2010-01-04 15:37:31 +08:00
|
|
|
//===- InstCombineCompares.cpp --------------------------------------------===//
|
|
|
|
//
|
|
|
|
// The LLVM Compiler Infrastructure
|
|
|
|
//
|
|
|
|
// This file is distributed under the University of Illinois Open Source
|
|
|
|
// License. See LICENSE.TXT for details.
|
|
|
|
//
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
//
|
|
|
|
// This file implements the visitICmp and visitFCmp functions.
|
|
|
|
//
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
|
2015-01-22 13:25:13 +08:00
|
|
|
#include "InstCombineInternal.h"
|
2015-01-06 23:50:59 +08:00
|
|
|
#include "llvm/ADT/APSInt.h"
|
Re-commit r257064, after it was reverted in r257340.
This contains a fix for the issue that caused the revert:
we no longer assume that we can insert instructions after the
instruction that produces the base pointer. We previously
assumed that this would be ok, because the instruction produces
a value and therefore is not a terminator. This is false for invoke
instructions. We will now insert these new instruction directly
at the location of the users.
Original commit message:
[InstCombine] Look through PHIs, GEPs, IntToPtrs and PtrToInts to expose more constants when comparing GEPs
Summary:
When comparing two GEP instructions which have the same base pointer
and one of them has a constant index, it is possible to only compare
indices, transforming it to a compare with a constant. This removes
one use for the GEP instruction with the constant index, can reduce
register pressure and can sometimes lead to removing the comparisson
entirely.
InstCombine was already doing this when comparing two GEPs if the base
pointers were the same. However, in the case where we have complex
pointer arithmetic (GEPs applied to GEPs, PHIs of GEPs, conversions to
or from integers, etc) the value of the original base pointer will be
hidden to the optimizer and this transformation will be disabled.
This change detects when the two sides of the comparison can be
expressed as GEPs with the same base pointer, even if they don't
appear as such in the IR. The transformation will convert all the
pointer arithmetic to arithmetic done on indices and all the relevant
uses of GEPs to GEPs with a common base pointer. The GEP comparison
will be converted to a comparison done on indices.
Reviewers: majnemer, jmolloy
Subscribers: hfinkel, jevinskie, jmolloy, aadg, llvm-commits
Differential Revision: http://reviews.llvm.org/D15146
llvm-svn: 257897
2016-01-15 23:52:05 +08:00
|
|
|
#include "llvm/ADT/SetVector.h"
|
2014-11-22 07:36:44 +08:00
|
|
|
#include "llvm/ADT/Statistic.h"
|
2011-07-21 05:57:23 +08:00
|
|
|
#include "llvm/Analysis/ConstantFolding.h"
|
2010-01-04 15:37:31 +08:00
|
|
|
#include "llvm/Analysis/InstructionSimplify.h"
|
|
|
|
#include "llvm/Analysis/MemoryBuiltins.h"
|
2014-03-04 20:24:34 +08:00
|
|
|
#include "llvm/IR/ConstantRange.h"
|
2013-01-02 19:36:10 +08:00
|
|
|
#include "llvm/IR/DataLayout.h"
|
2014-03-04 18:40:04 +08:00
|
|
|
#include "llvm/IR/GetElementPtrTypeIterator.h"
|
2013-01-02 19:36:10 +08:00
|
|
|
#include "llvm/IR/IntrinsicInst.h"
|
2014-03-04 19:08:18 +08:00
|
|
|
#include "llvm/IR/PatternMatch.h"
|
2014-11-22 07:36:44 +08:00
|
|
|
#include "llvm/Support/CommandLine.h"
|
|
|
|
#include "llvm/Support/Debug.h"
|
2015-01-15 10:16:27 +08:00
|
|
|
#include "llvm/Analysis/TargetLibraryInfo.h"
|
2016-04-16 01:21:03 +08:00
|
|
|
#include "llvm/Analysis/VectorUtils.h"
|
2014-11-22 07:36:44 +08:00
|
|
|
|
2010-01-04 15:37:31 +08:00
|
|
|
using namespace llvm;
|
|
|
|
using namespace PatternMatch;
|
|
|
|
|
2014-04-22 10:55:47 +08:00
|
|
|
#define DEBUG_TYPE "instcombine"
|
|
|
|
|
2014-11-22 07:36:44 +08:00
|
|
|
// How many times is a select replaced by one of its operands?
|
|
|
|
STATISTIC(NumSel, "Number of select opts");
|
|
|
|
|
|
|
|
// Initialization Routines
|
|
|
|
|
2011-02-10 13:23:05 +08:00
|
|
|
static ConstantInt *getOne(Constant *C) {
|
|
|
|
return ConstantInt::get(cast<IntegerType>(C->getType()), 1);
|
|
|
|
}
|
|
|
|
|
2010-01-04 15:37:31 +08:00
|
|
|
static ConstantInt *ExtractElement(Constant *V, Constant *Idx) {
|
|
|
|
return cast<ConstantInt>(ConstantExpr::getExtractElement(V, Idx));
|
|
|
|
}
|
|
|
|
|
|
|
|
static bool HasAddOverflow(ConstantInt *Result,
|
|
|
|
ConstantInt *In1, ConstantInt *In2,
|
|
|
|
bool IsSigned) {
|
2011-07-15 14:08:15 +08:00
|
|
|
if (!IsSigned)
|
2010-01-04 15:37:31 +08:00
|
|
|
return Result->getValue().ult(In1->getValue());
|
2011-07-15 14:08:15 +08:00
|
|
|
|
|
|
|
if (In2->isNegative())
|
|
|
|
return Result->getValue().sgt(In1->getValue());
|
|
|
|
return Result->getValue().slt(In1->getValue());
|
2010-01-04 15:37:31 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
/// AddWithOverflow - Compute Result = In1+In2, returning true if the result
|
|
|
|
/// overflowed for this type.
|
|
|
|
static bool AddWithOverflow(Constant *&Result, Constant *In1,
|
|
|
|
Constant *In2, bool IsSigned = false) {
|
|
|
|
Result = ConstantExpr::getAdd(In1, In2);
|
|
|
|
|
2011-07-18 12:54:35 +08:00
|
|
|
if (VectorType *VTy = dyn_cast<VectorType>(In1->getType())) {
|
2010-01-04 15:37:31 +08:00
|
|
|
for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
|
|
|
|
Constant *Idx = ConstantInt::get(Type::getInt32Ty(In1->getContext()), i);
|
|
|
|
if (HasAddOverflow(ExtractElement(Result, Idx),
|
|
|
|
ExtractElement(In1, Idx),
|
|
|
|
ExtractElement(In2, Idx),
|
|
|
|
IsSigned))
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
return HasAddOverflow(cast<ConstantInt>(Result),
|
|
|
|
cast<ConstantInt>(In1), cast<ConstantInt>(In2),
|
|
|
|
IsSigned);
|
|
|
|
}
|
|
|
|
|
|
|
|
static bool HasSubOverflow(ConstantInt *Result,
|
|
|
|
ConstantInt *In1, ConstantInt *In2,
|
|
|
|
bool IsSigned) {
|
2011-07-15 14:08:15 +08:00
|
|
|
if (!IsSigned)
|
2010-01-04 15:37:31 +08:00
|
|
|
return Result->getValue().ugt(In1->getValue());
|
2011-10-01 02:09:53 +08:00
|
|
|
|
2011-07-15 14:08:15 +08:00
|
|
|
if (In2->isNegative())
|
|
|
|
return Result->getValue().slt(In1->getValue());
|
|
|
|
|
|
|
|
return Result->getValue().sgt(In1->getValue());
|
2010-01-04 15:37:31 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
/// SubWithOverflow - Compute Result = In1-In2, returning true if the result
|
|
|
|
/// overflowed for this type.
|
|
|
|
static bool SubWithOverflow(Constant *&Result, Constant *In1,
|
|
|
|
Constant *In2, bool IsSigned = false) {
|
|
|
|
Result = ConstantExpr::getSub(In1, In2);
|
|
|
|
|
2011-07-18 12:54:35 +08:00
|
|
|
if (VectorType *VTy = dyn_cast<VectorType>(In1->getType())) {
|
2010-01-04 15:37:31 +08:00
|
|
|
for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
|
|
|
|
Constant *Idx = ConstantInt::get(Type::getInt32Ty(In1->getContext()), i);
|
|
|
|
if (HasSubOverflow(ExtractElement(Result, Idx),
|
|
|
|
ExtractElement(In1, Idx),
|
|
|
|
ExtractElement(In2, Idx),
|
|
|
|
IsSigned))
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
return HasSubOverflow(cast<ConstantInt>(Result),
|
|
|
|
cast<ConstantInt>(In1), cast<ConstantInt>(In2),
|
|
|
|
IsSigned);
|
|
|
|
}
|
|
|
|
|
|
|
|
/// isSignBitCheck - Given an exploded icmp instruction, return true if the
|
|
|
|
/// comparison only checks the sign bit. If it only checks the sign bit, set
|
|
|
|
/// TrueIfSigned if the result of the comparison is true when the input value is
|
|
|
|
/// signed.
|
|
|
|
static bool isSignBitCheck(ICmpInst::Predicate pred, ConstantInt *RHS,
|
|
|
|
bool &TrueIfSigned) {
|
|
|
|
switch (pred) {
|
|
|
|
case ICmpInst::ICMP_SLT: // True if LHS s< 0
|
|
|
|
TrueIfSigned = true;
|
|
|
|
return RHS->isZero();
|
|
|
|
case ICmpInst::ICMP_SLE: // True if LHS s<= RHS and RHS == -1
|
|
|
|
TrueIfSigned = true;
|
|
|
|
return RHS->isAllOnesValue();
|
|
|
|
case ICmpInst::ICMP_SGT: // True if LHS s> -1
|
|
|
|
TrueIfSigned = false;
|
|
|
|
return RHS->isAllOnesValue();
|
|
|
|
case ICmpInst::ICMP_UGT:
|
|
|
|
// True if LHS u> RHS and RHS == high-bit-mask - 1
|
|
|
|
TrueIfSigned = true;
|
2011-07-15 14:08:15 +08:00
|
|
|
return RHS->isMaxValue(true);
|
2011-10-01 02:09:53 +08:00
|
|
|
case ICmpInst::ICMP_UGE:
|
2010-01-04 15:37:31 +08:00
|
|
|
// True if LHS u>= RHS and RHS == high-bit-mask (2^7, 2^15, 2^31, etc)
|
|
|
|
TrueIfSigned = true;
|
|
|
|
return RHS->getValue().isSignBit();
|
|
|
|
default:
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2013-03-25 19:47:38 +08:00
|
|
|
/// Returns true if the exploded icmp can be expressed as a signed comparison
|
|
|
|
/// to zero and updates the predicate accordingly.
|
|
|
|
/// The signedness of the comparison is preserved.
|
2013-03-25 17:48:49 +08:00
|
|
|
static bool isSignTest(ICmpInst::Predicate &pred, const ConstantInt *RHS) {
|
|
|
|
if (!ICmpInst::isSigned(pred))
|
|
|
|
return false;
|
|
|
|
|
|
|
|
if (RHS->isZero())
|
2013-03-25 19:47:38 +08:00
|
|
|
return ICmpInst::isRelational(pred);
|
2013-03-25 17:48:49 +08:00
|
|
|
|
2013-03-25 19:47:38 +08:00
|
|
|
if (RHS->isOne()) {
|
|
|
|
if (pred == ICmpInst::ICMP_SLT) {
|
2013-03-25 17:48:49 +08:00
|
|
|
pred = ICmpInst::ICMP_SLE;
|
|
|
|
return true;
|
|
|
|
}
|
2013-03-25 19:47:38 +08:00
|
|
|
} else if (RHS->isAllOnesValue()) {
|
|
|
|
if (pred == ICmpInst::ICMP_SGT) {
|
2013-03-25 17:48:49 +08:00
|
|
|
pred = ICmpInst::ICMP_SGE;
|
|
|
|
return true;
|
|
|
|
}
|
2013-03-25 19:47:38 +08:00
|
|
|
}
|
2013-03-25 17:48:49 +08:00
|
|
|
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
2010-01-04 15:37:31 +08:00
|
|
|
// isHighOnes - Return true if the constant is of the form 1+0+.
|
|
|
|
// This is the same as lowones(~X).
|
|
|
|
static bool isHighOnes(const ConstantInt *CI) {
|
|
|
|
return (~CI->getValue() + 1).isPowerOf2();
|
|
|
|
}
|
|
|
|
|
2011-10-01 02:09:53 +08:00
|
|
|
/// ComputeSignedMinMaxValuesFromKnownBits - Given a signed integer type and a
|
2010-01-04 15:37:31 +08:00
|
|
|
/// set of known zero and one bits, compute the maximum and minimum values that
|
|
|
|
/// could have the specified known zero and known one bits, returning them in
|
|
|
|
/// min/max.
|
|
|
|
static void ComputeSignedMinMaxValuesFromKnownBits(const APInt& KnownZero,
|
|
|
|
const APInt& KnownOne,
|
|
|
|
APInt& Min, APInt& Max) {
|
|
|
|
assert(KnownZero.getBitWidth() == KnownOne.getBitWidth() &&
|
|
|
|
KnownZero.getBitWidth() == Min.getBitWidth() &&
|
|
|
|
KnownZero.getBitWidth() == Max.getBitWidth() &&
|
|
|
|
"KnownZero, KnownOne and Min, Max must have equal bitwidth.");
|
|
|
|
APInt UnknownBits = ~(KnownZero|KnownOne);
|
|
|
|
|
|
|
|
// The minimum value is when all unknown bits are zeros, EXCEPT for the sign
|
|
|
|
// bit if it is unknown.
|
|
|
|
Min = KnownOne;
|
|
|
|
Max = KnownOne|UnknownBits;
|
2011-10-01 02:09:53 +08:00
|
|
|
|
2010-01-04 15:37:31 +08:00
|
|
|
if (UnknownBits.isNegative()) { // Sign bit is unknown
|
2010-12-01 16:53:58 +08:00
|
|
|
Min.setBit(Min.getBitWidth()-1);
|
|
|
|
Max.clearBit(Max.getBitWidth()-1);
|
2010-01-04 15:37:31 +08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// ComputeUnsignedMinMaxValuesFromKnownBits - Given an unsigned integer type and
|
|
|
|
// a set of known zero and one bits, compute the maximum and minimum values that
|
|
|
|
// could have the specified known zero and known one bits, returning them in
|
|
|
|
// min/max.
|
|
|
|
static void ComputeUnsignedMinMaxValuesFromKnownBits(const APInt &KnownZero,
|
|
|
|
const APInt &KnownOne,
|
|
|
|
APInt &Min, APInt &Max) {
|
|
|
|
assert(KnownZero.getBitWidth() == KnownOne.getBitWidth() &&
|
|
|
|
KnownZero.getBitWidth() == Min.getBitWidth() &&
|
|
|
|
KnownZero.getBitWidth() == Max.getBitWidth() &&
|
|
|
|
"Ty, KnownZero, KnownOne and Min, Max must have equal bitwidth.");
|
|
|
|
APInt UnknownBits = ~(KnownZero|KnownOne);
|
2011-10-01 02:09:53 +08:00
|
|
|
|
2010-01-04 15:37:31 +08:00
|
|
|
// The minimum value is when the unknown bits are all zeros.
|
|
|
|
Min = KnownOne;
|
|
|
|
// The maximum value is when the unknown bits are all ones.
|
|
|
|
Max = KnownOne|UnknownBits;
|
|
|
|
}
|
|
|
|
|
|
|
|
/// FoldCmpLoadFromIndexedGlobal - Called we see this pattern:
|
|
|
|
/// cmp pred (load (gep GV, ...)), cmpcst
|
|
|
|
/// where GV is a global variable with a constant initializer. Try to simplify
|
|
|
|
/// this into some simple computation that does not need the load. For example
|
|
|
|
/// we can optimize "icmp eq (load (gep "foo", 0, i)), 0" into "icmp eq i, 3".
|
|
|
|
///
|
|
|
|
/// If AndCst is non-null, then the loaded value is masked with that constant
|
|
|
|
/// before doing the comparison. This handles cases like "A[i]&4 == 0".
|
|
|
|
Instruction *InstCombiner::
|
|
|
|
FoldCmpLoadFromIndexedGlobal(GetElementPtrInst *GEP, GlobalVariable *GV,
|
|
|
|
CmpInst &ICI, ConstantInt *AndCst) {
|
2012-01-31 10:55:06 +08:00
|
|
|
Constant *Init = GV->getInitializer();
|
|
|
|
if (!isa<ConstantArray>(Init) && !isa<ConstantDataArray>(Init))
|
2014-04-25 13:29:35 +08:00
|
|
|
return nullptr;
|
2013-04-06 05:20:12 +08:00
|
|
|
|
2012-01-31 10:55:06 +08:00
|
|
|
uint64_t ArrayElementCount = Init->getType()->getArrayNumElements();
|
2014-04-25 13:29:35 +08:00
|
|
|
if (ArrayElementCount > 1024) return nullptr; // Don't blow up on huge arrays.
|
2011-10-01 02:09:53 +08:00
|
|
|
|
2010-01-04 15:37:31 +08:00
|
|
|
// There are many forms of this optimization we can handle, for now, just do
|
|
|
|
// the simple index into a single-dimensional array.
|
|
|
|
//
|
|
|
|
// Require: GEP GV, 0, i {{, constant indices}}
|
|
|
|
if (GEP->getNumOperands() < 3 ||
|
|
|
|
!isa<ConstantInt>(GEP->getOperand(1)) ||
|
|
|
|
!cast<ConstantInt>(GEP->getOperand(1))->isZero() ||
|
|
|
|
isa<Constant>(GEP->getOperand(2)))
|
2014-04-25 13:29:35 +08:00
|
|
|
return nullptr;
|
2010-01-04 15:37:31 +08:00
|
|
|
|
|
|
|
// Check that indices after the variable are constants and in-range for the
|
|
|
|
// type they index. Collect the indices. This is typically for arrays of
|
|
|
|
// structs.
|
|
|
|
SmallVector<unsigned, 4> LaterIndices;
|
2011-10-01 02:09:53 +08:00
|
|
|
|
2012-01-31 10:55:06 +08:00
|
|
|
Type *EltTy = Init->getType()->getArrayElementType();
|
2010-01-04 15:37:31 +08:00
|
|
|
for (unsigned i = 3, e = GEP->getNumOperands(); i != e; ++i) {
|
|
|
|
ConstantInt *Idx = dyn_cast<ConstantInt>(GEP->getOperand(i));
|
2014-04-25 13:29:35 +08:00
|
|
|
if (!Idx) return nullptr; // Variable index.
|
2011-10-01 02:09:53 +08:00
|
|
|
|
2010-01-04 15:37:31 +08:00
|
|
|
uint64_t IdxVal = Idx->getZExtValue();
|
2014-04-25 13:29:35 +08:00
|
|
|
if ((unsigned)IdxVal != IdxVal) return nullptr; // Too large array index.
|
2011-10-01 02:09:53 +08:00
|
|
|
|
2011-07-18 12:54:35 +08:00
|
|
|
if (StructType *STy = dyn_cast<StructType>(EltTy))
|
2010-01-04 15:37:31 +08:00
|
|
|
EltTy = STy->getElementType(IdxVal);
|
2011-07-18 12:54:35 +08:00
|
|
|
else if (ArrayType *ATy = dyn_cast<ArrayType>(EltTy)) {
|
2014-04-25 13:29:35 +08:00
|
|
|
if (IdxVal >= ATy->getNumElements()) return nullptr;
|
2010-01-04 15:37:31 +08:00
|
|
|
EltTy = ATy->getElementType();
|
|
|
|
} else {
|
2014-04-25 13:29:35 +08:00
|
|
|
return nullptr; // Unknown type.
|
2010-01-04 15:37:31 +08:00
|
|
|
}
|
2011-10-01 02:09:53 +08:00
|
|
|
|
2010-01-04 15:37:31 +08:00
|
|
|
LaterIndices.push_back(IdxVal);
|
|
|
|
}
|
2011-10-01 02:09:53 +08:00
|
|
|
|
2010-01-04 15:37:31 +08:00
|
|
|
enum { Overdefined = -3, Undefined = -2 };
|
|
|
|
|
|
|
|
// Variables for our state machines.
|
2011-10-01 02:09:53 +08:00
|
|
|
|
2010-01-04 15:37:31 +08:00
|
|
|
// FirstTrueElement/SecondTrueElement - Used to emit a comparison of the form
|
|
|
|
// "i == 47 | i == 87", where 47 is the first index the condition is true for,
|
|
|
|
// and 87 is the second (and last) index. FirstTrueElement is -2 when
|
|
|
|
// undefined, otherwise set to the first true element. SecondTrueElement is
|
|
|
|
// -2 when undefined, -3 when overdefined and >= 0 when that index is true.
|
|
|
|
int FirstTrueElement = Undefined, SecondTrueElement = Undefined;
|
|
|
|
|
|
|
|
// FirstFalseElement/SecondFalseElement - Used to emit a comparison of the
|
|
|
|
// form "i != 47 & i != 87". Same state transitions as for true elements.
|
|
|
|
int FirstFalseElement = Undefined, SecondFalseElement = Undefined;
|
2011-10-01 02:09:53 +08:00
|
|
|
|
2010-01-04 15:37:31 +08:00
|
|
|
/// TrueRangeEnd/FalseRangeEnd - In conjunction with First*Element, these
|
|
|
|
/// define a state machine that triggers for ranges of values that the index
|
|
|
|
/// is true or false for. This triggers on things like "abbbbc"[i] == 'b'.
|
|
|
|
/// This is -2 when undefined, -3 when overdefined, and otherwise the last
|
|
|
|
/// index in the range (inclusive). We use -2 for undefined here because we
|
|
|
|
/// use relative comparisons and don't want 0-1 to match -1.
|
|
|
|
int TrueRangeEnd = Undefined, FalseRangeEnd = Undefined;
|
2011-10-01 02:09:53 +08:00
|
|
|
|
2010-01-04 15:37:31 +08:00
|
|
|
// MagicBitvector - This is a magic bitvector where we set a bit if the
|
|
|
|
// comparison is true for element 'i'. If there are 64 elements or less in
|
|
|
|
// the array, this will fully represent all the comparison results.
|
|
|
|
uint64_t MagicBitvector = 0;
|
2011-10-01 02:09:53 +08:00
|
|
|
|
2010-01-04 15:37:31 +08:00
|
|
|
// Scan the array and see if one of our patterns matches.
|
|
|
|
Constant *CompareRHS = cast<Constant>(ICI.getOperand(1));
|
2012-01-31 10:55:06 +08:00
|
|
|
for (unsigned i = 0, e = ArrayElementCount; i != e; ++i) {
|
|
|
|
Constant *Elt = Init->getAggregateElement(i);
|
2014-04-25 13:29:35 +08:00
|
|
|
if (!Elt) return nullptr;
|
2011-10-01 02:09:53 +08:00
|
|
|
|
2010-01-04 15:37:31 +08:00
|
|
|
// If this is indexing an array of structures, get the structure element.
|
|
|
|
if (!LaterIndices.empty())
|
2011-07-13 18:26:04 +08:00
|
|
|
Elt = ConstantExpr::getExtractValue(Elt, LaterIndices);
|
2011-10-01 02:09:53 +08:00
|
|
|
|
2010-01-04 15:37:31 +08:00
|
|
|
// If the element is masked, handle it.
|
|
|
|
if (AndCst) Elt = ConstantExpr::getAnd(Elt, AndCst);
|
2011-10-01 02:09:53 +08:00
|
|
|
|
2010-01-04 15:37:31 +08:00
|
|
|
// Find out if the comparison would be true or false for the i'th element.
|
|
|
|
Constant *C = ConstantFoldCompareInstOperands(ICI.getPredicate(), Elt,
|
2014-02-21 08:06:31 +08:00
|
|
|
CompareRHS, DL, TLI);
|
2010-01-04 15:37:31 +08:00
|
|
|
// If the result is undef for this element, ignore it.
|
|
|
|
if (isa<UndefValue>(C)) {
|
|
|
|
// Extend range state machines to cover this element in case there is an
|
|
|
|
// undef in the middle of the range.
|
|
|
|
if (TrueRangeEnd == (int)i-1)
|
|
|
|
TrueRangeEnd = i;
|
|
|
|
if (FalseRangeEnd == (int)i-1)
|
|
|
|
FalseRangeEnd = i;
|
|
|
|
continue;
|
|
|
|
}
|
2011-10-01 02:09:53 +08:00
|
|
|
|
2010-01-04 15:37:31 +08:00
|
|
|
// If we can't compute the result for any of the elements, we have to give
|
|
|
|
// up evaluating the entire conditional.
|
2014-04-25 13:29:35 +08:00
|
|
|
if (!isa<ConstantInt>(C)) return nullptr;
|
2011-10-01 02:09:53 +08:00
|
|
|
|
2010-01-04 15:37:31 +08:00
|
|
|
// Otherwise, we know if the comparison is true or false for this element,
|
|
|
|
// update our state machines.
|
|
|
|
bool IsTrueForElt = !cast<ConstantInt>(C)->isZero();
|
2011-10-01 02:09:53 +08:00
|
|
|
|
2010-01-04 15:37:31 +08:00
|
|
|
// State machine for single/double/range index comparison.
|
|
|
|
if (IsTrueForElt) {
|
|
|
|
// Update the TrueElement state machine.
|
|
|
|
if (FirstTrueElement == Undefined)
|
|
|
|
FirstTrueElement = TrueRangeEnd = i; // First true element.
|
|
|
|
else {
|
|
|
|
// Update double-compare state machine.
|
|
|
|
if (SecondTrueElement == Undefined)
|
|
|
|
SecondTrueElement = i;
|
|
|
|
else
|
|
|
|
SecondTrueElement = Overdefined;
|
2011-10-01 02:09:53 +08:00
|
|
|
|
2010-01-04 15:37:31 +08:00
|
|
|
// Update range state machine.
|
|
|
|
if (TrueRangeEnd == (int)i-1)
|
|
|
|
TrueRangeEnd = i;
|
|
|
|
else
|
|
|
|
TrueRangeEnd = Overdefined;
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
// Update the FalseElement state machine.
|
|
|
|
if (FirstFalseElement == Undefined)
|
|
|
|
FirstFalseElement = FalseRangeEnd = i; // First false element.
|
|
|
|
else {
|
|
|
|
// Update double-compare state machine.
|
|
|
|
if (SecondFalseElement == Undefined)
|
|
|
|
SecondFalseElement = i;
|
|
|
|
else
|
|
|
|
SecondFalseElement = Overdefined;
|
2011-10-01 02:09:53 +08:00
|
|
|
|
2010-01-04 15:37:31 +08:00
|
|
|
// Update range state machine.
|
|
|
|
if (FalseRangeEnd == (int)i-1)
|
|
|
|
FalseRangeEnd = i;
|
|
|
|
else
|
|
|
|
FalseRangeEnd = Overdefined;
|
|
|
|
}
|
|
|
|
}
|
2011-10-01 02:09:53 +08:00
|
|
|
|
2010-01-04 15:37:31 +08:00
|
|
|
// If this element is in range, update our magic bitvector.
|
|
|
|
if (i < 64 && IsTrueForElt)
|
|
|
|
MagicBitvector |= 1ULL << i;
|
2011-10-01 02:09:53 +08:00
|
|
|
|
2010-01-04 15:37:31 +08:00
|
|
|
// If all of our states become overdefined, bail out early. Since the
|
|
|
|
// predicate is expensive, only check it every 8 elements. This is only
|
|
|
|
// really useful for really huge arrays.
|
|
|
|
if ((i & 8) == 0 && i >= 64 && SecondTrueElement == Overdefined &&
|
|
|
|
SecondFalseElement == Overdefined && TrueRangeEnd == Overdefined &&
|
|
|
|
FalseRangeEnd == Overdefined)
|
2014-04-25 13:29:35 +08:00
|
|
|
return nullptr;
|
2010-01-04 15:37:31 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
// Now that we've scanned the entire array, emit our new comparison(s). We
|
|
|
|
// order the state machines in complexity of the generated code.
|
|
|
|
Value *Idx = GEP->getOperand(2);
|
|
|
|
|
2013-08-20 05:40:31 +08:00
|
|
|
// If the index is larger than the pointer size of the target, truncate the
|
|
|
|
// index down like the GEP would do implicitly. We don't have to do this for
|
|
|
|
// an inbounds GEP because the index can't be out of range.
|
2013-10-01 05:11:01 +08:00
|
|
|
if (!GEP->isInBounds()) {
|
2015-03-10 10:37:25 +08:00
|
|
|
Type *IntPtrTy = DL.getIntPtrType(GEP->getType());
|
2013-10-01 05:11:01 +08:00
|
|
|
unsigned PtrSize = IntPtrTy->getIntegerBitWidth();
|
|
|
|
if (Idx->getType()->getPrimitiveSizeInBits() > PtrSize)
|
|
|
|
Idx = Builder->CreateTrunc(Idx, IntPtrTy);
|
|
|
|
}
|
2013-08-20 05:40:31 +08:00
|
|
|
|
2010-01-04 15:37:31 +08:00
|
|
|
// If the comparison is only true for one or two elements, emit direct
|
|
|
|
// comparisons.
|
|
|
|
if (SecondTrueElement != Overdefined) {
|
|
|
|
// None true -> false.
|
|
|
|
if (FirstTrueElement == Undefined)
|
2016-02-02 06:23:39 +08:00
|
|
|
return replaceInstUsesWith(ICI, Builder->getFalse());
|
2011-10-01 02:09:53 +08:00
|
|
|
|
2010-01-04 15:37:31 +08:00
|
|
|
Value *FirstTrueIdx = ConstantInt::get(Idx->getType(), FirstTrueElement);
|
2011-10-01 02:09:53 +08:00
|
|
|
|
2010-01-04 15:37:31 +08:00
|
|
|
// True for one element -> 'i == 47'.
|
|
|
|
if (SecondTrueElement == Undefined)
|
|
|
|
return new ICmpInst(ICmpInst::ICMP_EQ, Idx, FirstTrueIdx);
|
2011-10-01 02:09:53 +08:00
|
|
|
|
2010-01-04 15:37:31 +08:00
|
|
|
// True for two elements -> 'i == 47 | i == 72'.
|
|
|
|
Value *C1 = Builder->CreateICmpEQ(Idx, FirstTrueIdx);
|
|
|
|
Value *SecondTrueIdx = ConstantInt::get(Idx->getType(), SecondTrueElement);
|
|
|
|
Value *C2 = Builder->CreateICmpEQ(Idx, SecondTrueIdx);
|
|
|
|
return BinaryOperator::CreateOr(C1, C2);
|
|
|
|
}
|
|
|
|
|
|
|
|
// If the comparison is only false for one or two elements, emit direct
|
|
|
|
// comparisons.
|
|
|
|
if (SecondFalseElement != Overdefined) {
|
|
|
|
// None false -> true.
|
|
|
|
if (FirstFalseElement == Undefined)
|
2016-02-02 06:23:39 +08:00
|
|
|
return replaceInstUsesWith(ICI, Builder->getTrue());
|
2011-10-01 02:09:53 +08:00
|
|
|
|
2010-01-04 15:37:31 +08:00
|
|
|
Value *FirstFalseIdx = ConstantInt::get(Idx->getType(), FirstFalseElement);
|
|
|
|
|
|
|
|
// False for one element -> 'i != 47'.
|
|
|
|
if (SecondFalseElement == Undefined)
|
|
|
|
return new ICmpInst(ICmpInst::ICMP_NE, Idx, FirstFalseIdx);
|
2011-10-01 02:09:53 +08:00
|
|
|
|
2010-01-04 15:37:31 +08:00
|
|
|
// False for two elements -> 'i != 47 & i != 72'.
|
|
|
|
Value *C1 = Builder->CreateICmpNE(Idx, FirstFalseIdx);
|
|
|
|
Value *SecondFalseIdx = ConstantInt::get(Idx->getType(),SecondFalseElement);
|
|
|
|
Value *C2 = Builder->CreateICmpNE(Idx, SecondFalseIdx);
|
|
|
|
return BinaryOperator::CreateAnd(C1, C2);
|
|
|
|
}
|
2011-10-01 02:09:53 +08:00
|
|
|
|
2010-01-04 15:37:31 +08:00
|
|
|
// If the comparison can be replaced with a range comparison for the elements
|
|
|
|
// where it is true, emit the range check.
|
|
|
|
if (TrueRangeEnd != Overdefined) {
|
|
|
|
assert(TrueRangeEnd != FirstTrueElement && "Should emit single compare");
|
2011-10-01 02:09:53 +08:00
|
|
|
|
2010-01-04 15:37:31 +08:00
|
|
|
// Generate (i-FirstTrue) <u (TrueRangeEnd-FirstTrue+1).
|
|
|
|
if (FirstTrueElement) {
|
|
|
|
Value *Offs = ConstantInt::get(Idx->getType(), -FirstTrueElement);
|
|
|
|
Idx = Builder->CreateAdd(Idx, Offs);
|
|
|
|
}
|
2011-10-01 02:09:53 +08:00
|
|
|
|
2010-01-04 15:37:31 +08:00
|
|
|
Value *End = ConstantInt::get(Idx->getType(),
|
|
|
|
TrueRangeEnd-FirstTrueElement+1);
|
|
|
|
return new ICmpInst(ICmpInst::ICMP_ULT, Idx, End);
|
|
|
|
}
|
2011-10-01 02:09:53 +08:00
|
|
|
|
2010-01-04 15:37:31 +08:00
|
|
|
// False range check.
|
|
|
|
if (FalseRangeEnd != Overdefined) {
|
|
|
|
assert(FalseRangeEnd != FirstFalseElement && "Should emit single compare");
|
|
|
|
// Generate (i-FirstFalse) >u (FalseRangeEnd-FirstFalse).
|
|
|
|
if (FirstFalseElement) {
|
|
|
|
Value *Offs = ConstantInt::get(Idx->getType(), -FirstFalseElement);
|
|
|
|
Idx = Builder->CreateAdd(Idx, Offs);
|
|
|
|
}
|
2011-10-01 02:09:53 +08:00
|
|
|
|
2010-01-04 15:37:31 +08:00
|
|
|
Value *End = ConstantInt::get(Idx->getType(),
|
|
|
|
FalseRangeEnd-FirstFalseElement);
|
|
|
|
return new ICmpInst(ICmpInst::ICMP_UGT, Idx, End);
|
|
|
|
}
|
2011-10-01 02:09:53 +08:00
|
|
|
|
2013-03-22 16:25:01 +08:00
|
|
|
// If a magic bitvector captures the entire comparison state
|
2010-01-04 15:37:31 +08:00
|
|
|
// of this load, replace it with computation that does:
|
|
|
|
// ((magic_cst >> i) & 1) != 0
|
2013-03-22 16:25:01 +08:00
|
|
|
{
|
2014-04-25 13:29:35 +08:00
|
|
|
Type *Ty = nullptr;
|
2013-03-22 16:25:01 +08:00
|
|
|
|
|
|
|
// Look for an appropriate type:
|
|
|
|
// - The type of Idx if the magic fits
|
|
|
|
// - The smallest fitting legal type if we have a DataLayout
|
|
|
|
// - Default to i32
|
|
|
|
if (ArrayElementCount <= Idx->getType()->getIntegerBitWidth())
|
|
|
|
Ty = Idx->getType();
|
2015-03-10 10:37:25 +08:00
|
|
|
else
|
|
|
|
Ty = DL.getSmallestLegalIntType(Init->getContext(), ArrayElementCount);
|
2013-03-22 16:25:01 +08:00
|
|
|
|
2014-04-25 13:29:35 +08:00
|
|
|
if (Ty) {
|
2013-03-22 16:25:01 +08:00
|
|
|
Value *V = Builder->CreateIntCast(Idx, Ty, false);
|
|
|
|
V = Builder->CreateLShr(ConstantInt::get(Ty, MagicBitvector), V);
|
|
|
|
V = Builder->CreateAnd(ConstantInt::get(Ty, 1), V);
|
|
|
|
return new ICmpInst(ICmpInst::ICMP_NE, V, ConstantInt::get(Ty, 0));
|
|
|
|
}
|
2010-01-04 15:37:31 +08:00
|
|
|
}
|
2011-10-01 02:09:53 +08:00
|
|
|
|
2014-04-25 13:29:35 +08:00
|
|
|
return nullptr;
|
2010-01-04 15:37:31 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
/// EvaluateGEPOffsetExpression - Return a value that can be used to compare
|
|
|
|
/// the *offset* implied by a GEP to zero. For example, if we have &A[i], we
|
|
|
|
/// want to return 'i' for "icmp ne i, 0". Note that, in general, indices can
|
|
|
|
/// be complex, and scales are involved. The above expression would also be
|
|
|
|
/// legal to codegen as "icmp ne (i*4), 0" (assuming A is a pointer to i32).
|
|
|
|
/// This later form is less amenable to optimization though, and we are allowed
|
|
|
|
/// to generate the first by knowing that pointer arithmetic doesn't overflow.
|
|
|
|
///
|
|
|
|
/// If we can't emit an optimized form for this expression, this returns null.
|
2011-10-01 02:09:53 +08:00
|
|
|
///
|
2015-03-10 10:37:25 +08:00
|
|
|
static Value *EvaluateGEPOffsetExpression(User *GEP, InstCombiner &IC,
|
|
|
|
const DataLayout &DL) {
|
2010-01-04 15:37:31 +08:00
|
|
|
gep_type_iterator GTI = gep_type_begin(GEP);
|
2011-10-01 02:09:53 +08:00
|
|
|
|
2010-01-04 15:37:31 +08:00
|
|
|
// Check to see if this gep only has a single variable index. If so, and if
|
|
|
|
// any constant indices are a multiple of its scale, then we can compute this
|
|
|
|
// in terms of the scale of the variable index. For example, if the GEP
|
|
|
|
// implies an offset of "12 + i*4", then we can codegen this as "3 + i",
|
|
|
|
// because the expression will cross zero at the same point.
|
|
|
|
unsigned i, e = GEP->getNumOperands();
|
|
|
|
int64_t Offset = 0;
|
|
|
|
for (i = 1; i != e; ++i, ++GTI) {
|
|
|
|
if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
|
|
|
|
// Compute the aggregate offset of constant indices.
|
|
|
|
if (CI->isZero()) continue;
|
2011-10-01 02:09:53 +08:00
|
|
|
|
2010-01-04 15:37:31 +08:00
|
|
|
// Handle a struct index, which adds its field offset to the pointer.
|
2011-07-18 12:54:35 +08:00
|
|
|
if (StructType *STy = dyn_cast<StructType>(*GTI)) {
|
2014-02-21 08:06:31 +08:00
|
|
|
Offset += DL.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
|
2010-01-04 15:37:31 +08:00
|
|
|
} else {
|
2014-02-21 08:06:31 +08:00
|
|
|
uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType());
|
2010-01-04 15:37:31 +08:00
|
|
|
Offset += Size*CI->getSExtValue();
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
// Found our variable index.
