymbolBody &Sym) {
Sym.PltIndex = Entries.size();
unsigned RelOff = Out<ELFT>::RelaPlt->getRelocOffset();
Entries.push_back(std::make_pair(&Sym, RelOff));
}
template <class ELFT> void PltSection<ELFT>::finalize() {
this->Header.sh_size =
Target->PltZeroSize + Entries.size() * Target->PltEntrySize;
}
template <class ELFT>
RelocationSection<ELFT>::RelocationSection(StringRef Name, bool Sort)
: OutputSectionBase<ELFT>(Name, Config->Rela ? SHT_RELA : SHT_REL,
SHF_ALLOC),
Sort(Sort) {
this->Header.sh_entsize = Config->Rela ? sizeof(Elf_Rela) : sizeof(Elf_Rel);
this->Header.sh_addralign = sizeof(uintX_t);
}
template <class ELFT>
void RelocationSection<ELFT>::addReloc(const DynamicReloc<ELFT> &Reloc) {
Relocs.push_back(Reloc);
}
template <class ELFT, class RelTy>
static bool compRelocations(const RelTy &A, const RelTy &B) {
return A.getSymbol(Config->Mips64EL) < B.getSymbol(Config->Mips64EL);
}
template <class ELFT> void RelocationSection<ELFT>::writeTo(uint8_t *Buf) {
uint8_t *BufBegin = Buf;
for (const DynamicReloc<ELFT> &Rel : Relocs) {
2016-03-13 13:23:40 +08:00
auto *P = reinterpret_cast<Elf_Rela *>(Buf);
Buf += Config->Rela ? sizeof(Elf_Rela) : sizeof(Elf_Rel);
SymbolBody *Sym = Rel.Sym;
if (Config->Rela)
2016-03-13 13:23:40 +08:00
P->r_addend = Rel.UseSymVA ? Sym->getVA<ELFT>(Rel.Addend) : Rel.Addend;
P->r_offset = Rel.OffsetInSec + Rel.OffsetSec->getVA();
uint32_t SymIdx = (!Rel.UseSymVA && Sym) ? Sym->DynsymIndex : 0;
P->setSymbolAndType(SymIdx, Rel.Type, Config->Mips64EL);
}
if (Sort) {
if (Config->Rela)
std::stable_sort((Elf_Rela *)BufBegin,
(Elf_Rela *)BufBegin + Relocs.size(),
compRelocations<ELFT, Elf_Rela>);
else
std::stable_sort((Elf_Rel *)BufBegin, (Elf_Rel *)BufBegin + Relocs.size(),
compRelocations<ELFT, Elf_Rel>);
}
}
template <class ELFT> unsigned RelocationSection<ELFT>::getRelocOffset() {
2016-02-06 03:13:18 +08:00
return this->Header.sh_entsize * Relocs.size();
}
template <class ELFT> void RelocationSection<ELFT>::finalize() {
this->Header.sh_link = Static ? Out<ELFT>::SymTab->SectionIndex
: Out<ELFT>::DynSymTab->SectionIndex;
this->Header.sh_size = Relocs.size() * this->Header.sh_entsize;
}
template <class ELFT>
InterpSection<ELFT>::InterpSection()
: OutputSectionBase<ELFT>(".interp", SHT_PROGBITS, SHF_ALLOC) {
this->Header.sh_size = Config->DynamicLinker.size() + 1;
this->Header.sh_addralign = 1;
}
template <class ELFT> void InterpSection<ELFT>::writeTo(uint8_t *Buf) {
2016-03-13 14:50:34 +08:00
StringRef S = Config->DynamicLinker;
memcpy(Buf, S.data(), S.size());
}
template <class ELFT>
HashTableSection<ELFT>::HashTableSection()
: OutputSectionBase<ELFT>(".hash", SHT_HASH, SHF_ALLOC) {
this->Header.sh_entsize = sizeof(Elf_Word);
this->Header.sh_addralign = sizeof(Elf_Word);
}
static uint32_t hashSysv(StringRef Name) {
uint32_t H = 0;
for (char C : Name) {
H = (H << 4) + C;
uint32_t G = H & 0xf0000000;
if (G)
H ^= G >> 24;
H &= ~G;
}
return H;
}
template <class ELFT> void HashTableSection<ELFT>::finalize() {
this->Header.sh_link = Out<ELFT>::DynSymTab->SectionIndex;
unsigned NumEntries = 2; // nbucket and nchain.
NumEntries += Out<ELFT>::DynSymTab->getNumSymbols(); // The chain entries.
// Create as many buckets as there are symbols.
// FIXME: This is simplistic. We can try to optimize it, but implementing
// support for SHT_GNU_HASH is probably even more profitable.
NumEntries += Out<ELFT>::DynSymTab->getNumSymbols();
this->Header.sh_size = NumEntries * sizeof(Elf_Word);
}
template <class ELFT> void HashTableSection<ELFT>::writeTo(uint8_t *Buf) {
unsigned NumSymbols = Out<ELFT>::DynSymTab->getNumSymbols();
auto *P = reinterpret_cast<Elf_Word *>(Buf);
*P++ = NumSymbols; // nbucket
*P++ = NumSymbols; // nchain
Elf_Word *Buckets = P;
Elf_Word *Chains = P + NumSymbols;
for (const std::pair<SymbolBody *, unsigned> &P :
Out<ELFT>::DynSymTab->getSymbols()) {
SymbolBody *Body = P.first;
StringRef Name = Body->getName();
unsigned I = Body->DynsymIndex;
uint32_t Hash = hashSysv(Name) % NumSymbols;
Chains[I] = Buckets[Hash];
Buckets[Hash] = I;
}
}
static uint32_t hashGnu(StringRef Name) {
uint32_t H = 5381;
for (uint8_t C : Name)
H = (H << 5) + H + C;
return H;
}
template <class ELFT>
GnuHashTableSection<ELFT>::GnuHashTableSection()
: OutputSectionBase<ELFT>(".gnu.hash", SHT_GNU_HASH, SHF_ALLOC) {
this->Header.sh_entsize = ELFT::Is64Bits ? 0 : 4;
this->Header.sh_addralign = sizeof(uintX_t);
}
template <class ELFT>
unsigned GnuHashTableSection<ELFT>::calcNBuckets(unsigned NumHashed) {
if (!NumHashed)
return 0;
// These values are prime numbers which are not greater than 2^(N-1) + 1.
// In result, for any particular NumHashed we return a prime number
// which is not greater than NumHashed.
static const unsigned Primes[] = {
1, 1, 3, 3, 7, 13, 31, 61, 127, 251,
509, 1021, 2039, 4093, 8191, 16381, 32749, 65521, 131071};
return Primes[std::min<unsigned>(Log2_32_Ceil(NumHashed),
array_lengthof(Primes) - 1)];
}
// Bloom filter estimation: at least 8 bits for each hashed symbol.
// GNU Hash table requirement: it should be a power of 2,
// the minimum value is 1, even for an empty table.
// Expected results for a 32-bit target:
// calcMaskWords(0..4) = 1
// calcMaskWords(5..8) = 2
// calcMaskWords(9..16) = 4
// For a 64-bit target:
// calcMaskWords(0..8) = 1
// calcMaskWords(9..16) = 2
// calcMaskWords(17..32) = 4
template <class ELFT>
unsigned GnuHashTableSection<ELFT>::calcMaskWords(unsigned NumHashed) {
if (!NumHashed)
return 1;
return NextPowerOf2((NumHashed - 1) / sizeof(Elf_Off));
}
template <class ELFT> void GnuHashTableSection<ELFT>::finalize() {
unsigned NumHashed = Symbols.size();
NBuckets = calcNBuckets(NumHashed);
MaskWords = calcMaskWords(NumHashed);
// Second hash shift estimation: just predefined values.
