llvm-project/clang/unittests/Tooling/ToolingTest.cpp

538 lines
19 KiB
C++
Raw Normal View History

//===- unittest/Tooling/ToolingTest.cpp - Tooling unit tests --------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "clang/AST/ASTConsumer.h"
#include "clang/AST/DeclCXX.h"
#include "clang/AST/DeclGroup.h"
#include "clang/Frontend/ASTUnit.h"
#include "clang/Frontend/CompilerInstance.h"
#include "clang/Frontend/FrontendAction.h"
#include "clang/Frontend/FrontendActions.h"
#include "clang/Tooling/CompilationDatabase.h"
#include "clang/Tooling/Tooling.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Config/llvm-config.h"
#include "llvm/Support/Path.h"
#include "llvm/Support/TargetRegistry.h"
#include "llvm/Support/TargetSelect.h"
#include "gtest/gtest.h"
#include <algorithm>
#include <string>
namespace clang {
namespace tooling {
namespace {
/// Takes an ast consumer and returns it from CreateASTConsumer. This only
/// works with single translation unit compilations.
class TestAction : public clang::ASTFrontendAction {
public:
/// Takes ownership of TestConsumer.
explicit TestAction(std::unique_ptr<clang::ASTConsumer> TestConsumer)
: TestConsumer(std::move(TestConsumer)) {}
protected:
std::unique_ptr<clang::ASTConsumer>
CreateASTConsumer(clang::CompilerInstance &compiler,
StringRef dummy) override {
/// TestConsumer will be deleted by the framework calling us.
return std::move(TestConsumer);
}
private:
std::unique_ptr<clang::ASTConsumer> TestConsumer;
};
class FindTopLevelDeclConsumer : public clang::ASTConsumer {
public:
explicit FindTopLevelDeclConsumer(bool *FoundTopLevelDecl)
: FoundTopLevelDecl(FoundTopLevelDecl) {}
bool HandleTopLevelDecl(clang::DeclGroupRef DeclGroup) override {
*FoundTopLevelDecl = true;
return true;
}
private:
bool * const FoundTopLevelDecl;
};
} // end namespace
TEST(runToolOnCode, FindsNoTopLevelDeclOnEmptyCode) {
bool FoundTopLevelDecl = false;
EXPECT_TRUE(
runToolOnCode(new TestAction(llvm::make_unique<FindTopLevelDeclConsumer>(
&FoundTopLevelDecl)),
""));
EXPECT_FALSE(FoundTopLevelDecl);
}
namespace {
class FindClassDeclXConsumer : public clang::ASTConsumer {
public:
FindClassDeclXConsumer(bool *FoundClassDeclX)
: FoundClassDeclX(FoundClassDeclX) {}
bool HandleTopLevelDecl(clang::DeclGroupRef GroupRef) override {
if (CXXRecordDecl* Record = dyn_cast<clang::CXXRecordDecl>(
*GroupRef.begin())) {
if (Record->getName() == "X") {
*FoundClassDeclX = true;
}
}
return true;
}
private:
bool *FoundClassDeclX;
};
bool FindClassDeclX(ASTUnit *AST) {
for (std::vector<Decl *>::iterator i = AST->top_level_begin(),
e = AST->top_level_end();
i != e; ++i) {
if (CXXRecordDecl* Record = dyn_cast<clang::CXXRecordDecl>(*i)) {
if (Record->getName() == "X") {
return true;
}
}
}
return false;
}
} // end namespace
TEST(runToolOnCode, FindsClassDecl) {
bool FoundClassDeclX = false;
EXPECT_TRUE(
runToolOnCode(new TestAction(llvm::make_unique<FindClassDeclXConsumer>(
&FoundClassDeclX)),
"class X;"));
EXPECT_TRUE(FoundClassDeclX);
FoundClassDeclX = false;
EXPECT_TRUE(
runToolOnCode(new TestAction(llvm::make_unique<FindClassDeclXConsumer>(
&FoundClassDeclX)),
"class Y;"));
EXPECT_FALSE(FoundClassDeclX);
}
TEST(buildASTFromCode, FindsClassDecl) {
std::unique_ptr<ASTUnit> AST = buildASTFromCode("class X;");
ASSERT_TRUE(AST.get());
EXPECT_TRUE(FindClassDeclX(AST.get()));
AST = buildASTFromCode("class Y;");
ASSERT_TRUE(AST.get());
EXPECT_FALSE(FindClassDeclX(AST.get()));
}
TEST(newFrontendActionFactory, CreatesFrontendActionFactoryFromType) {
std::unique_ptr<FrontendActionFactory> Factory(
newFrontendActionFactory<SyntaxOnlyAction>());
std::unique_ptr<FrontendAction> Action(Factory->create());
EXPECT_TRUE(Action.get() != nullptr);
}
struct IndependentFrontendActionCreator {