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
2011-10-01 02:09:53 +08:00
|
|
|
|
2010-01-04 15:37:31 +08:00
|
|
|
// If there are no variable indices, we must have a constant offset, just
|
|
|
|
// evaluate it the general way.
|
2014-04-25 13:29:35 +08:00
|
|
|
if (i == e) return nullptr;
|
2011-10-01 02:09:53 +08:00
|
|
|
|
2010-01-04 15:37:31 +08:00
|
|
|
Value *VariableIdx = GEP->getOperand(i);
|
|
|
|
// Determine the scale factor of the variable element. For example, this is
|
|
|
|
// 4 if the variable index is into an array of i32.
|
2014-02-21 08:06:31 +08:00
|
|
|
uint64_t VariableScale = DL.getTypeAllocSize(GTI.getIndexedType());
|
2011-10-01 02:09:53 +08:00
|
|
|
|
2010-01-04 15:37:31 +08:00
|
|
|
// Verify that there are no other variable indices. If so, emit the hard way.
|
|
|
|
for (++i, ++GTI; i != e; ++i, ++GTI) {
|
|
|
|
ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i));
|
2014-04-25 13:29:35 +08:00
|
|
|
if (!CI) return nullptr;
|
2011-10-01 02:09:53 +08:00
|
|
|
|
2010-01-04 15:37:31 +08:00
|
|
|
// Compute the aggregate offset of constant indices.
|
|
|
|
if (CI->isZero()) continue;
|
2011-10-01 02:09:53 +08:00
|
|
|
|
2010-01-04 15:37:31 +08:00
|
|
|
// Handle a struct index, which adds its field offset to the pointer.
|
2011-07-18 12:54:35 +08:00
|
|
|
if (StructType *STy = dyn_cast<StructType>(*GTI)) {
|
2014-02-21 08:06:31 +08:00
|
|
|
Offset += DL.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
|
2010-01-04 15:37:31 +08:00
|
|
|
} else {
|
2014-02-21 08:06:31 +08:00
|
|
|
uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType());
|
2010-01-04 15:37:31 +08:00
|
|
|
Offset += Size*CI->getSExtValue();
|
|
|
|
}
|
|
|
|
}
|
2011-10-01 02:09:53 +08:00
|
|
|
|
2010-01-04 15:37:31 +08:00
|
|
|
// Okay, we know we have a single variable index, which must be a
|
|
|
|
// pointer/array/vector index. If there is no offset, life is simple, return
|
|
|
|
// the index.
|
2014-02-21 08:06:31 +08:00
|
|
|
Type *IntPtrTy = DL.getIntPtrType(GEP->getOperand(0)->getType());
|
2013-08-22 03:53:10 +08:00
|
|
|
unsigned IntPtrWidth = IntPtrTy->getIntegerBitWidth();
|
2010-01-04 15:37:31 +08:00
|
|
|
if (Offset == 0) {
|
|
|
|
// Cast to intptrty in case a truncation occurs. If an extension is needed,
|
|
|
|
// we don't need to bother extending: the extension won't affect where the
|
|
|
|
// computation crosses zero.
|
2011-05-19 07:11:30 +08:00
|
|
|
if (VariableIdx->getType()->getPrimitiveSizeInBits() > IntPtrWidth) {
|
|
|
|
VariableIdx = IC.Builder->CreateTrunc(VariableIdx, IntPtrTy);
|
|
|
|
}
|
2010-01-04 15:37:31 +08:00
|
|
|
return VariableIdx;
|
|
|
|
}
|
2011-10-01 02:09:53 +08:00
|
|
|
|
2010-01-04 15:37:31 +08:00
|
|
|
// Otherwise, there is an index. The computation we will do will be modulo
|
|
|
|
// the pointer size, so get it.
|
|
|
|
uint64_t PtrSizeMask = ~0ULL >> (64-IntPtrWidth);
|
2011-10-01 02:09:53 +08:00
|
|
|
|
2010-01-04 15:37:31 +08:00
|
|
|
Offset &= PtrSizeMask;
|
|
|
|
VariableScale &= PtrSizeMask;
|
2011-10-01 02:09:53 +08:00
|
|
|
|
2010-01-04 15:37:31 +08:00
|
|
|
// To do this transformation, any constant index must be a multiple of the
|
|
|
|
// variable scale factor. For example, we can evaluate "12 + 4*i" as "3 + i",
|
|
|
|
// but we can't evaluate "10 + 3*i" in terms of i. Check that the offset is a
|
|
|
|
// multiple of the variable scale.
|
|
|
|
int64_t NewOffs = Offset / (int64_t)VariableScale;
|
|
|
|
if (Offset != NewOffs*(int64_t)VariableScale)
|
2014-04-25 13:29:35 +08:00
|
|
|
return nullptr;
|
2011-10-01 02:09:53 +08:00
|
|
|
|
2010-01-04 15:37:31 +08:00
|
|
|
// Okay, we can do this evaluation. Start by converting the index to intptr.
|
|
|
|
if (VariableIdx->getType() != IntPtrTy)
|
2011-05-19 07:11:30 +08:00
|
|
|
VariableIdx = IC.Builder->CreateIntCast(VariableIdx, IntPtrTy,
|
|
|
|
true /*Signed*/);
|
2010-01-04 15:37:31 +08:00
|
|
|
Constant *OffsetVal = ConstantInt::get(IntPtrTy, NewOffs);
|
2011-05-19 07:11:30 +08:00
|
|
|
return IC.Builder->CreateAdd(VariableIdx, OffsetVal, "offset");
|
2010-01-04 15:37:31 +08:00
|
|
|
}
|
|
|
|
|
Re-commit r257064, after it was reverted in r257340.
This contains a fix for the issue that caused the revert:
we no longer assume that we can insert instructions after the
instruction that produces the base pointer. We previously
assumed that this would be ok, because the instruction produces
a value and therefore is not a terminator. This is false for invoke
instructions. We will now insert these new instruction directly
at the location of the users.
Original commit message:
[InstCombine] Look through PHIs, GEPs, IntToPtrs and PtrToInts to expose more constants when comparing GEPs
Summary:
When comparing two GEP instructions which have the same base pointer
and one of them has a constant index, it is possible to only compare
indices, transforming it to a compare with a constant. This removes
one use for the GEP instruction with the constant index, can reduce
register pressure and can sometimes lead to removing the comparisson
entirely.
InstCombine was already doing this when comparing two GEPs if the base
pointers were the same. However, in the case where we have complex
pointer arithmetic (GEPs applied to GEPs, PHIs of GEPs, conversions to
or from integers, etc) the value of the original base pointer will be
hidden to the optimizer and this transformation will be disabled.
This change detects when the two sides of the comparison can be
expressed as GEPs with the same base pointer, even if they don't
appear as such in the IR. The transformation will convert all the
pointer arithmetic to arithmetic done on indices and all the relevant
uses of GEPs to GEPs with a common base pointer. The GEP comparison
will be converted to a comparison done on indices.
Reviewers: majnemer, jmolloy
Subscribers: hfinkel, jevinskie, jmolloy, aadg, llvm-commits
Differential Revision: http://reviews.llvm.org/D15146
llvm-svn: 257897
2016-01-15 23:52:05 +08:00
|
|
|
/// Returns true if we can rewrite Start as a GEP with pointer Base
|
|
|
|
/// and some integer offset. The nodes that need to be re-written
|
|
|
|
/// for this transformation will be added to Explored.
|
|
|
|
static bool canRewriteGEPAsOffset(Value *Start, Value *Base,
|
|
|
|
const DataLayout &DL,
|
|
|
|
SetVector<Value *> &Explored) {
|
|
|
|
SmallVector<Value *, 16> WorkList(1, Start);
|
|
|
|
Explored.insert(Base);
|
|
|
|
|
|
|
|
// The following traversal gives us an order which can be used
|
|
|
|
// when doing the final transformation. Since in the final
|
|
|
|
// transformation we create the PHI replacement instructions first,
|
|
|
|
// we don't have to get them in any particular order.
|
|
|
|
//
|
|
|
|
// However, for other instructions we will have to traverse the
|
|
|
|
// operands of an instruction first, which means that we have to
|
|
|
|
// do a post-order traversal.
|
|
|
|
while (!WorkList.empty()) {
|
|
|
|
SetVector<PHINode *> PHIs;
|
|
|
|
|
|
|
|
while (!WorkList.empty()) {
|
|
|
|
if (Explored.size() >= 100)
|
|
|
|
return false;
|
|
|
|
|
|
|
|
Value *V = WorkList.back();
|
|
|
|
|
|
|
|
if (Explored.count(V) != 0) {
|
|
|
|
WorkList.pop_back();
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (!isa<IntToPtrInst>(V) && !isa<PtrToIntInst>(V) &&
|
|
|
|
!isa<GEPOperator>(V) && !isa<PHINode>(V))
|
|
|
|
// We've found some value that we can't explore which is different from
|
|
|
|
// the base. Therefore we can't do this transformation.
|
|
|
|
return false;
|
|
|
|
|
|
|
|
if (isa<IntToPtrInst>(V) || isa<PtrToIntInst>(V)) {
|
|
|
|
auto *CI = dyn_cast<CastInst>(V);
|
|
|
|
if (!CI->isNoopCast(DL))
|
|
|
|
return false;
|
|
|
|
|
|
|
|
if (Explored.count(CI->getOperand(0)) == 0)
|
|
|
|
WorkList.push_back(CI->getOperand(0));
|
|
|
|
}
|
|
|
|
|
|
|
|
if (auto *GEP = dyn_cast<GEPOperator>(V)) {
|
|
|
|
// We're limiting the GEP to having one index. This will preserve
|
|
|
|
// the original pointer type. We could handle more cases in the
|
|
|
|
// future.
|
|
|
|
if (GEP->getNumIndices() != 1 || !GEP->isInBounds() ||
|
|
|
|
GEP->getType() != Start->getType())
|
|
|
|
return false;
|
|
|
|
|
|
|
|
if (Explored.count(GEP->getOperand(0)) == 0)
|
|
|
|
WorkList.push_back(GEP->getOperand(0));
|
|
|
|
}
|
|
|
|
|
|
|
|
if (WorkList.back() == V) {
|
|
|
|
WorkList.pop_back();
|
|
|
|
// We've finished visiting this node, mark it as such.
|
|
|
|
Explored.insert(V);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (auto *PN = dyn_cast<PHINode>(V)) {
|
2016-03-19 12:39:52 +08:00
|
|
|
// We cannot transform PHIs on unsplittable basic blocks.
|
|
|
|
if (isa<CatchSwitchInst>(PN->getParent()->getTerminator()))
|
|
|
|
return false;
|
Re-commit r257064, after it was reverted in r257340.
This contains a fix for the issue that caused the revert:
we no longer assume that we can insert instructions after the
instruction that produces the base pointer. We previously
assumed that this would be ok, because the instruction produces
a value and therefore is not a terminator. This is false for invoke
instructions. We will now insert these new instruction directly
at the location of the users.
Original commit message:
[InstCombine] Look through PHIs, GEPs, IntToPtrs and PtrToInts to expose more constants when comparing GEPs
Summary:
When comparing two GEP instructions which have the same base pointer
and one of them has a constant index, it is possible to only compare
indices, transforming it to a compare with a constant. This removes
one use for the GEP instruction with the constant index, can reduce
register pressure and can sometimes lead to removing the comparisson
entirely.
InstCombine was already doing this when comparing two GEPs if the base
pointers were the same. However, in the case where we have complex
pointer arithmetic (GEPs applied to GEPs, PHIs of GEPs, conversions to
or from integers, etc) the value of the original base pointer will be
hidden to the optimizer and this transformation will be disabled.
This change detects when the two sides of the comparison can be
expressed as GEPs with the same base pointer, even if they don't
appear as such in the IR. The transformation will convert all the
pointer arithmetic to arithmetic done on indices and all the relevant
uses of GEPs to GEPs with a common base pointer. The GEP comparison
will be converted to a comparison done on indices.
Reviewers: majnemer, jmolloy
Subscribers: hfinkel, jevinskie, jmolloy, aadg, llvm-commits
Differential Revision: http://reviews.llvm.org/D15146
llvm-svn: 257897
2016-01-15 23:52:05 +08:00
|
|
|
Explored.insert(PN);
|
|
|
|
PHIs.insert(PN);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Explore the PHI nodes further.
|
|
|
|
for (auto *PN : PHIs)
|
|
|
|
for (Value *Op : PN->incoming_values())
|
|
|
|
if (Explored.count(Op) == 0)
|
|
|
|
WorkList.push_back(Op);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Make sure that we can do this. Since we can't insert GEPs in a basic
|
|
|
|
// block before a PHI node, we can't easily do this transformation if
|
|
|
|
// we have PHI node users of transformed instructions.
|
|
|
|
for (Value *Val : Explored) {
|
|
|
|
for (Value *Use : Val->uses()) {
|
|
|
|
|
|
|
|
auto *PHI = dyn_cast<PHINode>(Use);
|
|
|
|
auto *Inst = dyn_cast<Instruction>(Val);
|
|
|
|
|
|
|
|
if (Inst == Base || Inst == PHI || !Inst || !PHI ||
|
|
|
|
Explored.count(PHI) == 0)
|
|
|
|
continue;
|
|
|
|
|
|
|
|
if (PHI->getParent() == Inst->getParent())
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Sets the appropriate insert point on Builder where we can add
|
|
|
|
// a replacement Instruction for V (if that is possible).
|
|
|
|
static void setInsertionPoint(IRBuilder<> &Builder, Value *V,
|
|
|
|
bool Before = true) {
|
|
|
|
if (auto *PHI = dyn_cast<PHINode>(V)) {
|
|
|
|
Builder.SetInsertPoint(&*PHI->getParent()->getFirstInsertionPt());
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
if (auto *I = dyn_cast<Instruction>(V)) {
|
|
|
|
if (!Before)
|
|
|
|
I = &*std::next(I->getIterator());
|
|
|
|
Builder.SetInsertPoint(I);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
if (auto *A = dyn_cast<Argument>(V)) {
|
|
|
|
// Set the insertion point in the entry block.
|
|
|
|
BasicBlock &Entry = A->getParent()->getEntryBlock();
|
|
|
|
Builder.SetInsertPoint(&*Entry.getFirstInsertionPt());
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
// Otherwise, this is a constant and we don't need to set a new
|
|
|
|
// insertion point.
|
|
|
|
assert(isa<Constant>(V) && "Setting insertion point for unknown value!");
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Returns a re-written value of Start as an indexed GEP using Base as a
|
|
|
|
/// pointer.
|
|
|
|
static Value *rewriteGEPAsOffset(Value *Start, Value *Base,
|
|
|
|
const DataLayout &DL,
|
|
|
|
SetVector<Value *> &Explored) {
|
|
|
|
// Perform all the substitutions. This is a bit tricky because we can
|
|
|
|
// have cycles in our use-def chains.
|
|
|
|
// 1. Create the PHI nodes without any incoming values.
|
|
|
|
// 2. Create all the other values.
|
|
|
|
// 3. Add the edges for the PHI nodes.
|
|
|
|
// 4. Emit GEPs to get the original pointers.
|
|
|
|
// 5. Remove the original instructions.
|
|
|
|
Type *IndexType = IntegerType::get(
|
|
|
|
Base->getContext(), DL.getPointerTypeSizeInBits(Start->getType()));
|
|
|
|
|
|
|
|
DenseMap<Value *, Value *> NewInsts;
|
|
|
|
NewInsts[Base] = ConstantInt::getNullValue(IndexType);
|
|
|
|
|
|
|
|
// Create the new PHI nodes, without adding any incoming values.
|
|
|
|
for (Value *Val : Explored) {
|
|
|
|
if (Val == Base)
|
|
|
|
continue;
|
|
|
|
// Create empty phi nodes. This avoids cyclic dependencies when creating
|
|
|
|
// the remaining instructions.
|
|
|
|
if (auto *PHI = dyn_cast<PHINode>(Val))
|
|
|
|
NewInsts[PHI] = PHINode::Create(IndexType, PHI->getNumIncomingValues(),
|
|
|
|
PHI->getName() + ".idx", PHI);
|
|
|
|
}
|
|
|
|
IRBuilder<> Builder(Base->getContext());
|
|
|
|
|
|
|
|
// Create all the other instructions.
|
|
|
|
for (Value *Val : Explored) {
|
|
|
|
|
|
|
|
if (NewInsts.find(Val) != NewInsts.end())
|
|
|
|
continue;
|
|
|
|
|
|
|
|
if (auto *CI = dyn_cast<CastInst>(Val)) {
|
|
|
|
NewInsts[CI] = NewInsts[CI->getOperand(0)];
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
if (auto *GEP = dyn_cast<GEPOperator>(Val)) {
|
|
|
|
Value *Index = NewInsts[GEP->getOperand(1)] ? NewInsts[GEP->getOperand(1)]
|
|
|
|
: GEP->getOperand(1);
|
|
|
|
setInsertionPoint(Builder, GEP);
|
|
|
|
// Indices might need to be sign extended. GEPs will magically do
|
|
|
|
// this, but we need to do it ourselves here.
|
|
|
|
if (Index->getType()->getScalarSizeInBits() !=
|
|
|
|
NewInsts[GEP->getOperand(0)]->getType()->getScalarSizeInBits()) {
|
|
|
|
Index = Builder.CreateSExtOrTrunc(
|
|
|
|
Index, NewInsts[GEP->getOperand(0)]->getType(),
|
|
|
|
GEP->getOperand(0)->getName() + ".sext");
|
|
|
|
}
|
|
|
|
|
|
|
|
auto *Op = NewInsts[GEP->getOperand(0)];
|
|
|
|
if (isa<ConstantInt>(Op) && dyn_cast<ConstantInt>(Op)->isZero())
|
|
|
|
NewInsts[GEP] = Index;
|
|
|
|
else
|
|
|
|
NewInsts[GEP] = Builder.CreateNSWAdd(
|
|
|
|
Op, Index, GEP->getOperand(0)->getName() + ".add");
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
if (isa<PHINode>(Val))
|
|
|
|
continue;
|
|
|
|
|
|
|
|
llvm_unreachable("Unexpected instruction type");
|
|
|
|
}
|
|
|
|
|
|
|
|
// Add the incoming values to the PHI nodes.
|
|
|
|
for (Value *Val : Explored) {
|
|
|
|
if (Val == Base)
|
|
|
|
continue;
|
|
|
|
// All the instructions have been created, we can now add edges to the
|
|
|
|
// phi nodes.
|
|
|
|
if (auto *PHI = dyn_cast<PHINode>(Val)) {
|
|
|
|
PHINode *NewPhi = static_cast<PHINode *>(NewInsts[PHI]);
|
|
|
|
for (unsigned I = 0, E = PHI->getNumIncomingValues(); I < E; ++I) {
|
|
|
|
Value *NewIncoming = PHI->getIncomingValue(I);
|
|
|
|
|
|
|
|
if (NewInsts.find(NewIncoming) != NewInsts.end())
|
|
|
|
NewIncoming = NewInsts[NewIncoming];
|
|
|
|
|
|
|
|
NewPhi->addIncoming(NewIncoming, PHI->getIncomingBlock(I));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
for (Value *Val : Explored) {
|
|
|
|
if (Val == Base)
|
|
|
|
continue;
|
|
|
|
|
|
|
|
// Depending on the type, for external users we have to emit
|
|
|
|
// a GEP or a GEP + ptrtoint.
|
|
|
|
setInsertionPoint(Builder, Val, false);
|
|
|
|
|
|
|
|
// If required, create an inttoptr instruction for Base.
|
|
|
|
Value *NewBase = Base;
|
|
|
|
if (!Base->getType()->isPointerTy())
|
|
|
|
NewBase = Builder.CreateBitOrPointerCast(Base, Start->getType(),
|
|
|
|
Start->getName() + "to.ptr");
|
|
|
|
|
|
|
|
Value *GEP = Builder.CreateInBoundsGEP(
|
|
|
|
Start->getType()->getPointerElementType(), NewBase,
|
|
|
|
makeArrayRef(NewInsts[Val]), Val->getName() + ".ptr");
|
|
|
|
|
|
|
|
if (!Val->getType()->isPointerTy()) {
|
|
|
|
Value *Cast = Builder.CreatePointerCast(GEP, Val->getType(),
|
|
|
|
Val->getName() + ".conv");
|
|
|
|
GEP = Cast;
|
|
|
|
}
|
|
|
|
Val->replaceAllUsesWith(GEP);
|
|
|
|
}
|
|
|
|
|
|
|
|
return NewInsts[Start];
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Looks through GEPs, IntToPtrInsts and PtrToIntInsts in order to express
|
|
|
|
/// the input Value as a constant indexed GEP. Returns a pair containing
|
|
|
|
/// the GEPs Pointer and Index.
|
|
|
|
static std::pair<Value *, Value *>
|
|
|
|
getAsConstantIndexedAddress(Value *V, const DataLayout &DL) {
|
|
|
|
Type *IndexType = IntegerType::get(V->getContext(),
|
|
|
|
DL.getPointerTypeSizeInBits(V->getType()));
|
|
|
|
|
|
|
|
Constant *Index = ConstantInt::getNullValue(IndexType);
|
|
|
|
while (true) {
|
|
|
|
if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
|
|
|
|
// We accept only inbouds GEPs here to exclude the possibility of
|
|
|
|
// overflow.
|
|
|
|
if (!GEP->isInBounds())
|
|
|
|
break;
|
|
|
|
if (GEP->hasAllConstantIndices() && GEP->getNumIndices() == 1 &&
|
|
|
|
GEP->getType() == V->getType()) {
|
|
|
|
V = GEP->getOperand(0);
|
|
|
|
Constant *GEPIndex = static_cast<Constant *>(GEP->getOperand(1));
|
|
|
|
Index = ConstantExpr::getAdd(
|
|
|
|
Index, ConstantExpr::getSExtOrBitCast(GEPIndex, IndexType));
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
if (auto *CI = dyn_cast<IntToPtrInst>(V)) {
|
|
|
|
if (!CI->isNoopCast(DL))
|
|
|
|
break;
|
|
|
|
V = CI->getOperand(0);
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
if (auto *CI = dyn_cast<PtrToIntInst>(V)) {
|
|
|
|
if (!CI->isNoopCast(DL))
|
|
|
|
break;
|
|
|
|
V = CI->getOperand(0);
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
return {V, Index};
|
|
|
|
}
|
|
|
|
|
|
|
|
// Converts (CMP GEPLHS, RHS) if this change would make RHS a constant.
|
|
|
|
// We can look through PHIs, GEPs and casts in order to determine a
|
|
|
|
// common base between GEPLHS and RHS.
|
|
|
|
static Instruction *transformToIndexedCompare(GEPOperator *GEPLHS, Value *RHS,
|
|
|
|
ICmpInst::Predicate Cond,
|
|
|
|
const DataLayout &DL) {
|
|
|
|
if (!GEPLHS->hasAllConstantIndices())
|
|
|
|
return nullptr;
|
|
|
|
|
|
|
|
Value *PtrBase, *Index;
|
|
|
|
std::tie(PtrBase, Index) = getAsConstantIndexedAddress(GEPLHS, DL);
|
|
|
|
|
|
|
|
// The set of nodes that will take part in this transformation.
|
|
|
|
SetVector<Value *> Nodes;
|
|
|
|
|
|
|
|
if (!canRewriteGEPAsOffset(RHS, PtrBase, DL, Nodes))
|
|
|
|
return nullptr;
|
|
|
|
|
|
|
|
// We know we can re-write this as
|
|
|
|
// ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2)
|
|
|
|
// Since we've only looked through inbouds GEPs we know that we
|
|
|
|
// can't have overflow on either side. We can therefore re-write
|
|
|
|
// this as:
|
|
|
|
// OFFSET1 cmp OFFSET2
|
|
|
|
Value *NewRHS = rewriteGEPAsOffset(RHS, PtrBase, DL, Nodes);
|
|
|
|
|
|
|
|
// RewriteGEPAsOffset has replaced RHS and all of its uses with a re-written
|
|
|
|
// GEP having PtrBase as the pointer base, and has returned in NewRHS the
|
|
|
|
// offset. Since Index is the offset of LHS to the base pointer, we will now
|
|
|
|
// compare the offsets instead of comparing the pointers.
|
|
|
|
return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Index, NewRHS);
|
|
|
|
}
|
|
|
|
|
2010-01-04 15:37:31 +08:00
|
|
|
/// FoldGEPICmp - Fold comparisons between a GEP instruction and something
|
|
|
|
/// else. At this point we know that the GEP is on the LHS of the comparison.
|
|
|
|
Instruction *InstCombiner::FoldGEPICmp(GEPOperator *GEPLHS, Value *RHS,
|
|
|
|
ICmpInst::Predicate Cond,
|
|
|
|
Instruction &I) {
|
2012-02-21 21:31:09 +08:00
|
|
|
// Don't transform signed compares of GEPs into index compares. Even if the
|
|
|
|
// GEP is inbounds, the final add of the base pointer can have signed overflow
|
|
|
|
// and would change the result of the icmp.
|
|
|
|
// e.g. "&foo[0] <s &foo[1]" can't be folded to "true" because "foo" could be
|
2012-02-21 21:40:06 +08:00
|
|
|
// the maximum signed value for the pointer type.
|
2012-02-21 21:31:09 +08:00
|
|
|
if (ICmpInst::isSigned(Cond))
|
2014-04-25 13:29:35 +08:00
|
|
|
return nullptr;
|
2012-02-21 21:31:09 +08:00
|
|
|
|
2014-06-10 03:20:29 +08:00
|
|
|
// Look through bitcasts and addrspacecasts. We do not however want to remove
|
|
|
|
// 0 GEPs.
|
|
|
|
if (!isa<GetElementPtrInst>(RHS))
|
|
|
|
RHS = RHS->stripPointerCasts();
|
2010-01-04 15:37:31 +08:00
|
|
|
|
|
|
|
Value *PtrBase = GEPLHS->getOperand(0);
|
2015-03-10 10:37:25 +08:00
|
|
|
if (PtrBase == RHS && GEPLHS->isInBounds()) {
|
2010-01-04 15:37:31 +08:00
|
|
|
// ((gep Ptr, OFFSET) cmp Ptr) ---> (OFFSET cmp 0).
|
|
|
|
// This transformation (ignoring the base and scales) is valid because we
|
|
|
|
// know pointers can't overflow since the gep is inbounds. See if we can
|
|
|
|
// output an optimized form.
|
2015-03-10 10:37:25 +08:00
|
|
|
Value *Offset = EvaluateGEPOffsetExpression(GEPLHS, *this, DL);
|
2011-10-01 02:09:53 +08:00
|
|
|
|
2010-01-04 15:37:31 +08:00
|
|
|
// If not, synthesize the offset the hard way.
|
2014-04-25 13:29:35 +08:00
|
|
|
if (!Offset)
|
2010-01-04 15:37:31 +08:00
|
|
|
Offset = EmitGEPOffset(GEPLHS);
|
|
|
|
return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Offset,
|
|
|
|
Constant::getNullValue(Offset->getType()));
|
|
|
|
} else if (GEPOperator *GEPRHS = dyn_cast<GEPOperator>(RHS)) {
|
|
|
|
// If the base pointers are different, but the indices are the same, just
|
|
|
|
// compare the base pointer.
|
|
|
|
if (PtrBase != GEPRHS->getOperand(0)) {
|
|
|
|
bool IndicesTheSame = GEPLHS->getNumOperands()==GEPRHS->getNumOperands();
|
|
|
|
IndicesTheSame &= GEPLHS->getOperand(0)->getType() ==
|
|
|
|
GEPRHS->getOperand(0)->getType();
|
|
|
|
if (IndicesTheSame)
|
|
|
|
for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i)
|
|
|
|
if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
|
|
|
|
IndicesTheSame = false;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
// If all indices are the same, just compare the base pointers.
|
|
|
|
if (IndicesTheSame)
|
InstCombine: FoldGEPICmp shouldn't change sign of base pointer comparison
Changing the sign when comparing the base pointer would introduce all
sorts of unexpected things like:
%gep.i = getelementptr inbounds [1 x i8]* %a, i32 0, i32 0
%gep2.i = getelementptr inbounds [1 x i8]* %b, i32 0, i32 0
%cmp.i = icmp ult i8* %gep.i, %gep2.i
%cmp.i1 = icmp ult [1 x i8]* %a, %b
%cmp = icmp ne i1 %cmp.i, %cmp.i1
ret i1 %cmp
into:
%cmp.i = icmp slt [1 x i8]* %a, %b
%cmp.i1 = icmp ult [1 x i8]* %a, %b
%cmp = xor i1 %cmp.i, %cmp.i1
ret i1 %cmp
By preserving the original sign, we now get:
ret i1 false
This fixes PR16483.
llvm-svn: 185259
2013-06-29 18:28:04 +08:00
|
|
|
return new ICmpInst(Cond, GEPLHS->getOperand(0), GEPRHS->getOperand(0));
|
2010-01-04 15:37:31 +08:00
|
|
|
|
2012-02-20 23:07:47 +08:00
|
|
|
// If we're comparing GEPs with two base pointers that only differ in type
|
|
|
|
// and both GEPs have only constant indices or just one use, then fold
|
|
|
|
// the compare with the adjusted indices.
|
2015-03-10 10:37:25 +08:00
|
|
|
if (GEPLHS->isInBounds() && GEPRHS->isInBounds() &&
|
2012-02-20 23:07:47 +08:00
|
|
|
(GEPLHS->hasAllConstantIndices() || GEPLHS->hasOneUse()) &&
|
|
|
|
(GEPRHS->hasAllConstantIndices() || GEPRHS->hasOneUse()) &&
|
|
|
|
PtrBase->stripPointerCasts() ==
|
2015-03-10 10:37:25 +08:00
|
|
|
GEPRHS->getOperand(0)->stripPointerCasts()) {
|
2014-06-10 03:20:29 +08:00
|
|
|
Value *LOffset = EmitGEPOffset(GEPLHS);
|
|
|
|
Value *ROffset = EmitGEPOffset(GEPRHS);
|
|
|
|
|
|
|
|
// If we looked through an addrspacecast between different sized address
|
|
|
|
// spaces, the LHS and RHS pointers are different sized
|
|
|
|
// integers. Truncate to the smaller one.
|
|
|
|
Type *LHSIndexTy = LOffset->getType();
|
|
|
|
Type *RHSIndexTy = ROffset->getType();
|
|
|
|
if (LHSIndexTy != RHSIndexTy) {
|
|
|
|
if (LHSIndexTy->getPrimitiveSizeInBits() <
|
|
|
|
RHSIndexTy->getPrimitiveSizeInBits()) {
|
|
|
|
ROffset = Builder->CreateTrunc(ROffset, LHSIndexTy);
|
|
|
|
} else
|
|
|
|
LOffset = Builder->CreateTrunc(LOffset, RHSIndexTy);
|
|
|
|
}
|
|
|
|
|
2012-02-20 23:07:47 +08:00
|
|
|
Value *Cmp = Builder->CreateICmp(ICmpInst::getSignedPredicate(Cond),
|
2014-06-10 03:20:29 +08:00
|
|
|
LOffset, ROffset);
|
2016-02-02 06:23:39 +08:00
|
|
|
return replaceInstUsesWith(I, Cmp);
|
2012-02-20 23:07:47 +08:00
|
|
|
}
|
|
|
|
|
2010-01-04 15:37:31 +08:00
|
|
|
// Otherwise, the base pointers are different and the indices are
|
Re-commit r257064, after it was reverted in r257340.
This contains a fix for the issue that caused the revert:
we no longer assume that we can insert instructions after the
instruction that produces the base pointer. We previously
assumed that this would be ok, because the instruction produces
a value and therefore is not a terminator. This is false for invoke
instructions. We will now insert these new instruction directly
at the location of the users.
Original commit message:
[InstCombine] Look through PHIs, GEPs, IntToPtrs and PtrToInts to expose more constants when comparing GEPs
Summary:
When comparing two GEP instructions which have the same base pointer
and one of them has a constant index, it is possible to only compare
indices, transforming it to a compare with a constant. This removes
one use for the GEP instruction with the constant index, can reduce
register pressure and can sometimes lead to removing the comparisson
entirely.
InstCombine was already doing this when comparing two GEPs if the base
pointers were the same. However, in the case where we have complex
pointer arithmetic (GEPs applied to GEPs, PHIs of GEPs, conversions to
or from integers, etc) the value of the original base pointer will be
hidden to the optimizer and this transformation will be disabled.
This change detects when the two sides of the comparison can be
expressed as GEPs with the same base pointer, even if they don't
appear as such in the IR. The transformation will convert all the
pointer arithmetic to arithmetic done on indices and all the relevant
uses of GEPs to GEPs with a common base pointer. The GEP comparison
will be converted to a comparison done on indices.
Reviewers: majnemer, jmolloy
Subscribers: hfinkel, jevinskie, jmolloy, aadg, llvm-commits
Differential Revision: http://reviews.llvm.org/D15146
llvm-svn: 257897
2016-01-15 23:52:05 +08:00
|
|
|
// different. Try convert this to an indexed compare by looking through
|
|
|
|
// PHIs/casts.
|
|
|
|
return transformToIndexedCompare(GEPLHS, RHS, Cond, DL);
|
2010-01-04 15:37:31 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
// If one of the GEPs has all zero indices, recurse.
|
2014-07-07 19:01:16 +08:00
|
|
|
if (GEPLHS->hasAllZeroIndices())
|
2010-01-04 15:37:31 +08:00
|
|
|
return FoldGEPICmp(GEPRHS, GEPLHS->getOperand(0),
|
2013-06-29 17:45:35 +08:00
|
|
|
ICmpInst::getSwappedPredicate(Cond), I);
|
2010-01-04 15:37:31 +08:00
|
|
|
|
|
|
|
// If the other GEP has all zero indices, recurse.
|
2014-07-07 19:01:16 +08:00
|
|
|
if (GEPRHS->hasAllZeroIndices())
|
2010-01-04 15:37:31 +08:00
|
|
|
return FoldGEPICmp(GEPLHS, GEPRHS->getOperand(0), Cond, I);
|
|
|
|
|
2011-05-14 13:55:10 +08:00
|
|
|
bool GEPsInBounds = GEPLHS->isInBounds() && GEPRHS->isInBounds();
|
2010-01-04 15:37:31 +08:00
|
|
|
if (GEPLHS->getNumOperands() == GEPRHS->getNumOperands()) {
|
|
|
|
// If the GEPs only differ by one index, compare it.
|
|
|
|
unsigned NumDifferences = 0; // Keep track of # differences.
|
|
|
|
unsigned DiffOperand = 0; // The operand that differs.
|
|
|
|
for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i)
|
|
|
|
if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
|
|
|
|
if (GEPLHS->getOperand(i)->getType()->getPrimitiveSizeInBits() !=
|
|
|
|
GEPRHS->getOperand(i)->getType()->getPrimitiveSizeInBits()) {
|
|
|
|
// Irreconcilable differences.
|
|
|
|
NumDifferences = 2;
|
|
|
|
break;
|
|
|
|
} else {
|
|
|
|
if (NumDifferences++) break;
|
|
|
|
DiffOperand = i;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2013-06-07 01:03:05 +08:00
|
|
|
if (NumDifferences == 0) // SAME GEP?
|
2016-02-02 06:23:39 +08:00
|
|
|
return replaceInstUsesWith(I, // No comparison is needed here.
|
2013-06-07 04:18:46 +08:00
|
|
|
Builder->getInt1(ICmpInst::isTrueWhenEqual(Cond)));
|
2010-01-04 15:37:31 +08:00
|
|
|
|
2011-05-14 13:55:10 +08:00
|
|
|
else if (NumDifferences == 1 && GEPsInBounds) {
|
2010-01-04 15:37:31 +08:00
|
|
|
Value *LHSV = GEPLHS->getOperand(DiffOperand);
|
|
|
|
Value *RHSV = GEPRHS->getOperand(DiffOperand);
|
|
|
|
// Make sure we do a signed comparison here.
|
|
|
|
return new ICmpInst(ICmpInst::getSignedPredicate(Cond), LHSV, RHSV);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Only lower this if the icmp is the only user of the GEP or if we expect
|
|
|
|
// the result to fold to a constant!
|
2015-03-10 10:37:25 +08:00
|
|
|
if (GEPsInBounds && (isa<ConstantExpr>(GEPLHS) || GEPLHS->hasOneUse()) &&
|
2010-01-04 15:37:31 +08:00
|
|
|
(isa<ConstantExpr>(GEPRHS) || GEPRHS->hasOneUse())) {
|
|
|
|
// ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2) ---> (OFFSET1 cmp OFFSET2)
|
|
|
|
Value *L = EmitGEPOffset(GEPLHS);
|
|
|
|
Value *R = EmitGEPOffset(GEPRHS);
|
|
|
|
return new ICmpInst(ICmpInst::getSignedPredicate(Cond), L, R);
|
|
|
|
}
|
|
|
|
}
|
Re-commit r257064, after it was reverted in r257340.
This contains a fix for the issue that caused the revert:
we no longer assume that we can insert instructions after the
instruction that produces the base pointer. We previously
assumed that this would be ok, because the instruction produces
a value and therefore is not a terminator. This is false for invoke
instructions. We will now insert these new instruction directly
at the location of the users.
Original commit message:
[InstCombine] Look through PHIs, GEPs, IntToPtrs and PtrToInts to expose more constants when comparing GEPs
Summary:
When comparing two GEP instructions which have the same base pointer
and one of them has a constant index, it is possible to only compare
indices, transforming it to a compare with a constant. This removes
one use for the GEP instruction with the constant index, can reduce
register pressure and can sometimes lead to removing the comparisson
entirely.
InstCombine was already doing this when comparing two GEPs if the base
pointers were the same. However, in the case where we have complex
pointer arithmetic (GEPs applied to GEPs, PHIs of GEPs, conversions to
or from integers, etc) the value of the original base pointer will be
hidden to the optimizer and this transformation will be disabled.
This change detects when the two sides of the comparison can be
expressed as GEPs with the same base pointer, even if they don't
appear as such in the IR. The transformation will convert all the
pointer arithmetic to arithmetic done on indices and all the relevant
uses of GEPs to GEPs with a common base pointer. The GEP comparison
will be converted to a comparison done on indices.