Shift2 = ELFT::Is64Bits ? 6 : 5;
this->Header.sh_link = Out<ELFT>::DynSymTab->SectionIndex;
this->Header.sh_size = sizeof(Elf_Word) * 4 // Header
+ sizeof(Elf_Off) * MaskWords // Bloom Filter
+ sizeof(Elf_Word) * NBuckets // Hash Buckets
+ sizeof(Elf_Word) * NumHashed; // Hash Values
}
template <class ELFT> void GnuHashTableSection<ELFT>::writeTo(uint8_t *Buf) {
writeHeader(Buf);
if (Symbols.empty())
return;
writeBloomFilter(Buf);
writeHashTable(Buf);
}
template <class ELFT>
void GnuHashTableSection<ELFT>::writeHeader(uint8_t *&Buf) {
auto *P = reinterpret_cast<Elf_Word *>(Buf);
*P++ = NBuckets;
*P++ = Out<ELFT>::DynSymTab->getNumSymbols() - Symbols.size();
*P++ = MaskWords;
*P++ = Shift2;
Buf = reinterpret_cast<uint8_t *>(P);
}
template <class ELFT>
void GnuHashTableSection<ELFT>::writeBloomFilter(uint8_t *&Buf) {
unsigned C = sizeof(Elf_Off) * 8;
auto *Masks = reinterpret_cast<Elf_Off *>(Buf);
for (const SymbolData &Sym : Symbols) {
size_t Pos = (Sym.Hash / C) & (MaskWords - 1);
uintX_t V = (uintX_t(1) << (Sym.Hash % C)) |
(uintX_t(1) << ((Sym.Hash >> Shift2) % C));
Masks[Pos] |= V;
}
Buf += sizeof(Elf_Off) * MaskWords;
}
template <class ELFT>
void GnuHashTableSection<ELFT>::writeHashTable(uint8_t *Buf) {
Elf_Word *Buckets = reinterpret_cast<Elf_Word *>(Buf);
Elf_Word *Values = Buckets + NBuckets;
int PrevBucket = -1;
int I = 0;
for (const SymbolData &Sym : Symbols) {
int Bucket = Sym.Hash % NBuckets;
assert(PrevBucket <= Bucket);
if (Bucket != PrevBucket) {
Buckets[Bucket] = Sym.Body->DynsymIndex;
PrevBucket = Bucket;
if (I > 0)
Values[I - 1] |= 1;
}
Values[I] = Sym.Hash & ~1;
++I;
}
if (I > 0)
Values[I - 1] |= 1;
}
static bool includeInGnuHashTable(SymbolBody *B) {
// Assume that includeInDynsym() is already checked.
return !B->isUndefined();
}
// Add symbols to this symbol hash table. Note that this function
// destructively sort a given vector -- which is needed because
// GNU-style hash table places some sorting requirements.
template <class ELFT>
void GnuHashTableSection<ELFT>::addSymbols(
std::vector<std::pair<SymbolBody *, size_t>> &V) {
auto Mid = std::stable_partition(V.begin(), V.end(),
[](std::pair<SymbolBody *, size_t> &P) {
return !includeInGnuHashTable(P.first);
});
if (Mid == V.end())
return;
for (auto I = Mid, E = V.end(); I != E; ++I) {
SymbolBody *B = I->first;
size_t StrOff = I->second;
Symbols.push_back({B, StrOff, hashGnu(B->getName())});
}
unsigned NBuckets = calcNBuckets(Symbols.size());
std::stable_sort(Symbols.begin(), Symbols.end(),
[&](const SymbolData &L, const SymbolData &R) {
return L.Hash % NBuckets < R.Hash % NBuckets;
});
V.erase(Mid, V.end());
for (const SymbolData &Sym : Symbols)
V.push_back({Sym.Body, Sym.STName});
}
template <class ELFT>
DynamicSection<ELFT>::DynamicSection(SymbolTable<ELFT> &SymTab)
: OutputSectionBase<ELFT>(".dynamic", SHT_DYNAMIC, SHF_ALLOC | SHF_WRITE),
SymTab(SymTab) {
Elf_Shdr &Header = this->Header;
Header.sh_addralign = sizeof(uintX_t);
Header.sh_entsize = ELFT::Is64Bits ? 16 : 8;
// .dynamic section is not writable on MIPS.
// See "Special Section" in Chapter 4 in the following document:
// ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
if (Config->EMachine == EM_MIPS)
Header.sh_flags = SHF_ALLOC;
}
template <class ELFT> void DynamicSection<ELFT>::finalize() {
if (this->Header.sh_size)
return; // Already finalized.
Elf_Shdr &Header = this->Header;
Header.sh_link = Out<ELFT>::DynStrTab->SectionIndex;
auto Add = [=](Entry E) { Entries.push_back(E); };
// Add strings. We know that these are the last strings to be added to
// DynStrTab and doing this here allows this function to set DT_STRSZ.
if (!Config->RPath.empty())
Add({Config->EnableNewDtags ? DT_RUNPATH : DT_RPATH,
Out<ELFT>::DynStrTab->addString(Config->RPath)});
for (const std::unique_ptr<SharedFile<ELFT>> &F : SymTab.getSharedFiles())
if (F->isNeeded())
Add({DT_NEEDED, Out<ELFT>::DynStrTab->addString(F->getSoName())});
if (!Config->SoName.empty())
Add({DT_SONAME, Out<ELFT>::DynStrTab->addString(Config->SoName)});
Out<ELFT>::DynStrTab->finalize();
if (Out<ELFT>::RelaDyn->hasRelocs()) {
bool IsRela = Config->Rela;
Add({IsRela ? DT_RELA : DT_REL, Out<ELFT>::RelaDyn});
Add({IsRela ? DT_RELASZ : DT_RELSZ, Out<ELFT>::RelaDyn->getSize()});
Add({IsRela ? DT_RELAENT : DT_RELENT,
uintX_t(IsRela ? sizeof(Elf_Rela) : sizeof(Elf_Rel))});
}
if (Out<ELFT>::RelaPlt && Out<ELFT>::RelaPlt->hasRelocs()) {
Add({DT_JMPREL, Out<ELFT>::RelaPlt});
Add({DT_PLTRELSZ, Out<ELFT>::RelaPlt->getSize()});
Add({Config->EMachine == EM_MIPS ? DT_MIPS_PLTGOT : DT_PLTGOT,
Out<ELFT>::GotPlt});
Add({DT_PLTREL, uint64_t(Config->Rela ? DT_RELA : DT_REL)});
}
Add({DT_SYMTAB, Out<ELFT>::DynSymTab});
Add({DT_SYMENT, sizeof(Elf_Sym)});
Add({DT_STRTAB, Out<ELFT>::DynStrTab});
Add({DT_STRSZ, Out<ELFT>::DynStrTab->getSize()});
if (Out<ELFT>::GnuHashTab)
Add({DT_GNU_HASH, Out<ELFT>::GnuHashTab});
if (Out<ELFT>::HashTab)
Add({DT_HASH, Out<ELFT>::HashTab});
if (PreInitArraySec) {
Add({DT_PREINIT_ARRAY, PreInitArraySec});
Add({DT_PREINIT_ARRAYSZ, PreInitArraySec->getSize()});
}
if (InitArraySec) {
Add({DT_INIT_ARRAY, InitArraySec});
Add({DT_INIT_ARRAYSZ, (uintX_t)InitArraySec->getSize()});
}
if (FiniArraySec) {
Add({DT_FINI_ARRAY, FiniArraySec});
Add({DT_FINI_ARRAYSZ, (uintX_t)FiniArraySec->getSize()});
2015-10-10 04:32:54 +08:00
}
if (SymbolBody *B = SymTab.find(Config->Init))
Add({DT_INIT, B});
if (SymbolBody *B = SymTab.find(Config->Fini))
Add({DT_FINI, B});
uint32_t DtFlags = 0;
uint32_t DtFlags1 = 0;
if (Config->Bsymbolic)
DtFlags |= DF_SYMBOLIC;
if (Config->ZNodelete)
DtFlags1 |= DF_1_NODELETE;
if (Config->ZNow) {
DtFlags |= DF_BIND_NOW;
DtFlags1 |= DF_1_NOW;
}
if (Config->ZOrigin) {
DtFlags |= DF_ORIGIN;
DtFlags1 |= DF_1_ORIGIN;
}
if (DtFlags)
Add({DT_FLAGS, DtFlags});
if (DtFlags1)
Add({DT_FLAGS_1, DtFlags1});
if (!Config->Entry.empty())
2016-01-26 09:30:07 +08:00
Add({DT_DEBUG, (uint64_t)0});
if (size_t NeedNum = Out<ELFT>::VerNeed->getNeedNum()) {
Add({DT_VERSYM, Out<ELFT>::VerSym});
Add({DT_VERNEED, Out<ELFT>::VerNeed});
Add({DT_VERNEEDNUM, NeedNum});
}
if (Config->EMachine == EM_MIPS) {
Add({DT_MIPS_RLD_VERSION, 1});
Add({DT_MIPS_FLAGS, RHF_NOTPOT});
Add({DT_MIPS_BASE_ADDRESS, (uintX_t)Target->getVAStart()});
Add({DT_MIPS_SYMTABNO, Out<ELFT>::DynSymTab->getNumSymbols()});
Add({DT_MIPS_LOCAL_GOTNO, Out<ELFT>::Got->getMipsLocalEntriesNum()});
if (const SymbolBody *B = Out<ELFT>::Got->getMipsFirstGlobalEntry())
Add({DT_MIPS_GOTSYM, B->DynsymIndex});
else
Add({DT_MIPS_GOTSYM, Out<ELFT>::DynSymTab->getNumSymbols()});
Add({DT_PLTGOT, Out<ELFT>::Got});
if (Out<ELFT>::MipsRldMap)
Add({DT_MIPS_RLD_MAP, Out<ELFT>::MipsRldMap});
}
// +1 for DT_NULL
Header.sh_size = (Entries.size() + 1) * Header.sh_entsize;
}
template <class ELFT> void DynamicSection<ELFT>::writeTo(uint8_t *Buf) {
auto *P = reinterpret_cast<Elf_Dyn *>(Buf);
for (const Entry &E : Entries) {
P->d_tag = E.Tag;
switch (E.Kind) {
case Entry::SecAddr:
P->d_un.d_ptr = E.OutSec->getVA();
break;
case Entry::SymAddr:
P->d_un.d_ptr = E.Sym->template getVA<ELFT>();
break;
case Entry::PlainInt:
P->d_un.d_val = E.Val;
break;
}
++P;
}
}
template <class ELFT>
EhFrameHeader<ELFT>::EhFrameHeader()
: OutputSectionBase<ELFT>(".eh_frame_hdr", llvm::ELF::SHT_PROGBITS,
SHF_ALLOC) {
// It's a 4 bytes of header + pointer to the contents of the .eh_frame section
// + the number of FDE pointers in the table.