std::unique_ptr<ASTConsumer> newASTConsumer() {
return llvm::make_unique<FindTopLevelDeclConsumer>(nullptr);
}
};
TEST(newFrontendActionFactory, CreatesFrontendActionFactoryFromFactoryType) {
IndependentFrontendActionCreator Creator;
std::unique_ptr<FrontendActionFactory> Factory(
newFrontendActionFactory(&Creator));
std::unique_ptr<FrontendAction> Action(Factory->create());
EXPECT_TRUE(Action.get() != nullptr);
}
TEST(ToolInvocation, TestMapVirtualFile) {
llvm::IntrusiveRefCntPtr<vfs::OverlayFileSystem> OverlayFileSystem(
new vfs::OverlayFileSystem(vfs::getRealFileSystem()));
llvm::IntrusiveRefCntPtr<vfs::InMemoryFileSystem> InMemoryFileSystem(
new vfs::InMemoryFileSystem);
OverlayFileSystem->pushOverlay(InMemoryFileSystem);
llvm::IntrusiveRefCntPtr<FileManager> Files(
new FileManager(FileSystemOptions(), OverlayFileSystem));
std::vector<std::string> Args;
Args.push_back("tool-executable");
Args.push_back("-Idef");
Args.push_back("-fsyntax-only");
Args.push_back("test.cpp");
clang::tooling::ToolInvocation Invocation(Args, new SyntaxOnlyAction,
Files.get());
InMemoryFileSystem->addFile(
"test.cpp", 0, llvm::MemoryBuffer::getMemBuffer("#include <abc>\n"));
InMemoryFileSystem->addFile("def/abc", 0,
llvm::MemoryBuffer::getMemBuffer("\n"));
EXPECT_TRUE(Invocation.run());
}
Use the same SourceManager for ModuleMaps and compilations. This allows using virtual file mappings on the original SourceManager to map in virtual module.map files. Without this patch, the ModuleMap search will find a module.map file (as the FileEntry exists in the FileManager), but will be unable to get the content from the SourceManager (as ModuleMap previously created its own SourceManager). Two problems needed to be fixed which this patch exposed: 1. Storing the inferred module map When writing out a module, the ASTWriter stores the names of the files in the main source manager; when loading the AST again, the ASTReader errs out if such a file is found missing, unless it is overridden. Previously CompilerInstance's compileModule method would store the inferred module map to a temporary file; the problem with this approach is that now that the module map is handled by the main source manager, the ASTWriter stores the name of the temporary module map as source to the compilation; later, when the module is loaded, the temporary file has already been deleted, which leads to a compilation error. This patch changes the inferred module map to instead inject a virtual file into the source manager. This both saves some disk IO, and works with how the ASTWriter/ASTReader handle overridden source files. 2. Changing test input in test/Modules/Inputs/* Now that the module map file is handled by the main source manager, the VerifyDiagnosticConsumer will not ignore diagnostics created while parsing the module map file. The module test test/Modules/renamed.m uses -I test/Modules/Inputs and triggers recursive loading of all module maps in test/Modules/Inputs, some of which had conflicting names, thus leading errors while parsing the module maps. Those diagnostics already occur on trunk, but before this patch they would not break the test, as they were ignored by the VerifyDiagnosticConsumer. This patch thus changes the module maps that have been recently introduced which broke the invariant of compatible modules maps in test/Modules/Inputs. llvm-svn: 193314
2013-10-24 15:51:24 +08:00
TEST(ToolInvocation, TestVirtualModulesCompilation) {
// FIXME: Currently, this only tests that we don't exit with an error if a
// mapped module.map is found on the include path. In the future, expand this
// test to run a full modules enabled compilation, so we make sure we can
// rerun modules compilations with a virtual file system.