Reviewers: majnemer, jmolloy
Subscribers: hfinkel, jevinskie, jmolloy, aadg, llvm-commits
Differential Revision: http://reviews.llvm.org/D15146
llvm-svn: 257897
2016-01-15 23:52:05 +08:00
|
|
|
|
|
|
|
// Try convert this to an indexed compare by looking through PHIs/casts as a
|
|
|
|
// last resort.
|
|
|
|
return transformToIndexedCompare(GEPLHS, RHS, Cond, DL);
|
2010-01-04 15:37:31 +08:00
|
|
|
}
|
|
|
|
|
2015-10-07 08:20:07 +08:00
|
|
|
Instruction *InstCombiner::FoldAllocaCmp(ICmpInst &ICI, AllocaInst *Alloca,
|
|
|
|
Value *Other) {
|
|
|
|
assert(ICI.isEquality() && "Cannot fold non-equality comparison.");
|
|
|
|
|
|
|
|
// It would be tempting to fold away comparisons between allocas and any
|
|
|
|
// pointer not based on that alloca (e.g. an argument). However, even
|
|
|
|
// though such pointers cannot alias, they can still compare equal.
|
|
|
|
//
|
|
|
|
// But LLVM doesn't specify where allocas get their memory, so if the alloca
|
|
|
|
// doesn't escape we can argue that it's impossible to guess its value, and we
|
|
|
|
// can therefore act as if any such guesses are wrong.
|
|
|
|
//
|
|
|
|
// The code below checks that the alloca doesn't escape, and that it's only
|
|
|
|
// used in a comparison once (the current instruction). The
|
|
|
|
// single-comparison-use condition ensures that we're trivially folding all
|
|
|
|
// comparisons against the alloca consistently, and avoids the risk of
|
|
|
|
// erroneously folding a comparison of the pointer with itself.
|
|
|
|
|
|
|
|
unsigned MaxIter = 32; // Break cycles and bound to constant-time.
|
|
|
|
|
|
|
|
SmallVector<Use *, 32> Worklist;
|
|
|
|
for (Use &U : Alloca->uses()) {
|
|
|
|
if (Worklist.size() >= MaxIter)
|
|
|
|
return nullptr;
|
|
|
|
Worklist.push_back(&U);
|
|
|
|
}
|
|
|
|
|
|
|
|
unsigned NumCmps = 0;
|
|
|
|
while (!Worklist.empty()) {
|
|
|
|
assert(Worklist.size() <= MaxIter);
|
|
|
|
Use *U = Worklist.pop_back_val();
|
|
|
|
Value *V = U->getUser();
|
|
|
|
--MaxIter;
|
|
|
|
|
|
|
|
if (isa<BitCastInst>(V) || isa<GetElementPtrInst>(V) || isa<PHINode>(V) ||
|
|
|
|
isa<SelectInst>(V)) {
|
|
|
|
// Track the uses.
|
|
|
|
} else if (isa<LoadInst>(V)) {
|
|
|
|
// Loading from the pointer doesn't escape it.
|
|
|
|
continue;
|
|
|
|
} else if (auto *SI = dyn_cast<StoreInst>(V)) {
|
|
|
|
// Storing *to* the pointer is fine, but storing the pointer escapes it.
|
|
|
|
if (SI->getValueOperand() == U->get())
|
|
|
|
return nullptr;
|
|
|
|
continue;
|
|
|
|
} else if (isa<ICmpInst>(V)) {
|
|
|
|
if (NumCmps++)
|
|
|
|
return nullptr; // Found more than one cmp.
|
|
|
|
continue;
|
|
|
|
} else if (auto *Intrin = dyn_cast<IntrinsicInst>(V)) {
|
|
|
|
switch (Intrin->getIntrinsicID()) {
|
|
|
|
// These intrinsics don't escape or compare the pointer. Memset is safe
|
|
|
|
// because we don't allow ptrtoint. Memcpy and memmove are safe because
|
|
|
|
// we don't allow stores, so src cannot point to V.
|
|
|
|
case Intrinsic::lifetime_start: case Intrinsic::lifetime_end:
|
|
|
|
case Intrinsic::dbg_declare: case Intrinsic::dbg_value:
|
|
|
|
case Intrinsic::memcpy: case Intrinsic::memmove: case Intrinsic::memset:
|
|
|
|
continue;
|
|
|
|
default:
|
|
|
|
return nullptr;
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
return nullptr;
|
|
|
|
}
|
|
|
|
for (Use &U : V->uses()) {
|
|
|
|
if (Worklist.size() >= MaxIter)
|
|
|
|
return nullptr;
|
|
|
|
Worklist.push_back(&U);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
Type *CmpTy = CmpInst::makeCmpResultType(Other->getType());
|
2016-02-02 06:23:39 +08:00
|
|
|
return replaceInstUsesWith(
|
2015-10-07 08:20:07 +08:00
|
|
|
ICI,
|
|
|
|
ConstantInt::get(CmpTy, !CmpInst::isTrueWhenEqual(ICI.getPredicate())));
|
|
|
|
}
|
|
|
|
|
2010-01-04 15:37:31 +08:00
|
|
|
/// FoldICmpAddOpCst - Fold "icmp pred (X+CI), X".
|
2013-09-21 06:12:42 +08:00
|
|
|
Instruction *InstCombiner::FoldICmpAddOpCst(Instruction &ICI,
|
2010-01-04 15:37:31 +08:00
|
|
|
Value *X, ConstantInt *CI,
|
2013-09-21 06:12:42 +08:00
|
|
|
ICmpInst::Predicate Pred) {
|
2010-01-04 15:37:31 +08:00
|
|
|
// From this point on, we know that (X+C <= X) --> (X+C < X) because C != 0,
|
2011-04-15 13:18:47 +08:00
|
|
|
// so the values can never be equal. Similarly for all other "or equals"
|
2010-01-04 15:37:31 +08:00
|
|
|
// operators.
|
2011-10-01 02:09:53 +08:00
|
|
|
|
2010-01-09 01:48:19 +08:00
|
|
|
// (X+1) <u X --> X >u (MAXUINT-1) --> X == 255
|
2010-01-04 15:37:31 +08:00
|
|
|
// (X+2) <u X --> X >u (MAXUINT-2) --> X > 253
|
|
|
|
// (X+MAXUINT) <u X --> X >u (MAXUINT-MAXUINT) --> X != 0
|
|
|
|
if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) {
|
2011-10-01 02:09:53 +08:00
|
|
|
Value *R =
|
2010-01-09 01:48:19 +08:00
|
|
|
ConstantExpr::getSub(ConstantInt::getAllOnesValue(CI->getType()), CI);
|
2010-01-04 15:37:31 +08:00
|
|
|
return new ICmpInst(ICmpInst::ICMP_UGT, X, R);
|
|
|
|
}
|
2011-10-01 02:09:53 +08:00
|
|
|
|
2010-01-04 15:37:31 +08:00
|
|
|
// (X+1) >u X --> X <u (0-1) --> X != 255
|
|
|
|
// (X+2) >u X --> X <u (0-2) --> X <u 254
|
|
|
|
// (X+MAXUINT) >u X --> X <u (0-MAXUINT) --> X <u 1 --> X == 0
|
2011-02-17 15:46:37 +08:00
|
|
|
if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE)
|
2010-01-04 15:37:31 +08:00
|
|
|
return new ICmpInst(ICmpInst::ICMP_ULT, X, ConstantExpr::getNeg(CI));
|
2011-10-01 02:09:53 +08:00
|
|
|
|
2010-01-04 15:37:31 +08:00
|
|
|
unsigned BitWidth = CI->getType()->getPrimitiveSizeInBits();
|
|
|
|
ConstantInt *SMax = ConstantInt::get(X->getContext(),
|
|
|
|
APInt::getSignedMaxValue(BitWidth));
|
|
|
|
|
|
|
|
// (X+ 1) <s X --> X >s (MAXSINT-1) --> X == 127
|
|
|
|
// (X+ 2) <s X --> X >s (MAXSINT-2) --> X >s 125
|
|
|
|
// (X+MAXSINT) <s X --> X >s (MAXSINT-MAXSINT) --> X >s 0
|
|
|
|
// (X+MINSINT) <s X --> X >s (MAXSINT-MINSINT) --> X >s -1
|
|
|
|
// (X+ -2) <s X --> X >s (MAXSINT- -2) --> X >s 126
|
|
|
|
// (X+ -1) <s X --> X >s (MAXSINT- -1) --> X != 127
|
2011-02-17 15:46:37 +08:00
|
|
|
if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE)
|
2010-01-04 15:37:31 +08:00
|
|
|
return new ICmpInst(ICmpInst::ICMP_SGT, X, ConstantExpr::getSub(SMax, CI));
|
2011-10-01 02:09:53 +08:00
|
|
|
|
2010-01-04 15:37:31 +08:00
|
|
|
// (X+ 1) >s X --> X <s (MAXSINT-(1-1)) --> X != 127
|
|
|
|
// (X+ 2) >s X --> X <s (MAXSINT-(2-1)) --> X <s 126
|
|
|
|
// (X+MAXSINT) >s X --> X <s (MAXSINT-(MAXSINT-1)) --> X <s 1
|
|
|
|
// (X+MINSINT) >s X --> X <s (MAXSINT-(MINSINT-1)) --> X <s -2
|
|
|
|
// (X+ -2) >s X --> X <s (MAXSINT-(-2-1)) --> X <s -126
|
|
|
|
// (X+ -1) >s X --> X <s (MAXSINT-(-1-1)) --> X == -128
|
2011-10-01 02:09:53 +08:00
|
|
|
|
2010-01-04 15:37:31 +08:00
|
|
|
assert(Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE);
|
2013-06-07 04:18:46 +08:00
|
|
|
Constant *C = Builder->getInt(CI->getValue()-1);
|
2010-01-04 15:37:31 +08:00
|
|
|
return new ICmpInst(ICmpInst::ICMP_SLT, X, ConstantExpr::getSub(SMax, C));
|
|
|
|
}
|
|
|
|
|
|
|
|
/// FoldICmpDivCst - Fold "icmp pred, ([su]div X, DivRHS), CmpRHS" where DivRHS
|
|
|
|
/// and CmpRHS are both known to be integer constants.
|
|
|
|
Instruction *InstCombiner::FoldICmpDivCst(ICmpInst &ICI, BinaryOperator *DivI,
|
|
|
|
ConstantInt *DivRHS) {
|
|
|
|
ConstantInt *CmpRHS = cast<ConstantInt>(ICI.getOperand(1));
|
|
|
|
const APInt &CmpRHSV = CmpRHS->getValue();
|
2011-10-01 02:09:53 +08:00
|
|
|
|
|
|
|
// FIXME: If the operand types don't match the type of the divide
|
2010-01-04 15:37:31 +08:00
|
|
|
// then don't attempt this transform. The code below doesn't have the
|
|
|
|
// logic to deal with a signed divide and an unsigned compare (and
|
2011-10-01 02:09:53 +08:00
|
|
|
// vice versa). This is because (x /s C1) <s C2 produces different
|
2010-01-04 15:37:31 +08:00
|
|
|
// results than (x /s C1) <u C2 or (x /u C1) <s C2 or even
|
2011-10-01 02:09:53 +08:00
|
|
|
// (x /u C1) <u C2. Simply casting the operands and result won't
|
|
|
|
// work. :( The if statement below tests that condition and bails
|
2011-02-10 13:23:05 +08:00
|
|
|
// if it finds it.
|
2010-01-04 15:37:31 +08:00
|
|
|
bool DivIsSigned = DivI->getOpcode() == Instruction::SDiv;
|
|
|
|
if (!ICI.isEquality() && DivIsSigned != ICI.isSigned())
|
2014-04-25 13:29:35 +08:00
|
|
|
return nullptr;
|
2010-01-04 15:37:31 +08:00
|
|
|
if (DivRHS->isZero())
|
2014-04-25 13:29:35 +08:00
|
|
|
return nullptr; // The ProdOV computation fails on divide by zero.
|
2010-01-04 15:37:31 +08:00
|
|
|
if (DivIsSigned && DivRHS->isAllOnesValue())
|
2014-04-25 13:29:35 +08:00
|
|
|
return nullptr; // The overflow computation also screws up here
|
2011-02-13 16:07:21 +08:00
|
|
|
if (DivRHS->isOne()) {
|
|
|
|
// This eliminates some funny cases with INT_MIN.
|
|
|
|
ICI.setOperand(0, DivI->getOperand(0)); // X/1 == X.
|
|
|
|
return &ICI;
|
|
|
|
}
|
2010-01-04 15:37:31 +08:00
|
|
|
|
|
|
|
// Compute Prod = CI * DivRHS. We are essentially solving an equation
|
2011-10-01 02:09:53 +08:00
|
|
|
// of form X/C1=C2. We solve for X by multiplying C1 (DivRHS) and
|
|
|
|
// C2 (CI). By solving for X we can turn this into a range check
|
|
|
|
// instead of computing a divide.
|
2010-01-04 15:37:31 +08:00
|
|
|
Constant *Prod = ConstantExpr::getMul(CmpRHS, DivRHS);
|
|
|
|
|
|
|
|
// Determine if the product overflows by seeing if the product is
|
|
|
|
// not equal to the divide. Make sure we do the same kind of divide
|
2011-10-01 02:09:53 +08:00
|
|
|
// as in the LHS instruction that we're folding.
|
2010-01-04 15:37:31 +08:00
|
|
|
bool ProdOV = (DivIsSigned ? ConstantExpr::getSDiv(Prod, DivRHS) :
|
|
|
|
ConstantExpr::getUDiv(Prod, DivRHS)) != CmpRHS;
|
|
|
|
|
|
|
|
// Get the ICmp opcode
|
|
|
|
ICmpInst::Predicate Pred = ICI.getPredicate();
|
|
|
|
|
2011-02-10 13:23:05 +08:00
|
|
|
/// If the division is known to be exact, then there is no remainder from the
|
|
|
|
/// divide, so the covered range size is unit, otherwise it is the divisor.
|
|
|
|
ConstantInt *RangeSize = DivI->isExact() ? getOne(Prod) : DivRHS;
|
2011-10-01 02:09:53 +08:00
|
|
|
|
2010-01-04 15:37:31 +08:00
|
|
|
// Figure out the interval that is being checked. For example, a comparison
|
2011-10-01 02:09:53 +08:00
|
|
|
// like "X /u 5 == 0" is really checking that X is in the interval [0, 5).
|
2010-01-04 15:37:31 +08:00
|
|
|
// Compute this interval based on the constants involved and the signedness of
|
|
|
|
// the compare/divide. This computes a half-open interval, keeping track of
|
|
|
|
// whether either value in the interval overflows. After analysis each
|
|
|
|
// overflow variable is set to 0 if it's corresponding bound variable is valid
|
|
|
|
// -1 if overflowed off the bottom end, or +1 if overflowed off the top end.
|
|
|
|
int LoOverflow = 0, HiOverflow = 0;
|
2014-04-25 13:29:35 +08:00
|
|
|
Constant *LoBound = nullptr, *HiBound = nullptr;
|
2011-02-10 13:23:05 +08:00
|
|
|
|
2010-01-04 15:37:31 +08:00
|
|
|
if (!DivIsSigned) { // udiv
|
|
|
|
// e.g. X/5 op 3 --> [15, 20)
|
|
|
|
LoBound = Prod;
|
|
|
|
HiOverflow = LoOverflow = ProdOV;
|
2011-02-10 13:23:05 +08:00
|
|
|
if (!HiOverflow) {
|
|
|
|
// If this is not an exact divide, then many values in the range collapse
|
|
|
|
// to the same result value.
|
|
|
|
HiOverflow = AddWithOverflow(HiBound, LoBound, RangeSize, false);
|
|
|
|
}
|
2010-01-04 15:37:31 +08:00
|
|
|
} else if (DivRHS->getValue().isStrictlyPositive()) { // Divisor is > 0.
|
|
|
|
if (CmpRHSV == 0) { // (X / pos) op 0
|
|
|
|
// Can't overflow. e.g. X/2 op 0 --> [-1, 2)
|
2011-02-10 13:23:05 +08:00
|
|
|
LoBound = ConstantExpr::getNeg(SubOne(RangeSize));
|
|
|
|
HiBound = RangeSize;
|
2010-01-04 15:37:31 +08:00
|
|
|
} else if (CmpRHSV.isStrictlyPositive()) { // (X / pos) op pos
|
|
|
|
LoBound = Prod; // e.g. X/5 op 3 --> [15, 20)
|
|
|
|
HiOverflow = LoOverflow = ProdOV;
|
|
|
|
if (!HiOverflow)
|
2011-02-10 13:23:05 +08:00
|
|
|
HiOverflow = AddWithOverflow(HiBound, Prod, RangeSize, true);
|
2010-01-04 15:37:31 +08:00
|
|
|
} else { // (X / pos) op neg
|
|
|
|
// e.g. X/5 op -3 --> [-15-4, -15+1) --> [-19, -14)
|
|
|
|
HiBound = AddOne(Prod);
|
|
|
|
LoOverflow = HiOverflow = ProdOV ? -1 : 0;
|
|
|
|
if (!LoOverflow) {
|
2011-02-10 13:23:05 +08:00
|
|
|
ConstantInt *DivNeg =cast<ConstantInt>(ConstantExpr::getNeg(RangeSize));
|
2010-01-04 15:37:31 +08:00
|
|
|
LoOverflow = AddWithOverflow(LoBound, HiBound, DivNeg, true) ? -1 : 0;
|
2011-02-10 13:23:05 +08:00
|
|
|
}
|
2010-01-04 15:37:31 +08:00
|
|
|
}
|
2011-07-15 14:08:15 +08:00
|
|
|
} else if (DivRHS->isNegative()) { // Divisor is < 0.
|
2011-02-10 13:23:05 +08:00
|
|
|
if (DivI->isExact())
|
|
|
|
RangeSize = cast<ConstantInt>(ConstantExpr::getNeg(RangeSize));
|
2010-01-04 15:37:31 +08:00
|
|
|
if (CmpRHSV == 0) { // (X / neg) op 0
|
|
|
|
// e.g. X/-5 op 0 --> [-4, 5)
|
2011-02-10 13:23:05 +08:00
|
|
|
LoBound = AddOne(RangeSize);
|
|
|
|
HiBound = cast<ConstantInt>(ConstantExpr::getNeg(RangeSize));
|
2010-01-04 15:37:31 +08:00
|
|
|
if (HiBound == DivRHS) { // -INTMIN = INTMIN
|
|
|
|
HiOverflow = 1; // [INTMIN+1, overflow)
|
2014-04-25 13:29:35 +08:00
|
|
|
HiBound = nullptr; // e.g. X/INTMIN = 0 --> X > INTMIN
|
2010-01-04 15:37:31 +08:00
|
|
|
}
|
|
|
|
} else if (CmpRHSV.isStrictlyPositive()) { // (X / neg) op pos
|
|
|
|
// e.g. X/-5 op 3 --> [-19, -14)
|
|
|
|
HiBound = AddOne(Prod);
|
|
|
|
HiOverflow = LoOverflow = ProdOV ? -1 : 0;
|
|
|
|
if (!LoOverflow)
|
2011-02-10 13:23:05 +08:00
|
|
|
LoOverflow = AddWithOverflow(LoBound, HiBound, RangeSize, true) ? -1:0;
|
2010-01-04 15:37:31 +08:00
|
|
|
} else { // (X / neg) op neg
|
|
|
|
LoBound = Prod; // e.g. X/-5 op -3 --> [15, 20)
|
|
|
|
LoOverflow = HiOverflow = ProdOV;
|
|
|
|
if (!HiOverflow)
|
2011-02-10 13:23:05 +08:00
|
|
|
HiOverflow = SubWithOverflow(HiBound, Prod, RangeSize, true);
|
2010-01-04 15:37:31 +08:00
|
|
|
}
|
2011-10-01 02:09:53 +08:00
|
|
|
|
2010-01-04 15:37:31 +08:00
|
|
|
// Dividing by a negative swaps the condition. LT <-> GT
|
|
|
|
Pred = ICmpInst::getSwappedPredicate(Pred);
|
|
|
|
}
|
|
|
|
|
|
|
|
Value *X = DivI->getOperand(0);
|
|
|
|
switch (Pred) {
|
|
|
|
default: llvm_unreachable("Unhandled icmp opcode!");
|
|
|
|
case ICmpInst::ICMP_EQ:
|
|
|
|
if (LoOverflow && HiOverflow)
|
2016-02-02 06:23:39 +08:00
|
|
|
return replaceInstUsesWith(ICI, Builder->getFalse());
|
2010-03-05 16:46:26 +08:00
|
|
|
if (HiOverflow)
|
2010-01-04 15:37:31 +08:00
|
|
|
return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
|
|
|
|
ICmpInst::ICMP_UGE, X, LoBound);
|
2010-03-05 16:46:26 +08:00
|
|
|
if (LoOverflow)
|
2010-01-04 15:37:31 +08:00
|
|
|
return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
|
|
|
|
ICmpInst::ICMP_ULT, X, HiBound);
|
2016-02-02 06:23:39 +08:00
|
|
|
return replaceInstUsesWith(ICI, InsertRangeTest(X, LoBound, HiBound,
|
2011-02-10 13:23:05 +08:00
|
|
|
DivIsSigned, true));
|
2010-01-04 15:37:31 +08:00
|
|
|
case ICmpInst::ICMP_NE:
|
|
|
|
if (LoOverflow && HiOverflow)
|
2016-02-02 06:23:39 +08:00
|
|
|
return replaceInstUsesWith(ICI, Builder->getTrue());
|
2010-03-05 16:46:26 +08:00
|
|
|
if (HiOverflow)
|
2010-01-04 15:37:31 +08:00
|
|
|
return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
|
|
|
|
ICmpInst::ICMP_ULT, X, LoBound);
|
2010-03-05 16:46:26 +08:00
|
|
|
if (LoOverflow)
|
2010-01-04 15:37:31 +08:00
|
|
|
return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
|
|
|
|
ICmpInst::ICMP_UGE, X, HiBound);
|
2016-02-02 06:23:39 +08:00
|
|
|
return replaceInstUsesWith(ICI, InsertRangeTest(X, LoBound, HiBound,
|
2010-03-05 16:46:26 +08:00
|
|
|
DivIsSigned, false));
|
2010-01-04 15:37:31 +08:00
|
|
|
case ICmpInst::ICMP_ULT:
|
|
|
|
case ICmpInst::ICMP_SLT:
|
|
|
|
if (LoOverflow == +1) // Low bound is greater than input range.
|
2016-02-02 06:23:39 +08:00
|
|
|
return replaceInstUsesWith(ICI, Builder->getTrue());
|
2010-01-04 15:37:31 +08:00
|
|
|
if (LoOverflow == -1) // Low bound is less than input range.
|
2016-02-02 06:23:39 +08:00
|
|
|
return replaceInstUsesWith(ICI, Builder->getFalse());
|
2010-01-04 15:37:31 +08:00
|
|
|
return new ICmpInst(Pred, X, LoBound);
|
|
|
|
case ICmpInst::ICMP_UGT:
|
|
|
|
case ICmpInst::ICMP_SGT:
|
|
|
|
if (HiOverflow == +1) // High bound greater than input range.
|
2016-02-02 06:23:39 +08:00
|
|
|
return replaceInstUsesWith(ICI, Builder->getFalse());
|
2011-02-10 13:23:05 +08:00
|
|
|
if (HiOverflow == -1) // High bound less than input range.
|
2016-02-02 06:23:39 +08:00
|
|
|
return replaceInstUsesWith(ICI, Builder->getTrue());
|
2010-01-04 15:37:31 +08:00
|
|
|
if (Pred == ICmpInst::ICMP_UGT)
|
|
|
|
return new ICmpInst(ICmpInst::ICMP_UGE, X, HiBound);
|
2011-02-10 13:23:05 +08:00
|
|
|
return new ICmpInst(ICmpInst::ICMP_SGE, X, HiBound);
|
2010-01-04 15:37:31 +08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2011-02-13 15:43:07 +08:00
|
|
|
/// FoldICmpShrCst - Handle "icmp(([al]shr X, cst1), cst2)".
|
|
|
|
Instruction *InstCombiner::FoldICmpShrCst(ICmpInst &ICI, BinaryOperator *Shr,
|
|
|
|
ConstantInt *ShAmt) {
|
|
|
|
const APInt &CmpRHSV = cast<ConstantInt>(ICI.getOperand(1))->getValue();
|
2011-10-01 02:09:53 +08:00
|
|
|
|
2011-02-13 15:43:07 +08:00
|
|
|
// Check that the shift amount is in range. If not, don't perform
|
|
|
|
// undefined shifts. When the shift is visited it will be
|
|
|
|
// simplified.
|
|
|
|
uint32_t TypeBits = CmpRHSV.getBitWidth();
|
|
|
|
uint32_t ShAmtVal = (uint32_t)ShAmt->getLimitedValue(TypeBits);
|
2011-02-13 16:07:21 +08:00
|
|
|
if (ShAmtVal >= TypeBits || ShAmtVal == 0)
|
2014-04-25 13:29:35 +08:00
|
|
|
return nullptr;
|
2011-10-01 02:09:53 +08:00
|
|
|
|
2011-02-13 16:07:21 +08:00
|
|
|
if (!ICI.isEquality()) {
|
|
|
|
// If we have an unsigned comparison and an ashr, we can't simplify this.
|
|
|
|
// Similarly for signed comparisons with lshr.
|
|
|
|
if (ICI.isSigned() != (Shr->getOpcode() == Instruction::AShr))
|
2014-04-25 13:29:35 +08:00
|
|
|
return nullptr;
|
2011-10-01 02:09:53 +08:00
|
|
|
|
2011-05-26 07:26:20 +08:00
|
|
|
// Otherwise, all lshr and most exact ashr's are equivalent to a udiv/sdiv
|
|
|
|
// by a power of 2. Since we already have logic to simplify these,
|
|
|
|
// transform to div and then simplify the resultant comparison.
|
2011-02-13 16:07:21 +08:00
|
|
|
if (Shr->getOpcode() == Instruction::AShr &&
|
2011-05-26 07:26:20 +08:00
|
|
|
(!Shr->isExact() || ShAmtVal == TypeBits - 1))
|
2014-04-25 13:29:35 +08:00
|
|
|
return nullptr;
|
2011-10-01 02:09:53 +08:00
|
|
|
|
2011-02-13 16:07:21 +08:00
|
|
|
// Revisit the shift (to delete it).
|
|
|
|
Worklist.Add(Shr);
|
2011-10-01 02:09:53 +08:00
|
|
|
|
2011-02-13 16:07:21 +08:00
|
|
|
Constant *DivCst =
|
|
|
|
ConstantInt::get(Shr->getType(), APInt::getOneBitSet(TypeBits, ShAmtVal));
|
2011-10-01 02:09:53 +08:00
|
|
|
|
2011-02-13 16:07:21 +08:00
|
|
|
Value *Tmp =
|
|
|
|
Shr->getOpcode() == Instruction::AShr ?
|
|
|
|
Builder->CreateSDiv(Shr->getOperand(0), DivCst, "", Shr->isExact()) :
|
|
|
|
Builder->CreateUDiv(Shr->getOperand(0), DivCst, "", Shr->isExact());
|
2011-10-01 02:09:53 +08:00
|
|
|
|
2011-02-13 16:07:21 +08:00
|
|
|
ICI.setOperand(0, Tmp);
|
2011-10-01 02:09:53 +08:00
|
|
|
|
2011-02-13 16:07:21 +08:00
|
|
|
// If the builder folded the binop, just return it.
|
|
|
|
BinaryOperator *TheDiv = dyn_cast<BinaryOperator>(Tmp);
|
2014-04-25 13:29:35 +08:00
|
|
|
if (!TheDiv)
|
2011-02-13 16:07:21 +08:00
|
|
|
return &ICI;
|
2011-10-01 02:09:53 +08:00
|
|
|
|
2011-02-13 16:07:21 +08:00
|
|
|
// Otherwise, fold this div/compare.
|
|
|
|
assert(TheDiv->getOpcode() == Instruction::SDiv ||
|
|
|
|
TheDiv->getOpcode() == Instruction::UDiv);
|
2011-10-01 02:09:53 +08:00
|
|
|
|
2011-02-13 16:07:21 +08:00
|
|
|
Instruction *Res = FoldICmpDivCst(ICI, TheDiv, cast<ConstantInt>(DivCst));
|
|
|
|
assert(Res && "This div/cst should have folded!");
|
|
|
|
return Res;
|
|
|
|
}
|
2011-10-01 02:09:53 +08:00
|
|
|
|
2011-02-13 15:43:07 +08:00
|
|
|
// If we are comparing against bits always shifted out, the
|
|
|
|
// comparison cannot succeed.
|
|
|
|
APInt Comp = CmpRHSV << ShAmtVal;
|
2013-06-07 04:18:46 +08:00
|
|
|
ConstantInt *ShiftedCmpRHS = Builder->getInt(Comp);
|
2011-02-13 15:43:07 +08:00
|
|
|
if (Shr->getOpcode() == Instruction::LShr)
|
|
|
|
Comp = Comp.lshr(ShAmtVal);
|
|
|
|
else
|
|
|
|
Comp = Comp.ashr(ShAmtVal);
|
2011-10-01 02:09:53 +08:00
|
|
|
|
2011-02-13 15:43:07 +08:00
|
|
|
if (Comp != CmpRHSV) { // Comparing against a bit that we know is zero.
|
|
|
|
bool IsICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE;
|
2013-06-07 04:18:46 +08:00
|
|
|
Constant *Cst = Builder->getInt1(IsICMP_NE);
|
2016-02-02 06:23:39 +08:00
|
|
|
return replaceInstUsesWith(ICI, Cst);
|
2011-02-13 15:43:07 +08:00
|
|
|
}
|
2011-10-01 02:09:53 +08:00
|
|
|
|
2011-02-13 15:43:07 +08:00
|
|
|
// Otherwise, check to see if the bits shifted out are known to be zero.
|
|
|
|
// If so, we can compare against the unshifted value:
|
|
|
|
// (X & 4) >> 1 == 2 --> (X & 4) == 4.
|
2011-02-14 02:30:09 +08:00
|
|
|
if (Shr->hasOneUse() && Shr->isExact())
|
2011-02-13 15:43:07 +08:00
|
|
|
return new ICmpInst(ICI.getPredicate(), Shr->getOperand(0), ShiftedCmpRHS);
|
2011-10-01 02:09:53 +08:00
|
|
|
|
2011-02-13 15:43:07 +08:00
|
|
|
if (Shr->hasOneUse()) {
|
|
|
|
// Otherwise strength reduce the shift into an and.
|
|
|
|
APInt Val(APInt::getHighBitsSet(TypeBits, TypeBits - ShAmtVal));
|
2013-06-07 04:18:46 +08:00
|
|
|
Constant *Mask = Builder->getInt(Val);
|
2011-10-01 02:09:53 +08:00
|
|
|
|
2011-02-13 15:43:07 +08:00
|
|
|
Value *And = Builder->CreateAnd(Shr->getOperand(0),
|
|
|
|
Mask, Shr->getName()+".mask");
|
|
|
|
return new ICmpInst(ICI.getPredicate(), And, ShiftedCmpRHS);
|
|
|
|
}
|
2014-04-25 13:29:35 +08:00
|
|
|
return nullptr;
|
2011-02-13 15:43:07 +08:00
|
|
|
}
|
|
|
|
|
2014-07-23 03:19:36 +08:00
|
|
|
/// FoldICmpCstShrCst - Handle "(icmp eq/ne (ashr/lshr const2, A), const1)" ->
|
|
|
|
/// (icmp eq/ne A, Log2(const2/const1)) ->
|
|
|
|
/// (icmp eq/ne A, Log2(const2) - Log2(const1)).
|
|
|
|
Instruction *InstCombiner::FoldICmpCstShrCst(ICmpInst &I, Value *Op, Value *A,
|
|
|
|
ConstantInt *CI1,
|
|
|
|
ConstantInt *CI2) {
|
|
|
|
assert(I.isEquality() && "Cannot fold icmp gt/lt");
|
|
|
|
|
|
|
|
auto getConstant = [&I, this](bool IsTrue) {
|
|
|
|
if (I.getPredicate() == I.ICMP_NE)
|
|
|
|
IsTrue = !IsTrue;
|
2016-02-02 06:23:39 +08:00
|
|
|
return replaceInstUsesWith(I, ConstantInt::get(I.getType(), IsTrue));
|
2014-07-23 03:19:36 +08:00
|
|
|
};
|
|
|
|
|
|
|
|
auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) {
|
|
|
|
if (I.getPredicate() == I.ICMP_NE)
|
|
|
|
Pred = CmpInst::getInversePredicate(Pred);
|
|
|
|
return new ICmpInst(Pred, LHS, RHS);
|
|
|
|
};
|
|
|
|
|
|
|
|
APInt AP1 = CI1->getValue();
|
|
|
|
APInt AP2 = CI2->getValue();
|
|
|
|
|
2014-10-25 15:13:13 +08:00
|
|
|
// Don't bother doing any work for cases which InstSimplify handles.
|
|
|
|
if (AP2 == 0)
|
|
|
|
return nullptr;
|
|
|
|
bool IsAShr = isa<AShrOperator>(Op);
|
|
|
|
if (IsAShr) {
|
|
|
|
if (AP2.isAllOnesValue())
|
|
|
|
return nullptr;
|
|
|
|
if (AP2.isNegative() != AP1.isNegative())
|
|
|
|
return nullptr;
|
|
|
|
if (AP2.sgt(AP1))
|
|
|
|
return nullptr;
|
|
|
|
}
|
2014-07-23 03:19:36 +08:00
|
|
|
|
2014-10-22 03:51:55 +08:00
|
|
|
if (!AP1)
|
2014-07-23 03:19:36 +08:00
|
|
|
// 'A' must be large enough to shift out the highest set bit.
|
|
|
|
return getICmp(I.ICMP_UGT, A,
|
|
|
|
ConstantInt::get(A->getType(), AP2.logBase2()));
|
|
|
|
|
2014-10-22 03:51:55 +08:00
|
|
|
if (AP1 == AP2)
|
2014-07-23 03:19:36 +08:00
|
|
|
return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType()));
|
|
|
|
|
2014-09-17 19:32:31 +08:00
|
|
|
int Shift;
|
2014-10-22 03:51:55 +08:00
|
|
|
if (IsAShr && AP1.isNegative())
|
2015-09-19 08:48:26 +08:00
|
|
|
Shift = AP1.countLeadingOnes() - AP2.countLeadingOnes();
|
2014-09-17 19:32:31 +08:00
|
|
|
else
|
2015-09-19 08:48:26 +08:00
|
|
|
Shift = AP1.countLeadingZeros() - AP2.countLeadingZeros();
|
2014-07-23 03:19:36 +08:00
|
|
|
|
2014-10-22 03:51:55 +08:00
|
|
|
if (Shift > 0) {
|
2015-09-19 08:48:26 +08:00
|
|
|
if (IsAShr && AP1 == AP2.ashr(Shift)) {
|
|
|
|
// There are multiple solutions if we are comparing against -1 and the LHS
|
2015-09-19 08:48:31 +08:00
|
|
|
// of the ashr is not a power of two.
|
2015-09-19 08:48:26 +08:00
|
|
|
if (AP1.isAllOnesValue() && !AP2.isPowerOf2())
|
|
|
|
return getICmp(I.ICMP_UGE, A, ConstantInt::get(A->getType(), Shift));
|
2014-10-22 03:51:55 +08:00
|
|
|
return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift));
|
2015-09-19 08:48:26 +08:00
|
|
|
} else if (AP1 == AP2.lshr(Shift)) {
|
|
|
|
return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift));
|
|
|
|
}
|
2014-10-22 03:51:55 +08:00
|
|
|
}
|
2014-07-23 03:19:36 +08:00
|
|
|
// Shifting const2 will never be equal to const1.
|
|
|
|
return getConstant(false);
|
|
|
|
}
|
2010-01-04 15:37:31 +08:00
|
|
|
|
2014-10-19 16:23:08 +08:00
|
|
|
/// FoldICmpCstShlCst - Handle "(icmp eq/ne (shl const2, A), const1)" ->
|
|
|
|
/// (icmp eq/ne A, TrailingZeros(const1) - TrailingZeros(const2)).
|
|
|
|
Instruction *InstCombiner::FoldICmpCstShlCst(ICmpInst &I, Value *Op, Value *A,
|
|
|
|
ConstantInt *CI1,
|
|
|
|
ConstantInt *CI2) {
|
|
|
|
assert(I.isEquality() && "Cannot fold icmp gt/lt");
|
|
|
|
|
|
|
|
auto getConstant = [&I, this](bool IsTrue) {
|
|
|
|
if (I.getPredicate() == I.ICMP_NE)
|
|
|
|
IsTrue = !IsTrue;
|
2016-02-02 06:23:39 +08:00
|
|
|
return replaceInstUsesWith(I, ConstantInt::get(I.getType(), IsTrue));
|
2014-10-19 16:23:08 +08:00
|
|
|
};
|
|
|
|
|
|
|
|
auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) {
|
|
|
|
if (I.getPredicate() == I.ICMP_NE)
|
|
|
|
Pred = CmpInst::getInversePredicate(Pred);
|
|
|
|
return new ICmpInst(Pred, LHS, RHS);
|
|
|
|
};
|
|
|
|
|
|
|
|
APInt AP1 = CI1->getValue();
|
|
|
|
APInt AP2 = CI2->getValue();
|
|
|
|
|
2014-10-25 15:13:13 +08:00
|
|
|
// Don't bother doing any work for cases which InstSimplify handles.
|
|
|
|
if (AP2 == 0)
|
|
|
|
return nullptr;
|
2014-10-19 16:23:08 +08:00
|
|
|
|
|
|
|
unsigned AP2TrailingZeros = AP2.countTrailingZeros();
|
|
|
|
|
|
|
|
if (!AP1 && AP2TrailingZeros != 0)
|
|
|
|
return getICmp(I.ICMP_UGE, A,
|
|
|
|
ConstantInt::get(A->getType(), AP2.getBitWidth() - AP2TrailingZeros));
|
|
|
|
|
|
|
|
if (AP1 == AP2)
|
|
|
|
return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType()));
|
|
|
|
|
|
|
|
// Get the distance between the lowest bits that are set.
|
|
|
|
int Shift = AP1.countTrailingZeros() - AP2TrailingZeros;
|
|
|
|
|
|
|
|
if (Shift > 0 && AP2.shl(Shift) == AP1)
|
|
|
|
return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift));
|
|
|
|
|
|
|
|
// Shifting const2 will never be equal to const1.
|
|
|
|
return getConstant(false);
|
|
|
|
}
|
|
|
|
|
2010-01-04 15:37:31 +08:00
|
|
|
/// visitICmpInstWithInstAndIntCst - Handle "icmp (instr, intcst)".
|
|
|
|
///
|
|
|
|
Instruction *InstCombiner::visitICmpInstWithInstAndIntCst(ICmpInst &ICI,
|
|
|
|
Instruction *LHSI,
|
|
|
|
ConstantInt *RHS) {
|
|
|
|
const APInt &RHSV = RHS->getValue();
|
2011-10-01 02:09:53 +08:00
|
|
|
|
2010-01-04 15:37:31 +08:00
|
|
|
switch (LHSI->getOpcode()) {
|
|
|
|
case Instruction::Trunc:
|
2015-09-17 04:41:29 +08:00
|
|
|
if (RHS->isOne() && RHSV.getBitWidth() > 1) {
|
|
|
|
// icmp slt trunc(signum(V)) 1 --> icmp slt V, 1
|
|
|
|
Value *V = nullptr;
|
|
|
|
if (ICI.getPredicate() == ICmpInst::ICMP_SLT &&
|
|
|
|
match(LHSI->getOperand(0), m_Signum(m_Value(V))))
|
|
|
|
return new ICmpInst(ICmpInst::ICMP_SLT, V,
|
|
|
|
ConstantInt::get(V->getType(), 1));
|
|
|
|
}
|
2010-01-04 15:37:31 +08:00
|
|
|
if (ICI.isEquality() && LHSI->hasOneUse()) {
|
|
|
|
// Simplify icmp eq (trunc x to i8), 42 -> icmp eq x, 42|highbits if all
|
|
|
|
// of the high bits truncated out of x are known.
|
|
|
|
unsigned DstBits = LHSI->getType()->getPrimitiveSizeInBits(),
|
|
|
|
SrcBits = LHSI->getOperand(0)->getType()->getPrimitiveSizeInBits();
|
|
|
|
APInt KnownZero(SrcBits, 0), KnownOne(SrcBits, 0);
|
Make use of @llvm.assume in ValueTracking (computeKnownBits, etc.)