this->Header.sh_size = 12;
}
// We have to get PC values of FDEs. They depend on relocations
// which are target specific, so we run this code after performing
// all relocations. We read the values from ouput buffer according to the
// encoding given for FDEs. Return value is an offset to the initial PC value
// for the FDE.
template <class ELFT>
typename EhFrameHeader<ELFT>::uintX_t
EhFrameHeader<ELFT>::getFdePc(uintX_t EhVA, const FdeData &F) {
const endianness E = ELFT::TargetEndianness;
uint8_t Size = F.Enc & 0x7;
if (Size == DW_EH_PE_absptr)
Size = sizeof(uintX_t) == 8 ? DW_EH_PE_udata8 : DW_EH_PE_udata4;
uint64_t PC;
switch (Size) {
case DW_EH_PE_udata2:
PC = read16<E>(F.PCRel);
break;
case DW_EH_PE_udata4:
PC = read32<E>(F.PCRel);
break;
case DW_EH_PE_udata8:
PC = read64<E>(F.PCRel);
break;
default:
fatal("unknown FDE size encoding");
}
switch (F.Enc & 0x70) {
case DW_EH_PE_absptr:
return PC;
case DW_EH_PE_pcrel:
return PC + EhVA + F.Off + 8;
default:
fatal("unknown FDE size relative encoding");
}
}
template <class ELFT> void EhFrameHeader<ELFT>::writeTo(uint8_t *Buf) {
const endianness E = ELFT::TargetEndianness;
uintX_t EhVA = Sec->getVA();
uintX_t VA = this->getVA();
// InitialPC -> Offset in .eh_frame, sorted by InitialPC, and deduplicate PCs.
// FIXME: Deduplication leaves unneeded null bytes at the end of the section.
std::map<uintX_t, size_t> PcToOffset;
for (const FdeData &F : FdeList)
PcToOffset[getFdePc(EhVA, F)] = F.Off;
const uint8_t Header[] = {1, DW_EH_PE_pcrel | DW_EH_PE_sdata4,
DW_EH_PE_udata4,
DW_EH_PE_datarel | DW_EH_PE_sdata4};
memcpy(Buf, Header, sizeof(Header));
uintX_t EhOff = EhVA - VA - 4;
write32<E>(Buf + 4, EhOff);
write32<E>(Buf + 8, PcToOffset.size());
Buf += 12;
for (auto &I : PcToOffset) {
// The first four bytes are an offset to the initial PC value for the FDE.
write32<E>(Buf, I.first - VA);
// The last four bytes are an offset to the FDE data itself.
write32<E>(Buf + 4, EhVA + I.second - VA);
Buf += 8;
}
}
template <class ELFT>
void EhFrameHeader<ELFT>::assignEhFrame(EHOutputSection<ELFT> *Sec) {
assert((!this->Sec || this->Sec == Sec) &&
"multiple .eh_frame sections not supported for .eh_frame_hdr");
Live = Config->EhFrameHdr;
this->Sec = Sec;
}
template <class ELFT>
void EhFrameHeader<ELFT>::addFde(uint8_t Enc, size_t Off, uint8_t *PCRel) {
if (Live && (Enc & 0xF0) == DW_EH_PE_datarel)
fatal("DW_EH_PE_datarel encoding unsupported for FDEs by .eh_frame_hdr");
FdeList.push_back(FdeData{Enc, Off, PCRel});
}
template <class ELFT> void EhFrameHeader<ELFT>::reserveFde() {
// Each FDE entry is 8 bytes long:
// The first four bytes are an offset to the initial PC value for the FDE. The
// last four byte are an offset to the FDE data itself.
this->Header.sh_size += 8;
}
template <class ELFT>
OutputSection<ELFT>::OutputSection(StringRef Name, uint32_t Type, uintX_t Flags)
: OutputSectionBase<ELFT>(Name, Type, Flags) {
if (Type == SHT_RELA)
this->Header.sh_entsize = sizeof(Elf_Rela);
else if (Type == SHT_REL)
this->Header.sh_entsize = sizeof(Elf_Rel);
}
template <class ELFT> void OutputSection<ELFT>::finalize() {
uint32_t Type = this->Header.sh_type;
if (Type != SHT_RELA && Type != SHT_REL)
return;
this->Header.sh_link = Out<ELFT>::SymTab->SectionIndex;
// sh_info for SHT_REL[A] sections should contain the section header index of
// the section to which the relocation applies.
InputSectionBase<ELFT> *S = Sections[0]->getRelocatedSection();
this->Header.sh_info = S->OutSec->SectionIndex;
}
template <class ELFT>
void OutputSection<ELFT>::addSection(InputSectionBase<ELFT> *C) {
assert(C->Live);
auto *S = cast<InputSection<ELFT>>(C);
Sections.push_back(S);
S->OutSec = this;
this->updateAlign(S->Align);
}
// If an input string is in the form of "foo.N" where N is a number,
// return N. Otherwise, returns 65536, which is one greater than the
// lowest priority.
static int getPriority(StringRef S) {
size_t Pos = S.rfind('.');
if (Pos == StringRef::npos)
return 65536;
int V;
if (S.substr(Pos + 1).getAsInteger(10, V))
return 65536;
return V;
}
template <class ELFT>
void OutputSection<ELFT>::forEachInputSection(
std::function<void(InputSectionBase<ELFT> *)> F) {
for (InputSection<ELFT> *S : Sections)
F(S);
}
// Sorts input sections by section name suffixes, so that .foo.N comes
// before .foo.M if N < M. Used to sort .{init,fini}_array.N sections.
// We want to keep the original order if the priorities are the same
// because the compiler keeps the original initialization order in a
// translation unit and we need to respect that.