llvm::IntrusiveRefCntPtr<vfs::OverlayFileSystem> OverlayFileSystem(
new vfs::OverlayFileSystem(vfs::getRealFileSystem()));
llvm::IntrusiveRefCntPtr<vfs::InMemoryFileSystem> InMemoryFileSystem(
new vfs::InMemoryFileSystem);
OverlayFileSystem->pushOverlay(InMemoryFileSystem);
llvm::IntrusiveRefCntPtr<FileManager> Files(
new FileManager(FileSystemOptions(), OverlayFileSystem));
Use the same SourceManager for ModuleMaps and compilations. This allows using virtual file mappings on the original SourceManager to map in virtual module.map files. Without this patch, the ModuleMap search will find a module.map file (as the FileEntry exists in the FileManager), but will be unable to get the content from the SourceManager (as ModuleMap previously created its own SourceManager). Two problems needed to be fixed which this patch exposed: 1. Storing the inferred module map When writing out a module, the ASTWriter stores the names of the files in the main source manager; when loading the AST again, the ASTReader errs out if such a file is found missing, unless it is overridden. Previously CompilerInstance's compileModule method would store the inferred module map to a temporary file; the problem with this approach is that now that the module map is handled by the main source manager, the ASTWriter stores the name of the temporary module map as source to the compilation; later, when the module is loaded, the temporary file has already been deleted, which leads to a compilation error. This patch changes the inferred module map to instead inject a virtual file into the source manager. This both saves some disk IO, and works with how the ASTWriter/ASTReader handle overridden source files. 2. Changing test input in test/Modules/Inputs/* Now that the module map file is handled by the main source manager, the VerifyDiagnosticConsumer will not ignore diagnostics created while parsing the module map file. The module test test/Modules/renamed.m uses -I test/Modules/Inputs and triggers recursive loading of all module maps in test/Modules/Inputs, some of which had conflicting names, thus leading errors while parsing the module maps. Those diagnostics already occur on trunk, but before this patch they would not break the test, as they were ignored by the VerifyDiagnosticConsumer. This patch thus changes the module maps that have been recently introduced which broke the invariant of compatible modules maps in test/Modules/Inputs. llvm-svn: 193314
2013-10-24 15:51:24 +08:00
std::vector<std::string> Args;
Args.push_back("tool-executable");
Args.push_back("-Idef");
Args.push_back("-fsyntax-only");
Args.push_back("test.cpp");
clang::tooling::ToolInvocation Invocation(Args, new SyntaxOnlyAction,
Files.get());
InMemoryFileSystem->addFile(
"test.cpp", 0, llvm::MemoryBuffer::getMemBuffer("#include <abc>\n"));
InMemoryFileSystem->addFile("def/abc", 0,
llvm::MemoryBuffer::getMemBuffer("\n"));
Use the same SourceManager for ModuleMaps and compilations. This allows using virtual file mappings on the original SourceManager to map in virtual module.map files. Without this patch, the ModuleMap search will find a module.map file (as the FileEntry exists in the FileManager), but will be unable to get the content from the SourceManager (as ModuleMap previously created its own SourceManager). Two problems needed to be fixed which this patch exposed: 1. Storing the inferred module map When writing out a module, the ASTWriter stores the names of the files in the main source manager; when loading the AST again, the ASTReader errs out if such a file is found missing, unless it is overridden. Previously CompilerInstance's compileModule method would store the inferred module map to a temporary file; the problem with this approach is that now that the module map is handled by the main source manager, the ASTWriter stores the name of the temporary module map as source to the compilation; later, when the module is loaded, the temporary file has already been deleted, which leads to a compilation error. This patch changes the inferred module map to instead inject a virtual file into the source manager. This both saves some disk IO, and works with how the ASTWriter/ASTReader handle overridden source files. 2. Changing test input in test/Modules/Inputs/* Now that the module map file is handled by the main source manager, the VerifyDiagnosticConsumer will not ignore diagnostics created while parsing the module map file. The module test test/Modules/renamed.m uses -I test/Modules/Inputs and triggers recursive loading of all module maps in test/Modules/Inputs, some of which had conflicting names, thus leading errors while parsing the module maps. Those diagnostics already occur on trunk, but before this patch they would not break the test, as they were ignored by the VerifyDiagnosticConsumer. This patch thus changes the module maps that have been recently introduced which broke the invariant of compatible modules maps in test/Modules/Inputs. llvm-svn: 193314
2013-10-24 15:51:24 +08:00
// Add a module.map file in the include directory of our header, so we trigger
// the module.map header search logic.