This change, which allows @llvm.assume to be used from within computeKnownBits
(and other associated functions in ValueTracking), adds some (optional)
parameters to computeKnownBits and friends. These functions now (optionally)
take a "context" instruction pointer, an AssumptionTracker pointer, and also a
DomTree pointer, and most of the changes are just to pass this new information
when it is easily available from InstSimplify, InstCombine, etc.
As explained below, the significant conceptual change is that known properties
of a value might depend on the control-flow location of the use (because we
care that the @llvm.assume dominates the use because assumptions have
control-flow dependencies). This means that, when we ask if bits are known in a
value, we might get different answers for different uses.
The significant changes are all in ValueTracking. Two main changes: First, as
with the rest of the code, new parameters need to be passed around. To make
this easier, I grouped them into a structure, and I made internal static
versions of the relevant functions that take this structure as a parameter. The
new code does as you might expect, it looks for @llvm.assume calls that make
use of the value we're trying to learn something about (often indirectly),
attempts to pattern match that expression, and uses the result if successful.
By making use of the AssumptionTracker, the process of finding @llvm.assume
calls is not expensive.
Part of the structure being passed around inside ValueTracking is a set of
already-considered @llvm.assume calls. This is to prevent a query using, for
example, the assume(a == b), to recurse on itself. The context and DT params
are used to find applicable assumptions. An assumption needs to dominate the
context instruction, or come after it deterministically. In this latter case we
only handle the specific case where both the assumption and the context
instruction are in the same block, and we need to exclude assumptions from
being used to simplify their own ephemeral values (those which contribute only
to the assumption) because otherwise the assumption would prove its feeding
comparison trivial and would be removed.
This commit adds the plumbing and the logic for a simple masked-bit propagation
(just enough to write a regression test). Future commits add more patterns
(and, correspondingly, more regression tests).
llvm-svn: 217342
2014-09-08 02:57:58 +08:00
|
|
|
computeKnownBits(LHSI->getOperand(0), KnownZero, KnownOne, 0, &ICI);
|
2011-10-01 02:09:53 +08:00
|
|
|
|
2010-01-04 15:37:31 +08:00
|
|
|
// If all the high bits are known, we can do this xform.
|
|
|
|
if ((KnownZero|KnownOne).countLeadingOnes() >= SrcBits-DstBits) {
|
|
|
|
// Pull in the high bits from known-ones set.
|
2010-12-07 16:25:19 +08:00
|
|
|
APInt NewRHS = RHS->getValue().zext(SrcBits);
|
2012-05-11 09:32:59 +08:00
|
|
|
NewRHS |= KnownOne & APInt::getHighBitsSet(SrcBits, SrcBits-DstBits);
|
2010-01-04 15:37:31 +08:00
|
|
|
return new ICmpInst(ICI.getPredicate(), LHSI->getOperand(0),
|
2013-06-07 04:18:46 +08:00
|
|
|
Builder->getInt(NewRHS));
|
2010-01-04 15:37:31 +08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
break;
|
2011-10-01 02:09:53 +08:00
|
|
|
|
2013-12-03 06:11:56 +08:00
|
|
|
case Instruction::Xor: // (icmp pred (xor X, XorCst), CI)
|
|
|
|
if (ConstantInt *XorCst = dyn_cast<ConstantInt>(LHSI->getOperand(1))) {
|
2010-01-04 15:37:31 +08:00
|
|
|
// If this is a comparison that tests the signbit (X < 0) or (x > -1),
|
|
|
|
// fold the xor.
|
|
|
|
if ((ICI.getPredicate() == ICmpInst::ICMP_SLT && RHSV == 0) ||
|
|
|
|
(ICI.getPredicate() == ICmpInst::ICMP_SGT && RHSV.isAllOnesValue())) {
|
|
|
|
Value *CompareVal = LHSI->getOperand(0);
|
2011-10-01 02:09:53 +08:00
|
|
|
|
2013-12-03 06:11:56 +08:00
|
|
|
// If the sign bit of the XorCst is not set, there is no change to
|
2010-01-04 15:37:31 +08:00
|
|
|
// the operation, just stop using the Xor.
|
2013-12-03 06:11:56 +08:00
|
|
|
if (!XorCst->isNegative()) {
|
2010-01-04 15:37:31 +08:00
|
|
|
ICI.setOperand(0, CompareVal);
|
|
|
|
Worklist.Add(LHSI);
|
|
|
|
return &ICI;
|
|
|
|
}
|
2011-10-01 02:09:53 +08:00
|
|
|
|
2010-01-04 15:37:31 +08:00
|
|
|
// Was the old condition true if the operand is positive?
|
|
|
|
bool isTrueIfPositive = ICI.getPredicate() == ICmpInst::ICMP_SGT;
|
2011-10-01 02:09:53 +08:00
|
|
|
|
2010-01-04 15:37:31 +08:00
|
|
|
// If so, the new one isn't.
|
|
|
|
isTrueIfPositive ^= true;
|
2011-10-01 02:09:53 +08:00
|
|
|
|
2010-01-04 15:37:31 +08:00
|
|
|
if (isTrueIfPositive)
|
|
|
|
return new ICmpInst(ICmpInst::ICMP_SGT, CompareVal,
|
|
|
|
SubOne(RHS));
|
|
|
|
else
|
|
|
|
return new ICmpInst(ICmpInst::ICMP_SLT, CompareVal,
|
|
|
|
AddOne(RHS));
|
|
|
|
}
|
|
|
|
|
|
|
|
if (LHSI->hasOneUse()) {
|
|
|
|
// (icmp u/s (xor A SignBit), C) -> (icmp s/u A, (xor C SignBit))
|
2013-12-03 06:11:56 +08:00
|
|
|
if (!ICI.isEquality() && XorCst->getValue().isSignBit()) {
|
|
|
|
const APInt &SignBit = XorCst->getValue();
|
2010-01-04 15:37:31 +08:00
|
|
|
ICmpInst::Predicate Pred = ICI.isSigned()
|
|
|
|
? ICI.getUnsignedPredicate()
|
|
|
|
: ICI.getSignedPredicate();
|
|
|
|
return new ICmpInst(Pred, LHSI->getOperand(0),
|
2013-06-07 04:18:46 +08:00
|
|
|
Builder->getInt(RHSV ^ SignBit));
|
2010-01-04 15:37:31 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
// (icmp u/s (xor A ~SignBit), C) -> (icmp s/u (xor C ~SignBit), A)
|
2013-12-03 06:11:56 +08:00
|
|
|
if (!ICI.isEquality() && XorCst->isMaxValue(true)) {
|
|
|
|
const APInt &NotSignBit = XorCst->getValue();
|
2010-01-04 15:37:31 +08:00
|
|
|
ICmpInst::Predicate Pred = ICI.isSigned()
|
|
|
|
? ICI.getUnsignedPredicate()
|
|
|
|
: ICI.getSignedPredicate();
|
|
|
|
Pred = ICI.getSwappedPredicate(Pred);
|
|
|
|
return new ICmpInst(Pred, LHSI->getOperand(0),
|
2013-06-07 04:18:46 +08:00
|
|
|
Builder->getInt(RHSV ^ NotSignBit));
|
2010-01-04 15:37:31 +08:00
|
|
|
}
|
|
|
|
}
|
2013-07-09 17:20:58 +08:00
|
|
|
|
|
|
|
// (icmp ugt (xor X, C), ~C) -> (icmp ult X, C)
|
|
|
|
// iff -C is a power of 2
|
|
|
|
if (ICI.getPredicate() == ICmpInst::ICMP_UGT &&
|
2013-12-03 06:11:56 +08:00
|
|
|
XorCst->getValue() == ~RHSV && (RHSV + 1).isPowerOf2())
|
|
|
|
return new ICmpInst(ICmpInst::ICMP_ULT, LHSI->getOperand(0), XorCst);
|
2013-07-09 17:20:58 +08:00
|
|
|
|
|
|
|
// (icmp ult (xor X, C), -C) -> (icmp uge X, C)
|
|
|
|
// iff -C is a power of 2
|
|
|
|
if (ICI.getPredicate() == ICmpInst::ICMP_ULT &&
|
2013-12-03 06:11:56 +08:00
|
|
|
XorCst->getValue() == -RHSV && RHSV.isPowerOf2())
|
|
|
|
return new ICmpInst(ICmpInst::ICMP_UGE, LHSI->getOperand(0), XorCst);
|
2010-01-04 15:37:31 +08:00
|
|
|
}
|
|
|
|
break;
|
2013-12-03 06:11:56 +08:00
|
|
|
case Instruction::And: // (icmp pred (and X, AndCst), RHS)
|
2010-01-04 15:37:31 +08:00
|
|
|
if (LHSI->hasOneUse() && isa<ConstantInt>(LHSI->getOperand(1)) &&
|
|
|
|
LHSI->getOperand(0)->hasOneUse()) {
|
2013-12-03 06:11:56 +08:00
|
|
|
ConstantInt *AndCst = cast<ConstantInt>(LHSI->getOperand(1));
|
2011-10-01 02:09:53 +08:00
|
|
|
|
2010-01-04 15:37:31 +08:00
|
|
|
// If the LHS is an AND of a truncating cast, we can widen the
|
|
|
|
// and/compare to be the input width without changing the value
|
|
|
|
// produced, eliminating a cast.
|
|
|
|
if (TruncInst *Cast = dyn_cast<TruncInst>(LHSI->getOperand(0))) {
|
|
|
|
// We can do this transformation if either the AND constant does not
|
2011-10-01 02:09:53 +08:00
|
|
|
// have its sign bit set or if it is an equality comparison.
|
2010-01-04 15:37:31 +08:00
|
|
|
// Extending a relational comparison when we're checking the sign
|
|
|
|
// bit would not work.
|
2011-06-13 06:47:53 +08:00
|
|
|
if (ICI.isEquality() ||
|
2013-12-03 06:11:56 +08:00
|
|
|
(!AndCst->isNegative() && RHSV.isNonNegative())) {
|
2011-06-13 06:47:53 +08:00
|
|
|
Value *NewAnd =
|
2010-01-04 15:37:31 +08:00
|
|
|
Builder->CreateAnd(Cast->getOperand(0),
|
2013-12-03 06:11:56 +08:00
|
|
|
ConstantExpr::getZExt(AndCst, Cast->getSrcTy()));
|
2011-06-13 06:47:53 +08:00
|
|
|
NewAnd->takeName(LHSI);
|
2010-01-04 15:37:31 +08:00
|
|
|
return new ICmpInst(ICI.getPredicate(), NewAnd,
|
2011-06-13 06:47:53 +08:00
|
|
|
ConstantExpr::getZExt(RHS, Cast->getSrcTy()));
|
2010-01-04 15:37:31 +08:00
|
|
|
}
|
|
|
|
}
|
2011-06-13 06:48:00 +08:00
|
|
|
|
|
|
|
// If the LHS is an AND of a zext, and we have an equality compare, we can
|
|
|
|
// shrink the and/compare to the smaller type, eliminating the cast.
|
|
|
|
if (ZExtInst *Cast = dyn_cast<ZExtInst>(LHSI->getOperand(0))) {
|
2011-07-18 12:54:35 +08:00
|
|
|
IntegerType *Ty = cast<IntegerType>(Cast->getSrcTy());
|
2011-06-13 06:48:00 +08:00
|
|
|
// Make sure we don't compare the upper bits, SimplifyDemandedBits
|
|
|
|
// should fold the icmp to true/false in that case.
|
|
|
|
if (ICI.isEquality() && RHSV.getActiveBits() <= Ty->getBitWidth()) {
|
|
|
|
Value *NewAnd =
|
|
|
|
Builder->CreateAnd(Cast->getOperand(0),
|
2013-12-03 06:11:56 +08:00
|
|
|
ConstantExpr::getTrunc(AndCst, Ty));
|
2011-06-13 06:48:00 +08:00
|
|
|
NewAnd->takeName(LHSI);
|
|
|
|
return new ICmpInst(ICI.getPredicate(), NewAnd,
|
|
|
|
ConstantExpr::getTrunc(RHS, Ty));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2010-01-04 15:37:31 +08:00
|
|
|
// If this is: (X >> C1) & C2 != C3 (where any shift and any compare
|
|
|
|
// could exist), turn it into (X & (C2 << C1)) != (C3 << C1). This
|
|
|
|
// happens a LOT in code produced by the C front-end, for bitfield
|
|
|
|
// access.
|
|
|
|
BinaryOperator *Shift = dyn_cast<BinaryOperator>(LHSI->getOperand(0));
|
|
|
|
if (Shift && !Shift->isShift())
|
2014-04-25 13:29:35 +08:00
|
|
|
Shift = nullptr;
|
2011-10-01 02:09:53 +08:00
|
|
|
|
2010-01-04 15:37:31 +08:00
|
|
|
ConstantInt *ShAmt;
|
2014-04-25 13:29:35 +08:00
|
|
|
ShAmt = Shift ? dyn_cast<ConstantInt>(Shift->getOperand(1)) : nullptr;
|
2011-10-01 02:09:53 +08:00
|
|
|
|
2013-12-20 02:07:17 +08:00
|
|
|
// This seemingly simple opportunity to fold away a shift turns out to
|
|
|
|
// be rather complicated. See PR17827
|
|
|
|
// ( http://llvm.org/bugs/show_bug.cgi?id=17827 ) for details.
|
2010-01-04 15:37:31 +08:00
|
|
|
if (ShAmt) {
|
2013-12-03 02:43:59 +08:00
|
|
|
bool CanFold = false;
|
|
|
|
unsigned ShiftOpcode = Shift->getOpcode();
|
|
|
|
if (ShiftOpcode == Instruction::AShr) {
|
2013-12-20 02:07:17 +08:00
|
|
|
// There may be some constraints that make this possible,
|
|
|
|
// but nothing simple has been discovered yet.
|
|
|
|
CanFold = false;
|
|
|
|
} else if (ShiftOpcode == Instruction::Shl) {
|
|
|
|
// For a left shift, we can fold if the comparison is not signed.
|
|
|
|
// We can also fold a signed comparison if the mask value and
|
|
|
|
// comparison value are not negative. These constraints may not be
|
|
|
|
// obvious, but we can prove that they are correct using an SMT
|
2013-12-20 02:35:54 +08:00
|
|
|
// solver.
|
2013-12-20 02:07:17 +08:00
|
|
|
if (!ICI.isSigned() || (!AndCst->isNegative() && !RHS->isNegative()))
|
2010-01-04 15:37:31 +08:00
|
|
|
CanFold = true;
|
2013-12-20 02:07:17 +08:00
|
|
|
} else if (ShiftOpcode == Instruction::LShr) {
|
|
|
|
// For a logical right shift, we can fold if the comparison is not
|
|
|
|
// signed. We can also fold a signed comparison if the shifted mask
|
|
|
|
// value and the shifted comparison value are not negative.
|
|
|
|
// These constraints may not be obvious, but we can prove that they
|
2013-12-20 02:35:54 +08:00
|
|
|
// are correct using an SMT solver.
|
2013-12-20 02:07:17 +08:00
|
|
|
if (!ICI.isSigned())
|
|
|
|
CanFold = true;
|
|
|
|
else {
|
|
|
|
ConstantInt *ShiftedAndCst =
|
|
|
|
cast<ConstantInt>(ConstantExpr::getShl(AndCst, ShAmt));
|
|
|
|
ConstantInt *ShiftedRHSCst =
|
|
|
|
cast<ConstantInt>(ConstantExpr::getShl(RHS, ShAmt));
|
|
|
|
|
|
|
|
if (!ShiftedAndCst->isNegative() && !ShiftedRHSCst->isNegative())
|
|
|
|
CanFold = true;
|
|
|
|
}
|
2010-01-04 15:37:31 +08:00
|
|
|
}
|
2011-10-01 02:09:53 +08:00
|
|
|
|
2010-01-04 15:37:31 +08:00
|
|
|
if (CanFold) {
|
|
|
|
Constant *NewCst;
|
2013-12-03 06:23:32 +08:00
|
|
|
if (ShiftOpcode == Instruction::Shl)
|
2010-01-04 15:37:31 +08:00
|
|
|
NewCst = ConstantExpr::getLShr(RHS, ShAmt);
|
|
|
|
else
|
|
|
|
NewCst = ConstantExpr::getShl(RHS, ShAmt);
|
2011-10-01 02:09:53 +08:00
|
|
|
|
2010-01-04 15:37:31 +08:00
|
|
|
// Check to see if we are shifting out any of the bits being
|
|
|
|
// compared.
|
2013-12-03 06:23:32 +08:00
|
|
|
if (ConstantExpr::get(ShiftOpcode, NewCst, ShAmt) != RHS) {
|
2010-01-04 15:37:31 +08:00
|
|
|
// If we shifted bits out, the fold is not going to work out.
|
|
|
|
// As a special case, check to see if this means that the
|
|
|
|
// result is always true or false now.
|
|
|
|
if (ICI.getPredicate() == ICmpInst::ICMP_EQ)
|
2016-02-02 06:23:39 +08:00
|
|
|
return replaceInstUsesWith(ICI, Builder->getFalse());
|
2010-01-04 15:37:31 +08:00
|
|
|
if (ICI.getPredicate() == ICmpInst::ICMP_NE)
|
2016-02-02 06:23:39 +08:00
|
|
|
return replaceInstUsesWith(ICI, Builder->getTrue());
|
2010-01-04 15:37:31 +08:00
|
|
|
} else {
|
|
|
|
ICI.setOperand(1, NewCst);
|
2013-12-03 06:11:56 +08:00
|
|
|
Constant *NewAndCst;
|
2013-12-03 06:23:32 +08:00
|
|
|
if (ShiftOpcode == Instruction::Shl)
|
2013-12-03 06:11:56 +08:00
|
|
|
NewAndCst = ConstantExpr::getLShr(AndCst, ShAmt);
|
2010-01-04 15:37:31 +08:00
|
|
|
else
|
2013-12-03 06:11:56 +08:00
|
|
|
NewAndCst = ConstantExpr::getShl(AndCst, ShAmt);
|
|
|
|
LHSI->setOperand(1, NewAndCst);
|
2010-01-04 15:37:31 +08:00
|
|
|
LHSI->setOperand(0, Shift->getOperand(0));
|
|
|
|
Worklist.Add(Shift); // Shift is dead.
|
|
|
|
return &ICI;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
2011-10-01 02:09:53 +08:00
|
|
|
|
2010-01-04 15:37:31 +08:00
|
|
|
// Turn ((X >> Y) & C) == 0 into (X & (C << Y)) == 0. The later is
|
|
|
|
// preferable because it allows the C<<Y expression to be hoisted out
|
|
|
|
// of a loop if Y is invariant and X is not.
|
|
|
|
if (Shift && Shift->hasOneUse() && RHSV == 0 &&
|
|
|
|
ICI.isEquality() && !Shift->isArithmeticShift() &&
|
|
|
|
!isa<Constant>(Shift->getOperand(0))) {
|
|
|
|
// Compute C << Y.
|
|
|
|
Value *NS;
|
|
|
|
if (Shift->getOpcode() == Instruction::LShr) {
|
2013-12-03 06:11:56 +08:00
|
|
|
NS = Builder->CreateShl(AndCst, Shift->getOperand(1));
|
2010-01-04 15:37:31 +08:00
|
|
|
} else {
|
|
|
|
// Insert a logical shift.
|
2013-12-03 06:11:56 +08:00
|
|
|
NS = Builder->CreateLShr(AndCst, Shift->getOperand(1));
|
2010-01-04 15:37:31 +08:00
|
|
|
}
|
2011-10-01 02:09:53 +08:00
|
|
|
|
2010-01-04 15:37:31 +08:00
|
|
|
// Compute X & (C << Y).
|
2011-10-01 02:09:53 +08:00
|
|
|
Value *NewAnd =
|
2010-01-04 15:37:31 +08:00
|
|
|
Builder->CreateAnd(Shift->getOperand(0), NS, LHSI->getName());
|
2011-10-01 02:09:53 +08:00
|
|
|
|
2010-01-04 15:37:31 +08:00
|
|
|
ICI.setOperand(0, NewAnd);
|
|
|
|
return &ICI;
|
|
|
|
}
|
2012-12-20 03:47:13 +08:00
|
|
|
|
InstCombine: Properly optimize or'ing bittests together
CFE, with -03, would turn:
bool f(unsigned x) {
bool a = x & 1;
bool b = x & 2;
return a | b;
}
into:
%1 = lshr i32 %x, 1
%2 = or i32 %1, %x
%3 = and i32 %2, 1
%4 = icmp ne i32 %3, 0
This sort of thing exposes a nasty pathology in GCC, ICC and LLVM.
Instead, we would rather want:
%1 = and i32 %x, 3
%2 = icmp ne i32 %1, 0
Things get a bit more interesting in the following case:
%1 = lshr i32 %x, %y
%2 = or i32 %1, %x
%3 = and i32 %2, 1
%4 = icmp ne i32 %3, 0
Replacing it with the following sequence is better:
%1 = shl nuw i32 1, %y
%2 = or i32 %1, 1
%3 = and i32 %2, %x
%4 = icmp ne i32 %3, 0
This sequence is preferable because %1 doesn't involve %x and could
potentially be hoisted out of loops if it is invariant; only perform
this transform in the non-constant case if we know we won't increase
register pressure.
llvm-svn: 216343
2014-08-24 17:10:57 +08:00
|
|
|
// (icmp pred (and (or (lshr X, Y), X), 1), 0) -->
|
|
|
|
// (icmp pred (and X, (or (shl 1, Y), 1), 0))
|
|
|
|
//
|
|
|
|
// iff pred isn't signed
|
|
|
|
{
|
|
|
|
Value *X, *Y, *LShr;
|
|
|
|
if (!ICI.isSigned() && RHSV == 0) {
|
|
|
|
if (match(LHSI->getOperand(1), m_One())) {
|
|
|
|
Constant *One = cast<Constant>(LHSI->getOperand(1));
|
|
|
|
Value *Or = LHSI->getOperand(0);
|
|
|
|
if (match(Or, m_Or(m_Value(LShr), m_Value(X))) &&
|
|
|
|
match(LShr, m_LShr(m_Specific(X), m_Value(Y)))) {
|
|
|
|
unsigned UsesRemoved = 0;
|
|
|
|
if (LHSI->hasOneUse())
|
|
|
|
++UsesRemoved;
|
|
|
|
if (Or->hasOneUse())
|
|
|
|
++UsesRemoved;
|
|
|
|
if (LShr->hasOneUse())
|
|
|
|
++UsesRemoved;
|
|
|
|
Value *NewOr = nullptr;
|
|
|
|
// Compute X & ((1 << Y) | 1)
|
|
|
|
if (auto *C = dyn_cast<Constant>(Y)) {
|
|
|
|
if (UsesRemoved >= 1)
|
|
|
|
NewOr =
|
|
|
|
ConstantExpr::getOr(ConstantExpr::getNUWShl(One, C), One);
|
|
|
|
} else {
|
|
|
|
if (UsesRemoved >= 3)
|
|
|
|
NewOr = Builder->CreateOr(Builder->CreateShl(One, Y,
|
|
|
|
LShr->getName(),
|
|
|
|
/*HasNUW=*/true),
|
|
|
|
One, Or->getName());
|
|
|
|
}
|
|
|
|
if (NewOr) {
|
|
|
|
Value *NewAnd = Builder->CreateAnd(X, NewOr, LHSI->getName());
|
|
|
|
ICI.setOperand(0, NewAnd);
|
|
|
|
return &ICI;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2013-12-03 06:11:56 +08:00
|
|
|
// Replace ((X & AndCst) > RHSV) with ((X & AndCst) != 0), if any
|
|
|
|
// bit set in (X & AndCst) will produce a result greater than RHSV.
|
2012-12-20 03:47:13 +08:00
|
|
|
if (ICI.getPredicate() == ICmpInst::ICMP_UGT) {
|
2013-12-03 06:11:56 +08:00
|
|
|
unsigned NTZ = AndCst->getValue().countTrailingZeros();
|
|
|
|
if ((NTZ < AndCst->getBitWidth()) &&
|
|
|
|
APInt::getOneBitSet(AndCst->getBitWidth(), NTZ).ugt(RHSV))
|
2012-12-20 03:47:13 +08:00
|
|
|
return new ICmpInst(ICmpInst::ICMP_NE, LHSI,
|
|
|
|
Constant::getNullValue(RHS->getType()));
|
|
|
|
}
|
2010-01-04 15:37:31 +08:00
|
|
|
}
|
2011-10-01 02:09:53 +08:00
|
|
|
|
2010-01-04 15:37:31 +08:00
|
|
|
// Try to optimize things like "A[i]&42 == 0" to index computations.
|
|
|
|
if (LoadInst *LI = dyn_cast<LoadInst>(LHSI->getOperand(0))) {
|
|
|
|
if (GetElementPtrInst *GEP =
|
|
|
|
dyn_cast<GetElementPtrInst>(LI->getOperand(0)))
|
|
|
|
if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
|
|
|
|
if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
|
|
|
|
!LI->isVolatile() && isa<ConstantInt>(LHSI->getOperand(1))) {
|
|
|
|
ConstantInt *C = cast<ConstantInt>(LHSI->getOperand(1));
|
|
|
|
if (Instruction *Res = FoldCmpLoadFromIndexedGlobal(GEP, GV,ICI, C))
|
|
|
|
return Res;
|
|
|
|
}
|
|
|
|
}
|
2013-07-09 16:09:32 +08:00
|
|
|
|
|
|
|
// X & -C == -C -> X > u ~C
|
|
|
|
// X & -C != -C -> X <= u ~C
|
|
|
|
// iff C is a power of 2
|
|
|
|
if (ICI.isEquality() && RHS == LHSI->getOperand(1) && (-RHSV).isPowerOf2())
|
|
|
|
return new ICmpInst(
|
|
|
|
ICI.getPredicate() == ICmpInst::ICMP_EQ ? ICmpInst::ICMP_UGT
|
|
|
|
: ICmpInst::ICMP_ULE,
|
|
|
|
LHSI->getOperand(0), SubOne(RHS));
|
2015-08-16 15:09:17 +08:00
|
|
|
|
|
|
|
// (icmp eq (and %A, C), 0) -> (icmp sgt (trunc %A), -1)
|
|
|
|
// iff C is a power of 2
|
|
|
|
if (ICI.isEquality() && LHSI->hasOneUse() && match(RHS, m_Zero())) {
|
|
|
|
if (auto *CI = dyn_cast<ConstantInt>(LHSI->getOperand(1))) {
|
|
|
|
const APInt &AI = CI->getValue();
|
|
|
|
int32_t ExactLogBase2 = AI.exactLogBase2();
|
|
|
|
if (ExactLogBase2 != -1 && DL.isLegalInteger(ExactLogBase2 + 1)) {
|
|
|
|
Type *NTy = IntegerType::get(ICI.getContext(), ExactLogBase2 + 1);
|
|
|
|
Value *Trunc = Builder->CreateTrunc(LHSI->getOperand(0), NTy);
|
|
|
|
return new ICmpInst(ICI.getPredicate() == ICmpInst::ICMP_EQ
|
|
|
|
? ICmpInst::ICMP_SGE
|
|
|
|
: ICmpInst::ICMP_SLT,
|
|
|
|
Trunc, Constant::getNullValue(NTy));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
2010-01-04 15:37:31 +08:00
|
|
|
break;
|
|
|
|
|
|
|
|
case Instruction::Or: {
|
2015-09-17 04:41:29 +08:00
|
|
|
if (RHS->isOne()) {
|
|
|
|
// icmp slt signum(V) 1 --> icmp slt V, 1
|
|
|
|
Value *V = nullptr;
|
|
|
|
if (ICI.getPredicate() == ICmpInst::ICMP_SLT &&
|
|
|
|
match(LHSI, m_Signum(m_Value(V))))
|
|
|
|
return new ICmpInst(ICmpInst::ICMP_SLT, V,
|
|
|
|
ConstantInt::get(V->getType(), 1));
|
|
|
|
}
|
|
|
|
|
2010-01-04 15:37:31 +08:00
|
|
|
if (!ICI.isEquality() || !RHS->isNullValue() || !LHSI->hasOneUse())
|
|
|
|
break;
|
|
|
|
Value *P, *Q;
|
|
|
|
if (match(LHSI, m_Or(m_PtrToInt(m_Value(P)), m_PtrToInt(m_Value(Q))))) {
|
|
|
|
// Simplify icmp eq (or (ptrtoint P), (ptrtoint Q)), 0
|
|
|
|
// -> and (icmp eq P, null), (icmp eq Q, null).
|
|
|
|
Value *ICIP = Builder->CreateICmp(ICI.getPredicate(), P,
|
|
|
|
Constant::getNullValue(P->getType()));
|
|
|
|
Value *ICIQ = Builder->CreateICmp(ICI.getPredicate(), Q,
|
|
|
|
Constant::getNullValue(Q->getType()));
|
|
|
|
Instruction *Op;
|
|
|
|
if (ICI.getPredicate() == ICmpInst::ICMP_EQ)
|
|
|
|
Op = BinaryOperator::CreateAnd(ICIP, ICIQ);
|
|
|
|
else
|
|
|
|
Op = BinaryOperator::CreateOr(ICIP, ICIQ);
|
|
|
|
return Op;
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
}
|
2011-10-01 02:09:53 +08:00
|
|
|
|
2013-03-25 17:48:49 +08:00
|
|
|
case Instruction::Mul: { // (icmp pred (mul X, Val), CI)
|
|
|
|
ConstantInt *Val = dyn_cast<ConstantInt>(LHSI->getOperand(1));
|
|
|
|
if (!Val) break;
|
|
|
|
|
2013-03-25 19:47:38 +08:00
|
|
|
// If this is a signed comparison to 0 and the mul is sign preserving,
|
|
|
|
// use the mul LHS operand instead.
|
|
|
|
ICmpInst::Predicate pred = ICI.getPredicate();
|
|
|
|
if (isSignTest(pred, RHS) && !Val->isZero() &&
|
|
|
|
cast<BinaryOperator>(LHSI)->hasNoSignedWrap())
|
|
|
|
return new ICmpInst(Val->isNegative() ?
|
|
|
|
ICmpInst::getSwappedPredicate(pred) : pred,
|
|
|
|
LHSI->getOperand(0),
|
|
|
|
Constant::getNullValue(RHS->getType()));
|
2013-03-25 17:48:49 +08:00
|
|
|
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
2010-01-04 15:37:31 +08:00
|
|
|
case Instruction::Shl: { // (icmp pred (shl X, ShAmt), CI)
|
2013-06-29 07:42:03 +08:00
|
|
|
uint32_t TypeBits = RHSV.getBitWidth();
|
2010-01-04 15:37:31 +08:00
|
|
|
ConstantInt *ShAmt = dyn_cast<ConstantInt>(LHSI->getOperand(1));
|
2013-06-29 07:42:03 +08:00
|
|
|
if (!ShAmt) {
|
|
|
|
Value *X;
|
|
|
|
// (1 << X) pred P2 -> X pred Log2(P2)
|
|
|
|
if (match(LHSI, m_Shl(m_One(), m_Value(X)))) {
|
|
|
|
bool RHSVIsPowerOf2 = RHSV.isPowerOf2();
|
|
|
|
ICmpInst::Predicate Pred = ICI.getPredicate();
|
|
|
|
if (ICI.isUnsigned()) {
|
|
|
|
if (!RHSVIsPowerOf2) {
|
|
|
|
// (1 << X) < 30 -> X <= 4
|
|
|
|
// (1 << X) <= 30 -> X <= 4
|
|
|
|
// (1 << X) >= 30 -> X > 4
|
|
|
|
// (1 << X) > 30 -> X > 4
|
|
|
|
if (Pred == ICmpInst::ICMP_ULT)
|
|
|
|
Pred = ICmpInst::ICMP_ULE;
|
|
|
|
else if (Pred == ICmpInst::ICMP_UGE)
|
|
|
|
Pred = ICmpInst::ICMP_UGT;
|
|
|
|
}
|
|
|
|
unsigned RHSLog2 = RHSV.logBase2();
|
|
|
|
|
|
|
|
// (1 << X) >= 2147483648 -> X >= 31 -> X == 31
|
|
|
|
// (1 << X) < 2147483648 -> X < 31 -> X != 31
|
|
|
|
if (RHSLog2 == TypeBits-1) {
|
|
|
|
if (Pred == ICmpInst::ICMP_UGE)
|
|
|
|
Pred = ICmpInst::ICMP_EQ;
|
|
|
|
else if (Pred == ICmpInst::ICMP_ULT)
|
|
|
|
Pred = ICmpInst::ICMP_NE;
|
|
|
|
}
|
2011-10-01 02:09:53 +08:00
|
|
|
|
2013-06-29 07:42:03 +08:00
|
|
|
return new ICmpInst(Pred, X,
|
|
|
|
ConstantInt::get(RHS->getType(), RHSLog2));
|
|
|
|
} else if (ICI.isSigned()) {
|
|
|
|
if (RHSV.isAllOnesValue()) {
|
|
|
|
// (1 << X) <= -1 -> X == 31
|
|
|
|
if (Pred == ICmpInst::ICMP_SLE)
|
|
|
|
return new ICmpInst(ICmpInst::ICMP_EQ, X,
|
|
|
|
ConstantInt::get(RHS->getType(), TypeBits-1));
|
|
|
|
|
|
|
|
// (1 << X) > -1 -> X != 31
|
|
|
|
if (Pred == ICmpInst::ICMP_SGT)
|
|
|
|
return new ICmpInst(ICmpInst::ICMP_NE, X,
|
|
|
|
ConstantInt::get(RHS->getType(), TypeBits-1));
|
|
|
|
} else if (!RHSV) {
|
|
|
|
// (1 << X) < 0 -> X == 31
|
|
|
|
// (1 << X) <= 0 -> X == 31
|
|
|
|
if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE)
|
|
|
|
return new ICmpInst(ICmpInst::ICMP_EQ, X,
|
|
|
|
ConstantInt::get(RHS->getType(), TypeBits-1));
|
|
|
|
|
|
|
|
// (1 << X) >= 0 -> X != 31
|
|
|
|
// (1 << X) > 0 -> X != 31
|
|
|
|
if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE)
|
|
|
|
return new ICmpInst(ICmpInst::ICMP_NE, X,
|
|
|
|
ConstantInt::get(RHS->getType(), TypeBits-1));
|
|
|
|
}
|
|
|
|
} else if (ICI.isEquality()) {
|
|
|
|
if (RHSVIsPowerOf2)
|
|
|
|
return new ICmpInst(
|
|
|
|
Pred, X, ConstantInt::get(RHS->getType(), RHSV.logBase2()));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
}
|
2011-10-01 02:09:53 +08:00
|
|
|
|
2010-01-04 15:37:31 +08:00
|
|
|
// Check that the shift amount is in range. If not, don't perform
|
|
|
|
// undefined shifts. When the shift is visited it will be
|
|
|
|
// simplified.
|
|
|
|
if (ShAmt->uge(TypeBits))
|
|
|
|
break;
|
2011-10-01 02:09:53 +08:00
|
|
|
|
2010-01-04 15:37:31 +08:00
|
|
|
if (ICI.isEquality()) {
|
|
|
|
// If we are comparing against bits always shifted out, the
|
|
|
|
// comparison cannot succeed.
|
|
|
|
Constant *Comp =
|
|
|
|
ConstantExpr::getShl(ConstantExpr::getLShr(RHS, ShAmt),
|
|
|
|
ShAmt);
|
|
|
|
if (Comp != RHS) {// Comparing against a bit that we know is zero.
|
|
|
|
bool IsICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE;
|
2013-06-07 04:18:46 +08:00
|
|
|
Constant *Cst = Builder->getInt1(IsICMP_NE);
|
2016-02-02 06:23:39 +08:00
|
|
|
return replaceInstUsesWith(ICI, Cst);
|
2010-01-04 15:37:31 +08:00
|
|
|
}
|
2011-10-01 02:09:53 +08:00
|
|
|
|
2011-02-10 13:23:05 +08:00
|
|
|
// If the shift is NUW, then it is just shifting out zeros, no need for an
|
|
|
|
// AND.
|
|
|
|
if (cast<BinaryOperator>(LHSI)->hasNoUnsignedWrap())
|
|
|
|
return new ICmpInst(ICI.getPredicate(), LHSI->getOperand(0),
|
|
|
|
ConstantExpr::getLShr(RHS, ShAmt));
|
2011-10-01 02:09:53 +08:00
|
|
|
|
2013-03-25 17:48:49 +08:00
|
|
|
// If the shift is NSW and we compare to 0, then it is just shifting out
|
|
|
|
// sign bits, no need for an AND either.