// For more detail, read the section of the GCC's manual about init_priority.
template <class ELFT> void OutputSection<ELFT>::sortInitFini() {
// Sort sections by priority.
typedef std::pair<int, InputSection<ELFT> *> Pair;
auto Comp = [](const Pair &A, const Pair &B) { return A.first < B.first; };
std::vector<Pair> V;
for (InputSection<ELFT> *S : Sections)
V.push_back({getPriority(S->getSectionName()), S});
std::stable_sort(V.begin(), V.end(), Comp);
Sections.clear();
for (Pair &P : V)
Sections.push_back(P.second);
}
// Returns true if S matches /Filename.?\.o$/.
static bool isCrtBeginEnd(StringRef S, StringRef Filename) {
if (!S.endswith(".o"))
return false;
S = S.drop_back(2);
if (S.endswith(Filename))
return true;
return !S.empty() && S.drop_back().endswith(Filename);
}
static bool isCrtbegin(StringRef S) { return isCrtBeginEnd(S, "crtbegin"); }
static bool isCrtend(StringRef S) { return isCrtBeginEnd(S, "crtend"); }
// .ctors and .dtors are sorted by this priority from highest to lowest.
//
// 1. The section was contained in crtbegin (crtbegin contains
// some sentinel value in its .ctors and .dtors so that the runtime
// can find the beginning of the sections.)
//
// 2. The section has an optional priority value in the form of ".ctors.N"
// or ".dtors.N" where N is a number. Unlike .{init,fini}_array,
// they are compared as string rather than number.
//
// 3. The section is just ".ctors" or ".dtors".
//
// 4. The section was contained in crtend, which contains an end marker.
//
// In an ideal world, we don't need this function because .init_array and
// .ctors are duplicate features (and .init_array is newer.) However, there
// are too many real-world use cases of .ctors, so we had no choice to
// support that with this rather ad-hoc semantics.
template <class ELFT>
static bool compCtors(const InputSection<ELFT> *A,
const InputSection<ELFT> *B) {
bool BeginA = isCrtbegin(A->getFile()->getName());
bool BeginB = isCrtbegin(B->getFile()->getName());
if (BeginA != BeginB)
return BeginA;
bool EndA = isCrtend(A->getFile()->getName());
bool EndB = isCrtend(B->getFile()->getName());
if (EndA != EndB)
return EndB;
StringRef X = A->getSectionName();
StringRef Y = B->getSectionName();
assert(X.startswith(".ctors") || X.startswith(".dtors"));
assert(Y.startswith(".ctors") || Y.startswith(".dtors"));
X = X.substr(6);
Y = Y.substr(6);
if (X.empty() && Y.empty())
return false;
return X < Y;
}
// Sorts input sections by the special rules for .ctors and .dtors.
// Unfortunately, the rules are different from the one for .{init,fini}_array.
// Read the comment above.
template <class ELFT> void OutputSection<ELFT>::sortCtorsDtors() {
std::stable_sort(Sections.begin(), Sections.end(), compCtors<ELFT>);
}
static void fill(uint8_t *Buf, size_t Size, ArrayRef<uint8_t> A) {
size_t I = 0;
for (; I + A.size() < Size; I += A.size())
memcpy(Buf + I, A.data(), A.size());
memcpy(Buf + I, A.data(), Size - I);
}
template <class ELFT> void OutputSection<ELFT>::writeTo(uint8_t *Buf) {
ArrayRef<uint8_t> Filler = Script<ELFT>::X->getFiller(this->Name);
if (!Filler.empty())
fill(Buf, this->getSize(), Filler);
if (Config->Threads) {
parallel_for_each(Sections.begin(), Sections.end(),
[=](InputSection<ELFT> *C) { C->writeTo(Buf); });
} else {
for (InputSection<ELFT> *C : Sections)
C->writeTo(Buf);
}
}
template <class ELFT>
EHOutputSection<ELFT>::EHOutputSection(StringRef Name, uint32_t Type,
uintX_t Flags)
: OutputSectionBase<ELFT>(Name, Type, Flags) {
Out<ELFT>::EhFrameHdr->assignEhFrame(this);
}
template <class ELFT>
void EHOutputSection<ELFT>::forEachInputSection(
std::function<void(InputSectionBase<ELFT> *)> F) {
for (EHInputSection<ELFT> *S : Sections)
F(S);
}
// Read a byte and advance D by one byte.
static uint8_t readByte(ArrayRef<uint8_t> &D) {
if (D.empty())
fatal("corrupted or unsupported CIE information");
uint8_t B = D.front();
D = D.slice(1);
return B;
}
static void skipLeb128(ArrayRef<uint8_t> &D) {
while (!D.empty()) {
uint8_t Val = D.front();
D = D.slice(1);
if ((Val & 0x80) == 0)
return;
}
fatal("corrupted or unsupported CIE information");
}
template <class ELFT> static size_t getAugPSize(unsigned Enc) {
switch (Enc & 0x0f) {
case DW_EH_PE_absptr:
case DW_EH_PE_signed:
return ELFT::Is64Bits ? 8 : 4;
case DW_EH_PE_udata2:
case DW_EH_PE_sdata2:
return 2;
case DW_EH_PE_udata4:
case DW_EH_PE_sdata4:
return 4;
case DW_EH_PE_udata8:
case DW_EH_PE_sdata8:
return 8;
}
fatal("unknown FDE encoding");
}
template <class ELFT> static void skipAugP(ArrayRef<uint8_t> &D) {
uint8_t Enc = readByte(D);
if ((Enc & 0xf0) == DW_EH_PE_aligned)
fatal("DW_EH_PE_aligned encoding is not supported");
size_t Size = getAugPSize<ELFT>(Enc);
if (Size >= D.size())
fatal("corrupted CIE");
D = D.slice(Size);
}
template <class ELFT>
uint8_t EHOutputSection<ELFT>::getFdeEncoding(ArrayRef<uint8_t> D) {
if (D.size() < 8)
fatal("CIE too small");
D = D.slice(8);
uint8_t Version = readByte(D);
if (Version != 1 && Version != 3)
fatal("FDE version 1 or 3 expected, but got " + Twine((unsigned)Version));
const unsigned char *AugEnd = std::find(D.begin() + 1, D.end(), '\0');
if (AugEnd == D.end())
fatal("corrupted CIE");
StringRef Aug(reinterpret_cast<const char *>(D.begin()), AugEnd - D.begin());
D = D.slice(Aug.size() + 1);
// Code alignment factor should always be 1 for .eh_frame.
if (readByte(D) != 1)
fatal("CIE code alignment must be 1");
// Skip data alignment factor.
skipLeb128(D);
// Skip the return address register. In CIE version 1 this is a single
// byte. In CIE version 3 this is an unsigned LEB128.
if (Version == 1)
readByte(D);
else
skipLeb128(D);
// We only care about an 'R' value, but other records may precede an 'R'
// record. Records are not in TLV (type-length-value) format, so we need
// to teach the linker how to skip records for each type.
for (char C : Aug) {
if (C == 'R')
return readByte(D);
if (C == 'z') {
skipLeb128(D);
continue;
}
if (C == 'P') {
skipAugP<ELFT>(D);
continue;
}
if (C == 'L') {
readByte(D);
continue;
}
fatal("unknown .eh_frame augmentation string: " + Aug);
}
return DW_EH_PE_absptr;
}
// Returns the first relocation that points to a region
// between Begin and Begin+Size.
template <class IntTy, class RelTy>
static const RelTy *getReloc(IntTy Begin, IntTy Size, ArrayRef<RelTy> Rels) {
size_t I = 0;
size_t E = Rels.size();
while (I != E && Rels[I].r_offset < Begin)
++I;
if (I == E || Begin + Size <= Rels[I].r_offset)
return nullptr;
return &Rels[I];
}
// Search for an existing CIE record or create a new one.
// CIE records from input object files are uniquified by their contents
// and where their relocations point to.
template <class ELFT>
template <class RelTy>
CieRecord *EHOutputSection<ELFT>::addCie(SectionPiece &Piece,
EHInputSection<ELFT> *Sec,
ArrayRef<RelTy> Rels) {
const endianness E = ELFT::TargetEndianness;
if (read32<E>(Piece.Data.data() + 4) != 0)
fatal("CIE expected at beginning of .eh_frame: " + Sec->getSectionName());
SymbolBody *Personality = nullptr;
if (const RelTy *Rel = getReloc(Piece.InputOff, Piece.size(), Rels))
Personality = &Sec->getFile()->getRelocTargetSym(*Rel);
// Search for an existing CIE by CIE contents/relocation target pair.