InMemoryFileSystem->addFile("def/module.map", 0,
llvm::MemoryBuffer::getMemBuffer("\n"));
Use the same SourceManager for ModuleMaps and compilations. This allows using virtual file mappings on the original SourceManager to map in virtual module.map files. Without this patch, the ModuleMap search will find a module.map file (as the FileEntry exists in the FileManager), but will be unable to get the content from the SourceManager (as ModuleMap previously created its own SourceManager). Two problems needed to be fixed which this patch exposed: 1. Storing the inferred module map When writing out a module, the ASTWriter stores the names of the files in the main source manager; when loading the AST again, the ASTReader errs out if such a file is found missing, unless it is overridden. Previously CompilerInstance's compileModule method would store the inferred module map to a temporary file; the problem with this approach is that now that the module map is handled by the main source manager, the ASTWriter stores the name of the temporary module map as source to the compilation; later, when the module is loaded, the temporary file has already been deleted, which leads to a compilation error. This patch changes the inferred module map to instead inject a virtual file into the source manager. This both saves some disk IO, and works with how the ASTWriter/ASTReader handle overridden source files. 2. Changing test input in test/Modules/Inputs/* Now that the module map file is handled by the main source manager, the VerifyDiagnosticConsumer will not ignore diagnostics created while parsing the module map file. The module test test/Modules/renamed.m uses -I test/Modules/Inputs and triggers recursive loading of all module maps in test/Modules/Inputs, some of which had conflicting names, thus leading errors while parsing the module maps. Those diagnostics already occur on trunk, but before this patch they would not break the test, as they were ignored by the VerifyDiagnosticConsumer. This patch thus changes the module maps that have been recently introduced which broke the invariant of compatible modules maps in test/Modules/Inputs. llvm-svn: 193314
2013-10-24 15:51:24 +08:00
EXPECT_TRUE(Invocation.run());
}
struct VerifyEndCallback : public SourceFileCallbacks {
VerifyEndCallback() : BeginCalled(0), EndCalled(0), Matched(false) {}
bool handleBeginSource(CompilerInstance &CI, StringRef Filename) override {
++BeginCalled;
return true;
}
void handleEndSource() override { ++EndCalled; }
std::unique_ptr<ASTConsumer> newASTConsumer() {
return llvm::make_unique<FindTopLevelDeclConsumer>(&Matched);
}
unsigned BeginCalled;
unsigned EndCalled;
bool Matched;
};
#if !defined(LLVM_ON_WIN32)
TEST(newFrontendActionFactory, InjectsSourceFileCallbacks) {
VerifyEndCallback EndCallback;
FixedCompilationDatabase Compilations("/", std::vector<std::string>());
std::vector<std::string> Sources;
Sources.push_back("/a.cc");
Sources.push_back("/b.cc");
ClangTool Tool(Compilations, Sources);
Tool.mapVirtualFile("/a.cc", "void a() {}");
Tool.mapVirtualFile("/b.cc", "void b() {}");
std::unique_ptr<FrontendActionFactory> Action(
newFrontendActionFactory(&EndCallback, &EndCallback));
Tool.run(Action.get());
EXPECT_TRUE(EndCallback.Matched);
EXPECT_EQ(2u, EndCallback.BeginCalled);
EXPECT_EQ(2u, EndCallback.EndCalled);
}
#endif
struct SkipBodyConsumer : public clang::ASTConsumer {
/// Skip the 'skipMe' function.