|
|
|
|
if (cast<BinaryOperator>(LHSI)->hasNoSignedWrap() && RHSV == 0)
|
|
|
|
return new ICmpInst(ICI.getPredicate(), LHSI->getOperand(0),
|
|
|
|
ConstantExpr::getLShr(RHS, ShAmt));
|
|
|
|
|
2010-01-04 15:37:31 +08:00
|
|
|
if (LHSI->hasOneUse()) {
|
|
|
|
// Otherwise strength reduce the shift into an and.
|
|
|
|
uint32_t ShAmtVal = (uint32_t)ShAmt->getLimitedValue(TypeBits);
|
2013-06-07 04:18:46 +08:00
|
|
|
Constant *Mask = Builder->getInt(APInt::getLowBitsSet(TypeBits,
|
|
|
|
TypeBits - ShAmtVal));
|
2011-10-01 02:09:53 +08:00
|
|
|
|
2010-01-04 15:37:31 +08:00
|
|
|
Value *And =
|
|
|
|
Builder->CreateAnd(LHSI->getOperand(0),Mask, LHSI->getName()+".mask");
|
|
|
|
return new ICmpInst(ICI.getPredicate(), And,
|
2011-02-10 13:23:05 +08:00
|
|
|
ConstantExpr::getLShr(RHS, ShAmt));
|
2010-01-04 15:37:31 +08:00
|
|
|
}
|
|
|
|
}
|
2011-10-01 02:09:53 +08:00
|
|
|
|
2013-03-25 17:48:49 +08:00
|
|
|
// If this is a signed comparison to 0 and the shift is sign preserving,
|
|
|
|
// use the shift LHS operand instead.
|
|
|
|
ICmpInst::Predicate pred = ICI.getPredicate();
|
|
|
|
if (isSignTest(pred, RHS) &&
|
|
|
|
cast<BinaryOperator>(LHSI)->hasNoSignedWrap())
|
|
|
|
return new ICmpInst(pred,
|
|
|
|
LHSI->getOperand(0),
|
|
|
|
Constant::getNullValue(RHS->getType()));
|
|
|
|
|
2010-01-04 15:37:31 +08:00
|
|
|
// Otherwise, if this is a comparison of the sign bit, simplify to and/test.
|
|
|
|
bool TrueIfSigned = false;
|
|
|
|
if (LHSI->hasOneUse() &&
|
|
|
|
isSignBitCheck(ICI.getPredicate(), RHS, TrueIfSigned)) {
|
|
|
|
// (X << 31) <s 0 --> (X&1) != 0
|
2011-02-13 16:07:21 +08:00
|
|
|
Constant *Mask = ConstantInt::get(LHSI->getOperand(0)->getType(),
|
2011-10-01 02:09:53 +08:00
|
|
|
APInt::getOneBitSet(TypeBits,
|
2011-02-13 16:07:21 +08:00
|
|
|
TypeBits-ShAmt->getZExtValue()-1));
|
2010-01-04 15:37:31 +08:00
|
|
|
Value *And =
|
|
|
|
Builder->CreateAnd(LHSI->getOperand(0), Mask, LHSI->getName()+".mask");
|
|
|
|
return new ICmpInst(TrueIfSigned ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ,
|
|
|
|
And, Constant::getNullValue(And->getType()));
|
|
|
|
}
|
2013-02-15 22:35:47 +08:00
|
|
|
|
|
|
|
// Transform (icmp pred iM (shl iM %v, N), CI)
|
2013-03-13 22:40:37 +08:00
|
|
|
// -> (icmp pred i(M-N) (trunc %v iM to i(M-N)), (trunc (CI>>N))
|
|
|
|
// Transform the shl to a trunc if (trunc (CI>>N)) has no loss and M-N.
|
2013-02-15 22:35:47 +08:00
|
|
|
// This enables to get rid of the shift in favor of a trunc which can be
|
|
|
|
// free on the target. It has the additional benefit of comparing to a
|
|
|
|
// smaller constant, which will be target friendly.
|
|
|
|
unsigned Amt = ShAmt->getLimitedValue(TypeBits-1);
|
2013-03-13 22:40:37 +08:00
|
|
|
if (LHSI->hasOneUse() &&
|
|
|
|
Amt != 0 && RHSV.countTrailingZeros() >= Amt) {
|
2013-02-15 22:35:47 +08:00
|
|
|
Type *NTy = IntegerType::get(ICI.getContext(), TypeBits - Amt);
|
|
|
|
Constant *NCI = ConstantExpr::getTrunc(
|
|
|
|
ConstantExpr::getAShr(RHS,
|
|
|
|
ConstantInt::get(RHS->getType(), Amt)),
|
|
|
|
NTy);
|
|
|
|
return new ICmpInst(ICI.getPredicate(),
|
|
|
|
Builder->CreateTrunc(LHSI->getOperand(0), NTy),
|
2013-02-15 23:18:17 +08:00
|
|
|
NCI);
|
2013-02-15 22:35:47 +08:00
|
|
|
}
|
|
|
|
|
2010-01-04 15:37:31 +08:00
|
|
|
break;
|
|
|
|
}
|
2011-10-01 02:09:53 +08:00
|
|
|
|
2010-01-04 15:37:31 +08:00
|
|
|
case Instruction::LShr: // (icmp pred (shr X, ShAmt), CI)
|
2011-02-28 16:31:40 +08:00
|
|
|
case Instruction::AShr: {
|
|
|
|
// Handle equality comparisons of shift-by-constant.
|
|
|
|
BinaryOperator *BO = cast<BinaryOperator>(LHSI);
|
|
|
|
if (ConstantInt *ShAmt = dyn_cast<ConstantInt>(LHSI->getOperand(1))) {
|
|
|
|
if (Instruction *Res = FoldICmpShrCst(ICI, BO, ShAmt))
|
2011-02-13 15:43:07 +08:00
|
|
|
return Res;
|
2011-02-28 16:31:40 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
// Handle exact shr's.
|
|
|
|
if (ICI.isEquality() && BO->isExact() && BO->hasOneUse()) {
|
|
|
|
if (RHSV.isMinValue())
|
|
|
|
return new ICmpInst(ICI.getPredicate(), BO->getOperand(0), RHS);
|
|
|
|
}
|
2010-01-04 15:37:31 +08:00
|
|
|
break;
|
2011-02-28 16:31:40 +08:00
|
|
|
}
|
2011-10-01 02:09:53 +08:00
|
|
|
|
2010-01-04 15:37:31 +08:00
|
|
|
case Instruction::SDiv:
|
|
|
|
case Instruction::UDiv:
|
|
|
|
// Fold: icmp pred ([us]div X, C1), C2 -> range test
|
2011-10-01 02:09:53 +08:00
|
|
|
// Fold this div into the comparison, producing a range check.
|
|
|
|
// Determine, based on the divide type, what the range is being
|
|
|
|
// checked. If there is an overflow on the low or high side, remember
|
2010-01-04 15:37:31 +08:00
|
|
|
// it, otherwise compute the range [low, hi) bounding the new value.
|
|
|
|
// See: InsertRangeTest above for the kinds of replacements possible.
|
|
|
|
if (ConstantInt *DivRHS = dyn_cast<ConstantInt>(LHSI->getOperand(1)))
|
|
|
|
if (Instruction *R = FoldICmpDivCst(ICI, cast<BinaryOperator>(LHSI),
|
|
|
|
DivRHS))
|
|
|
|
return R;
|
|
|
|
break;
|
|
|
|
|
2013-07-09 15:50:59 +08:00
|
|
|
case Instruction::Sub: {
|
|
|
|
ConstantInt *LHSC = dyn_cast<ConstantInt>(LHSI->getOperand(0));
|
|
|
|
if (!LHSC) break;
|
|
|
|
const APInt &LHSV = LHSC->getValue();
|
|
|
|
|
|
|
|
// C1-X <u C2 -> (X|(C2-1)) == C1
|
|
|
|
// iff C1 & (C2-1) == C2-1
|
|
|
|
// C2 is a power of 2
|
|
|
|
if (ICI.getPredicate() == ICmpInst::ICMP_ULT && LHSI->hasOneUse() &&
|
|
|
|
RHSV.isPowerOf2() && (LHSV & (RHSV - 1)) == (RHSV - 1))
|
|
|
|
return new ICmpInst(ICmpInst::ICMP_EQ,
|
|
|
|
Builder->CreateOr(LHSI->getOperand(1), RHSV - 1),
|
|
|
|
LHSC);
|
|
|
|
|
2013-07-09 17:24:35 +08:00
|
|
|
// C1-X >u C2 -> (X|C2) != C1
|
2013-07-09 15:50:59 +08:00
|
|
|
// iff C1 & C2 == C2
|
|
|
|
// C2+1 is a power of 2
|
|
|
|
if (ICI.getPredicate() == ICmpInst::ICMP_UGT && LHSI->hasOneUse() &&
|
|
|
|
(RHSV + 1).isPowerOf2() && (LHSV & RHSV) == RHSV)
|
|
|
|
return new ICmpInst(ICmpInst::ICMP_NE,
|
|
|
|
Builder->CreateOr(LHSI->getOperand(1), RHSV), LHSC);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
2010-01-04 15:37:31 +08:00
|
|
|
case Instruction::Add:
|
|
|
|
// Fold: icmp pred (add X, C1), C2
|
|
|
|
if (!ICI.isEquality()) {
|
|
|
|
ConstantInt *LHSC = dyn_cast<ConstantInt>(LHSI->getOperand(1));
|
|
|
|
if (!LHSC) break;
|
|
|
|
const APInt &LHSV = LHSC->getValue();
|
|
|
|
|
|
|
|
ConstantRange CR = ICI.makeConstantRange(ICI.getPredicate(), RHSV)
|
|
|
|
.subtract(LHSV);
|
|
|
|
|
|
|
|
if (ICI.isSigned()) {
|
|
|
|
if (CR.getLower().isSignBit()) {
|
|
|
|
return new ICmpInst(ICmpInst::ICMP_SLT, LHSI->getOperand(0),
|
2013-06-07 04:18:46 +08:00
|
|
|
Builder->getInt(CR.getUpper()));
|
2010-01-04 15:37:31 +08:00
|
|
|
} else if (CR.getUpper().isSignBit()) {
|
|
|
|
return new ICmpInst(ICmpInst::ICMP_SGE, LHSI->getOperand(0),
|
2013-06-07 04:18:46 +08:00
|
|
|
Builder->getInt(CR.getLower()));
|
2010-01-04 15:37:31 +08:00
|
|
|
}
|
|
|
|
} else {
|
|
|
|
if (CR.getLower().isMinValue()) {
|
|
|
|
return new ICmpInst(ICmpInst::ICMP_ULT, LHSI->getOperand(0),
|
2013-06-07 04:18:46 +08:00
|
|
|
Builder->getInt(CR.getUpper()));
|
2010-01-04 15:37:31 +08:00
|
|
|
} else if (CR.getUpper().isMinValue()) {
|
|
|
|
return new ICmpInst(ICmpInst::ICMP_UGE, LHSI->getOperand(0),
|
2013-06-07 04:18:46 +08:00
|
|
|
Builder->getInt(CR.getLower()));
|
2010-01-04 15:37:31 +08:00
|
|
|
}
|
|
|
|
}
|
2013-07-08 19:53:08 +08:00
|
|
|
|
2013-07-09 15:58:32 +08:00
|
|
|
// X-C1 <u C2 -> (X & -C2) == C1
|
|
|
|
// iff C1 & (C2-1) == 0
|
|
|
|
// C2 is a power of 2
|
2013-07-08 19:53:08 +08:00
|
|
|
if (ICI.getPredicate() == ICmpInst::ICMP_ULT && LHSI->hasOneUse() &&
|
2013-07-09 15:58:32 +08:00
|
|
|
RHSV.isPowerOf2() && (LHSV & (RHSV - 1)) == 0)
|
2013-07-08 19:53:08 +08:00
|
|
|
return new ICmpInst(ICmpInst::ICMP_EQ,
|
|
|
|
Builder->CreateAnd(LHSI->getOperand(0), -RHSV),
|
|
|
|
ConstantExpr::getNeg(LHSC));
|
2013-07-09 15:58:32 +08:00
|
|
|
|
2013-07-09 17:24:35 +08:00
|
|
|
// X-C1 >u C2 -> (X & ~C2) != C1
|
2013-07-09 15:58:32 +08:00
|
|
|
// iff C1 & C2 == 0
|
|
|
|
// C2+1 is a power of 2
|
|
|
|
if (ICI.getPredicate() == ICmpInst::ICMP_UGT && LHSI->hasOneUse() &&
|
|
|
|
(RHSV + 1).isPowerOf2() && (LHSV & RHSV) == 0)
|
|
|
|
return new ICmpInst(ICmpInst::ICMP_NE,
|
|
|
|
Builder->CreateAnd(LHSI->getOperand(0), ~RHSV),
|
|
|
|
ConstantExpr::getNeg(LHSC));
|
2010-01-04 15:37:31 +08:00
|
|
|
}
|
|
|
|
break;
|
|
|
|
}
|
2011-10-01 02:09:53 +08:00
|
|
|
|
2010-01-04 15:37:31 +08:00
|
|
|
// Simplify icmp_eq and icmp_ne instructions with integer constant RHS.
|
|
|
|
if (ICI.isEquality()) {
|
|
|
|
bool isICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE;
|
2011-10-01 02:09:53 +08:00
|
|
|
|
|
|
|
// If the first operand is (add|sub|and|or|xor|rem) with a constant, and
|
2010-01-04 15:37:31 +08:00
|
|
|
// the second operand is a constant, simplify a bit.
|
|
|
|
if (BinaryOperator *BO = dyn_cast<BinaryOperator>(LHSI)) {
|
|
|
|
switch (BO->getOpcode()) {
|
|
|
|
case Instruction::SRem:
|
|
|
|
// If we have a signed (X % (2^c)) == 0, turn it into an unsigned one.
|
|
|
|
if (RHSV == 0 && isa<ConstantInt>(BO->getOperand(1)) &&BO->hasOneUse()){
|
|
|
|
const APInt &V = cast<ConstantInt>(BO->getOperand(1))->getValue();
|
2010-04-09 07:03:40 +08:00
|
|
|
if (V.sgt(1) && V.isPowerOf2()) {
|
2010-01-04 15:37:31 +08:00
|
|
|
Value *NewRem =
|
|
|
|
Builder->CreateURem(BO->getOperand(0), BO->getOperand(1),
|
|
|
|
BO->getName());
|
|
|
|
return new ICmpInst(ICI.getPredicate(), NewRem,
|
|
|
|
Constant::getNullValue(BO->getType()));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
case Instruction::Add:
|
|
|
|
// Replace ((add A, B) != C) with (A != C-B) if B & C are constants.
|
|
|
|
if (ConstantInt *BOp1C = dyn_cast<ConstantInt>(BO->getOperand(1))) {
|
|
|
|
if (BO->hasOneUse())
|
|
|
|
return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
|
|
|
|
ConstantExpr::getSub(RHS, BOp1C));
|
|
|
|
} else if (RHSV == 0) {
|
|
|
|
// Replace ((add A, B) != 0) with (A != -B) if A or B is
|
|
|
|
// efficiently invertible, or if the add has just this one use.
|
|
|
|
Value *BOp0 = BO->getOperand(0), *BOp1 = BO->getOperand(1);
|
2011-10-01 02:09:53 +08:00
|
|
|
|
2010-01-04 15:37:31 +08:00
|
|
|
if (Value *NegVal = dyn_castNegVal(BOp1))
|
|
|
|
return new ICmpInst(ICI.getPredicate(), BOp0, NegVal);
|
2011-04-27 04:02:45 +08:00
|
|
|
if (Value *NegVal = dyn_castNegVal(BOp0))
|
2010-01-04 15:37:31 +08:00
|
|
|
return new ICmpInst(ICI.getPredicate(), NegVal, BOp1);
|
2011-04-27 04:02:45 +08:00
|
|
|
if (BO->hasOneUse()) {
|
2010-01-04 15:37:31 +08:00
|
|
|
Value *Neg = Builder->CreateNeg(BOp1);
|
|
|
|
Neg->takeName(BO);
|
|
|
|
return new ICmpInst(ICI.getPredicate(), BOp0, Neg);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
case Instruction::Xor:
|
2016-02-13 02:12:38 +08:00
|
|
|
if (BO->hasOneUse()) {
|
|
|
|
if (Constant *BOC = dyn_cast<Constant>(BO->getOperand(1))) {
|
|
|
|
// For the xor case, we can xor two constants together, eliminating
|
|
|
|
// the explicit xor.
|
|
|
|
return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
|
|
|
|
ConstantExpr::getXor(RHS, BOC));
|
|
|
|
} else if (RHSV == 0) {
|
|
|
|
// Replace ((xor A, B) != 0) with (A != B)
|
|
|
|
return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
|
|
|
|
BO->getOperand(1));
|
|
|
|
}
|
2011-06-13 23:24:24 +08:00
|
|
|
}
|
|
|
|
break;
|
2010-01-04 15:37:31 +08:00
|
|
|
case Instruction::Sub:
|
2016-02-13 02:12:38 +08:00
|
|
|
if (BO->hasOneUse()) {
|
|
|
|
if (ConstantInt *BOp0C = dyn_cast<ConstantInt>(BO->getOperand(0))) {
|
|
|
|
// Replace ((sub A, B) != C) with (B != A-C) if A & C are constants.
|
2011-06-13 23:24:24 +08:00
|
|
|
return new ICmpInst(ICI.getPredicate(), BO->getOperand(1),
|
2016-02-13 02:12:38 +08:00
|
|
|
ConstantExpr::getSub(BOp0C, RHS));
|
|
|
|
} else if (RHSV == 0) {
|
|
|
|
// Replace ((sub A, B) != 0) with (A != B)
|
|
|
|
return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
|
|
|
|
BO->getOperand(1));
|
|
|
|
}
|
2011-06-13 23:24:24 +08:00
|
|
|
}
|
2010-01-04 15:37:31 +08:00
|
|
|
break;
|
|
|
|
case Instruction::Or:
|
|
|
|
// If bits are being or'd in that are not present in the constant we
|
|
|
|
// are comparing against, then the comparison could never succeed!
|
2010-07-30 02:03:33 +08:00
|
|
|
if (ConstantInt *BOC = dyn_cast<ConstantInt>(BO->getOperand(1))) {
|
2010-01-04 15:37:31 +08:00
|
|
|
Constant *NotCI = ConstantExpr::getNot(RHS);
|
|
|
|
if (!ConstantExpr::getAnd(BOC, NotCI)->isNullValue())
|
2016-02-02 06:23:39 +08:00
|
|
|
return replaceInstUsesWith(ICI, Builder->getInt1(isICMP_NE));
|
2016-04-15 04:17:40 +08:00
|
|
|
|
|
|
|
// Comparing if all bits outside of a constant mask are set?
|
|
|
|
// Replace (X | C) == -1 with (X & ~C) == ~C.
|
|
|
|
// This removes the -1 constant.
|
|
|
|
if (BO->hasOneUse() && RHS->isAllOnesValue()) {
|
|
|
|
Constant *NotBOC = ConstantExpr::getNot(BOC);
|
|
|
|
Value *And = Builder->CreateAnd(BO->getOperand(0), NotBOC);
|
|
|
|
return new ICmpInst(ICI.getPredicate(), And, NotBOC);
|
|
|
|
}
|
2010-01-04 15:37:31 +08:00
|
|
|
}
|
|
|
|
break;
|
2011-10-01 02:09:53 +08:00
|
|
|
|
2010-01-04 15:37:31 +08:00
|
|
|
case Instruction::And:
|
|
|
|
if (ConstantInt *BOC = dyn_cast<ConstantInt>(BO->getOperand(1))) {
|
|
|
|
// If bits are being compared against that are and'd out, then the
|
|
|
|
// comparison can never succeed!
|
|
|
|
if ((RHSV & ~BOC->getValue()) != 0)
|
2016-02-02 06:23:39 +08:00
|
|
|
return replaceInstUsesWith(ICI, Builder->getInt1(isICMP_NE));
|
2011-10-01 02:09:53 +08:00
|
|
|
|
2010-01-04 15:37:31 +08:00
|
|
|
// If we have ((X & C) == C), turn it into ((X & C) != 0).
|
|
|
|
if (RHS == BOC && RHSV.isPowerOf2())
|
|
|
|
return new ICmpInst(isICMP_NE ? ICmpInst::ICMP_EQ :
|
|
|
|
ICmpInst::ICMP_NE, LHSI,
|
|
|
|
Constant::getNullValue(RHS->getType()));
|
2011-07-05 04:16:36 +08:00
|
|
|
|
|
|
|
// Don't perform the following transforms if the AND has multiple uses
|
|
|
|
if (!BO->hasOneUse())
|
|
|
|
break;
|
|
|
|
|
2010-01-04 15:37:31 +08:00
|
|
|
// Replace (and X, (1 << size(X)-1) != 0) with x s< 0
|
|
|
|
if (BOC->getValue().isSignBit()) {
|
|
|
|
Value *X = BO->getOperand(0);
|
|
|
|
Constant *Zero = Constant::getNullValue(X->getType());
|
2011-10-01 02:09:53 +08:00
|
|
|
ICmpInst::Predicate pred = isICMP_NE ?
|
2010-01-04 15:37:31 +08:00
|
|
|
ICmpInst::ICMP_SLT : ICmpInst::ICMP_SGE;
|
|
|
|
return new ICmpInst(pred, X, Zero);
|
|
|
|
}
|
2011-10-01 02:09:53 +08:00
|
|
|
|
2010-01-04 15:37:31 +08:00
|
|
|
// ((X & ~7) == 0) --> X < 8
|
|
|
|
if (RHSV == 0 && isHighOnes(BOC)) {
|
|
|
|
Value *X = BO->getOperand(0);
|
|
|
|
Constant *NegX = ConstantExpr::getNeg(BOC);
|
2011-10-01 02:09:53 +08:00
|
|
|
ICmpInst::Predicate pred = isICMP_NE ?
|
2010-01-04 15:37:31 +08:00
|
|
|
ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT;
|
|
|
|
return new ICmpInst(pred, X, NegX);
|
|
|
|
}
|
|
|
|
}
|
2013-03-25 17:48:49 +08:00
|
|
|
break;
|
|
|
|
case Instruction::Mul:
|
2013-03-25 19:47:38 +08:00
|
|
|
if (RHSV == 0 && BO->hasNoSignedWrap()) {
|
2013-03-25 17:48:49 +08:00
|
|
|
if (ConstantInt *BOC = dyn_cast<ConstantInt>(BO->getOperand(1))) {
|
|
|
|
// The trivial case (mul X, 0) is handled by InstSimplify
|
|
|
|
// General case : (mul X, C) != 0 iff X != 0
|
|
|
|
// (mul X, C) == 0 iff X == 0
|
|
|
|
if (!BOC->isZero())
|
|
|
|
return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
|
|
|
|
Constant::getNullValue(RHS->getType()));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
break;
|
2010-01-04 15:37:31 +08:00
|
|
|
default: break;
|
|
|
|
}
|
|
|
|
} else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(LHSI)) {
|
|
|
|
// Handle icmp {eq|ne} <intrinsic>, intcst.
|
2010-01-06 02:09:56 +08:00
|
|
|
switch (II->getIntrinsicID()) {
|
|
|
|
case Intrinsic::bswap:
|
2010-01-04 15:37:31 +08:00
|
|
|
Worklist.Add(II);
|
2010-06-25 00:11:44 +08:00
|
|
|
ICI.setOperand(0, II->getArgOperand(0));
|
2013-06-07 04:18:46 +08:00
|
|
|
ICI.setOperand(1, Builder->getInt(RHSV.byteSwap()));
|
2010-01-04 15:37:31 +08:00
|
|
|
return &ICI;
|
2010-01-06 02:09:56 +08:00
|
|
|
case Intrinsic::ctlz:
|
|
|
|
case Intrinsic::cttz:
|
|
|
|
// ctz(A) == bitwidth(a) -> A == 0 and likewise for !=
|
|
|
|
if (RHSV == RHS->getType()->getBitWidth()) {
|
|
|
|
Worklist.Add(II);
|
2010-06-25 00:11:44 +08:00
|
|
|
ICI.setOperand(0, II->getArgOperand(0));
|
2010-01-06 02:09:56 +08:00
|
|
|
ICI.setOperand(1, ConstantInt::get(RHS->getType(), 0));
|
|
|
|
return &ICI;
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
case Intrinsic::ctpop:
|
|
|
|
// popcount(A) == 0 -> A == 0 and likewise for !=
|
|
|
|
if (RHS->isZero()) {
|
|
|
|
Worklist.Add(II);
|
2010-06-25 00:11:44 +08:00
|
|
|
ICI.setOperand(0, II->getArgOperand(0));
|
2010-01-06 02:09:56 +08:00
|
|
|
ICI.setOperand(1, RHS);
|
|
|
|
return &ICI;
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
default:
|
2010-07-12 16:16:59 +08:00
|
|
|
break;
|
2010-01-04 15:37:31 +08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
2014-04-25 13:29:35 +08:00
|
|
|
return nullptr;
|
2010-01-04 15:37:31 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
/// visitICmpInstWithCastAndCast - Handle icmp (cast x to y), (cast/cst).
|
|
|
|
/// We only handle extending casts so far.
|
|
|
|
///
|
|
|
|
Instruction *InstCombiner::visitICmpInstWithCastAndCast(ICmpInst &ICI) {
|
|
|
|
const CastInst *LHSCI = cast<CastInst>(ICI.getOperand(0));
|
|
|
|
Value *LHSCIOp = LHSCI->getOperand(0);
|
2011-07-18 12:54:35 +08:00
|
|
|
Type *SrcTy = LHSCIOp->getType();
|
|
|
|
Type *DestTy = LHSCI->getType();
|
2010-01-04 15:37:31 +08:00
|
|
|
Value *RHSCIOp;
|
|
|
|
|
2011-10-01 02:09:53 +08:00
|
|
|
// Turn icmp (ptrtoint x), (ptrtoint/c) into a compare of the input if the
|
2010-01-04 15:37:31 +08:00
|
|
|
// integer type is the same size as the pointer type.
|
2015-03-10 10:37:25 +08:00
|
|
|
if (LHSCI->getOpcode() == Instruction::PtrToInt &&
|
|
|
|
DL.getPointerTypeSizeInBits(SrcTy) == DestTy->getIntegerBitWidth()) {
|
2014-04-25 13:29:35 +08:00
|
|
|
Value *RHSOp = nullptr;
|
2015-02-13 12:51:26 +08:00
|
|
|
if (PtrToIntOperator *RHSC = dyn_cast<PtrToIntOperator>(ICI.getOperand(1))) {
|
|
|
|
Value *RHSCIOp = RHSC->getOperand(0);
|
|
|
|
if (RHSCIOp->getType()->getPointerAddressSpace() ==
|
|
|
|
LHSCIOp->getType()->getPointerAddressSpace()) {
|
|
|
|
RHSOp = RHSC->getOperand(0);
|
|
|
|
// If the pointer types don't match, insert a bitcast.
|
|
|
|
if (LHSCIOp->getType() != RHSOp->getType())
|
|
|
|
RHSOp = Builder->CreateBitCast(RHSOp, LHSCIOp->getType());
|
|
|
|
}
|
|
|
|
} else if (Constant *RHSC = dyn_cast<Constant>(ICI.getOperand(1)))
|
2010-01-04 15:37:31 +08:00
|
|
|
RHSOp = ConstantExpr::getIntToPtr(RHSC, SrcTy);
|
|
|
|
|
|
|
|
if (RHSOp)
|
|
|
|
return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSOp);
|
|
|
|
}
|
2011-10-01 02:09:53 +08:00
|
|
|
|
2010-01-04 15:37:31 +08:00
|
|
|
// The code below only handles extension cast instructions, so far.
|
|
|
|
// Enforce this.
|
|
|
|
if (LHSCI->getOpcode() != Instruction::ZExt &&
|
|
|
|
LHSCI->getOpcode() != Instruction::SExt)
|
2014-04-25 13:29:35 +08:00
|
|
|
return nullptr;
|
2010-01-04 15:37:31 +08:00
|
|
|
|
|
|
|
bool isSignedExt = LHSCI->getOpcode() == Instruction::SExt;
|
|
|
|
bool isSignedCmp = ICI.isSigned();
|
|
|
|
|
|
|
|
if (CastInst *CI = dyn_cast<CastInst>(ICI.getOperand(1))) {
|
|
|
|
// Not an extension from the same type?
|
|
|
|
RHSCIOp = CI->getOperand(0);
|
2011-10-01 02:09:53 +08:00
|
|
|
if (RHSCIOp->getType() != LHSCIOp->getType())
|
2014-04-25 13:29:35 +08:00
|
|
|
return nullptr;
|
2011-10-01 02:09:53 +08:00
|
|
|
|
2010-01-04 15:37:31 +08:00
|
|
|
// If the signedness of the two casts doesn't agree (i.e. one is a sext
|
|
|
|
// and the other is a zext), then we can't handle this.
|
|
|
|
if (CI->getOpcode() != LHSCI->getOpcode())
|
2014-04-25 13:29:35 +08:00
|
|
|
return nullptr;
|
2010-01-04 15:37:31 +08:00
|
|
|
|
|
|
|
// Deal with equality cases early.
|
|
|
|
if (ICI.isEquality())
|
|
|
|
return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSCIOp);
|
|
|
|
|
|
|
|
// A signed comparison of sign extended values simplifies into a
|
|
|
|
// signed comparison.
|
|
|
|
if (isSignedCmp && isSignedExt)
|
|
|
|
return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSCIOp);
|
|
|
|
|
|
|
|
// The other three cases all fold into an unsigned comparison.
|
|
|
|
return new ICmpInst(ICI.getUnsignedPredicate(), LHSCIOp, RHSCIOp);
|
|
|
|
}
|
|
|
|
|
|
|
|
// If we aren't dealing with a constant on the RHS, exit early
|
|
|
|
ConstantInt *CI = dyn_cast<ConstantInt>(ICI.getOperand(1));
|
|
|
|
if (!CI)
|
2014-04-25 13:29:35 +08:00
|
|
|
return nullptr;
|
2010-01-04 15:37:31 +08:00
|
|
|
|
|
|
|
// Compute the constant that would happen if we truncated to SrcTy then
|
|
|
|
// reextended to DestTy.
|
|
|
|
Constant *Res1 = ConstantExpr::getTrunc(CI, SrcTy);
|
|
|
|
Constant *Res2 = ConstantExpr::getCast(LHSCI->getOpcode(),
|
|
|
|
Res1, DestTy);
|
|
|
|
|
|
|
|
// If the re-extended constant didn't change...
|
|
|
|
if (Res2 == CI) {
|
|
|
|
// Deal with equality cases early.
|
|
|
|
if (ICI.isEquality())
|
|
|
|
return new ICmpInst(ICI.getPredicate(), LHSCIOp, Res1);
|
|
|
|
|
|
|
|
// A signed comparison of sign extended values simplifies into a
|
|
|
|
// signed comparison.
|
|
|
|
if (isSignedExt && isSignedCmp)
|
|
|
|
return new ICmpInst(ICI.getPredicate(), LHSCIOp, Res1);
|
|
|
|
|
|
|
|
// The other three cases all fold into an unsigned comparison.
|
|
|
|
return new ICmpInst(ICI.getUnsignedPredicate(), LHSCIOp, Res1);
|
|
|
|
}
|
|
|
|
|
2011-10-01 02:09:53 +08:00
|
|
|
// The re-extended constant changed so the constant cannot be represented
|
2010-01-04 15:37:31 +08:00
|
|
|
// in the shorter type. Consequently, we cannot emit a simple comparison.
|
2011-01-20 21:21:55 +08:00
|
|
|
// All the cases that fold to true or false will have already been handled
|
|
|
|
// by SimplifyICmpInst, so only deal with the tricky case.
|
2010-01-04 15:37:31 +08:00
|
|
|
|
2011-01-20 21:21:55 +08:00
|
|
|
if (isSignedCmp || !isSignedExt)
|
2014-04-25 13:29:35 +08:00
|
|
|
return nullptr;
|
2010-01-04 15:37:31 +08:00
|
|
|
|
|
|
|
// Evaluate the comparison for LT (we invert for GT below). LE and GE cases
|
|
|
|
// should have been folded away previously and not enter in here.
|
2011-01-20 21:21:55 +08:00
|
|
|
|
|
|
|
// We're performing an unsigned comp with a sign extended value.
|
|
|
|
// This is true if the input is >= 0. [aka >s -1]
|
|
|
|
Constant *NegOne = Constant::getAllOnesValue(SrcTy);
|
|
|
|
Value *Result = Builder->CreateICmpSGT(LHSCIOp, NegOne, ICI.getName());
|
2010-01-04 15:37:31 +08:00
|
|
|
|
|
|
|
// Finally, return the value computed.
|
2011-01-20 21:21:55 +08:00
|
|
|
if (ICI.getPredicate() == ICmpInst::ICMP_ULT)
|
2016-02-02 06:23:39 +08:00
|
|
|
return replaceInstUsesWith(ICI, Result);
|
2010-01-04 15:37:31 +08:00
|
|
|
|
2011-01-20 21:21:55 +08:00
|
|
|
assert(ICI.getPredicate() == ICmpInst::ICMP_UGT && "ICmp should be folded!");
|
2010-01-04 15:37:31 +08:00
|
|
|
return BinaryOperator::CreateNot(Result);
|
|
|
|
}
|
|
|
|
|
2010-12-20 01:52:50 +08:00
|
|
|
/// ProcessUGT_ADDCST_ADD - The caller has matched a pattern of the form:
|
|
|
|
/// I = icmp ugt (add (add A, B), CI2), CI1
|
2010-12-20 02:22:06 +08:00
|
|
|
/// If this is of the form:
|
|
|
|
/// sum = a + b
|
|
|
|
/// if (sum+128 >u 255)
|
|
|
|
/// Then replace it with llvm.sadd.with.overflow.i8.
|
|
|
|
///
|
2010-12-20 01:52:50 +08:00
|
|
|
static Instruction *ProcessUGT_ADDCST_ADD(ICmpInst &I, Value *A, Value *B,
|
|
|
|
ConstantInt *CI2, ConstantInt *CI1,
|
2010-12-20 02:38:44 +08:00
|
|
|
InstCombiner &IC) {
|
2010-12-20 01:59:02 +08:00
|
|
|
// The transformation we're trying to do here is to transform this into an
|
|
|
|
// llvm.sadd.with.overflow. To do this, we have to replace the original add
|
|
|
|
// with a narrower add, and discard the add-with-constant that is part of the
|
|
|
|
// range check (if we can't eliminate it, this isn't profitable).
|
2011-10-01 02:09:53 +08:00
|
|
|
|
2010-12-20 01:59:02 +08:00
|
|
|
// In order to eliminate the add-with-constant, the compare can be its only
|
|
|
|
// use.
|
2010-12-20 02:22:06 +08:00
|
|
|
Instruction *AddWithCst = cast<Instruction>(I.getOperand(0));
|
2014-04-25 13:29:35 +08:00
|
|
|
if (!AddWithCst->hasOneUse()) return nullptr;
|
2011-10-01 02:09:53 +08:00
|
|
|
|
2010-12-20 02:22:06 +08:00
|
|
|
// If CI2 is 2^7, 2^15, 2^31, then it might be an sadd.with.overflow.
|
2014-04-25 13:29:35 +08:00
|
|
|
if (!CI2->getValue().isPowerOf2()) return nullptr;
|
2010-12-20 02:22:06 +08:00
|
|
|
unsigned NewWidth = CI2->getValue().countTrailingZeros();
|
2014-04-25 13:29:35 +08:00
|
|
|
if (NewWidth != 7 && NewWidth != 15 && NewWidth != 31) return nullptr;
|
2011-10-01 02:09:53 +08:00
|
|
|
|
2010-12-20 02:22:06 +08:00
|
|
|
// The width of the new add formed is 1 more than the bias.
|
|
|
|
++NewWidth;
|
2011-10-01 02:09:53 +08:00
|
|
|
|
2010-12-20 02:22:06 +08:00
|
|
|
// Check to see that CI1 is an all-ones value with NewWidth bits.
|
|
|
|
if (CI1->getBitWidth() == NewWidth ||
|
|
|
|
CI1->getValue() != APInt::getLowBitsSet(CI1->getBitWidth(), NewWidth))
|
2014-04-25 13:29:35 +08:00
|
|
|
return nullptr;
|
2011-10-01 02:09:53 +08:00
|
|
|
|
2011-11-29 07:32:19 +08:00
|
|
|
// This is only really a signed overflow check if the inputs have been
|
|
|
|
// sign-extended; check for that condition. For example, if CI2 is 2^31 and
|
|
|
|
// the operands of the add are 64 bits wide, we need at least 33 sign bits.
|
|
|
|
unsigned NeededSignBits = CI1->getBitWidth() - NewWidth + 1;
|
Make use of @llvm.assume in ValueTracking (computeKnownBits, etc.)
This change, which allows @llvm.assume to be used from within computeKnownBits
(and other associated functions in ValueTracking), adds some (optional)
parameters to computeKnownBits and friends. These functions now (optionally)
take a "context" instruction pointer, an AssumptionTracker pointer, and also a
DomTree pointer, and most of the changes are just to pass this new information
when it is easily available from InstSimplify, InstCombine, etc.
As explained below, the significant conceptual change is that known properties
of a value might depend on the control-flow location of the use (because we
care that the @llvm.assume dominates the use because assumptions have
control-flow dependencies). This means that, when we ask if bits are known in a
value, we might get different answers for different uses.
The significant changes are all in ValueTracking. Two main changes: First, as
with the rest of the code, new parameters need to be passed around. To make
this easier, I grouped them into a structure, and I made internal static
versions of the relevant functions that take this structure as a parameter. The
new code does as you might expect, it looks for @llvm.assume calls that make
use of the value we're trying to learn something about (often indirectly),
attempts to pattern match that expression, and uses the result if successful.
By making use of the AssumptionTracker, the process of finding @llvm.assume
calls is not expensive.
Part of the structure being passed around inside ValueTracking is a set of
already-considered @llvm.assume calls. This is to prevent a query using, for
example, the assume(a == b), to recurse on itself. The context and DT params
are used to find applicable assumptions. An assumption needs to dominate the
context instruction, or come after it deterministically. In this latter case we
only handle the specific case where both the assumption and the context
instruction are in the same block, and we need to exclude assumptions from
being used to simplify their own ephemeral values (those which contribute only
to the assumption) because otherwise the assumption would prove its feeding
comparison trivial and would be removed.