CieRecord *Cie = &CieMap[{Piece.Data, Personality}];
// If not found, create a new one.
if (Cie->Piece == nullptr) {
Cie->Piece = &Piece;
if (Config->EhFrameHdr)
Cie->FdeEncoding = getFdeEncoding(Piece.Data);
Cies.push_back(Cie);
}
return Cie;
}
template <class ELFT> static void validateFde(SectionPiece &Piece) {
// We assume that all FDEs refer the first CIE in the same object file.
const endianness E = ELFT::TargetEndianness;
uint32_t ID = read32<E>(Piece.Data.data() + 4);
if (Piece.InputOff + 4 - ID != 0)
fatal("invalid CIE reference");
}
// There is one FDE per function. Returns true if a given FDE
// points to a live function.
template <class ELFT>
template <class RelTy>
bool EHOutputSection<ELFT>::isFdeLive(SectionPiece &Piece,
EHInputSection<ELFT> *Sec,
ArrayRef<RelTy> Rels) {
const RelTy *Rel = getReloc(Piece.InputOff, Piece.size(), Rels);
if (!Rel)
fatal("FDE doesn't reference another section");
SymbolBody &B = Sec->getFile()->getRelocTargetSym(*Rel);
auto *D = dyn_cast<DefinedRegular<ELFT>>(&B);
if (!D || !D->Section)
return false;
InputSectionBase<ELFT> *Target = D->Section->Repl;
return Target && Target->Live;
}
// .eh_frame is a sequence of CIE or FDE records. In general, there
// is one CIE record per input object file which is followed by
// a list of FDEs. This function searches an existing CIE or create a new
// one and associates FDEs to the CIE.
template <class ELFT>
template <class RelTy>
void EHOutputSection<ELFT>::addSectionAux(EHInputSection<ELFT> *Sec,
ArrayRef<RelTy> Rels) {
SectionPiece &CiePiece = Sec->Pieces[0];
CieRecord *Cie = addCie(CiePiece, Sec, Rels);
for (size_t I = 1, End = Sec->Pieces.size(); I != End; ++I) {
SectionPiece &FdePiece = Sec->Pieces[I];
validateFde<ELFT>(FdePiece);
if (!isFdeLive(FdePiece, Sec, Rels))
continue;
Cie->FdePieces.push_back(&FdePiece);
Out<ELFT>::EhFrameHdr->reserveFde();
}
}
template <class ELFT>
void EHOutputSection<ELFT>::addSection(InputSectionBase<ELFT> *C) {
auto *Sec = cast<EHInputSection<ELFT>>(C);
Sec->OutSec = this;
this->updateAlign(Sec->Align);
Sections.push_back(Sec);
// .eh_frame is a sequence of CIE or FDE records. This function
// splits it into pieces so that we can call
// SplitInputSection::getSectionPiece on the section.
Sec->split();
if (Sec->Pieces.empty())
return;
if (const Elf_Shdr *RelSec = Sec->RelocSection) {
ELFFile<ELFT> &Obj = Sec->getFile()->getObj();
if (RelSec->sh_type == SHT_RELA)
addSectionAux(Sec, Obj.relas(RelSec));
else
addSectionAux(Sec, Obj.rels(RelSec));
return;
}
addSectionAux(Sec, makeArrayRef<Elf_Rela>(nullptr, nullptr));
}
template <class ELFT>
static void writeCieFde(uint8_t *Buf, ArrayRef<uint8_t> D) {
memcpy(Buf, D.data(), D.size());
// Fix the size field. -4 since size does not include the size field itself.
const endianness E = ELFT::TargetEndianness;
write32<E>(Buf, alignTo(D.size(), sizeof(typename ELFT::uint)) - 4);
}
template <class ELFT> void EHOutputSection<ELFT>::finalize() {
if (Finalized)
return;
Finalized = true;
size_t Off = 0;
for (CieRecord *Cie : Cies) {
Cie->Piece->OutputOff = Off;
Off += alignTo(Cie->Piece->size(), sizeof(uintX_t));
for (SectionPiece *Fde : Cie->FdePieces) {
Fde->OutputOff = Off;
Off += alignTo(Fde->size(), sizeof(uintX_t));
}
}
this->Header.sh_size = Off;
}
template <class ELFT> void EHOutputSection<ELFT>::writeTo(uint8_t *Buf) {
const endianness E = ELFT::TargetEndianness;
for (CieRecord *Cie : Cies) {
size_t CieOffset = Cie->Piece->OutputOff;
writeCieFde<ELFT>(Buf + CieOffset, Cie->Piece->Data);
for (SectionPiece *Fde : Cie->FdePieces) {
size_t Off = Fde->OutputOff;
writeCieFde<ELFT>(Buf + Off, Fde->Data);
// FDE's second word should have the offset to an associated CIE.
// Write it.
write32<E>(Buf + Off + 4, Off + 4 - CieOffset);
Out<ELFT>::EhFrameHdr->addFde(Cie->FdeEncoding, Off, Buf + Off + 8);
}
}
for (EHInputSection<ELFT> *S : Sections)
S->relocate(Buf, nullptr);
}
template <class ELFT>
MergeOutputSection<ELFT>::MergeOutputSection(StringRef Name, uint32_t Type,
uintX_t Flags, uintX_t Alignment)
: OutputSectionBase<ELFT>(Name, Type, Flags),
Builder(llvm::StringTableBuilder::RAW, Alignment) {}
template <class ELFT> void MergeOutputSection<ELFT>::writeTo(uint8_t *Buf) {
if (shouldTailMerge()) {
StringRef Data = Builder.data();
memcpy(Buf, Data.data(), Data.size());
return;
}
for (const std::pair<CachedHash<StringRef>, size_t> &P : Builder.getMap()) {
StringRef Data = P.first.Val;
memcpy(Buf + P.second, Data.data(), Data.size());
}
}
static StringRef toStringRef(ArrayRef<uint8_t> A) {
return {(const char *)A.data(), A.size()};
}
template <class ELFT>
void MergeOutputSection<ELFT>::addSection(InputSectionBase<ELFT> *C) {
auto *Sec = cast<MergeInputSection<ELFT>>(C);
Sec->OutSec = this;
this->updateAlign(Sec->Align);
this->Header.sh_entsize = Sec->getSectionHdr()->sh_entsize;
ArrayRef<uint8_t> D = Sec->getSectionData();
StringRef Data((const char *)D.data(), D.size());
bool IsString = this->Header.sh_flags & SHF_STRINGS;
2016-01-30 06:18:55 +08:00
for (size_t I = 0, N = Sec->Pieces.size(); I != N; ++I) {
SectionPiece &Piece = Sec->Pieces[I];
if (!Piece.Live)
continue;
uintX_t OutputOffset = Builder.add(toStringRef(Piece.Data));
if (!IsString || !shouldTailMerge())
Piece.OutputOff = OutputOffset;
}
}
template <class ELFT>
unsigned MergeOutputSection<ELFT>::getOffset(StringRef Val) {
return Builder.getOffset(Val);
}
template <class ELFT> bool MergeOutputSection<ELFT>::shouldTailMerge() const {
return Config->Optimize >= 2 && this->Header.sh_flags & SHF_STRINGS;
}
template <class ELFT> void MergeOutputSection<ELFT>::finalize() {
if (shouldTailMerge())
Builder.finalize();
this->Header.sh_size = Builder.getSize();
}
template <class ELFT>
StringTableSection<ELFT>::StringTableSection(StringRef Name, bool Dynamic)
: OutputSectionBase<ELFT>(Name, SHT_STRTAB,
Dynamic ? (uintX_t)SHF_ALLOC : 0),
Dynamic(Dynamic) {
this->Header.sh_addralign = 1;
}
// Adds a string to the string table. If HashIt is true we hash and check for
// duplicates. It is optional because the name of global symbols are already
// uniqued and hashing them again has a big cost for a small value: uniquing
// them with some other string that happens to be the same.
template <class ELFT>
unsigned StringTableSection<ELFT>::addString(StringRef S, bool HashIt) {
if (HashIt) {
auto R = StringMap.insert(std::make_pair(S, Size));
if (!R.second)
return R.first->second;
}
unsigned Ret = Size;
Size += S.size() + 1;
Strings.push_back(S);
return Ret;
}
template <class ELFT> void StringTableSection<ELFT>::writeTo(uint8_t *Buf) {
// ELF string tables start with NUL byte, so advance the pointer by one.