bool shouldSkipFunctionBody(Decl *D) override {
NamedDecl *F = dyn_cast<NamedDecl>(D);
return F && F->getNameAsString() == "skipMe";
}
};
struct SkipBodyAction : public clang::ASTFrontendAction {
std::unique_ptr<ASTConsumer> CreateASTConsumer(CompilerInstance &Compiler,
StringRef) override {
Compiler.getFrontendOpts().SkipFunctionBodies = true;
return llvm::make_unique<SkipBodyConsumer>();
}
};
TEST(runToolOnCode, TestSkipFunctionBody) {
std::vector<std::string> Args = {"-std=c++11"};
std::vector<std::string> Args2 = {"-fno-delayed-template-parsing"};
EXPECT_TRUE(runToolOnCode(new SkipBodyAction,
"int skipMe() { an_error_here }"));
EXPECT_FALSE(runToolOnCode(new SkipBodyAction,
"int skipMeNot() { an_error_here }"));
// Test constructors with initializers
EXPECT_TRUE(runToolOnCodeWithArgs(
new SkipBodyAction,
"struct skipMe { skipMe() : an_error() { more error } };", Args));
EXPECT_TRUE(runToolOnCodeWithArgs(
new SkipBodyAction, "struct skipMe { skipMe(); };"
"skipMe::skipMe() : an_error([](){;}) { more error }",
Args));
EXPECT_TRUE(runToolOnCodeWithArgs(
new SkipBodyAction, "struct skipMe { skipMe(); };"
"skipMe::skipMe() : an_error{[](){;}} { more error }",
Args));
EXPECT_TRUE(runToolOnCodeWithArgs(
new SkipBodyAction,
"struct skipMe { skipMe(); };"
"skipMe::skipMe() : a<b<c>(e)>>(), f{}, g() { error }",
Args));
EXPECT_TRUE(runToolOnCodeWithArgs(
new SkipBodyAction, "struct skipMe { skipMe() : bases()... { error } };",
Args));
EXPECT_FALSE(runToolOnCodeWithArgs(
new SkipBodyAction, "struct skipMeNot { skipMeNot() : an_error() { } };",
Args));
EXPECT_FALSE(runToolOnCodeWithArgs(new SkipBodyAction,
"struct skipMeNot { skipMeNot(); };"
"skipMeNot::skipMeNot() : an_error() { }",
Args));
// Try/catch
EXPECT_TRUE(runToolOnCode(
new SkipBodyAction,
"void skipMe() try { an_error() } catch(error) { error };"));
EXPECT_TRUE(runToolOnCode(
new SkipBodyAction,
"struct S { void skipMe() try { an_error() } catch(error) { error } };"));
EXPECT_TRUE(
runToolOnCode(new SkipBodyAction,
"void skipMe() try { an_error() } catch(error) { error; }"
"catch(error) { error } catch (error) { }"));
EXPECT_FALSE(runToolOnCode(
new SkipBodyAction,
"void skipMe() try something;")); // don't crash while parsing
// Template
EXPECT_TRUE(runToolOnCode(
new SkipBodyAction, "template<typename T> int skipMe() { an_error_here }"
"int x = skipMe<int>();"));
EXPECT_FALSE(runToolOnCodeWithArgs(
new SkipBodyAction,
"template<typename T> int skipMeNot() { an_error_here }", Args2));
}
TEST(runToolOnCodeWithArgs, TestNoDepFile) {
llvm::SmallString<32> DepFilePath;
ASSERT_FALSE(
llvm::sys::fs::createTemporaryFile("depfile", "d", DepFilePath));
std::vector<std::string> Args;
Args.push_back("-MMD");
Args.push_back("-MT");
Args.push_back(DepFilePath.str());
Args.push_back("-MF");