This commit adds the plumbing and the logic for a simple masked-bit propagation
(just enough to write a regression test). Future commits add more patterns
(and, correspondingly, more regression tests).
llvm-svn: 217342
2014-09-08 02:57:58 +08:00
|
|
|
if (IC.ComputeNumSignBits(A, 0, &I) < NeededSignBits ||
|
|
|
|
IC.ComputeNumSignBits(B, 0, &I) < NeededSignBits)
|
2014-04-25 13:29:35 +08:00
|
|
|
return nullptr;
|
2011-11-29 07:32:19 +08:00
|
|
|
|
2011-10-01 02:09:53 +08:00
|
|
|
// In order to replace the original add with a narrower
|
2010-12-20 02:22:06 +08:00
|
|
|
// llvm.sadd.with.overflow, the only uses allowed are the add-with-constant
|
|
|
|
// and truncates that discard the high bits of the add. Verify that this is
|
|
|
|
// the case.
|
|
|
|
Instruction *OrigAdd = cast<Instruction>(AddWithCst->getOperand(0));
|
2014-03-09 11:16:01 +08:00
|
|
|
for (User *U : OrigAdd->users()) {
|
|
|
|
if (U == AddWithCst) continue;
|
2011-10-01 02:09:53 +08:00
|
|
|
|
2010-12-20 02:22:06 +08:00
|
|
|
// Only accept truncates for now. We would really like a nice recursive
|
|
|
|
// predicate like SimplifyDemandedBits, but which goes downwards the use-def
|
|
|
|
// chain to see which bits of a value are actually demanded. If the
|
|
|
|
// original add had another add which was then immediately truncated, we
|
|
|
|
// could still do the transformation.
|
2014-03-09 11:16:01 +08:00
|
|
|
TruncInst *TI = dyn_cast<TruncInst>(U);
|
2014-04-25 13:29:35 +08:00
|
|
|
if (!TI || TI->getType()->getPrimitiveSizeInBits() > NewWidth)
|
|
|
|
return nullptr;
|
2010-12-20 02:22:06 +08:00
|
|
|
}
|
2011-10-01 02:09:53 +08:00
|
|
|
|
2010-12-20 01:52:50 +08:00
|
|
|
// If the pattern matches, truncate the inputs to the narrower type and
|
|
|
|
// use the sadd_with_overflow intrinsic to efficiently compute both the
|
|
|
|
// result and the overflow bit.
|
2011-07-12 22:06:48 +08:00
|
|
|
Type *NewType = IntegerType::get(OrigAdd->getContext(), NewWidth);
|
2015-12-15 01:24:23 +08:00
|
|
|
Value *F = Intrinsic::getDeclaration(I.getModule(),
|
|
|
|
Intrinsic::sadd_with_overflow, NewType);
|
2010-12-20 02:35:09 +08:00
|
|
|
|
2010-12-20 02:38:44 +08:00
|
|
|
InstCombiner::BuilderTy *Builder = IC.Builder;
|
2011-10-01 02:09:53 +08:00
|
|
|
|
2010-12-20 02:35:09 +08:00
|
|
|
// Put the new code above the original add, in case there are any uses of the
|
|
|
|
// add between the add and the compare.
|
2010-12-20 03:37:52 +08:00
|
|
|
Builder->SetInsertPoint(OrigAdd);
|
2011-10-01 02:09:53 +08:00
|
|
|
|
2010-12-20 02:35:09 +08:00
|
|
|
Value *TruncA = Builder->CreateTrunc(A, NewType, A->getName()+".trunc");
|
|
|
|
Value *TruncB = Builder->CreateTrunc(B, NewType, B->getName()+".trunc");
|
2015-05-19 06:13:54 +08:00
|
|
|
CallInst *Call = Builder->CreateCall(F, {TruncA, TruncB}, "sadd");
|
2010-12-20 02:35:09 +08:00
|
|
|
Value *Add = Builder->CreateExtractValue(Call, 0, "sadd.result");
|
|
|
|
Value *ZExt = Builder->CreateZExt(Add, OrigAdd->getType());
|
2011-10-01 02:09:53 +08:00
|
|
|
|
2010-12-20 01:52:50 +08:00
|
|
|
// The inner add was the result of the narrow add, zero extended to the
|
|
|
|
// wider type. Replace it with the result computed by the intrinsic.
|
2016-02-02 06:23:39 +08:00
|
|
|
IC.replaceInstUsesWith(*OrigAdd, ZExt);
|
2011-10-01 02:09:53 +08:00
|
|
|
|
2010-12-20 02:35:09 +08:00
|
|
|
// The original icmp gets replaced with the overflow value.
|
|
|
|
return ExtractValueInst::Create(Call, 1, "sadd.overflow");
|
2010-12-20 01:52:50 +08:00
|
|
|
}
|
2010-01-04 15:37:31 +08:00
|
|
|
|
2015-04-08 12:27:22 +08:00
|
|
|
bool InstCombiner::OptimizeOverflowCheck(OverflowCheckFlavor OCF, Value *LHS,
|
|
|
|
Value *RHS, Instruction &OrigI,
|
|
|
|
Value *&Result, Constant *&Overflow) {
|
2015-08-12 05:33:55 +08:00
|
|
|
if (OrigI.isCommutative() && isa<Constant>(LHS) && !isa<Constant>(RHS))
|
|
|
|
std::swap(LHS, RHS);
|
2015-04-08 12:27:22 +08:00
|
|
|
|
|
|
|
auto SetResult = [&](Value *OpResult, Constant *OverflowVal, bool ReuseName) {
|
|
|
|
Result = OpResult;
|
|
|
|
Overflow = OverflowVal;
|
|
|
|
if (ReuseName)
|
|
|
|
Result->takeName(&OrigI);
|
|
|
|
return true;
|
|
|
|
};
|
|
|
|
|
2015-08-29 03:09:31 +08:00
|
|
|
// If the overflow check was an add followed by a compare, the insertion point
|
|
|
|
// may be pointing to the compare. We want to insert the new instructions
|
|
|
|
// before the add in case there are uses of the add between the add and the
|
|
|
|
// compare.
|
|
|
|
Builder->SetInsertPoint(&OrigI);
|
|
|
|
|
2015-04-08 12:27:22 +08:00
|
|
|
switch (OCF) {
|
|
|
|
case OCF_INVALID:
|
|
|
|
llvm_unreachable("bad overflow check kind!");
|
|
|
|
|
|
|
|
case OCF_UNSIGNED_ADD: {
|
|
|
|
OverflowResult OR = computeOverflowForUnsignedAdd(LHS, RHS, &OrigI);
|
|
|
|
if (OR == OverflowResult::NeverOverflows)
|
|
|
|
return SetResult(Builder->CreateNUWAdd(LHS, RHS), Builder->getFalse(),
|
|
|
|
true);
|
|
|
|
|
|
|
|
if (OR == OverflowResult::AlwaysOverflows)
|
|
|
|
return SetResult(Builder->CreateAdd(LHS, RHS), Builder->getTrue(), true);
|
|
|
|
}
|
|
|
|
// FALL THROUGH uadd into sadd
|
|
|
|
case OCF_SIGNED_ADD: {
|
2015-05-22 07:04:21 +08:00
|
|
|
// X + 0 -> {X, false}
|
|
|
|
if (match(RHS, m_Zero()))
|
|
|
|
return SetResult(LHS, Builder->getFalse(), false);
|
2015-04-08 12:27:22 +08:00
|
|
|
|
|
|
|
// We can strength reduce this signed add into a regular add if we can prove
|
|
|
|
// that it will never overflow.
|
|
|
|
if (OCF == OCF_SIGNED_ADD)
|
|
|
|
if (WillNotOverflowSignedAdd(LHS, RHS, OrigI))
|
|
|
|
return SetResult(Builder->CreateNSWAdd(LHS, RHS), Builder->getFalse(),
|
|
|
|
true);
|
2015-06-06 02:04:42 +08:00
|
|
|
break;
|
2015-04-08 12:27:22 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
case OCF_UNSIGNED_SUB:
|
|
|
|
case OCF_SIGNED_SUB: {
|
2015-05-22 07:04:21 +08:00
|
|
|
// X - 0 -> {X, false}
|
|
|
|
if (match(RHS, m_Zero()))
|
|
|
|
return SetResult(LHS, Builder->getFalse(), false);
|
2015-04-08 12:27:22 +08:00
|
|
|
|
|
|
|
if (OCF == OCF_SIGNED_SUB) {
|
|
|
|
if (WillNotOverflowSignedSub(LHS, RHS, OrigI))
|
|
|
|
return SetResult(Builder->CreateNSWSub(LHS, RHS), Builder->getFalse(),
|
|
|
|
true);
|
|
|
|
} else {
|
|
|
|
if (WillNotOverflowUnsignedSub(LHS, RHS, OrigI))
|
|
|
|
return SetResult(Builder->CreateNUWSub(LHS, RHS), Builder->getFalse(),
|
|
|
|
true);
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
case OCF_UNSIGNED_MUL: {
|
|
|
|
OverflowResult OR = computeOverflowForUnsignedMul(LHS, RHS, &OrigI);
|
|
|
|
if (OR == OverflowResult::NeverOverflows)
|
|
|
|
return SetResult(Builder->CreateNUWMul(LHS, RHS), Builder->getFalse(),
|
|
|
|
true);
|
|
|
|
if (OR == OverflowResult::AlwaysOverflows)
|
|
|
|
return SetResult(Builder->CreateMul(LHS, RHS), Builder->getTrue(), true);
|
|
|
|
} // FALL THROUGH
|
|
|
|
case OCF_SIGNED_MUL:
|
|
|
|
// X * undef -> undef
|
|
|
|
if (isa<UndefValue>(RHS))
|
2015-05-22 07:04:21 +08:00
|
|
|
return SetResult(RHS, UndefValue::get(Builder->getInt1Ty()), false);
|
|
|
|
|
|
|
|
// X * 0 -> {0, false}
|
|
|
|
if (match(RHS, m_Zero()))
|
|
|
|
return SetResult(RHS, Builder->getFalse(), false);
|
|
|
|
|
|
|
|
// X * 1 -> {X, false}
|
|
|
|
if (match(RHS, m_One()))
|
|
|
|
return SetResult(LHS, Builder->getFalse(), false);
|
2015-04-08 12:27:22 +08:00
|
|
|
|
|
|
|
if (OCF == OCF_SIGNED_MUL)
|
|
|
|
if (WillNotOverflowSignedMul(LHS, RHS, OrigI))
|
|
|
|
return SetResult(Builder->CreateNSWMul(LHS, RHS), Builder->getFalse(),
|
|
|
|
true);
|
2015-06-06 02:04:46 +08:00
|
|
|
break;
|
2015-04-08 12:27:22 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
2014-04-14 02:23:41 +08:00
|
|
|
/// \brief Recognize and process idiom involving test for multiplication
|
|
|
|
/// overflow.
|
|
|
|
///
|
|
|
|
/// The caller has matched a pattern of the form:
|
|
|
|
/// I = cmp u (mul(zext A, zext B), V
|
|
|
|
/// The function checks if this is a test for overflow and if so replaces
|
|
|
|
/// multiplication with call to 'mul.with.overflow' intrinsic.
|
|
|
|
///
|
|
|
|
/// \param I Compare instruction.
|
|
|
|
/// \param MulVal Result of 'mult' instruction. It is one of the arguments of
|
|
|
|
/// the compare instruction. Must be of integer type.
|
|
|
|
/// \param OtherVal The other argument of compare instruction.
|
|
|
|
/// \returns Instruction which must replace the compare instruction, NULL if no
|
|
|
|
/// replacement required.
|
|
|
|
static Instruction *ProcessUMulZExtIdiom(ICmpInst &I, Value *MulVal,
|
|
|
|
Value *OtherVal, InstCombiner &IC) {
|
2014-06-24 18:47:52 +08:00
|
|
|
// Don't bother doing this transformation for pointers, don't do it for
|
|
|
|
// vectors.
|
|
|
|
if (!isa<IntegerType>(MulVal->getType()))
|
|
|
|
return nullptr;
|
|
|
|
|
2014-04-14 02:23:41 +08:00
|
|
|
assert(I.getOperand(0) == MulVal || I.getOperand(1) == MulVal);
|
|
|
|
assert(I.getOperand(0) == OtherVal || I.getOperand(1) == OtherVal);
|
2015-09-06 04:44:56 +08:00
|
|
|
auto *MulInstr = dyn_cast<Instruction>(MulVal);
|
|
|
|
if (!MulInstr)
|
|
|
|
return nullptr;
|
2014-04-14 02:23:41 +08:00
|
|
|
assert(MulInstr->getOpcode() == Instruction::Mul);
|
|
|
|
|
2014-11-02 07:46:05 +08:00
|
|
|
auto *LHS = cast<ZExtOperator>(MulInstr->getOperand(0)),
|
|
|
|
*RHS = cast<ZExtOperator>(MulInstr->getOperand(1));
|
2014-04-14 02:23:41 +08:00
|
|
|
assert(LHS->getOpcode() == Instruction::ZExt);
|
|
|
|
assert(RHS->getOpcode() == Instruction::ZExt);
|
|
|
|
Value *A = LHS->getOperand(0), *B = RHS->getOperand(0);
|
|
|
|
|
|
|
|
// Calculate type and width of the result produced by mul.with.overflow.
|
|
|
|
Type *TyA = A->getType(), *TyB = B->getType();
|
|
|
|
unsigned WidthA = TyA->getPrimitiveSizeInBits(),
|
|
|
|
WidthB = TyB->getPrimitiveSizeInBits();
|
|
|
|
unsigned MulWidth;
|
|
|
|
Type *MulType;
|
|
|
|
if (WidthB > WidthA) {
|
|
|
|
MulWidth = WidthB;
|
|
|
|
MulType = TyB;
|
|
|
|
} else {
|
|
|
|
MulWidth = WidthA;
|
|
|
|
MulType = TyA;
|
|
|
|
}
|
|
|
|
|
|
|
|
// In order to replace the original mul with a narrower mul.with.overflow,
|
|
|
|
// all uses must ignore upper bits of the product. The number of used low
|
|
|
|
// bits must be not greater than the width of mul.with.overflow.
|
|
|
|
if (MulVal->hasNUsesOrMore(2))
|
|
|
|
for (User *U : MulVal->users()) {
|
|
|
|
if (U == &I)
|
|
|
|
continue;
|
|
|
|
if (TruncInst *TI = dyn_cast<TruncInst>(U)) {
|
|
|
|
// Check if truncation ignores bits above MulWidth.
|
|
|
|
unsigned TruncWidth = TI->getType()->getPrimitiveSizeInBits();
|
|
|
|
if (TruncWidth > MulWidth)
|
2014-04-25 13:29:35 +08:00
|
|
|
return nullptr;
|
2014-04-14 02:23:41 +08:00
|
|
|
} else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) {
|
|
|
|
// Check if AND ignores bits above MulWidth.
|
|
|
|
if (BO->getOpcode() != Instruction::And)
|
2014-04-25 13:29:35 +08:00
|
|
|
return nullptr;
|
2014-04-14 02:23:41 +08:00
|
|
|
if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) {
|
|
|
|
const APInt &CVal = CI->getValue();
|
|
|
|
if (CVal.getBitWidth() - CVal.countLeadingZeros() > MulWidth)
|
2014-04-25 13:29:35 +08:00
|
|
|
return nullptr;
|
2014-04-14 02:23:41 +08:00
|
|
|
}
|
|
|
|
} else {
|
|
|
|
// Other uses prohibit this transformation.
|
2014-04-25 13:29:35 +08:00
|
|
|
return nullptr;
|
2014-04-14 02:23:41 +08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Recognize patterns
|
|
|
|
switch (I.getPredicate()) {
|
|
|
|
case ICmpInst::ICMP_EQ:
|
|
|
|
case ICmpInst::ICMP_NE:
|
|
|
|
// Recognize pattern:
|
|
|
|
// mulval = mul(zext A, zext B)
|
|
|
|
// cmp eq/neq mulval, zext trunc mulval
|
|
|
|
if (ZExtInst *Zext = dyn_cast<ZExtInst>(OtherVal))
|
|
|
|
if (Zext->hasOneUse()) {
|
|
|
|
Value *ZextArg = Zext->getOperand(0);
|
|
|
|
if (TruncInst *Trunc = dyn_cast<TruncInst>(ZextArg))
|
|
|
|
if (Trunc->getType()->getPrimitiveSizeInBits() == MulWidth)
|
|
|
|
break; //Recognized
|
|
|
|
}
|
|
|
|
|
|
|
|
// Recognize pattern:
|
|
|
|
// mulval = mul(zext A, zext B)
|
|
|
|
// cmp eq/neq mulval, and(mulval, mask), mask selects low MulWidth bits.
|
|
|
|
ConstantInt *CI;
|
|
|
|
Value *ValToMask;
|
|
|
|
if (match(OtherVal, m_And(m_Value(ValToMask), m_ConstantInt(CI)))) {
|
|
|
|
if (ValToMask != MulVal)
|
2014-04-25 13:29:35 +08:00
|
|
|
return nullptr;
|
2014-04-14 02:23:41 +08:00
|
|
|
const APInt &CVal = CI->getValue() + 1;
|
|
|
|
if (CVal.isPowerOf2()) {
|
|
|
|
unsigned MaskWidth = CVal.logBase2();
|
|
|
|
if (MaskWidth == MulWidth)
|
|
|
|
break; // Recognized
|
|
|
|
}
|
|
|
|
}
|
2014-04-25 13:29:35 +08:00
|
|
|
return nullptr;
|
2014-04-14 02:23:41 +08:00
|
|
|
|
|
|
|
case ICmpInst::ICMP_UGT:
|
|
|
|
// Recognize pattern:
|
|
|
|
// mulval = mul(zext A, zext B)
|
|
|
|
// cmp ugt mulval, max
|
|
|
|
if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
|
|
|
|
APInt MaxVal = APInt::getMaxValue(MulWidth);
|
|
|
|
MaxVal = MaxVal.zext(CI->getBitWidth());
|
|
|
|
if (MaxVal.eq(CI->getValue()))
|
|
|
|
break; // Recognized
|
|
|
|
}
|
2014-04-25 13:29:35 +08:00
|
|
|
return nullptr;
|
2014-04-14 02:23:41 +08:00
|
|
|
|
|
|
|
case ICmpInst::ICMP_UGE:
|
|
|
|
// Recognize pattern:
|
|
|
|
// mulval = mul(zext A, zext B)
|
|
|
|
// cmp uge mulval, max+1
|
|
|
|
if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
|
|
|
|
APInt MaxVal = APInt::getOneBitSet(CI->getBitWidth(), MulWidth);
|
|
|
|
if (MaxVal.eq(CI->getValue()))
|
|
|
|
break; // Recognized
|
|
|
|
}
|
2014-04-25 13:29:35 +08:00
|
|
|
return nullptr;
|
2014-04-14 02:23:41 +08:00
|
|
|
|
|
|
|
case ICmpInst::ICMP_ULE:
|
|
|
|
// Recognize pattern:
|
|
|
|
// mulval = mul(zext A, zext B)
|
|
|
|
// cmp ule mulval, max
|
|
|
|
if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
|
|
|
|
APInt MaxVal = APInt::getMaxValue(MulWidth);
|
|
|
|
MaxVal = MaxVal.zext(CI->getBitWidth());
|
|
|
|
if (MaxVal.eq(CI->getValue()))
|
|
|
|
break; // Recognized
|
|
|
|
}
|
2014-04-25 13:29:35 +08:00
|
|
|
return nullptr;
|
2014-04-14 02:23:41 +08:00
|
|
|
|
|
|
|
case ICmpInst::ICMP_ULT:
|
|
|
|
// Recognize pattern:
|
|
|
|
// mulval = mul(zext A, zext B)
|
|
|
|
// cmp ule mulval, max + 1
|
|
|
|
if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
|
2014-04-14 10:20:19 +08:00
|
|
|
APInt MaxVal = APInt::getOneBitSet(CI->getBitWidth(), MulWidth);
|
2014-04-14 02:23:41 +08:00
|
|
|
if (MaxVal.eq(CI->getValue()))
|
|
|
|
break; // Recognized
|
|
|
|
}
|
2014-04-25 13:29:35 +08:00
|
|
|
return nullptr;
|
2014-04-14 02:23:41 +08:00
|
|
|
|
|
|
|
default:
|
2014-04-25 13:29:35 +08:00
|
|
|
return nullptr;
|
2014-04-14 02:23:41 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
InstCombiner::BuilderTy *Builder = IC.Builder;
|
|
|
|
Builder->SetInsertPoint(MulInstr);
|
|
|
|
|
|
|
|
// Replace: mul(zext A, zext B) --> mul.with.overflow(A, B)
|
|
|
|
Value *MulA = A, *MulB = B;
|
|
|
|
if (WidthA < MulWidth)
|
|
|
|
MulA = Builder->CreateZExt(A, MulType);
|
|
|
|
if (WidthB < MulWidth)
|
|
|
|
MulB = Builder->CreateZExt(B, MulType);
|
2015-12-15 01:24:23 +08:00
|
|
|
Value *F = Intrinsic::getDeclaration(I.getModule(),
|
|
|
|
Intrinsic::umul_with_overflow, MulType);
|
2015-05-19 06:13:54 +08:00
|
|
|
CallInst *Call = Builder->CreateCall(F, {MulA, MulB}, "umul");
|
2014-04-14 02:23:41 +08:00
|
|
|
IC.Worklist.Add(MulInstr);
|
|
|
|
|
|
|
|
// If there are uses of mul result other than the comparison, we know that
|
|
|
|
// they are truncation or binary AND. Change them to use result of
|
2014-04-14 10:20:19 +08:00
|
|
|
// mul.with.overflow and adjust properly mask/size.
|
2014-04-14 02:23:41 +08:00
|
|
|
if (MulVal->hasNUsesOrMore(2)) {
|
|
|
|
Value *Mul = Builder->CreateExtractValue(Call, 0, "umul.value");
|
|
|
|
for (User *U : MulVal->users()) {
|
|
|
|
if (U == &I || U == OtherVal)
|
|
|
|
continue;
|
|
|
|
if (TruncInst *TI = dyn_cast<TruncInst>(U)) {
|
|
|
|
if (TI->getType()->getPrimitiveSizeInBits() == MulWidth)
|
2016-02-02 06:23:39 +08:00
|
|
|
IC.replaceInstUsesWith(*TI, Mul);
|
2014-04-14 02:23:41 +08:00
|
|
|
else
|
|
|
|
TI->setOperand(0, Mul);
|
|
|
|
} else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) {
|
|
|
|
assert(BO->getOpcode() == Instruction::And);
|
|
|
|
// Replace (mul & mask) --> zext (mul.with.overflow & short_mask)
|
|
|
|
ConstantInt *CI = cast<ConstantInt>(BO->getOperand(1));
|
|
|
|
APInt ShortMask = CI->getValue().trunc(MulWidth);
|
|
|
|
Value *ShortAnd = Builder->CreateAnd(Mul, ShortMask);
|
|
|
|
Instruction *Zext =
|
|
|
|
cast<Instruction>(Builder->CreateZExt(ShortAnd, BO->getType()));
|
|
|
|
IC.Worklist.Add(Zext);
|
2016-02-02 06:23:39 +08:00
|
|
|
IC.replaceInstUsesWith(*BO, Zext);
|
2014-04-14 02:23:41 +08:00
|
|
|
} else {
|
|
|
|
llvm_unreachable("Unexpected Binary operation");
|
|
|
|
}
|
|
|
|
IC.Worklist.Add(cast<Instruction>(U));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if (isa<Instruction>(OtherVal))
|
|
|
|
IC.Worklist.Add(cast<Instruction>(OtherVal));
|
|
|
|
|
|
|
|
// The original icmp gets replaced with the overflow value, maybe inverted
|
|
|
|
// depending on predicate.
|
|
|
|
bool Inverse = false;
|
|
|
|
switch (I.getPredicate()) {
|
|
|
|
case ICmpInst::ICMP_NE:
|
|
|
|
break;
|
|
|
|
case ICmpInst::ICMP_EQ:
|
|
|
|
Inverse = true;
|
|
|
|
break;
|
|
|
|
case ICmpInst::ICMP_UGT:
|
|
|
|
case ICmpInst::ICMP_UGE:
|
|
|
|
if (I.getOperand(0) == MulVal)
|
|
|
|
break;
|
|
|
|
Inverse = true;
|
|
|
|
break;
|
|
|
|
case ICmpInst::ICMP_ULT:
|
|
|
|
case ICmpInst::ICMP_ULE:
|
|
|
|
if (I.getOperand(1) == MulVal)
|
|
|
|
break;
|
|
|
|
Inverse = true;
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
llvm_unreachable("Unexpected predicate");
|
|
|
|
}
|
|
|
|
if (Inverse) {
|
|
|
|
Value *Res = Builder->CreateExtractValue(Call, 1);
|
|
|
|
return BinaryOperator::CreateNot(Res);
|
|
|
|
}
|
|
|
|
|
|
|
|
return ExtractValueInst::Create(Call, 1);
|
|
|
|
}
|
|
|
|
|
2011-01-11 08:36:45 +08:00
|
|
|
// DemandedBitsLHSMask - When performing a comparison against a constant,
|
|
|
|
// it is possible that not all the bits in the LHS are demanded. This helper
|
|
|
|
// method computes the mask that IS demanded.
|
|
|
|
static APInt DemandedBitsLHSMask(ICmpInst &I,
|
|
|
|
unsigned BitWidth, bool isSignCheck) {
|
|
|
|
if (isSignCheck)
|
|
|
|
return APInt::getSignBit(BitWidth);
|
2011-10-01 02:09:53 +08:00
|
|
|
|
2011-01-11 08:36:45 +08:00
|
|
|
ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(1));
|
|
|
|
if (!CI) return APInt::getAllOnesValue(BitWidth);
|
2011-01-12 02:26:37 +08:00
|
|
|
const APInt &RHS = CI->getValue();
|
2011-10-01 02:09:53 +08:00
|
|
|
|
2011-01-11 08:36:45 +08:00
|
|
|
switch (I.getPredicate()) {
|
2011-10-01 02:09:53 +08:00
|
|
|
// For a UGT comparison, we don't care about any bits that
|
2011-01-11 08:36:45 +08:00
|
|
|
// correspond to the trailing ones of the comparand. The value of these
|
|
|
|
// bits doesn't impact the outcome of the comparison, because any value
|
|
|
|
// greater than the RHS must differ in a bit higher than these due to carry.
|
|
|
|
case ICmpInst::ICMP_UGT: {
|
|
|
|
unsigned trailingOnes = RHS.countTrailingOnes();
|
|
|
|
APInt lowBitsSet = APInt::getLowBitsSet(BitWidth, trailingOnes);
|
|
|
|
return ~lowBitsSet;
|
|
|
|
}
|
2011-10-01 02:09:53 +08:00
|
|
|
|
2011-01-11 08:36:45 +08:00
|
|
|
// Similarly, for a ULT comparison, we don't care about the trailing zeros.
|
|
|
|
// Any value less than the RHS must differ in a higher bit because of carries.
|
|
|
|
case ICmpInst::ICMP_ULT: {
|
|
|
|
unsigned trailingZeros = RHS.countTrailingZeros();
|
|
|
|
APInt lowBitsSet = APInt::getLowBitsSet(BitWidth, trailingZeros);
|
|
|
|
return ~lowBitsSet;
|
|
|
|
}
|
2011-10-01 02:09:53 +08:00
|
|
|
|
2011-01-11 08:36:45 +08:00
|
|
|
default:
|
|
|
|
return APInt::getAllOnesValue(BitWidth);
|
|
|
|
}
|
|
|
|
}
|
2010-01-04 15:37:31 +08:00
|
|
|
|
2013-09-10 04:56:48 +08:00
|
|
|
/// \brief Check if the order of \p Op0 and \p Op1 as operand in an ICmpInst
|
|
|
|
/// should be swapped.
|
2014-01-25 01:20:08 +08:00
|
|
|
/// The decision is based on how many times these two operands are reused
|
2013-09-10 04:56:48 +08:00
|
|
|
/// as subtract operands and their positions in those instructions.
|
|
|
|
/// The rational is that several architectures use the same instruction for
|
|
|
|
/// both subtract and cmp, thus it is better if the order of those operands
|
|
|
|
/// match.
|
|
|
|
/// \return true if Op0 and Op1 should be swapped.
|
|
|
|
static bool swapMayExposeCSEOpportunities(const Value * Op0,
|
|
|
|
const Value * Op1) {
|
|
|
|
// Filter out pointer value as those cannot appears directly in subtract.
|
|
|
|
// FIXME: we may want to go through inttoptrs or bitcasts.
|
|
|
|
if (Op0->getType()->isPointerTy())
|
|
|
|
return false;
|
|
|
|
// Count every uses of both Op0 and Op1 in a subtract.
|
|
|
|
// Each time Op0 is the first operand, count -1: swapping is bad, the
|
|
|
|
// subtract has already the same layout as the compare.
|
|
|
|
// Each time Op0 is the second operand, count +1: swapping is good, the
|
2014-01-25 01:20:08 +08:00
|
|
|
// subtract has a different layout as the compare.
|
2013-09-10 04:56:48 +08:00
|
|
|
// At the end, if the benefit is greater than 0, Op0 should come second to
|
|
|
|
// expose more CSE opportunities.
|
|
|
|
int GlobalSwapBenefits = 0;
|
2014-03-09 11:16:01 +08:00
|
|
|
for (const User *U : Op0->users()) {
|
|
|
|
const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(U);
|
2013-09-10 04:56:48 +08:00
|
|
|
if (!BinOp || BinOp->getOpcode() != Instruction::Sub)
|
|
|
|
continue;
|
|
|
|
// If Op0 is the first argument, this is not beneficial to swap the
|
|
|
|
// arguments.
|
|
|
|
int LocalSwapBenefits = -1;
|
|
|
|
unsigned Op1Idx = 1;
|
|
|
|
if (BinOp->getOperand(Op1Idx) == Op0) {
|
|
|
|
Op1Idx = 0;
|
|
|
|
LocalSwapBenefits = 1;
|
|
|
|
}
|
|
|
|
if (BinOp->getOperand(Op1Idx) != Op1)
|
|
|
|
continue;
|
|
|
|
GlobalSwapBenefits += LocalSwapBenefits;
|
|
|
|
}
|
|
|
|
return GlobalSwapBenefits > 0;
|
|
|
|
}
|
|
|
|
|
2014-11-22 07:36:44 +08:00
|
|
|
/// \brief Check that one use is in the same block as the definition and all
|
|
|
|
/// other uses are in blocks dominated by a given block
|
|
|
|
///
|
|
|
|
/// \param DI Definition
|
|
|
|
/// \param UI Use
|
|
|
|
/// \param DB Block that must dominate all uses of \p DI outside
|
|
|
|
/// the parent block
|
|
|
|
/// \return true when \p UI is the only use of \p DI in the parent block
|
|
|
|
/// and all other uses of \p DI are in blocks dominated by \p DB.
|
|
|
|
///
|
|
|
|
bool InstCombiner::dominatesAllUses(const Instruction *DI,
|
|
|
|
const Instruction *UI,
|
|
|
|
const BasicBlock *DB) const {
|
|
|
|
assert(DI && UI && "Instruction not defined\n");
|
|
|
|
// ignore incomplete definitions
|
|
|
|
if (!DI->getParent())
|
|
|
|
return false;
|
|
|
|
// DI and UI must be in the same block
|
|
|
|
if (DI->getParent() != UI->getParent())
|
|
|
|
return false;
|
|
|
|
// Protect from self-referencing blocks
|
|
|
|
if (DI->getParent() == DB)
|
|
|
|
return false;
|
|
|
|
// DominatorTree available?
|
|
|
|
if (!DT)
|
|
|
|
return false;
|
|
|
|
for (const User *U : DI->users()) {
|
|
|
|
auto *Usr = cast<Instruction>(U);
|
|
|
|
if (Usr != UI && !DT->dominates(DB, Usr->getParent()))
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
///
|
|
|
|
/// true when the instruction sequence within a block is select-cmp-br.
|
|
|
|
///
|
|
|
|
static bool isChainSelectCmpBranch(const SelectInst *SI) {
|
|
|
|
const BasicBlock *BB = SI->getParent();
|
|
|
|
if (!BB)
|
|
|
|
return false;
|
|
|
|
auto *BI = dyn_cast_or_null<BranchInst>(BB->getTerminator());
|
|
|
|
if (!BI || BI->getNumSuccessors() != 2)
|
|
|
|
return false;
|
|
|
|
auto *IC = dyn_cast<ICmpInst>(BI->getCondition());
|
|
|
|
if (!IC || (IC->getOperand(0) != SI && IC->getOperand(1) != SI))
|
|
|
|
return false;
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
///
|
|
|
|
/// \brief True when a select result is replaced by one of its operands
|
|
|
|
/// in select-icmp sequence. This will eventually result in the elimination
|
|
|
|
/// of the select.
|
|
|
|
///
|
|
|
|
/// \param SI Select instruction
|
|
|
|
/// \param Icmp Compare instruction
|
|
|
|
/// \param SIOpd Operand that replaces the select
|
|
|
|
///
|
|
|
|
/// Notes:
|
|
|
|
/// - The replacement is global and requires dominator information
|
|
|
|
/// - The caller is responsible for the actual replacement
|
|
|
|
///
|
|
|
|
/// Example:
|
|
|
|
///
|
|
|
|
/// entry:
|
|
|
|
/// %4 = select i1 %3, %C* %0, %C* null
|
|
|
|
/// %5 = icmp eq %C* %4, null
|
|
|
|
/// br i1 %5, label %9, label %7
|
|
|
|
/// ...
|
|
|
|
/// ; <label>:7 ; preds = %entry
|
|
|
|
/// %8 = getelementptr inbounds %C* %4, i64 0, i32 0
|
|
|
|
/// ...
|
|
|
|
///
|
|
|
|
/// can be transformed to
|
|
|
|
///
|
|
|
|
/// %5 = icmp eq %C* %0, null
|
|
|
|
/// %6 = select i1 %3, i1 %5, i1 true
|
|
|
|
/// br i1 %6, label %9, label %7
|
|
|
|
/// ...
|
|
|
|
/// ; <label>:7 ; preds = %entry
|
|
|
|
/// %8 = getelementptr inbounds %C* %0, i64 0, i32 0 // replace by %0!
|
|
|
|
///
|
|
|
|
/// Similar when the first operand of the select is a constant or/and
|
|
|
|
/// the compare is for not equal rather than equal.
|
|
|
|
///
|
|
|
|
/// NOTE: The function is only called when the select and compare constants
|
|
|
|
/// are equal, the optimization can work only for EQ predicates. This is not a
|
|
|
|
/// major restriction since a NE compare should be 'normalized' to an equal
|
|
|
|
/// compare, which usually happens in the combiner and test case
|
|
|
|
/// select-cmp-br.ll
|
|
|
|
/// checks for it.
|
|
|
|
bool InstCombiner::replacedSelectWithOperand(SelectInst *SI,
|
|
|
|
const ICmpInst *Icmp,
|
|
|
|
const unsigned SIOpd) {
|
2014-11-22 14:09:28 +08:00
|
|
|
assert((SIOpd == 1 || SIOpd == 2) && "Invalid select operand!");
|
2014-11-22 07:36:44 +08:00
|
|
|
if (isChainSelectCmpBranch(SI) && Icmp->getPredicate() == ICmpInst::ICMP_EQ) {
|
|
|
|
BasicBlock *Succ = SI->getParent()->getTerminator()->getSuccessor(1);
|
|
|
|
// The check for the unique predecessor is not the best that can be
|
|
|
|
// done. But it protects efficiently against cases like when SI's
|
|
|
|
// home block has two successors, Succ and Succ1, and Succ1 predecessor
|
|
|
|
// of Succ. Then SI can't be replaced by SIOpd because the use that gets
|
|
|
|
// replaced can be reached on either path. So the uniqueness check
|
|
|
|
// guarantees that the path all uses of SI (outside SI's parent) are on
|
|
|
|
// is disjoint from all other paths out of SI. But that information
|
|
|
|
// is more expensive to compute, and the trade-off here is in favor
|
|
|
|
// of compile-time.
|
|
|
|
if (Succ->getUniquePredecessor() && dominatesAllUses(SI, Icmp, Succ)) {
|
|
|
|
NumSel++;
|
|
|
|
SI->replaceUsesOutsideBlock(SI->getOperand(SIOpd), SI->getParent());
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
2010-01-04 15:37:31 +08:00
|
|
|
Instruction *InstCombiner::visitICmpInst(ICmpInst &I) {
|
|
|
|
bool Changed = false;
|
2010-02-02 03:54:45 +08:00
|
|
|
Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
|
2013-09-10 04:56:48 +08:00
|
|
|
unsigned Op0Cplxity = getComplexity(Op0);
|
|
|
|
unsigned Op1Cplxity = getComplexity(Op1);
|
2011-10-01 02:09:53 +08:00
|
|
|
|
2010-01-04 15:37:31 +08:00
|
|
|
/// Orders the operands of the compare so that they are listed from most
|
|
|
|
/// complex to least complex. This puts constants before unary operators,
|
|
|
|
/// before binary operators.