++Buf;
for (StringRef S : Strings) {
memcpy(Buf, S.data(), S.size());
Buf += S.size() + 1;
}
}
template <class ELFT>
SymbolTableSection<ELFT>::SymbolTableSection(
SymbolTable<ELFT> &Table, StringTableSection<ELFT> &StrTabSec)
: OutputSectionBase<ELFT>(StrTabSec.isDynamic() ? ".dynsym" : ".symtab",
StrTabSec.isDynamic() ? SHT_DYNSYM : SHT_SYMTAB,
StrTabSec.isDynamic() ? (uintX_t)SHF_ALLOC : 0),
StrTabSec(StrTabSec), Table(Table) {
this->Header.sh_entsize = sizeof(Elf_Sym);
this->Header.sh_addralign = sizeof(uintX_t);
}
// Orders symbols according to their positions in the GOT,
// in compliance with MIPS ABI rules.
// See "Global Offset Table" in Chapter 5 in the following document
// for detailed description:
// ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
static bool sortMipsSymbols(const std::pair<SymbolBody *, unsigned> &L,
const std::pair<SymbolBody *, unsigned> &R) {
// Sort entries related to non-local preemptible symbols by GOT indexes.
// All other entries go to the first part of GOT in arbitrary order.
bool LIsInLocalGot = !L.first->isInGot() || !L.first->isPreemptible();
bool RIsInLocalGot = !R.first->isInGot() || !R.first->isPreemptible();
if (LIsInLocalGot || RIsInLocalGot)
return !RIsInLocalGot;
return L.first->GotIndex < R.first->GotIndex;
}
static uint8_t getSymbolBinding(SymbolBody *Body) {
ELF: New symbol table design. This patch implements a new design for the symbol table that stores SymbolBodies within a memory region of the Symbol object. Symbols are mutated by constructing SymbolBodies in place over existing SymbolBodies, rather than by mutating pointers. As mentioned in the initial proposal [1], this memory layout helps reduce the cache miss rate by improving memory locality. Performance numbers: old(s) new(s) Without debug info: chrome 7.178 6.432 (-11.5%) LLVMgold.so 0.505 0.502 (-0.5%) clang 0.954 0.827 (-15.4%) llvm-as 0.052 0.045 (-15.5%) With debug info: scylla 5.695 5.613 (-1.5%) clang 14.396 14.143 (-1.8%) Performance counter results show that the fewer required indirections is indeed the cause of the improved performance. For example, when linking chrome, stalled cycles decreases from 14,556,444,002 to 12,959,238,310, and instructions per cycle increases from 0.78 to 0.83. We are also executing many fewer instructions (15,516,401,933 down to 15,002,434,310), probably because we spend less time allocating SymbolBodies. The new mechanism by which symbols are added to the symbol table is by calling add* functions on the SymbolTable. In this patch, I handle local symbols by storing them inside "unparented" SymbolBodies. This is suboptimal, but if we do want to try to avoid allocating these SymbolBodies, we can probably do that separately. I also removed a few members from the SymbolBody class that were only being used to pass information from the input file to the symbol table. This patch implements the new design for the ELF linker only. I intend to prepare a similar patch for the COFF linker. [1] http://lists.llvm.org/pipermail/llvm-dev/2016-April/098832.html Differential Revision: http://reviews.llvm.org/D19752 llvm-svn: 268178
2016-05-01 12:55:03 +08:00
Symbol *S = Body->symbol();
uint8_t Visibility = S->Visibility;
if (Visibility != STV_DEFAULT && Visibility != STV_PROTECTED)
return STB_LOCAL;
if (Config->NoGnuUnique && S->Binding == STB_GNU_UNIQUE)
return STB_GLOBAL;
return S->Binding;
}
template <class ELFT> void SymbolTableSection<ELFT>::finalize() {
if (this->Header.sh_size)
return; // Already finalized.
this->Header.sh_size = getNumSymbols() * sizeof(Elf_Sym);
this->Header.sh_link = StrTabSec.SectionIndex;
this->Header.sh_info = NumLocals + 1;
if (Config->Relocatable) {
size_t I = NumLocals;
for (const std::pair<SymbolBody *, size_t> &P : Symbols)
P.first->DynsymIndex = ++I;
return;
}
if (!StrTabSec.isDynamic()) {
std::stable_sort(Symbols.begin(), Symbols.end(),
[](const std::pair<SymbolBody *, unsigned> &L,
const std::pair<SymbolBody *, unsigned> &R) {
return getSymbolBinding(L.first) == STB_LOCAL &&
getSymbolBinding(R.first) != STB_LOCAL;
});
return;
}
if (Out<ELFT>::GnuHashTab)
// NB: It also sorts Symbols to meet the GNU hash table requirements.
Out<ELFT>::GnuHashTab->addSymbols(Symbols);
else if (Config->EMachine == EM_MIPS)
std::stable_sort(Symbols.begin(), Symbols.end(), sortMipsSymbols);
size_t I = 0;
for (const std::pair<SymbolBody *, size_t> &P : Symbols)
P.first->DynsymIndex = ++I;
}
template <class ELFT>
void SymbolTableSection<ELFT>::addSymbol(SymbolBody *B) {
Symbols.push_back({B, StrTabSec.addString(B->getName(), false)});
}
template <class ELFT> void SymbolTableSection<ELFT>::writeTo(uint8_t *Buf) {
Buf += sizeof(Elf_Sym);
// All symbols with STB_LOCAL binding precede the weak and global symbols.
// .dynsym only contains global symbols.
if (!Config->DiscardAll && !StrTabSec.isDynamic())
writeLocalSymbols(Buf);
writeGlobalSymbols(Buf);
}
template <class ELFT>
void SymbolTableSection<ELFT>::writeLocalSymbols(uint8_t *&Buf) {
// Iterate over all input object files to copy their local symbols
// to the output symbol table pointed by Buf.
for (const std::unique_ptr<ObjectFile<ELFT>> &File : Table.getObjectFiles()) {
for (const std::pair<const DefinedRegular<ELFT> *, size_t> &P :
File->KeptLocalSyms) {
const DefinedRegular<ELFT> &Body = *P.first;
InputSectionBase<ELFT> *Section = Body.Section;
auto *ESym = reinterpret_cast<Elf_Sym *>(Buf);
if (!Section) {
ESym->st_shndx = SHN_ABS;
ESym->st_value = Body.Value;
} else {
const OutputSectionBase<ELFT> *OutSec = Section->OutSec;
ESym->st_shndx = OutSec->SectionIndex;
ESym->st_value = OutSec->getVA() + Section->getOffset(Body);
}
ESym->st_name = P.second;
ESym->st_size = Body.template getSize<ELFT>();
ESym->setBindingAndType(STB_LOCAL, Body.Type);
Buf += sizeof(*ESym);
}
}
}
template <class ELFT>
void SymbolTableSection<ELFT>::writeGlobalSymbols(uint8_t *Buf) {
// Write the internal symbol table contents to the output symbol table
// pointed by Buf.
auto *ESym = reinterpret_cast<Elf_Sym *>(Buf);
for (const std::pair<SymbolBody *, size_t> &P : Symbols) {
SymbolBody *Body = P.first;
size_t StrOff = P.second;
uint8_t Type = Body->Type;
uintX_t Size = Body->getSize<ELFT>();
ESym->setBindingAndType(getSymbolBinding(Body), Type);
ESym->st_size = Size;
ESym->st_name = StrOff;
ELF: New symbol table design. This patch implements a new design for the symbol table that stores SymbolBodies within a memory region of the Symbol object. Symbols are mutated by constructing SymbolBodies in place over existing SymbolBodies, rather than by mutating pointers. As mentioned in the initial proposal [1], this memory layout helps reduce the cache miss rate by improving memory locality. Performance numbers: old(s) new(s) Without debug info: chrome 7.178 6.432 (-11.5%) LLVMgold.so 0.505 0.502 (-0.5%) clang 0.954 0.827 (-15.4%) llvm-as 0.052 0.045 (-15.5%) With debug info: scylla 5.695 5.613 (-1.5%) clang 14.396 14.143 (-1.8%) Performance counter results show that the fewer required indirections is indeed the cause of the improved performance. For example, when linking chrome, stalled cycles decreases from 14,556,444,002 to 12,959,238,310, and instructions per cycle increases from 0.78 to 0.83. We are also executing many fewer instructions (15,516,401,933 down to 15,002,434,310), probably because we spend less time allocating SymbolBodies. The new mechanism by which symbols are added to the symbol table is by calling add* functions on the SymbolTable. In this patch, I handle local symbols by storing them inside "unparented" SymbolBodies. This is suboptimal, but if we do want to try to avoid allocating these SymbolBodies, we can probably do that separately. I also removed a few members from the SymbolBody class that were only being used to pass information from the input file to the symbol table. This patch implements the new design for the ELF linker only. I intend to prepare a similar patch for the COFF linker. [1] http://lists.llvm.org/pipermail/llvm-dev/2016-April/098832.html Differential Revision: http://reviews.llvm.org/D19752 llvm-svn: 268178
2016-05-01 12:55:03 +08:00
ESym->setVisibility(Body->symbol()->Visibility);
ESym->st_value = Body->getVA<ELFT>();
if (const OutputSectionBase<ELFT> *OutSec = getOutputSection(Body))
ESym->st_shndx = OutSec->SectionIndex;
else if (isa<DefinedRegular<ELFT>>(Body))
ESym->st_shndx = SHN_ABS;
// On MIPS we need to mark symbol which has a PLT entry and requires pointer
// equality by STO_MIPS_PLT flag. That is necessary to help dynamic linker
// distinguish such symbols and MIPS lazy-binding stubs.