Args.push_back(DepFilePath.str());
EXPECT_TRUE(runToolOnCodeWithArgs(new SkipBodyAction, "", Args));
EXPECT_FALSE(llvm::sys::fs::exists(DepFilePath.str()));
EXPECT_FALSE(llvm::sys::fs::remove(DepFilePath.str()));
}
struct CheckColoredDiagnosticsAction : public clang::ASTFrontendAction {
CheckColoredDiagnosticsAction(bool ShouldShowColor)
: ShouldShowColor(ShouldShowColor) {}
std::unique_ptr<ASTConsumer> CreateASTConsumer(CompilerInstance &Compiler,
StringRef) override {
if (Compiler.getDiagnosticOpts().ShowColors != ShouldShowColor)
Compiler.getDiagnostics().Report(
Compiler.getDiagnostics().getCustomDiagID(
DiagnosticsEngine::Fatal,
"getDiagnosticOpts().ShowColors != ShouldShowColor"));
return llvm::make_unique<ASTConsumer>();
}
private:
bool ShouldShowColor = true;
};
TEST(runToolOnCodeWithArgs, DiagnosticsColor) {
EXPECT_TRUE(runToolOnCodeWithArgs(new CheckColoredDiagnosticsAction(true), "",
{"-fcolor-diagnostics"}));
EXPECT_TRUE(runToolOnCodeWithArgs(new CheckColoredDiagnosticsAction(false),
"", {"-fno-color-diagnostics"}));
EXPECT_TRUE(
runToolOnCodeWithArgs(new CheckColoredDiagnosticsAction(true), "",
{"-fno-color-diagnostics", "-fcolor-diagnostics"}));
EXPECT_TRUE(
runToolOnCodeWithArgs(new CheckColoredDiagnosticsAction(false), "",
{"-fcolor-diagnostics", "-fno-color-diagnostics"}));
EXPECT_TRUE(runToolOnCodeWithArgs(
new CheckColoredDiagnosticsAction(true), "",
{"-fno-color-diagnostics", "-fdiagnostics-color=always"}));
// Check that this test would fail if ShowColors is not what it should.
EXPECT_FALSE(runToolOnCodeWithArgs(new CheckColoredDiagnosticsAction(false),
"", {"-fcolor-diagnostics"}));
}
TEST(ClangToolTest, ArgumentAdjusters) {
FixedCompilationDatabase Compilations("/", std::vector<std::string>());
ClangTool Tool(Compilations, std::vector<std::string>(1, "/a.cc"));
Tool.mapVirtualFile("/a.cc", "void a() {}");
std::unique_ptr<FrontendActionFactory> Action(
newFrontendActionFactory<SyntaxOnlyAction>());
bool Found = false;
bool Ran = false;
ArgumentsAdjuster CheckSyntaxOnlyAdjuster =
[&Found, &Ran](const CommandLineArguments &Args, StringRef /*unused*/) {
Ran = true;
if (std::find(Args.begin(), Args.end(), "-fsyntax-only") != Args.end())
Found = true;
return Args;
};
Tool.appendArgumentsAdjuster(CheckSyntaxOnlyAdjuster);
Tool.run(Action.get());
EXPECT_TRUE(Ran);
EXPECT_TRUE(Found);
Ran = Found = false;
Tool.clearArgumentsAdjusters();
Tool.appendArgumentsAdjuster(CheckSyntaxOnlyAdjuster);
Tool.appendArgumentsAdjuster(getClangSyntaxOnlyAdjuster());
Tool.run(Action.get());
EXPECT_TRUE(Ran);
EXPECT_FALSE(Found);
}
namespace {
/// Find a target name such that looking for it in TargetRegistry by that name
/// returns the same target. We expect that there is at least one target
/// configured with this property.