|
2013-09-10 04:56:48 +08:00
|
|
|
if (Op0Cplxity < Op1Cplxity ||
|
|
|
|
(Op0Cplxity == Op1Cplxity &&
|
|
|
|
swapMayExposeCSEOpportunities(Op0, Op1))) {
|
2010-01-04 15:37:31 +08:00
|
|
|
I.swapOperands();
|
2010-02-02 03:54:45 +08:00
|
|
|
std::swap(Op0, Op1);
|
2010-01-04 15:37:31 +08:00
|
|
|
Changed = true;
|
|
|
|
}
|
2011-10-01 02:09:53 +08:00
|
|
|
|
2015-06-26 04:14:47 +08:00
|
|
|
if (Value *V =
|
|
|
|
SimplifyICmpInst(I.getPredicate(), Op0, Op1, DL, TLI, DT, AC, &I))
|
2016-02-02 06:23:39 +08:00
|
|
|
return replaceInstUsesWith(I, V);
|
2011-10-01 02:09:53 +08:00
|
|
|
|
2011-12-01 11:58:40 +08:00
|
|
|
// comparing -val or val with non-zero is the same as just comparing val
|
2011-12-02 03:13:26 +08:00
|
|
|
// ie, abs(val) != 0 -> val != 0
|
2011-12-01 11:58:40 +08:00
|
|
|
if (I.getPredicate() == ICmpInst::ICMP_NE && match(Op1, m_Zero()))
|
|
|
|
{
|
2011-12-02 03:13:26 +08:00
|
|
|
Value *Cond, *SelectTrue, *SelectFalse;
|
|
|
|
if (match(Op0, m_Select(m_Value(Cond), m_Value(SelectTrue),
|
2011-12-01 11:58:40 +08:00
|
|
|
m_Value(SelectFalse)))) {
|
2011-12-02 03:13:26 +08:00
|
|
|
if (Value *V = dyn_castNegVal(SelectTrue)) {
|
|
|
|
if (V == SelectFalse)
|
|
|
|
return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1);
|
|
|
|
}
|
|
|
|
else if (Value *V = dyn_castNegVal(SelectFalse)) {
|
|
|
|
if (V == SelectTrue)
|
|
|
|
return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1);
|
2011-12-01 11:58:40 +08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2011-07-18 12:54:35 +08:00
|
|
|
Type *Ty = Op0->getType();
|
2010-01-04 15:37:31 +08:00
|
|
|
|
|
|
|
// icmp's with boolean values can always be turned into bitwise operations
|
2010-02-16 00:12:20 +08:00
|
|
|
if (Ty->isIntegerTy(1)) {
|
2010-01-04 15:37:31 +08:00
|
|
|
switch (I.getPredicate()) {
|
|
|
|
default: llvm_unreachable("Invalid icmp instruction!");
|
|
|
|
case ICmpInst::ICMP_EQ: { // icmp eq i1 A, B -> ~(A^B)
|
|
|
|
Value *Xor = Builder->CreateXor(Op0, Op1, I.getName()+"tmp");
|
|
|
|
return BinaryOperator::CreateNot(Xor);
|
|
|
|
}
|
|
|
|
case ICmpInst::ICMP_NE: // icmp eq i1 A, B -> A^B
|
|
|
|
return BinaryOperator::CreateXor(Op0, Op1);
|
|
|
|
|
|
|
|
case ICmpInst::ICMP_UGT:
|
|
|
|
std::swap(Op0, Op1); // Change icmp ugt -> icmp ult
|
|
|
|
// FALL THROUGH
|
|
|
|
case ICmpInst::ICMP_ULT:{ // icmp ult i1 A, B -> ~A & B
|
|
|
|
Value *Not = Builder->CreateNot(Op0, I.getName()+"tmp");
|
|
|
|
return BinaryOperator::CreateAnd(Not, Op1);
|
|
|
|
}
|
|
|
|
case ICmpInst::ICMP_SGT:
|
|
|
|
std::swap(Op0, Op1); // Change icmp sgt -> icmp slt
|
|
|
|
// FALL THROUGH
|
|
|
|
case ICmpInst::ICMP_SLT: { // icmp slt i1 A, B -> A & ~B
|
|
|
|
Value *Not = Builder->CreateNot(Op1, I.getName()+"tmp");
|
|
|
|
return BinaryOperator::CreateAnd(Not, Op0);
|
|
|
|
}
|
|
|
|
case ICmpInst::ICMP_UGE:
|
|
|
|
std::swap(Op0, Op1); // Change icmp uge -> icmp ule
|
|
|
|
// FALL THROUGH
|
|
|
|
case ICmpInst::ICMP_ULE: { // icmp ule i1 A, B -> ~A | B
|
|
|
|
Value *Not = Builder->CreateNot(Op0, I.getName()+"tmp");
|
|
|
|
return BinaryOperator::CreateOr(Not, Op1);
|
|
|
|
}
|
|
|
|
case ICmpInst::ICMP_SGE:
|
|
|
|
std::swap(Op0, Op1); // Change icmp sge -> icmp sle
|
|
|
|
// FALL THROUGH
|
|
|
|
case ICmpInst::ICMP_SLE: { // icmp sle i1 A, B -> A | ~B
|
|
|
|
Value *Not = Builder->CreateNot(Op1, I.getName()+"tmp");
|
|
|
|
return BinaryOperator::CreateOr(Not, Op0);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
unsigned BitWidth = 0;
|
2010-12-20 03:37:52 +08:00
|
|
|
if (Ty->isIntOrIntVectorTy())
|
2010-01-04 15:37:31 +08:00
|
|
|
BitWidth = Ty->getScalarSizeInBits();
|
2015-03-10 10:37:25 +08:00
|
|
|
else // Get pointer size.
|
|
|
|
BitWidth = DL.getTypeSizeInBits(Ty->getScalarType());
|
2011-10-01 02:09:53 +08:00
|
|
|
|
2010-01-04 15:37:31 +08:00
|
|
|
bool isSignBit = false;
|
|
|
|
|
|
|
|
// See if we are doing a comparison with a constant.
|
|
|
|
if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
|
2014-04-25 13:29:35 +08:00
|
|
|
Value *A = nullptr, *B = nullptr;
|
2011-10-01 02:09:53 +08:00
|
|
|
|
2010-12-18 02:08:00 +08:00
|
|
|
// Match the following pattern, which is a common idiom when writing
|
|
|
|
// overflow-safe integer arithmetic function. The source performs an
|
|
|
|
// addition in wider type, and explicitly checks for overflow using
|
|
|
|
// comparisons against INT_MIN and INT_MAX. Simplify this by using the
|
|
|
|
// sadd_with_overflow intrinsic.
|
2010-12-20 01:52:50 +08:00
|
|
|
//
|
|
|
|
// TODO: This could probably be generalized to handle other overflow-safe
|
2011-10-01 02:09:53 +08:00
|
|
|
// operations if we worked out the formulas to compute the appropriate
|
2010-12-18 02:08:00 +08:00
|
|
|
// magic constants.
|
2011-10-01 02:09:53 +08:00
|
|
|
//
|
2010-12-20 01:52:50 +08:00
|
|
|
// sum = a + b
|
|
|
|
// if (sum+128 >u 255) ... -> llvm.sadd.with.overflow.i8
|
2010-12-18 02:08:00 +08:00
|
|
|
{
|
2010-12-20 01:52:50 +08:00
|
|
|
ConstantInt *CI2; // I = icmp ugt (add (add A, B), CI2), CI
|
2010-12-18 02:08:00 +08:00
|
|
|
if (I.getPredicate() == ICmpInst::ICMP_UGT &&
|
2010-12-20 01:52:50 +08:00
|
|
|
match(Op0, m_Add(m_Add(m_Value(A), m_Value(B)), m_ConstantInt(CI2))))
|
2010-12-20 02:38:44 +08:00
|
|
|
if (Instruction *Res = ProcessUGT_ADDCST_ADD(I, A, B, CI2, CI, *this))
|
2010-12-20 01:52:50 +08:00
|
|
|
return Res;
|
2010-12-18 02:08:00 +08:00
|
|
|
}
|
2011-10-01 02:09:53 +08:00
|
|
|
|
2016-03-10 05:05:07 +08:00
|
|
|
// (icmp sgt smin(PosA, B) 0) -> (icmp sgt B 0)
|
|
|
|
if (CI->isZero() && I.getPredicate() == ICmpInst::ICMP_SGT)
|
|
|
|
if (auto *SI = dyn_cast<SelectInst>(Op0)) {
|
|
|
|
SelectPatternResult SPR = matchSelectPattern(SI, A, B);
|
|
|
|
if (SPR.Flavor == SPF_SMIN) {
|
2016-03-10 05:31:47 +08:00
|
|
|
if (isKnownPositive(A, DL))
|
2016-03-10 05:05:07 +08:00
|
|
|
return new ICmpInst(I.getPredicate(), B, CI);
|
2016-03-10 05:31:47 +08:00
|
|
|
if (isKnownPositive(B, DL))
|
2016-03-10 05:05:07 +08:00
|
|
|
return new ICmpInst(I.getPredicate(), A, CI);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
2015-01-15 03:26:56 +08:00
|
|
|
// The following transforms are only 'worth it' if the only user of the
|
|
|
|
// subtraction is the icmp.
|
|
|
|
if (Op0->hasOneUse()) {
|
|
|
|
// (icmp ne/eq (sub A B) 0) -> (icmp ne/eq A, B)
|
|
|
|
if (I.isEquality() && CI->isZero() &&
|
|
|
|
match(Op0, m_Sub(m_Value(A), m_Value(B))))
|
|
|
|
return new ICmpInst(I.getPredicate(), A, B);
|
|
|
|
|
|
|
|
// (icmp sgt (sub nsw A B), -1) -> (icmp sge A, B)
|
|
|
|
if (I.getPredicate() == ICmpInst::ICMP_SGT && CI->isAllOnesValue() &&
|
|
|
|
match(Op0, m_NSWSub(m_Value(A), m_Value(B))))
|
|
|
|
return new ICmpInst(ICmpInst::ICMP_SGE, A, B);
|
|
|
|
|
|
|
|
// (icmp sgt (sub nsw A B), 0) -> (icmp sgt A, B)
|
|
|
|
if (I.getPredicate() == ICmpInst::ICMP_SGT && CI->isZero() &&
|
|
|
|
match(Op0, m_NSWSub(m_Value(A), m_Value(B))))
|
|
|
|
return new ICmpInst(ICmpInst::ICMP_SGT, A, B);
|
|
|
|
|
|
|
|
// (icmp slt (sub nsw A B), 0) -> (icmp slt A, B)
|
|
|
|
if (I.getPredicate() == ICmpInst::ICMP_SLT && CI->isZero() &&
|
|
|
|
match(Op0, m_NSWSub(m_Value(A), m_Value(B))))
|
|
|
|
return new ICmpInst(ICmpInst::ICMP_SLT, A, B);
|
|
|
|
|
|
|
|
// (icmp slt (sub nsw A B), 1) -> (icmp sle A, B)
|
|
|
|
if (I.getPredicate() == ICmpInst::ICMP_SLT && CI->isOne() &&
|
|
|
|
match(Op0, m_NSWSub(m_Value(A), m_Value(B))))
|
|
|
|
return new ICmpInst(ICmpInst::ICMP_SLE, A, B);
|
2010-01-04 15:37:31 +08:00
|
|
|
}
|
2011-10-01 02:09:53 +08:00
|
|
|
|
2010-01-04 15:37:31 +08:00
|
|
|
// If we have an icmp le or icmp ge instruction, turn it into the
|
|
|
|
// appropriate icmp lt or icmp gt instruction. This allows us to rely on
|
|
|
|
// them being folded in the code below. The SimplifyICmpInst code has
|
|
|
|
// already handled the edge cases for us, so we just assert on them.
|
|
|
|
switch (I.getPredicate()) {
|
|
|
|
default: break;
|
|
|
|
case ICmpInst::ICMP_ULE:
|
|
|
|
assert(!CI->isMaxValue(false)); // A <=u MAX -> TRUE
|
|
|
|
return new ICmpInst(ICmpInst::ICMP_ULT, Op0,
|
2013-06-07 04:18:46 +08:00
|
|
|
Builder->getInt(CI->getValue()+1));
|
2010-01-04 15:37:31 +08:00
|
|
|
case ICmpInst::ICMP_SLE:
|
|
|
|
assert(!CI->isMaxValue(true)); // A <=s MAX -> TRUE
|
|
|
|
return new ICmpInst(ICmpInst::ICMP_SLT, Op0,
|
2013-06-07 04:18:46 +08:00
|
|
|
Builder->getInt(CI->getValue()+1));
|
2010-01-04 15:37:31 +08:00
|
|
|
case ICmpInst::ICMP_UGE:
|
2011-02-28 14:20:05 +08:00
|
|
|
assert(!CI->isMinValue(false)); // A >=u MIN -> TRUE
|
2010-01-04 15:37:31 +08:00
|
|
|
return new ICmpInst(ICmpInst::ICMP_UGT, Op0,
|
2013-06-07 04:18:46 +08:00
|
|
|
Builder->getInt(CI->getValue()-1));
|
2010-01-04 15:37:31 +08:00
|
|
|
case ICmpInst::ICMP_SGE:
|
2011-02-28 14:20:05 +08:00
|
|
|
assert(!CI->isMinValue(true)); // A >=s MIN -> TRUE
|
2010-01-04 15:37:31 +08:00
|
|
|
return new ICmpInst(ICmpInst::ICMP_SGT, Op0,
|
2013-06-07 04:18:46 +08:00
|
|
|
Builder->getInt(CI->getValue()-1));
|
2010-01-04 15:37:31 +08:00
|
|
|
}
|
2011-10-01 02:09:53 +08:00
|
|
|
|
2014-07-23 03:19:36 +08:00
|
|
|
if (I.isEquality()) {
|
|
|
|
ConstantInt *CI2;
|
|
|
|
if (match(Op0, m_AShr(m_ConstantInt(CI2), m_Value(A))) ||
|
|
|
|
match(Op0, m_LShr(m_ConstantInt(CI2), m_Value(A)))) {
|
2014-10-19 16:23:08 +08:00
|
|
|
// (icmp eq/ne (ashr/lshr const2, A), const1)
|
2014-10-25 15:13:13 +08:00
|
|
|
if (Instruction *Inst = FoldICmpCstShrCst(I, Op0, A, CI, CI2))
|
|
|
|
return Inst;
|
2014-07-23 03:19:36 +08:00
|
|
|
}
|
2014-10-19 16:23:08 +08:00
|
|
|
if (match(Op0, m_Shl(m_ConstantInt(CI2), m_Value(A)))) {
|
|
|
|
// (icmp eq/ne (shl const2, A), const1)
|
2014-10-25 15:13:13 +08:00
|
|
|
if (Instruction *Inst = FoldICmpCstShlCst(I, Op0, A, CI, CI2))
|
|
|
|
return Inst;
|
2014-10-19 16:23:08 +08:00
|
|
|
}
|
2014-07-23 03:19:36 +08:00
|
|
|
}
|
|
|
|
|
2010-01-04 15:37:31 +08:00
|
|
|
// If this comparison is a normal comparison, it demands all
|
|
|
|
// bits, if it is a sign bit comparison, it only demands the sign bit.
|
|
|
|
bool UnusedBit;
|
|
|
|
isSignBit = isSignBitCheck(I.getPredicate(), CI, UnusedBit);
|
|
|
|
}
|
|
|
|
|
|
|
|
// See if we can fold the comparison based on range information we can get
|
|
|
|
// by checking whether bits are known to be zero or one in the input.
|
|
|
|
if (BitWidth != 0) {
|
|
|
|
APInt Op0KnownZero(BitWidth, 0), Op0KnownOne(BitWidth, 0);
|
|
|
|
APInt Op1KnownZero(BitWidth, 0), Op1KnownOne(BitWidth, 0);
|
|
|
|
|
|
|
|
if (SimplifyDemandedBits(I.getOperandUse(0),
|
2011-01-11 08:36:45 +08:00
|
|
|
DemandedBitsLHSMask(I, BitWidth, isSignBit),
|
2010-01-04 15:37:31 +08:00
|
|
|
Op0KnownZero, Op0KnownOne, 0))
|
|
|
|
return &I;
|
|
|
|
if (SimplifyDemandedBits(I.getOperandUse(1),
|
2015-03-10 10:37:25 +08:00
|
|
|
APInt::getAllOnesValue(BitWidth), Op1KnownZero,
|
|
|
|
Op1KnownOne, 0))
|
2010-01-04 15:37:31 +08:00
|
|
|
return &I;
|
|
|
|
|
|
|
|
// Given the known and unknown bits, compute a range that the LHS could be
|
|
|
|
// in. Compute the Min, Max and RHS values based on the known bits. For the
|
|
|
|
// EQ and NE we use unsigned values.
|
|
|
|
APInt Op0Min(BitWidth, 0), Op0Max(BitWidth, 0);
|
|
|
|
APInt Op1Min(BitWidth, 0), Op1Max(BitWidth, 0);
|
|
|
|
if (I.isSigned()) {
|
|
|
|
ComputeSignedMinMaxValuesFromKnownBits(Op0KnownZero, Op0KnownOne,
|
|
|
|
Op0Min, Op0Max);
|
|
|
|
ComputeSignedMinMaxValuesFromKnownBits(Op1KnownZero, Op1KnownOne,
|
|
|
|
Op1Min, Op1Max);
|
|
|
|
} else {
|
|
|
|
ComputeUnsignedMinMaxValuesFromKnownBits(Op0KnownZero, Op0KnownOne,
|
|
|
|
Op0Min, Op0Max);
|
|
|
|
ComputeUnsignedMinMaxValuesFromKnownBits(Op1KnownZero, Op1KnownOne,
|
|
|
|
Op1Min, Op1Max);
|
|
|
|
}
|
|
|
|
|
|
|
|
// If Min and Max are known to be the same, then SimplifyDemandedBits
|
|
|
|
// figured out that the LHS is a constant. Just constant fold this now so
|
|
|
|
// that code below can assume that Min != Max.
|
|
|
|
if (!isa<Constant>(Op0) && Op0Min == Op0Max)
|
|
|
|
return new ICmpInst(I.getPredicate(),
|
2011-03-06 11:36:19 +08:00
|
|
|
ConstantInt::get(Op0->getType(), Op0Min), Op1);
|
2010-01-04 15:37:31 +08:00
|
|
|
if (!isa<Constant>(Op1) && Op1Min == Op1Max)
|
|
|
|
return new ICmpInst(I.getPredicate(), Op0,
|
2011-03-06 11:36:19 +08:00
|
|
|
ConstantInt::get(Op1->getType(), Op1Min));
|
2010-01-04 15:37:31 +08:00
|
|
|
|
|
|
|
// Based on the range information we know about the LHS, see if we can
|
2011-02-28 14:20:05 +08:00
|
|
|
// simplify this comparison. For example, (x&4) < 8 is always true.
|
2010-01-04 15:37:31 +08:00
|
|
|
switch (I.getPredicate()) {
|
|
|
|
default: llvm_unreachable("Unknown icmp opcode!");
|
2010-11-21 14:44:42 +08:00
|
|
|
case ICmpInst::ICMP_EQ: {
|
2010-01-04 15:37:31 +08:00
|
|
|
if (Op0Max.ult(Op1Min) || Op0Min.ugt(Op1Max))
|
2016-02-02 06:23:39 +08:00
|
|
|
return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
|
2011-10-01 02:09:53 +08:00
|
|
|
|
2010-11-21 14:44:42 +08:00
|
|
|
// If all bits are known zero except for one, then we know at most one
|
|
|
|
// bit is set. If the comparison is against zero, then this is a check
|
|
|
|
// to see if *that* bit is set.
|
|
|
|
APInt Op0KnownZeroInverted = ~Op0KnownZero;
|
2014-06-02 15:57:24 +08:00
|
|
|
if (~Op1KnownZero == 0) {
|
2010-11-21 14:44:42 +08:00
|
|
|
// If the LHS is an AND with the same constant, look through it.
|
2014-04-25 13:29:35 +08:00
|
|
|
Value *LHS = nullptr;
|
|
|
|
ConstantInt *LHSC = nullptr;
|
2010-11-21 14:44:42 +08:00
|
|
|
if (!match(Op0, m_And(m_Value(LHS), m_ConstantInt(LHSC))) ||
|
|
|
|
LHSC->getValue() != Op0KnownZeroInverted)
|
|
|
|
LHS = Op0;
|
2011-10-01 02:09:53 +08:00
|
|
|
|
2010-11-21 14:44:42 +08:00
|
|
|
// If the LHS is 1 << x, and we know the result is a power of 2 like 8,
|
2010-11-23 10:42:04 +08:00
|
|
|
// then turn "((1 << x)&8) == 0" into "x != 3".
|
2014-06-02 15:57:24 +08:00
|
|
|
// or turn "((1 << x)&7) == 0" into "x > 2".
|
2014-04-25 13:29:35 +08:00
|
|
|
Value *X = nullptr;
|
2010-11-21 14:44:42 +08:00
|
|
|
if (match(LHS, m_Shl(m_One(), m_Value(X)))) {
|
2014-06-02 15:57:24 +08:00
|
|
|
APInt ValToCheck = Op0KnownZeroInverted;
|
|
|
|
if (ValToCheck.isPowerOf2()) {
|
|
|
|
unsigned CmpVal = ValToCheck.countTrailingZeros();
|
|
|
|
return new ICmpInst(ICmpInst::ICMP_NE, X,
|
|
|
|
ConstantInt::get(X->getType(), CmpVal));
|
|
|
|
} else if ((++ValToCheck).isPowerOf2()) {
|
|
|
|
unsigned CmpVal = ValToCheck.countTrailingZeros() - 1;
|
|
|
|
return new ICmpInst(ICmpInst::ICMP_UGT, X,
|
|
|
|
ConstantInt::get(X->getType(), CmpVal));
|
|
|
|
}
|
2010-11-21 14:44:42 +08:00
|
|
|
}
|
2011-10-01 02:09:53 +08:00
|
|
|
|
2010-11-21 14:44:42 +08:00
|
|
|
// If the LHS is 8 >>u x, and we know the result is a power of 2 like 1,
|
2010-11-23 10:42:04 +08:00
|
|
|
// then turn "((8 >>u x)&1) == 0" into "x != 3".
|
2011-02-10 13:23:05 +08:00
|
|
|
const APInt *CI;
|
2010-11-21 14:44:42 +08:00
|
|
|
if (Op0KnownZeroInverted == 1 &&
|
2011-02-10 13:23:05 +08:00
|
|
|
match(LHS, m_LShr(m_Power2(CI), m_Value(X))))
|
2010-11-23 10:42:04 +08:00
|
|
|
return new ICmpInst(ICmpInst::ICMP_NE, X,
|
2011-02-10 13:23:05 +08:00
|
|
|
ConstantInt::get(X->getType(),
|
|
|
|
CI->countTrailingZeros()));
|
2010-11-21 14:44:42 +08:00
|
|
|
}
|
2010-01-04 15:37:31 +08:00
|
|
|
break;
|
2010-11-21 14:44:42 +08:00
|
|
|
}
|
|
|
|
case ICmpInst::ICMP_NE: {
|
2010-01-04 15:37:31 +08:00
|
|
|
if (Op0Max.ult(Op1Min) || Op0Min.ugt(Op1Max))
|
2016-02-02 06:23:39 +08:00
|
|
|
return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
|
2011-10-01 02:09:53 +08:00
|
|
|
|
2010-11-21 14:44:42 +08:00
|
|
|
// If all bits are known zero except for one, then we know at most one
|
|
|
|
// bit is set. If the comparison is against zero, then this is a check
|
|
|
|
// to see if *that* bit is set.
|
|
|
|
APInt Op0KnownZeroInverted = ~Op0KnownZero;
|
2014-06-02 15:57:24 +08:00
|
|
|
if (~Op1KnownZero == 0) {
|
2010-11-21 14:44:42 +08:00
|
|
|
// If the LHS is an AND with the same constant, look through it.
|
2014-04-25 13:29:35 +08:00
|
|
|
Value *LHS = nullptr;
|
|
|
|
ConstantInt *LHSC = nullptr;
|
2010-11-21 14:44:42 +08:00
|
|
|
if (!match(Op0, m_And(m_Value(LHS), m_ConstantInt(LHSC))) ||
|
|
|
|
LHSC->getValue() != Op0KnownZeroInverted)
|
|
|
|
LHS = Op0;
|
2011-10-01 02:09:53 +08:00
|
|
|
|
2010-11-21 14:44:42 +08:00
|
|
|
// If the LHS is 1 << x, and we know the result is a power of 2 like 8,
|
2010-11-23 10:42:04 +08:00
|
|
|
// then turn "((1 << x)&8) != 0" into "x == 3".
|
2014-06-02 15:57:24 +08:00
|
|
|
// or turn "((1 << x)&7) != 0" into "x < 3".
|
2014-04-25 13:29:35 +08:00
|
|
|
Value *X = nullptr;
|
2010-11-21 14:44:42 +08:00
|
|
|
if (match(LHS, m_Shl(m_One(), m_Value(X)))) {
|
2014-06-02 15:57:24 +08:00
|
|
|
APInt ValToCheck = Op0KnownZeroInverted;
|
|
|
|
if (ValToCheck.isPowerOf2()) {
|
|
|
|
unsigned CmpVal = ValToCheck.countTrailingZeros();
|
|
|
|
return new ICmpInst(ICmpInst::ICMP_EQ, X,
|
|
|
|
ConstantInt::get(X->getType(), CmpVal));
|
|
|
|
} else if ((++ValToCheck).isPowerOf2()) {
|
|
|
|
unsigned CmpVal = ValToCheck.countTrailingZeros();
|
|
|
|
return new ICmpInst(ICmpInst::ICMP_ULT, X,
|
|
|
|
ConstantInt::get(X->getType(), CmpVal));
|
|
|
|
}
|
2010-11-21 14:44:42 +08:00
|
|
|
}
|
2011-10-01 02:09:53 +08:00
|
|
|
|
2010-11-21 14:44:42 +08:00
|
|
|
// If the LHS is 8 >>u x, and we know the result is a power of 2 like 1,
|
2010-11-23 10:42:04 +08:00
|
|
|
// then turn "((8 >>u x)&1) != 0" into "x == 3".
|
2011-02-10 13:23:05 +08:00
|
|
|
const APInt *CI;
|
2010-11-21 14:44:42 +08:00
|
|
|
if (Op0KnownZeroInverted == 1 &&
|
2011-02-10 13:23:05 +08:00
|
|
|
match(LHS, m_LShr(m_Power2(CI), m_Value(X))))
|
2010-11-23 10:42:04 +08:00
|
|
|
return new ICmpInst(ICmpInst::ICMP_EQ, X,
|
2011-02-10 13:23:05 +08:00
|
|
|
ConstantInt::get(X->getType(),
|
|
|
|
CI->countTrailingZeros()));
|
2010-11-21 14:44:42 +08:00
|
|
|
}
|
2010-01-04 15:37:31 +08:00
|
|
|
break;
|
2010-11-21 14:44:42 +08:00
|
|
|
}
|
2010-01-04 15:37:31 +08:00
|
|
|
case ICmpInst::ICMP_ULT:
|
|
|
|
if (Op0Max.ult(Op1Min)) // A <u B -> true if max(A) < min(B)
|
2016-02-02 06:23:39 +08:00
|
|
|
return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
|
2010-01-04 15:37:31 +08:00
|
|
|
if (Op0Min.uge(Op1Max)) // A <u B -> false if min(A) >= max(B)
|
2016-02-02 06:23:39 +08:00
|
|
|
return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
|
2010-01-04 15:37:31 +08:00
|
|
|
if (Op1Min == Op0Max) // A <u B -> A != B if max(A) == min(B)
|
|
|
|
return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
|
|
|
|
if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
|
|
|
|
if (Op1Max == Op0Min+1) // A <u C -> A == C-1 if min(A)+1 == C
|
|
|
|
return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
|
2013-06-07 04:18:46 +08:00
|
|
|
Builder->getInt(CI->getValue()-1));
|
2010-01-04 15:37:31 +08:00
|
|
|
|
|
|
|
// (x <u 2147483648) -> (x >s -1) -> true if sign bit clear
|
|
|
|
if (CI->isMinValue(true))
|
|
|
|
return new ICmpInst(ICmpInst::ICMP_SGT, Op0,
|
|
|
|
Constant::getAllOnesValue(Op0->getType()));
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
case ICmpInst::ICMP_UGT:
|
|
|
|
if (Op0Min.ugt(Op1Max)) // A >u B -> true if min(A) > max(B)
|
2016-02-02 06:23:39 +08:00
|
|
|
return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
|
2010-01-04 15:37:31 +08:00
|
|
|
if (Op0Max.ule(Op1Min)) // A >u B -> false if max(A) <= max(B)
|
2016-02-02 06:23:39 +08:00
|
|
|
return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
|
2010-01-04 15:37:31 +08:00
|
|
|
|
|
|
|
if (Op1Max == Op0Min) // A >u B -> A != B if min(A) == max(B)
|
|
|
|
return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
|
|
|
|
if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
|
|
|
|
if (Op1Min == Op0Max-1) // A >u C -> A == C+1 if max(a)-1 == C
|
|
|
|
return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
|
2013-06-07 04:18:46 +08:00
|
|
|
Builder->getInt(CI->getValue()+1));
|
2010-01-04 15:37:31 +08:00
|
|
|
|
|
|
|
// (x >u 2147483647) -> (x <s 0) -> true if sign bit set
|
|
|
|
if (CI->isMaxValue(true))
|
|
|
|
return new ICmpInst(ICmpInst::ICMP_SLT, Op0,
|
|
|
|
Constant::getNullValue(Op0->getType()));
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
case ICmpInst::ICMP_SLT:
|
|
|
|
if (Op0Max.slt(Op1Min)) // A <s B -> true if max(A) < min(C)
|
2016-02-02 06:23:39 +08:00
|
|
|
return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
|
2010-01-04 15:37:31 +08:00
|
|
|
if (Op0Min.sge(Op1Max)) // A <s B -> false if min(A) >= max(C)
|
2016-02-02 06:23:39 +08:00
|
|
|
return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
|
2010-01-04 15:37:31 +08:00
|
|
|
if (Op1Min == Op0Max) // A <s B -> A != B if max(A) == min(B)
|
|
|
|
return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
|
|
|
|
if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
|
|
|
|
if (Op1Max == Op0Min+1) // A <s C -> A == C-1 if min(A)+1 == C
|
|
|
|
return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
|
2013-06-07 04:18:46 +08:00
|
|
|
Builder->getInt(CI->getValue()-1));
|
2010-01-04 15:37:31 +08:00
|
|
|
}
|
|
|
|
break;
|
|
|
|
case ICmpInst::ICMP_SGT:
|
|
|
|
if (Op0Min.sgt(Op1Max)) // A >s B -> true if min(A) > max(B)
|
2016-02-02 06:23:39 +08:00
|
|
|
return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
|
2010-01-04 15:37:31 +08:00
|
|
|
if (Op0Max.sle(Op1Min)) // A >s B -> false if max(A) <= min(B)
|
2016-02-02 06:23:39 +08:00
|
|
|
return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
|
2010-01-04 15:37:31 +08:00
|
|
|
|
|
|
|
if (Op1Max == Op0Min) // A >s B -> A != B if min(A) == max(B)
|
|
|
|
return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
|
|
|
|
if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
|
|
|
|
if (Op1Min == Op0Max-1) // A >s C -> A == C+1 if max(A)-1 == C
|
|
|
|
return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
|
2013-06-07 04:18:46 +08:00
|
|
|
Builder->getInt(CI->getValue()+1));
|
2010-01-04 15:37:31 +08:00
|
|
|
}
|
|
|
|
break;
|
|
|
|
case ICmpInst::ICMP_SGE:
|
|
|
|
assert(!isa<ConstantInt>(Op1) && "ICMP_SGE with ConstantInt not folded!");
|
|
|
|
if (Op0Min.sge(Op1Max)) // A >=s B -> true if min(A) >= max(B)
|
2016-02-02 06:23:39 +08:00
|
|
|
return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
|
2010-01-04 15:37:31 +08:00
|
|
|
if (Op0Max.slt(Op1Min)) // A >=s B -> false if max(A) < min(B)
|
2016-02-02 06:23:39 +08:00
|
|
|
return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
|
2010-01-04 15:37:31 +08:00
|
|
|
break;
|
|
|
|
case ICmpInst::ICMP_SLE:
|
|
|
|
assert(!isa<ConstantInt>(Op1) && "ICMP_SLE with ConstantInt not folded!");
|
|
|
|
if (Op0Max.sle(Op1Min)) // A <=s B -> true if max(A) <= min(B)
|
2016-02-02 06:23:39 +08:00
|
|
|
return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
|
2010-01-04 15:37:31 +08:00
|
|
|
if (Op0Min.sgt(Op1Max)) // A <=s B -> false if min(A) > max(B)
|
2016-02-02 06:23:39 +08:00
|
|
|
return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
|
2010-01-04 15:37:31 +08:00
|
|
|
break;
|
|
|
|
case ICmpInst::ICMP_UGE:
|
|
|
|
assert(!isa<ConstantInt>(Op1) && "ICMP_UGE with ConstantInt not folded!");
|
|
|
|
if (Op0Min.uge(Op1Max)) // A >=u B -> true if min(A) >= max(B)
|
2016-02-02 06:23:39 +08:00
|
|
|
return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
|
2010-01-04 15:37:31 +08:00
|
|
|
if (Op0Max.ult(Op1Min)) // A >=u B -> false if max(A) < min(B)
|
2016-02-02 06:23:39 +08:00
|
|
|
return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
|
2010-01-04 15:37:31 +08:00
|
|
|
break;
|
|
|
|
case ICmpInst::ICMP_ULE:
|
|
|
|
assert(!isa<ConstantInt>(Op1) && "ICMP_ULE with ConstantInt not folded!");
|
|
|
|
if (Op0Max.ule(Op1Min)) // A <=u B -> true if max(A) <= min(B)
|
2016-02-02 06:23:39 +08:00
|
|
|
return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
|
2010-01-04 15:37:31 +08:00
|
|
|
if (Op0Min.ugt(Op1Max)) // A <=u B -> false if min(A) > max(B)
|
2016-02-02 06:23:39 +08:00
|
|
|
return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
|
2010-01-04 15:37:31 +08:00
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Turn a signed comparison into an unsigned one if both operands
|
|
|
|
// are known to have the same sign.
|
|
|
|
if (I.isSigned() &&
|
|
|
|
((Op0KnownZero.isNegative() && Op1KnownZero.isNegative()) ||
|
|
|
|
(Op0KnownOne.isNegative() && Op1KnownOne.isNegative())))
|
|
|
|
return new ICmpInst(I.getUnsignedPredicate(), Op0, Op1);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Test if the ICmpInst instruction is used exclusively by a select as
|
|
|
|
// part of a minimum or maximum operation. If so, refrain from doing
|
|
|
|
// any other folding. This helps out other analyses which understand
|
|
|
|
// non-obfuscated minimum and maximum idioms, such as ScalarEvolution
|
|
|
|
// and CodeGen. And in this case, at least one of the comparison
|
|
|
|
// operands has at least one user besides the compare (the select),
|
|
|
|
// which would often largely negate the benefit of folding anyway.
|
|
|
|
if (I.hasOneUse())
|
2014-03-09 11:16:01 +08:00
|
|
|
if (SelectInst *SI = dyn_cast<SelectInst>(*I.user_begin()))
|
2010-01-04 15:37:31 +08:00
|
|
|
if ((SI->getOperand(1) == Op0 && SI->getOperand(2) == Op1) ||
|
|
|
|
(SI->getOperand(2) == Op0 && SI->getOperand(1) == Op1))
|
2014-04-25 13:29:35 +08:00
|
|
|
return nullptr;
|
2010-01-04 15:37:31 +08:00
|
|
|
|
|
|
|
// See if we are doing a comparison between a constant and an instruction that
|
|
|
|
// can be folded into the comparison.
|
|
|
|
if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
|
2011-10-01 02:09:53 +08:00
|
|
|
// Since the RHS is a ConstantInt (CI), if the left hand side is an
|
|
|
|
// instruction, see if that instruction also has constants so that the
|
|
|
|
// instruction can be folded into the icmp
|
2010-01-04 15:37:31 +08:00
|
|
|
if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
|
|
|
|
if (Instruction *Res = visitICmpInstWithInstAndIntCst(I, LHSI, CI))
|
|
|
|
return Res;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Handle icmp with constant (but not simple integer constant) RHS
|
|
|
|
if (Constant *RHSC = dyn_cast<Constant>(Op1)) {
|
|
|
|
if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
|
|
|
|
switch (LHSI->getOpcode()) {
|
|
|
|
case Instruction::GetElementPtr:
|
|
|
|
// icmp pred GEP (P, int 0, int 0, int 0), null -> icmp pred P, null
|
|
|
|
if (RHSC->isNullValue() &&
|
|
|
|
cast<GetElementPtrInst>(LHSI)->hasAllZeroIndices())
|
|
|
|
return new ICmpInst(I.getPredicate(), LHSI->getOperand(0),
|
|
|
|
Constant::getNullValue(LHSI->getOperand(0)->getType()));
|
|
|
|
break;
|
|
|
|
case Instruction::PHI:
|
|
|
|
// Only fold icmp into the PHI if the phi and icmp are in the same
|
|
|
|
// block. If in the same block, we're encouraging jump threading. If
|
|
|
|
// not, we are just pessimizing the code by making an i1 phi.
|
|
|
|
if (LHSI->getParent() == I.getParent())
|
2011-01-16 13:14:26 +08:00
|
|
|
if (Instruction *NV = FoldOpIntoPhi(I))
|
2010-01-04 15:37:31 +08:00
|
|
|
return NV;
|
|
|
|
break;
|
|
|
|
case Instruction::Select: {
|
|
|
|
// If either operand of the select is a constant, we can fold the
|
|
|
|
// comparison into the select arms, which will cause one to be
|
|
|
|
// constant folded and the select turned into a bitwise or.
|
2014-04-25 13:29:35 +08:00
|
|
|
Value *Op1 = nullptr, *Op2 = nullptr;
|
2015-10-07 07:24:35 +08:00
|
|
|
ConstantInt *CI = nullptr;
|
2014-11-22 07:36:44 +08:00
|
|
|
if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(1))) {
|
2010-01-04 15:37:31 +08:00
|
|
|
Op1 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
|
2014-11-22 07:36:44 +08:00
|
|
|
CI = dyn_cast<ConstantInt>(Op1);
|
|
|
|
}
|
|
|
|
if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(2))) {
|
2010-01-04 15:37:31 +08:00
|
|
|
Op2 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
|
2014-11-22 07:36:44 +08:00
|
|
|
CI = dyn_cast<ConstantInt>(Op2);
|
|
|
|
}
|
2010-01-04 15:37:31 +08:00
|
|
|
|
|
|
|
// We only want to perform this transformation if it will not lead to
|
|
|
|
// additional code. This is true if either both sides of the select
|
|
|
|
// fold to a constant (in which case the icmp is replaced with a select
|
|
|
|
// which will usually simplify) or this is the only user of the
|
|
|
|
// select (in which case we are trading a select+icmp for a simpler
|
2014-11-22 07:36:44 +08:00
|
|
|
// select+icmp) or all uses of the select can be replaced based on
|
|
|
|
// dominance information ("Global cases").
|
|
|
|
bool Transform = false;
|
|
|
|
if (Op1 && Op2)
|
|
|
|
Transform = true;
|
|
|
|
else if (Op1 || Op2) {
|
|
|
|
// Local case
|
|
|
|
if (LHSI->hasOneUse())
|
|
|
|
Transform = true;
|
|
|
|
// Global cases
|
|
|
|
else if (CI && !CI->isZero())
|
|
|
|
// When Op1 is constant try replacing select with second operand.
|
|
|
|
// Otherwise Op2 is constant and try replacing select with first
|
|
|
|
// operand.