// https://sourceware.org/ml/binutils/2008-07/txt00000.txt
if (Config->EMachine == EM_MIPS && Body->isInPlt() &&
Body->NeedsCopyOrPltAddr)
ESym->st_other |= STO_MIPS_PLT;
++ESym;
}
}
template <class ELFT>
const OutputSectionBase<ELFT> *
SymbolTableSection<ELFT>::getOutputSection(SymbolBody *Sym) {
switch (Sym->kind()) {
case SymbolBody::DefinedSyntheticKind:
return cast<DefinedSynthetic<ELFT>>(Sym)->Section;
case SymbolBody::DefinedRegularKind: {
auto &D = cast<DefinedRegular<ELFT>>(*Sym);
if (D.Section)
return D.Section->OutSec;
break;
}
case SymbolBody::DefinedCommonKind:
return Out<ELFT>::Bss;
case SymbolBody::SharedKind:
if (cast<SharedSymbol<ELFT>>(Sym)->needsCopy())
return Out<ELFT>::Bss;
break;
case SymbolBody::UndefinedKind:
case SymbolBody::LazyArchiveKind:
case SymbolBody::LazyObjectKind:
break;
case SymbolBody::DefinedBitcodeKind:
llvm_unreachable("should have been replaced");
}
return nullptr;
}
template <class ELFT>
VersionTableSection<ELFT>::VersionTableSection()
: OutputSectionBase<ELFT>(".gnu.version", SHT_GNU_versym, SHF_ALLOC) {
this->Header.sh_addralign = sizeof(uint16_t);
}
template <class ELFT> void VersionTableSection<ELFT>::finalize() {
this->Header.sh_size =
sizeof(Elf_Versym) * (Out<ELFT>::DynSymTab->getSymbols().size() + 1);
this->Header.sh_entsize = sizeof(Elf_Versym);
}
template <class ELFT> void VersionTableSection<ELFT>::writeTo(uint8_t *Buf) {
auto *OutVersym = reinterpret_cast<Elf_Versym *>(Buf) + 1;
for (const std::pair<SymbolBody *, size_t> &P :
Out<ELFT>::DynSymTab->getSymbols()) {
if (auto *SS = dyn_cast<SharedSymbol<ELFT>>(P.first))
OutVersym->vs_index = SS->VersionId;
else
// The reserved identifier for a non-versioned global symbol.
OutVersym->vs_index = 1;
++OutVersym;
}
}
template <class ELFT>
VersionNeedSection<ELFT>::VersionNeedSection()
: OutputSectionBase<ELFT>(".gnu.version_r", SHT_GNU_verneed, SHF_ALLOC) {
this->Header.sh_addralign = sizeof(uint32_t);
}
template <class ELFT>
void VersionNeedSection<ELFT>::addSymbol(SharedSymbol<ELFT> *SS) {
if (!SS->Verdef) {
// The reserved identifier for a non-versioned global symbol.
SS->VersionId = 1;
return;
}
SharedFile<ELFT> *F = SS->File;
// If we don't already know that we need an Elf_Verneed for this DSO, prepare
// to create one by adding it to our needed list and creating a dynstr entry
// for the soname.
if (F->VerdefMap.empty())
Needed.push_back({F, Out<ELFT>::DynStrTab->addString(F->getSoName())});
typename SharedFile<ELFT>::NeededVer &NV = F->VerdefMap[SS->Verdef];
// If we don't already know that we need an Elf_Vernaux for this Elf_Verdef,
// prepare to create one by allocating a version identifier and creating a
// dynstr entry for the version name.
if (NV.Index == 0) {
NV.StrTab = Out<ELFT>::DynStrTab->addString(
SS->File->getStringTable().data() + SS->Verdef->getAux()->vda_name);
NV.Index = NextIndex++;
}
SS->VersionId = NV.Index;
}
template <class ELFT> void VersionNeedSection<ELFT>::writeTo(uint8_t *Buf) {
// The Elf_Verneeds need to appear first, followed by the Elf_Vernauxs.
auto *Verneed = reinterpret_cast<Elf_Verneed *>(Buf);
auto *Vernaux = reinterpret_cast<Elf_Vernaux *>(Verneed + Needed.size());
for (std::pair<SharedFile<ELFT> *, size_t> &P : Needed) {
// Create an Elf_Verneed for this DSO.
Verneed->vn_version = 1;
Verneed->vn_cnt = P.first->VerdefMap.size();
Verneed->vn_file = P.second;
Verneed->vn_aux =
reinterpret_cast<char *>(Vernaux) - reinterpret_cast<char *>(Verneed);
Verneed->vn_next = sizeof(Elf_Verneed);
++Verneed;
// Create the Elf_Vernauxs for this Elf_Verneed. The loop iterates over
// VerdefMap, which will only contain references to needed version
// definitions. Each Elf_Vernaux is based on the information contained in
// the Elf_Verdef in the source DSO. This loop iterates over a std::map of
// pointers, but is deterministic because the pointers refer to Elf_Verdef
// data structures within a single input file.
for (auto &NV : P.first->VerdefMap) {
Vernaux->vna_hash = NV.first->vd_hash;
Vernaux->vna_flags = 0;
Vernaux->vna_other = NV.second.Index;
Vernaux->vna_name = NV.second.StrTab;
Vernaux->vna_next = sizeof(Elf_Vernaux);
++Vernaux;
}
Vernaux[-1].vna_next = 0;
}
Verneed[-1].vn_next = 0;
}
template <class ELFT> void VersionNeedSection<ELFT>::finalize() {
this->Header.sh_link = Out<ELFT>::DynStrTab->SectionIndex;
this->Header.sh_info = Needed.size();
unsigned Size = Needed.size() * sizeof(Elf_Verneed);
for (std::pair<SharedFile<ELFT> *, size_t> &P : Needed)
Size += P.first->VerdefMap.size() * sizeof(Elf_Vernaux);
this->Header.sh_size = Size;
}
template <class ELFT>
BuildIdSection<ELFT>::BuildIdSection(size_t HashSize)
: OutputSectionBase<ELFT>(".note.gnu.build-id", SHT_NOTE, SHF_ALLOC),
HashSize(HashSize) {
// 16 bytes for the note section header.