std::string getAnyTarget() {
llvm::InitializeAllTargets();
for (const auto &Target : llvm::TargetRegistry::targets()) {
std::string Error;
StringRef TargetName(Target.getName());
if (TargetName == "x86-64")
TargetName = "x86_64";
if (llvm::TargetRegistry::lookupTarget(TargetName, Error) == &Target) {
return TargetName;
}
}
return "";
}
}
TEST(addTargetAndModeForProgramName, AddsTargetAndMode) {
std::string Target = getAnyTarget();
ASSERT_FALSE(Target.empty());
std::vector<std::string> Args = {"clang", "-foo"};
addTargetAndModeForProgramName(Args, "");
EXPECT_EQ((std::vector<std::string>{"clang", "-foo"}), Args);
addTargetAndModeForProgramName(Args, Target + "-g++");
EXPECT_EQ((std::vector<std::string>{"clang", "-target", Target,
"--driver-mode=g++", "-foo"}),
Args);
}
TEST(addTargetAndModeForProgramName, PathIgnored) {
std::string Target = getAnyTarget();
ASSERT_FALSE(Target.empty());
SmallString<32> ToolPath;
llvm::sys::path::append(ToolPath, "foo", "bar", Target + "-g++");
std::vector<std::string> Args = {"clang", "-foo"};
addTargetAndModeForProgramName(Args, ToolPath);
EXPECT_EQ((std::vector<std::string>{"clang", "-target", Target,
"--driver-mode=g++", "-foo"}),
Args);
}
TEST(addTargetAndModeForProgramName, IgnoresExistingTarget) {
std::string Target = getAnyTarget();
ASSERT_FALSE(Target.empty());
std::vector<std::string> Args = {"clang", "-foo", "-target", "something"};
addTargetAndModeForProgramName(Args, Target + "-g++");
EXPECT_EQ((std::vector<std::string>{"clang", "--driver-mode=g++", "-foo",
"-target", "something"}),
Args);
std::vector<std::string> ArgsAlt = {"clang", "-foo", "-target=something"};
addTargetAndModeForProgramName(ArgsAlt, Target + "-g++");
EXPECT_EQ((std::vector<std::string>{"clang", "--driver-mode=g++", "-foo",
"-target=something"}),
ArgsAlt);
}
TEST(addTargetAndModeForProgramName, IgnoresExistingMode) {
std::string Target = getAnyTarget();
ASSERT_FALSE(Target.empty());
std::vector<std::string> Args = {"clang", "-foo", "--driver-mode=abc"};
addTargetAndModeForProgramName(Args, Target + "-g++");
EXPECT_EQ((std::vector<std::string>{"clang", "-target", Target, "-foo",
"--driver-mode=abc"}),
Args);
std::vector<std::string> ArgsAlt = {"clang", "-foo", "--driver-mode", "abc"};
addTargetAndModeForProgramName(ArgsAlt, Target + "-g++");
EXPECT_EQ((std::vector<std::string>{"clang", "-target", Target, "-foo",
"--driver-mode", "abc"}),
ArgsAlt);
}
#ifndef LLVM_ON_WIN32
TEST(ClangToolTest, BuildASTs) {
FixedCompilationDatabase Compilations("/", std::vector<std::string>());
std::vector<std::string> Sources;
Sources.push_back("/a.cc");
Sources.push_back("/b.cc");
ClangTool Tool(Compilations, Sources);
Tool.mapVirtualFile("/a.cc", "void a() {}");
Tool.mapVirtualFile("/b.cc", "void b() {}");
std::vector<std::unique_ptr<ASTUnit>> ASTs;
EXPECT_EQ(0, Tool.buildASTs(ASTs));
EXPECT_EQ(2u, ASTs.size());
}
struct TestDiagnosticConsumer : public DiagnosticConsumer {
TestDiagnosticConsumer() : NumDiagnosticsSeen(0) {}
void HandleDiagnostic(DiagnosticsEngine::Level DiagLevel,
const Diagnostic &Info) override {
++NumDiagnosticsSeen;
}
unsigned NumDiagnosticsSeen;
};
TEST(ClangToolTest, InjectDiagnosticConsumer) {
FixedCompilationDatabase Compilations("/", std::vector<std::string>());
ClangTool Tool(Compilations, std::vector<std::string>(1, "/a.cc"));
Tool.mapVirtualFile("/a.cc", "int x = undeclared;");
TestDiagnosticConsumer Consumer;
Tool.setDiagnosticConsumer(&Consumer);
std::unique_ptr<FrontendActionFactory> Action(
newFrontendActionFactory<SyntaxOnlyAction>());
Tool.run(Action.get());
EXPECT_EQ(1u, Consumer.NumDiagnosticsSeen);
}
TEST(ClangToolTest, InjectDiagnosticConsumerInBuildASTs) {
FixedCompilationDatabase Compilations("/", std::vector<std::string>());
ClangTool Tool(Compilations, std::vector<std::string>(1, "/a.cc"));
Tool.mapVirtualFile("/a.cc", "int x = undeclared;");
TestDiagnosticConsumer Consumer;
Tool.setDiagnosticConsumer(&Consumer);
std::vector<std::unique_ptr<ASTUnit>> ASTs;
Tool.buildASTs(ASTs);
EXPECT_EQ(1u, ASTs.size());
EXPECT_EQ(1u, Consumer.NumDiagnosticsSeen);
}
#endif
} // end namespace tooling
} // end namespace clang