this->Header.sh_size = 16 + HashSize;
}
template <class ELFT> void BuildIdSection<ELFT>::writeTo(uint8_t *Buf) {
const endianness E = ELFT::TargetEndianness;
write32<E>(Buf, 4); // Name size
write32<E>(Buf + 4, HashSize); // Content size
write32<E>(Buf + 8, NT_GNU_BUILD_ID); // Type
memcpy(Buf + 12, "GNU", 4); // Name string
HashBuf = Buf + 16;
}
template <class ELFT>
void BuildIdFnv1<ELFT>::writeBuildId(ArrayRef<ArrayRef<uint8_t>> Bufs) {
const endianness E = ELFT::TargetEndianness;
// 64-bit FNV-1 hash
uint64_t Hash = 0xcbf29ce484222325;
for (ArrayRef<uint8_t> Buf : Bufs) {
for (uint8_t B : Buf) {
Hash *= 0x100000001b3;
Hash ^= B;
}
}
write64<E>(this->HashBuf, Hash);
}
template <class ELFT>
void BuildIdMd5<ELFT>::writeBuildId(ArrayRef<ArrayRef<uint8_t>> Bufs) {
llvm::MD5 Hash;
for (ArrayRef<uint8_t> Buf : Bufs)
Hash.update(Buf);
MD5::MD5Result Res;
Hash.final(Res);
memcpy(this->HashBuf, Res, 16);
}
template <class ELFT>
void BuildIdSha1<ELFT>::writeBuildId(ArrayRef<ArrayRef<uint8_t>> Bufs) {
llvm::SHA1 Hash;
for (ArrayRef<uint8_t> Buf : Bufs)
Hash.update(Buf);
memcpy(this->HashBuf, Hash.final().data(), 20);
}
template <class ELFT>
BuildIdHexstring<ELFT>::BuildIdHexstring()
: BuildIdSection<ELFT>(Config->BuildIdVector.size()) {}
template <class ELFT>
void BuildIdHexstring<ELFT>::writeBuildId(ArrayRef<ArrayRef<uint8_t>> Bufs) {
memcpy(this->HashBuf, Config->BuildIdVector.data(),
Config->BuildIdVector.size());
}
template <class ELFT>
MipsReginfoOutputSection<ELFT>::MipsReginfoOutputSection()
: OutputSectionBase<ELFT>(".reginfo", SHT_MIPS_REGINFO, SHF_ALLOC) {
this->Header.sh_addralign = 4;
this->Header.sh_entsize = sizeof(Elf_Mips_RegInfo);
this->Header.sh_size = sizeof(Elf_Mips_RegInfo);
}
template <class ELFT>
void MipsReginfoOutputSection<ELFT>::writeTo(uint8_t *Buf) {
auto *R = reinterpret_cast<Elf_Mips_RegInfo *>(Buf);
R->ri_gp_value = Out<ELFT>::Got->getVA() + MipsGPOffset;
R->ri_gprmask = GprMask;
}
template <class ELFT>
void MipsReginfoOutputSection<ELFT>::addSection(InputSectionBase<ELFT> *C) {
// Copy input object file's .reginfo gprmask to output.
auto *S = cast<MipsReginfoInputSection<ELFT>>(C);
GprMask |= S->Reginfo->ri_gprmask;
}
template <class ELFT>
MipsOptionsOutputSection<ELFT>::MipsOptionsOutputSection()
: OutputSectionBase<ELFT>(".MIPS.options", SHT_MIPS_OPTIONS,
SHF_ALLOC | SHF_MIPS_NOSTRIP) {
this->Header.sh_addralign = 8;
this->Header.sh_entsize = 1;
this->Header.sh_size = sizeof(Elf_Mips_Options) + sizeof(Elf_Mips_RegInfo);
}
template <class ELFT>
void MipsOptionsOutputSection<ELFT>::writeTo(uint8_t *Buf) {
auto *Opt = reinterpret_cast<Elf_Mips_Options *>(Buf);
Opt->kind = ODK_REGINFO;
Opt->size = this->Header.sh_size;
Opt->section = 0;
Opt->info = 0;
auto *Reg = reinterpret_cast<Elf_Mips_RegInfo *>(Buf + sizeof(*Opt));
Reg->ri_gp_value = Out<ELFT>::Got->getVA() + MipsGPOffset;
Reg->ri_gprmask = GprMask;
}
template <class ELFT>
void MipsOptionsOutputSection<ELFT>::addSection(InputSectionBase<ELFT> *C) {
auto *S = cast<MipsOptionsInputSection<ELFT>>(C);
if (S->Reginfo)
GprMask |= S->Reginfo->ri_gprmask;
}
namespace lld {
2016-02-28 08:25:54 +08:00
namespace elf {
template class OutputSectionBase<ELF32LE>;
template class OutputSectionBase<ELF32BE>;
template class OutputSectionBase<ELF64LE>;
template class OutputSectionBase<ELF64BE>;
template class EhFrameHeader<ELF32LE>;
template class EhFrameHeader<ELF32BE>;
template class EhFrameHeader<ELF64LE>;
template class EhFrameHeader<ELF64BE>;
template class GotPltSection<ELF32LE>;
template class GotPltSection<ELF32BE>;
template class GotPltSection<ELF64LE>;
template class GotPltSection<ELF64BE>;
template class GotSection<ELF32LE>;
template class GotSection<ELF32BE>;
template class GotSection<ELF64LE>;
template class GotSection<ELF64BE>;
template class PltSection<ELF32LE>;
template class PltSection<ELF32BE>;
template class PltSection<ELF64LE>;
template class PltSection<ELF64BE>;
template class RelocationSection<ELF32LE>;
template class RelocationSection<ELF32BE>;
template class RelocationSection<ELF64LE>;
template class RelocationSection<ELF64BE>;
template class InterpSection<ELF32LE>;
template class InterpSection<ELF32BE>;
template class InterpSection<ELF64LE>;
template class InterpSection<ELF64BE>;
template class GnuHashTableSection<ELF32LE>;
template class GnuHashTableSection<ELF32BE>;
template class GnuHashTableSection<ELF64LE>;
template class GnuHashTableSection<ELF64BE>;
template class HashTableSection<ELF32LE>;
template class HashTableSection<ELF32BE>;
template class HashTableSection<ELF64LE>;
template class HashTableSection<ELF64BE>;
template class DynamicSection<ELF32LE>;
template class DynamicSection<ELF32BE>;
template class DynamicSection<ELF64LE>;
template class DynamicSection<ELF64BE>;
template class OutputSection<ELF32LE>;
template class OutputSection<ELF32BE>;
template class OutputSection<ELF64LE>;
template class OutputSection<ELF64BE>;
template class EHOutputSection<ELF32LE>;
template class EHOutputSection<ELF32BE>;
template class EHOutputSection<ELF64LE>;
template class EHOutputSection<ELF64BE>;
template class MipsReginfoOutputSection<ELF32LE>;
template class MipsReginfoOutputSection<ELF32BE>;
template class MipsReginfoOutputSection<ELF64LE>;
template class MipsReginfoOutputSection<ELF64BE>;
template class MipsOptionsOutputSection<ELF32LE>;
template class MipsOptionsOutputSection<ELF32BE>;
template class MipsOptionsOutputSection<ELF64LE>;
template class MipsOptionsOutputSection<ELF64BE>;
template class MergeOutputSection<ELF32LE>;
template class MergeOutputSection<ELF32BE>;
template class MergeOutputSection<ELF64LE>;
template class MergeOutputSection<ELF64BE>;
template class StringTableSection<ELF32LE>;
template class StringTableSection<ELF32BE>;
template class StringTableSection<ELF64LE>;
template class StringTableSection<ELF64BE>;
template class SymbolTableSection<ELF32LE>;
template class SymbolTableSection<ELF32BE>;
template class SymbolTableSection<ELF64LE>;
template class SymbolTableSection<ELF64BE>;
template class VersionTableSection<ELF32LE>;
template class VersionTableSection<ELF32BE>;
template class VersionTableSection<ELF64LE>;
template class VersionTableSection<ELF64BE>;
template class VersionNeedSection<ELF32LE>;
template class VersionNeedSection<ELF32BE>;
template class VersionNeedSection<ELF64LE>;
template class VersionNeedSection<ELF64BE>;
template class BuildIdSection<ELF32LE>;
template class BuildIdSection<ELF32BE>;
template class BuildIdSection<ELF64LE>;
template class BuildIdSection<ELF64BE>;
template class BuildIdFnv1<ELF32LE>;
template class BuildIdFnv1<ELF32BE>;
template class BuildIdFnv1<ELF64LE>;
template class BuildIdFnv1<ELF64BE>;
template class BuildIdMd5<ELF32LE>;
template class BuildIdMd5<ELF32BE>;
template class BuildIdMd5<ELF64LE>;
template class BuildIdMd5<ELF64BE>;
template class BuildIdSha1<ELF32LE>;
template class BuildIdSha1<ELF32BE>;
template class BuildIdSha1<ELF64LE>;
template class BuildIdSha1<ELF64BE>;
template class BuildIdHexstring<ELF32LE>;
template class BuildIdHexstring<ELF32BE>;
template class BuildIdHexstring<ELF64LE>;
template class BuildIdHexstring<ELF64BE>;
}
}