|
|
|
|
Transform = replacedSelectWithOperand(cast<SelectInst>(LHSI), &I,
|
|
|
|
Op1 ? 2 : 1);
|
|
|
|
}
|
|
|
|
if (Transform) {
|
2010-01-04 15:37:31 +08:00
|
|
|
if (!Op1)
|
|
|
|
Op1 = Builder->CreateICmp(I.getPredicate(), LHSI->getOperand(1),
|
|
|
|
RHSC, I.getName());
|
|
|
|
if (!Op2)
|
|
|
|
Op2 = Builder->CreateICmp(I.getPredicate(), LHSI->getOperand(2),
|
|
|
|
RHSC, I.getName());
|
|
|
|
return SelectInst::Create(LHSI->getOperand(0), Op1, Op2);
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
case Instruction::IntToPtr:
|
|
|
|
// icmp pred inttoptr(X), null -> icmp pred X, 0
|
2015-03-10 10:37:25 +08:00
|
|
|
if (RHSC->isNullValue() &&
|
|
|
|
DL.getIntPtrType(RHSC->getType()) == LHSI->getOperand(0)->getType())
|
2010-01-04 15:37:31 +08:00
|
|
|
return new ICmpInst(I.getPredicate(), LHSI->getOperand(0),
|
|
|
|
Constant::getNullValue(LHSI->getOperand(0)->getType()));
|
|
|
|
break;
|
|
|
|
|
|
|
|
case Instruction::Load:
|
|
|
|
// Try to optimize things like "A[i] > 4" to index computations.
|
|
|
|
if (GetElementPtrInst *GEP =
|
|
|
|
dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) {
|
|
|
|
if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
|
|
|
|
if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
|
|
|
|
!cast<LoadInst>(LHSI)->isVolatile())
|
|
|
|
if (Instruction *Res = FoldCmpLoadFromIndexedGlobal(GEP, GV, I))
|
|
|
|
return Res;
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// If we can optimize a 'icmp GEP, P' or 'icmp P, GEP', do so now.
|
|
|
|
if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op0))
|
|
|
|
if (Instruction *NI = FoldGEPICmp(GEP, Op1, I.getPredicate(), I))
|
|
|
|
return NI;
|
|
|
|
if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op1))
|
|
|
|
if (Instruction *NI = FoldGEPICmp(GEP, Op0,
|
|
|
|
ICmpInst::getSwappedPredicate(I.getPredicate()), I))
|
|
|
|
return NI;
|
|
|
|
|
2015-10-07 08:20:07 +08:00
|
|
|
// Try to optimize equality comparisons against alloca-based pointers.
|
|
|
|
if (Op0->getType()->isPointerTy() && I.isEquality()) {
|
|
|
|
assert(Op1->getType()->isPointerTy() && "Comparing pointer with non-pointer?");
|
|
|
|
if (auto *Alloca = dyn_cast<AllocaInst>(GetUnderlyingObject(Op0, DL)))
|
|
|
|
if (Instruction *New = FoldAllocaCmp(I, Alloca, Op1))
|
|
|
|
return New;
|
|
|
|
if (auto *Alloca = dyn_cast<AllocaInst>(GetUnderlyingObject(Op1, DL)))
|
|
|
|
if (Instruction *New = FoldAllocaCmp(I, Alloca, Op0))
|
|
|
|
return New;
|
|
|
|
}
|
|
|
|
|
2010-01-04 15:37:31 +08:00
|
|
|
// Test to see if the operands of the icmp are casted versions of other
|
|
|
|
// values. If the ptr->ptr cast can be stripped off both arguments, we do so
|
|
|
|
// now.
|
|
|
|
if (BitCastInst *CI = dyn_cast<BitCastInst>(Op0)) {
|
2011-10-01 02:09:53 +08:00
|
|
|
if (Op0->getType()->isPointerTy() &&
|
|
|
|
(isa<Constant>(Op1) || isa<BitCastInst>(Op1))) {
|
2010-01-04 15:37:31 +08:00
|
|
|
// We keep moving the cast from the left operand over to the right
|
|
|
|
// operand, where it can often be eliminated completely.
|
|
|
|
Op0 = CI->getOperand(0);
|
|
|
|
|
|
|
|
// If operand #1 is a bitcast instruction, it must also be a ptr->ptr cast
|
|
|
|
// so eliminate it as well.
|
|
|
|
if (BitCastInst *CI2 = dyn_cast<BitCastInst>(Op1))
|
|
|
|
Op1 = CI2->getOperand(0);
|
|
|
|
|
|
|
|
// If Op1 is a constant, we can fold the cast into the constant.
|
|
|
|
if (Op0->getType() != Op1->getType()) {
|
|
|
|
if (Constant *Op1C = dyn_cast<Constant>(Op1)) {
|
|
|
|
Op1 = ConstantExpr::getBitCast(Op1C, Op0->getType());
|
|
|
|
} else {
|
|
|
|
// Otherwise, cast the RHS right before the icmp
|
|
|
|
Op1 = Builder->CreateBitCast(Op1, Op0->getType());
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return new ICmpInst(I.getPredicate(), Op0, Op1);
|
|
|
|
}
|
|
|
|
}
|
2011-10-01 02:09:53 +08:00
|
|
|
|
2010-01-04 15:37:31 +08:00
|
|
|
if (isa<CastInst>(Op0)) {
|
|
|
|
// Handle the special case of: icmp (cast bool to X), <cst>
|
|
|
|
// This comes up when you have code like
|
|
|
|
// int X = A < B;
|
|
|
|
// if (X) ...
|
|
|
|
// For generality, we handle any zero-extension of any operand comparison
|
|
|
|
// with a constant or another cast from the same type.
|
|
|
|
if (isa<Constant>(Op1) || isa<CastInst>(Op1))
|
|
|
|
if (Instruction *R = visitICmpInstWithCastAndCast(I))
|
|
|
|
return R;
|
|
|
|
}
|
2011-02-17 15:46:37 +08:00
|
|
|
|
|
|
|
// Special logic for binary operators.
|
|
|
|
BinaryOperator *BO0 = dyn_cast<BinaryOperator>(Op0);
|
|
|
|
BinaryOperator *BO1 = dyn_cast<BinaryOperator>(Op1);
|
|
|
|
if (BO0 || BO1) {
|
|
|
|
CmpInst::Predicate Pred = I.getPredicate();
|
|
|
|
bool NoOp0WrapProblem = false, NoOp1WrapProblem = false;
|
|
|
|
if (BO0 && isa<OverflowingBinaryOperator>(BO0))
|
|
|
|
NoOp0WrapProblem = ICmpInst::isEquality(Pred) ||
|
|
|
|
(CmpInst::isUnsigned(Pred) && BO0->hasNoUnsignedWrap()) ||
|
|
|
|
(CmpInst::isSigned(Pred) && BO0->hasNoSignedWrap());
|
|
|
|
if (BO1 && isa<OverflowingBinaryOperator>(BO1))
|
|
|
|
NoOp1WrapProblem = ICmpInst::isEquality(Pred) ||
|
|
|
|
(CmpInst::isUnsigned(Pred) && BO1->hasNoUnsignedWrap()) ||
|
|
|
|
(CmpInst::isSigned(Pred) && BO1->hasNoSignedWrap());
|
|
|
|
|
|
|
|
// Analyze the case when either Op0 or Op1 is an add instruction.
|
|
|
|
// Op0 = A + B (or A and B are null); Op1 = C + D (or C and D are null).
|
2014-04-25 13:29:35 +08:00
|
|
|
Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr;
|
2016-02-19 06:09:30 +08:00
|
|
|
if (BO0 && BO0->getOpcode() == Instruction::Add) {
|
|
|
|
A = BO0->getOperand(0);
|
|
|
|
B = BO0->getOperand(1);
|
|
|
|
}
|
|
|
|
if (BO1 && BO1->getOpcode() == Instruction::Add) {
|
|
|
|
C = BO1->getOperand(0);
|
|
|
|
D = BO1->getOperand(1);
|
|
|
|
}
|
2011-02-17 15:46:37 +08:00
|
|
|
|
2014-11-01 17:09:51 +08:00
|
|
|
// icmp (X+cst) < 0 --> X < -cst
|
|
|
|
if (NoOp0WrapProblem && ICmpInst::isSigned(Pred) && match(Op1, m_Zero()))
|
|
|
|
if (ConstantInt *RHSC = dyn_cast_or_null<ConstantInt>(B))
|
|
|
|
if (!RHSC->isMinValue(/*isSigned=*/true))
|
|
|
|
return new ICmpInst(Pred, A, ConstantExpr::getNeg(RHSC));
|
|
|
|
|
2011-02-17 15:46:37 +08:00
|
|
|
// icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow.
|
|
|
|
if ((A == Op1 || B == Op1) && NoOp0WrapProblem)
|
|
|
|
return new ICmpInst(Pred, A == Op1 ? B : A,
|
|
|
|
Constant::getNullValue(Op1->getType()));
|
|
|
|
|
|
|
|
// icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow.
|
|
|
|
if ((C == Op0 || D == Op0) && NoOp1WrapProblem)
|
|
|
|
return new ICmpInst(Pred, Constant::getNullValue(Op0->getType()),
|
|
|
|
C == Op0 ? D : C);
|
|
|
|
|
2011-02-19 00:25:37 +08:00
|
|
|
// icmp (X+Y), (X+Z) -> icmp Y, Z for equalities or if there is no overflow.
|
2011-02-17 15:46:37 +08:00
|
|
|
if (A && C && (A == C || A == D || B == C || B == D) &&
|
|
|
|
NoOp0WrapProblem && NoOp1WrapProblem &&
|
|
|
|
// Try not to increase register pressure.
|
|
|
|
BO0->hasOneUse() && BO1->hasOneUse()) {
|
|
|
|
// Determine Y and Z in the form icmp (X+Y), (X+Z).
|
2012-11-17 02:55:49 +08:00
|
|
|
Value *Y, *Z;
|
|
|
|
if (A == C) {
|
2012-11-17 04:53:08 +08:00
|
|
|
// C + B == C + D -> B == D
|
2012-11-17 02:55:49 +08:00
|
|
|
Y = B;
|
|
|
|
Z = D;
|
|
|
|
} else if (A == D) {
|
2012-11-17 04:53:08 +08:00
|
|
|
// D + B == C + D -> B == C
|
2012-11-17 02:55:49 +08:00
|
|
|
Y = B;
|
|
|
|
Z = C;
|
|
|
|
} else if (B == C) {
|
2012-11-17 04:53:08 +08:00
|
|
|
// A + C == C + D -> A == D
|
2012-11-17 02:55:49 +08:00
|
|
|
Y = A;
|
|
|
|
Z = D;
|
2012-11-17 04:53:08 +08:00
|
|
|
} else {
|
|
|
|
assert(B == D);
|
|
|
|
// A + D == C + D -> A == C
|
2012-11-17 02:55:49 +08:00
|
|
|
Y = A;
|
|
|
|
Z = C;
|
|
|
|
}
|
2011-02-17 15:46:37 +08:00
|
|
|
return new ICmpInst(Pred, Y, Z);
|
|
|
|
}
|
|
|
|
|
2013-04-12 04:05:46 +08:00
|
|
|
// icmp slt (X + -1), Y -> icmp sle X, Y
|
|
|
|
if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLT &&
|
|
|
|
match(B, m_AllOnes()))
|
|
|
|
return new ICmpInst(CmpInst::ICMP_SLE, A, Op1);
|
|
|
|
|
|
|
|
// icmp sge (X + -1), Y -> icmp sgt X, Y
|
|
|
|
if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGE &&
|
|
|
|
match(B, m_AllOnes()))
|
|
|
|
return new ICmpInst(CmpInst::ICMP_SGT, A, Op1);
|
|
|
|
|
|
|
|
// icmp sle (X + 1), Y -> icmp slt X, Y
|
|
|
|
if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLE &&
|
|
|
|
match(B, m_One()))
|
|
|
|
return new ICmpInst(CmpInst::ICMP_SLT, A, Op1);
|
|
|
|
|
|
|
|
// icmp sgt (X + 1), Y -> icmp sge X, Y
|
|
|
|
if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGT &&
|
|
|
|
match(B, m_One()))
|
|
|
|
return new ICmpInst(CmpInst::ICMP_SGE, A, Op1);
|
|
|
|
|
2015-10-20 06:08:14 +08:00
|
|
|
// icmp sgt X, (Y + -1) -> icmp sge X, Y
|
|
|
|
if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SGT &&
|
|
|
|
match(D, m_AllOnes()))
|
|
|
|
return new ICmpInst(CmpInst::ICMP_SGE, Op0, C);
|
|
|
|
|
|
|
|
// icmp sle X, (Y + -1) -> icmp slt X, Y
|
|
|
|
if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SLE &&
|
|
|
|
match(D, m_AllOnes()))
|
|
|
|
return new ICmpInst(CmpInst::ICMP_SLT, Op0, C);
|
|
|
|
|
|
|
|
// icmp sge X, (Y + 1) -> icmp sgt X, Y
|
|
|
|
if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SGE &&
|
|
|
|
match(D, m_One()))
|
|
|
|
return new ICmpInst(CmpInst::ICMP_SGT, Op0, C);
|
|
|
|
|
|
|
|
// icmp slt X, (Y + 1) -> icmp sle X, Y
|
|
|
|
if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SLT &&
|
|
|
|
match(D, m_One()))
|
|
|
|
return new ICmpInst(CmpInst::ICMP_SLE, Op0, C);
|
|
|
|
|
2013-04-12 04:05:46 +08:00
|
|
|
// if C1 has greater magnitude than C2:
|
|
|
|
// icmp (X + C1), (Y + C2) -> icmp (X + C3), Y
|
|
|
|
// s.t. C3 = C1 - C2
|
|
|
|
//
|
|
|
|
// if C2 has greater magnitude than C1:
|
|
|
|
// icmp (X + C1), (Y + C2) -> icmp X, (Y + C3)
|
|
|
|
// s.t. C3 = C2 - C1
|
|
|
|
if (A && C && NoOp0WrapProblem && NoOp1WrapProblem &&
|
|
|
|
(BO0->hasOneUse() || BO1->hasOneUse()) && !I.isUnsigned())
|
|
|
|
if (ConstantInt *C1 = dyn_cast<ConstantInt>(B))
|
|
|
|
if (ConstantInt *C2 = dyn_cast<ConstantInt>(D)) {
|
|
|
|
const APInt &AP1 = C1->getValue();
|
|
|
|
const APInt &AP2 = C2->getValue();
|
|
|
|
if (AP1.isNegative() == AP2.isNegative()) {
|
|
|
|
APInt AP1Abs = C1->getValue().abs();
|
|
|
|
APInt AP2Abs = C2->getValue().abs();
|
|
|
|
if (AP1Abs.uge(AP2Abs)) {
|
|
|
|
ConstantInt *C3 = Builder->getInt(AP1 - AP2);
|
|
|
|
Value *NewAdd = Builder->CreateNSWAdd(A, C3);
|
|
|
|
return new ICmpInst(Pred, NewAdd, C);
|
|
|
|
} else {
|
|
|
|
ConstantInt *C3 = Builder->getInt(AP2 - AP1);
|
|
|
|
Value *NewAdd = Builder->CreateNSWAdd(C, C3);
|
|
|
|
return new ICmpInst(Pred, A, NewAdd);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
2011-02-17 15:46:37 +08:00
|
|
|
// Analyze the case when either Op0 or Op1 is a sub instruction.
|
|
|
|
// Op0 = A - B (or A and B are null); Op1 = C - D (or C and D are null).
|
2016-02-19 06:09:30 +08:00
|
|
|
A = nullptr;
|
|
|
|
B = nullptr;
|
|
|
|
C = nullptr;
|
|
|
|
D = nullptr;
|
|
|
|
if (BO0 && BO0->getOpcode() == Instruction::Sub) {
|
|
|
|
A = BO0->getOperand(0);
|
|
|
|
B = BO0->getOperand(1);
|
|
|
|
}
|
|
|
|
if (BO1 && BO1->getOpcode() == Instruction::Sub) {
|
|
|
|
C = BO1->getOperand(0);
|
|
|
|
D = BO1->getOperand(1);
|
|
|
|
}
|
2011-02-17 15:46:37 +08:00
|
|
|
|
2011-02-19 00:25:37 +08:00
|
|
|
// icmp (X-Y), X -> icmp 0, Y for equalities or if there is no overflow.
|
|
|
|
if (A == Op1 && NoOp0WrapProblem)
|
|
|
|
return new ICmpInst(Pred, Constant::getNullValue(Op1->getType()), B);
|
|
|
|
|
|
|
|
// icmp X, (X-Y) -> icmp Y, 0 for equalities or if there is no overflow.
|
|
|
|
if (C == Op0 && NoOp1WrapProblem)
|
|
|
|
return new ICmpInst(Pred, D, Constant::getNullValue(Op0->getType()));
|
|
|
|
|
|
|
|
// icmp (Y-X), (Z-X) -> icmp Y, Z for equalities or if there is no overflow.
|
2011-02-17 15:46:37 +08:00
|
|
|
if (B && D && B == D && NoOp0WrapProblem && NoOp1WrapProblem &&
|
|
|
|
// Try not to increase register pressure.
|
|
|
|
BO0->hasOneUse() && BO1->hasOneUse())
|
|
|
|
return new ICmpInst(Pred, A, C);
|
|
|
|
|
2011-02-19 00:25:37 +08:00
|
|
|
// icmp (X-Y), (X-Z) -> icmp Z, Y for equalities or if there is no overflow.
|
|
|
|
if (A && C && A == C && NoOp0WrapProblem && NoOp1WrapProblem &&
|
|
|
|
// Try not to increase register pressure.
|
|
|
|
BO0->hasOneUse() && BO1->hasOneUse())
|
|
|
|
return new ICmpInst(Pred, D, B);
|
|
|
|
|
2014-05-15 08:02:20 +08:00
|
|
|
// icmp (0-X) < cst --> x > -cst
|
|
|
|
if (NoOp0WrapProblem && ICmpInst::isSigned(Pred)) {
|
|
|
|
Value *X;
|
|
|
|
if (match(BO0, m_Neg(m_Value(X))))
|
|
|
|
if (ConstantInt *RHSC = dyn_cast<ConstantInt>(Op1))
|
|
|
|
if (!RHSC->isMinValue(/*isSigned=*/true))
|
|
|
|
return new ICmpInst(I.getSwappedPredicate(), X,
|
|
|
|
ConstantExpr::getNeg(RHSC));
|
|
|
|
}
|
|
|
|
|
2014-04-25 13:29:35 +08:00
|
|
|
BinaryOperator *SRem = nullptr;
|
2011-03-08 14:29:47 +08:00
|
|
|
// icmp (srem X, Y), Y
|
2011-03-05 12:28:48 +08:00
|
|
|
if (BO0 && BO0->getOpcode() == Instruction::SRem &&
|
|
|
|
Op1 == BO0->getOperand(1))
|
|
|
|
SRem = BO0;
|
2011-03-08 14:29:47 +08:00
|
|
|
// icmp Y, (srem X, Y)
|
2011-03-05 12:28:48 +08:00
|
|
|
else if (BO1 && BO1->getOpcode() == Instruction::SRem &&
|
|
|
|
Op0 == BO1->getOperand(1))
|
|
|
|
SRem = BO1;
|
|
|
|
if (SRem) {
|
|
|
|
// We don't check hasOneUse to avoid increasing register pressure because
|
|
|
|
// the value we use is the same value this instruction was already using.
|
|
|
|
switch (SRem == BO0 ? ICmpInst::getSwappedPredicate(Pred) : Pred) {
|
|
|
|
default: break;
|
|
|
|
case ICmpInst::ICMP_EQ:
|
2016-02-02 06:23:39 +08:00
|
|
|
return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
|
2011-03-05 12:28:48 +08:00
|
|
|
case ICmpInst::ICMP_NE:
|
2016-02-02 06:23:39 +08:00
|
|
|
return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
|
2011-03-05 12:28:48 +08:00
|
|
|
case ICmpInst::ICMP_SGT:
|
|
|
|
case ICmpInst::ICMP_SGE:
|
|
|
|
return new ICmpInst(ICmpInst::ICMP_SGT, SRem->getOperand(1),
|
|
|
|
Constant::getAllOnesValue(SRem->getType()));
|
|
|
|
case ICmpInst::ICMP_SLT:
|
|
|
|
case ICmpInst::ICMP_SLE:
|
|
|
|
return new ICmpInst(ICmpInst::ICMP_SLT, SRem->getOperand(1),
|
|
|
|
Constant::getNullValue(SRem->getType()));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2011-02-17 15:46:37 +08:00
|
|
|
if (BO0 && BO1 && BO0->getOpcode() == BO1->getOpcode() &&
|
|
|
|
BO0->hasOneUse() && BO1->hasOneUse() &&
|
|
|
|
BO0->getOperand(1) == BO1->getOperand(1)) {
|
|
|
|
switch (BO0->getOpcode()) {
|
|
|
|
default: break;
|
|
|
|
case Instruction::Add:
|
|
|
|
case Instruction::Sub:
|
|
|
|
case Instruction::Xor:
|
|
|
|
if (I.isEquality()) // a+x icmp eq/ne b+x --> a icmp b
|
|
|
|
return new ICmpInst(I.getPredicate(), BO0->getOperand(0),
|
|
|
|
BO1->getOperand(0));
|
|
|
|
// icmp u/s (a ^ signbit), (b ^ signbit) --> icmp s/u a, b
|
|
|
|
if (ConstantInt *CI = dyn_cast<ConstantInt>(BO0->getOperand(1))) {
|
|
|
|
if (CI->getValue().isSignBit()) {
|
|
|
|
ICmpInst::Predicate Pred = I.isSigned()
|
|
|
|
? I.getUnsignedPredicate()
|
|
|
|
: I.getSignedPredicate();
|
|
|
|
return new ICmpInst(Pred, BO0->getOperand(0),
|
|
|
|
BO1->getOperand(0));
|
|
|
|
}
|
2011-10-01 02:09:53 +08:00
|
|
|
|
2016-02-02 01:37:56 +08:00
|
|
|
if (BO0->getOpcode() == Instruction::Xor && CI->isMaxValue(true)) {
|
2011-02-17 15:46:37 +08:00
|
|
|
ICmpInst::Predicate Pred = I.isSigned()
|
|
|
|
? I.getUnsignedPredicate()
|
|
|
|
: I.getSignedPredicate();
|
|
|
|
Pred = I.getSwappedPredicate(Pred);
|
|
|
|
return new ICmpInst(Pred, BO0->getOperand(0),
|
|
|
|
BO1->getOperand(0));
|
2010-01-04 15:37:31 +08:00
|
|
|
}
|
2011-02-17 15:46:37 +08:00
|
|
|
}
|
|
|
|
break;
|
|
|
|
case Instruction::Mul:
|
|
|
|
if (!I.isEquality())
|
2010-01-04 15:37:31 +08:00
|
|
|
break;
|
|
|
|
|
2011-02-17 15:46:37 +08:00
|
|
|
if (ConstantInt *CI = dyn_cast<ConstantInt>(BO0->getOperand(1))) {
|
|
|
|
// a * Cst icmp eq/ne b * Cst --> a & Mask icmp b & Mask
|
|
|
|
// Mask = -1 >> count-trailing-zeros(Cst).
|
|
|
|
if (!CI->isZero() && !CI->isOne()) {
|
|
|
|
const APInt &AP = CI->getValue();
|
2011-10-01 02:09:53 +08:00
|
|
|
ConstantInt *Mask = ConstantInt::get(I.getContext(),
|
2011-02-17 15:46:37 +08:00
|
|
|
APInt::getLowBitsSet(AP.getBitWidth(),
|
|
|
|
AP.getBitWidth() -
|
|
|
|
AP.countTrailingZeros()));
|
|
|
|
Value *And1 = Builder->CreateAnd(BO0->getOperand(0), Mask);
|
|
|
|
Value *And2 = Builder->CreateAnd(BO1->getOperand(0), Mask);
|
|
|
|
return new ICmpInst(I.getPredicate(), And1, And2);
|
2010-01-04 15:37:31 +08:00
|
|
|
}
|
|
|
|
}
|
2011-02-17 15:46:37 +08:00
|
|
|
break;
|
2011-03-05 13:19:11 +08:00
|
|
|
case Instruction::UDiv:
|
|
|
|
case Instruction::LShr:
|
|
|
|
if (I.isSigned())
|
|
|
|
break;
|
|
|
|
// fall-through
|
|
|
|
case Instruction::SDiv:
|
|
|
|
case Instruction::AShr:
|
2011-05-06 05:59:18 +08:00
|
|
|
if (!BO0->isExact() || !BO1->isExact())
|
2011-03-05 13:19:11 +08:00
|
|
|
break;
|
|
|
|
return new ICmpInst(I.getPredicate(), BO0->getOperand(0),
|
|
|
|
BO1->getOperand(0));
|
|
|
|
case Instruction::Shl: {
|
|
|
|
bool NUW = BO0->hasNoUnsignedWrap() && BO1->hasNoUnsignedWrap();
|
|
|
|
bool NSW = BO0->hasNoSignedWrap() && BO1->hasNoSignedWrap();
|
|
|
|
if (!NUW && !NSW)
|
|
|
|
break;
|
|
|
|
if (!NSW && I.isSigned())
|
|
|
|
break;
|
|
|
|
return new ICmpInst(I.getPredicate(), BO0->getOperand(0),
|
|
|
|
BO1->getOperand(0));
|
|
|
|
}
|
2010-01-04 15:37:31 +08:00
|
|
|
}
|
|
|
|
}
|
2015-08-22 06:22:37 +08:00
|
|
|
|
|
|
|
if (BO0) {
|
|
|
|
// Transform A & (L - 1) `ult` L --> L != 0
|
|
|
|
auto LSubOne = m_Add(m_Specific(Op1), m_AllOnes());
|
|
|
|
auto BitwiseAnd =
|
|
|
|
m_CombineOr(m_And(m_Value(), LSubOne), m_And(LSubOne, m_Value()));
|
|
|
|
|
|
|
|
if (match(BO0, BitwiseAnd) && I.getPredicate() == ICmpInst::ICMP_ULT) {
|
|
|
|
auto *Zero = Constant::getNullValue(BO0->getType());
|
|
|
|
return new ICmpInst(ICmpInst::ICMP_NE, Op1, Zero);
|
|
|
|
}
|
|
|
|
}
|
2010-01-04 15:37:31 +08:00
|
|
|
}
|
2011-10-01 02:09:53 +08:00
|
|
|
|
2010-01-04 15:37:31 +08:00
|
|
|
{ Value *A, *B;
|
2013-04-13 01:25:07 +08:00
|
|
|
// Transform (A & ~B) == 0 --> (A & B) != 0
|
|
|
|
// and (A & ~B) != 0 --> (A & B) == 0
|
|
|
|
// if A is a power of 2.
|
|
|
|
if (match(Op0, m_And(m_Value(A), m_Not(m_Value(B)))) &&
|
2015-01-04 20:03:27 +08:00
|
|
|
match(Op1, m_Zero()) &&
|
2015-03-10 10:37:25 +08:00
|
|
|
isKnownToBeAPowerOfTwo(A, DL, false, 0, AC, &I, DT) && I.isEquality())
|
2013-04-13 01:25:07 +08:00
|
|
|
return new ICmpInst(I.getInversePredicate(),
|
|
|
|
Builder->CreateAnd(A, B),
|
|
|
|
Op1);
|
|
|
|
|
2011-01-15 13:41:33 +08:00
|
|
|
// ~x < ~y --> y < x
|
|
|
|
// ~x < cst --> ~cst < x
|
|
|
|
if (match(Op0, m_Not(m_Value(A)))) {
|
|
|
|
if (match(Op1, m_Not(m_Value(B))))
|
|
|
|
return new ICmpInst(I.getPredicate(), B, A);
|
2011-01-15 13:42:47 +08:00
|
|
|
if (ConstantInt *RHSC = dyn_cast<ConstantInt>(Op1))
|
2011-01-15 13:41:33 +08:00
|
|
|
return new ICmpInst(I.getPredicate(), ConstantExpr::getNot(RHSC), A);
|
|
|
|
}
|
2010-12-20 03:37:52 +08:00
|
|
|
|
2015-04-11 05:07:09 +08:00
|
|
|
Instruction *AddI = nullptr;
|
|
|
|
if (match(&I, m_UAddWithOverflow(m_Value(A), m_Value(B),
|
|
|
|
m_Instruction(AddI))) &&
|
|
|
|
isa<IntegerType>(A->getType())) {
|
|
|
|
Value *Result;
|
|
|
|
Constant *Overflow;
|
|
|
|
if (OptimizeOverflowCheck(OCF_UNSIGNED_ADD, A, B, *AddI, Result,
|
|
|
|
Overflow)) {
|
2016-02-02 06:23:39 +08:00
|
|
|
replaceInstUsesWith(*AddI, Result);
|
|
|
|
return replaceInstUsesWith(I, Overflow);
|
2015-04-11 05:07:09 +08:00
|
|
|
}
|
|
|
|
}
|
2014-04-14 02:23:41 +08:00
|
|
|
|
|
|
|
// (zext a) * (zext b) --> llvm.umul.with.overflow.
|
|
|
|
if (match(Op0, m_Mul(m_ZExt(m_Value(A)), m_ZExt(m_Value(B))))) {
|
|
|
|
if (Instruction *R = ProcessUMulZExtIdiom(I, Op0, Op1, *this))
|
|
|
|
return R;
|
|
|
|
}
|
|
|
|
if (match(Op1, m_Mul(m_ZExt(m_Value(A)), m_ZExt(m_Value(B))))) {
|
|
|
|
if (Instruction *R = ProcessUMulZExtIdiom(I, Op1, Op0, *this))
|
|
|
|
return R;
|
|
|
|
}
|
2010-01-04 15:37:31 +08:00
|
|
|
}
|
2011-10-01 02:09:53 +08:00
|
|
|
|
2010-01-04 15:37:31 +08:00
|
|
|
if (I.isEquality()) {
|
|
|
|
Value *A, *B, *C, *D;
|
2011-02-19 00:25:37 +08:00
|
|
|
|
2010-01-04 15:37:31 +08:00
|
|
|
if (match(Op0, m_Xor(m_Value(A), m_Value(B)))) {
|
|
|
|
if (A == Op1 || B == Op1) { // (A^B) == A -> B == 0
|
|
|
|
Value *OtherVal = A == Op1 ? B : A;
|
|
|
|
return new ICmpInst(I.getPredicate(), OtherVal,
|
|
|
|
Constant::getNullValue(A->getType()));
|
|
|
|
}
|
|
|
|
|
|
|
|
if (match(Op1, m_Xor(m_Value(C), m_Value(D)))) {
|
|
|
|
// A^c1 == C^c2 --> A == C^(c1^c2)
|
|
|
|
ConstantInt *C1, *C2;
|
|
|
|
if (match(B, m_ConstantInt(C1)) &&
|
|
|
|
match(D, m_ConstantInt(C2)) && Op1->hasOneUse()) {
|
2013-06-07 04:18:46 +08:00
|
|
|
Constant *NC = Builder->getInt(C1->getValue() ^ C2->getValue());
|
2011-09-28 04:39:19 +08:00
|
|
|
Value *Xor = Builder->CreateXor(C, NC);
|
2010-01-04 15:37:31 +08:00
|
|
|
return new ICmpInst(I.getPredicate(), A, Xor);
|
|
|
|
}
|
2011-10-01 02:09:53 +08:00
|
|
|
|
2010-01-04 15:37:31 +08:00
|
|
|
// A^B == A^D -> B == D
|
|
|
|
if (A == C) return new ICmpInst(I.getPredicate(), B, D);
|
|
|
|
if (A == D) return new ICmpInst(I.getPredicate(), B, C);
|
|
|
|
if (B == C) return new ICmpInst(I.getPredicate(), A, D);
|
|
|
|
if (B == D) return new ICmpInst(I.getPredicate(), A, C);
|
|
|
|
}
|
|
|
|
}
|
2011-10-01 02:09:53 +08:00
|
|
|
|
2010-01-04 15:37:31 +08:00
|
|
|
if (match(Op1, m_Xor(m_Value(A), m_Value(B))) &&
|
|
|
|
(A == Op0 || B == Op0)) {
|
|
|
|
// A == (A^B) -> B == 0
|
|
|
|
Value *OtherVal = A == Op0 ? B : A;
|
|
|
|
return new ICmpInst(I.getPredicate(), OtherVal,
|
|
|
|
Constant::getNullValue(A->getType()));
|
|
|
|
}
|
|
|
|
|
|
|
|
// (X&Z) == (Y&Z) -> (X^Y) & Z == 0
|
2011-10-01 02:09:53 +08:00
|
|
|
if (match(Op0, m_OneUse(m_And(m_Value(A), m_Value(B)))) &&
|
2011-04-27 04:02:45 +08:00
|
|
|
match(Op1, m_OneUse(m_And(m_Value(C), m_Value(D))))) {
|
2014-04-25 13:29:35 +08:00
|
|
|
Value *X = nullptr, *Y = nullptr, *Z = nullptr;
|
2011-10-01 02:09:53 +08:00
|
|
|
|
2010-01-04 15:37:31 +08:00
|
|
|
if (A == C) {
|
|
|
|
X = B; Y = D; Z = A;
|
|
|
|
} else if (A == D) {
|
|
|
|
X = B; Y = C; Z = A;
|
|
|
|
} else if (B == C) {
|
|
|
|
X = A; Y = D; Z = B;
|
|
|
|
} else if (B == D) {
|
|
|
|
X = A; Y = C; Z = B;
|
|
|
|
}
|
2011-10-01 02:09:53 +08:00
|
|
|
|
2010-01-04 15:37:31 +08:00
|
|
|
if (X) { // Build (X^Y) & Z
|
2011-09-28 04:39:19 +08:00
|
|
|
Op1 = Builder->CreateXor(X, Y);
|
|
|
|
Op1 = Builder->CreateAnd(Op1, Z);
|
2010-01-04 15:37:31 +08:00
|
|
|
I.setOperand(0, Op1);
|
|
|
|
I.setOperand(1, Constant::getNullValue(Op1->getType()));
|
|
|
|
return &I;
|
|
|
|
}
|
|
|
|
}
|
2011-10-01 02:09:53 +08:00
|
|
|
|
2012-06-11 04:35:00 +08:00
|
|
|
// Transform (zext A) == (B & (1<<X)-1) --> A == (trunc B)
|
2012-06-11 16:01:25 +08:00
|
|
|
// and (B & (1<<X)-1) == (zext A) --> A == (trunc B)
|
2012-06-11 04:35:00 +08:00
|
|
|
ConstantInt *Cst1;
|
2012-06-11 16:01:25 +08:00
|
|
|
if ((Op0->hasOneUse() &&
|
|
|
|
match(Op0, m_ZExt(m_Value(A))) &&
|
|
|
|
match(Op1, m_And(m_Value(B), m_ConstantInt(Cst1)))) ||
|
|
|
|
(Op1->hasOneUse() &&
|
|
|
|
match(Op0, m_And(m_Value(B), m_ConstantInt(Cst1))) &&
|
|
|
|
match(Op1, m_ZExt(m_Value(A))))) {
|
2012-06-11 04:35:00 +08:00
|
|
|
APInt Pow2 = Cst1->getValue() + 1;
|
|
|
|
if (Pow2.isPowerOf2() && isa<IntegerType>(A->getType()) &&
|
|
|
|
Pow2.logBase2() == cast<IntegerType>(A->getType())->getBitWidth())
|
|
|
|
return new ICmpInst(I.getPredicate(), A,
|
|
|
|
Builder->CreateTrunc(B, A->getType()));
|
|
|
|
}
|
|
|
|
|
2013-11-17 00:00:48 +08:00
|
|
|
// (A >> C) == (B >> C) --> (A^B) u< (1 << C)
|
|
|
|
// For lshr and ashr pairs.
|
|
|
|
if ((match(Op0, m_OneUse(m_LShr(m_Value(A), m_ConstantInt(Cst1)))) &&
|
|
|
|
match(Op1, m_OneUse(m_LShr(m_Value(B), m_Specific(Cst1))))) ||
|
|
|
|
(match(Op0, m_OneUse(m_AShr(m_Value(A), m_ConstantInt(Cst1)))) &&
|
|
|
|
match(Op1, m_OneUse(m_AShr(m_Value(B), m_Specific(Cst1)))))) {
|
|
|
|
unsigned TypeBits = Cst1->getBitWidth();
|
|
|
|
unsigned ShAmt = (unsigned)Cst1->getLimitedValue(TypeBits);
|
|
|
|
if (ShAmt < TypeBits && ShAmt != 0) {
|
|
|
|
ICmpInst::Predicate Pred = I.getPredicate() == ICmpInst::ICMP_NE
|
|
|
|
? ICmpInst::ICMP_UGE
|
|
|
|
: ICmpInst::ICMP_ULT;
|
|
|
|
Value *Xor = Builder->CreateXor(A, B, I.getName() + ".unshifted");
|
|
|
|
APInt CmpVal = APInt::getOneBitSet(TypeBits, ShAmt);
|
|
|
|
return new ICmpInst(Pred, Xor, Builder->getInt(CmpVal));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2015-03-27 01:12:06 +08:00
|
|
|
// (A << C) == (B << C) --> ((A^B) & (~0U >> C)) == 0
|
|
|
|
if (match(Op0, m_OneUse(m_Shl(m_Value(A), m_ConstantInt(Cst1)))) &&
|
|
|
|
match(Op1, m_OneUse(m_Shl(m_Value(B), m_Specific(Cst1))))) {
|
|
|
|
unsigned TypeBits = Cst1->getBitWidth();
|
|
|
|
unsigned ShAmt = (unsigned)Cst1->getLimitedValue(TypeBits);
|
|
|
|
if (ShAmt < TypeBits && ShAmt != 0) {
|
|
|
|
Value *Xor = Builder->CreateXor(A, B, I.getName() + ".unshifted");
|
|
|
|
APInt AndVal = APInt::getLowBitsSet(TypeBits, TypeBits - ShAmt);
|
|
|
|
Value *And = Builder->CreateAnd(Xor, Builder->getInt(AndVal),
|
|
|
|
I.getName() + ".mask");
|
|
|
|
return new ICmpInst(I.getPredicate(), And,
|
|
|
|
Constant::getNullValue(Cst1->getType()));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2011-04-27 04:18:20 +08:00
|
|
|
// Transform "icmp eq (trunc (lshr(X, cst1)), cst" to
|
|
|
|
// "icmp (and X, mask), cst"
|
|
|
|
uint64_t ShAmt = 0;
|
|
|
|
if (Op0->hasOneUse() &&
|
|
|
|
match(Op0, m_Trunc(m_OneUse(m_LShr(m_Value(A),
|
|
|
|
m_ConstantInt(ShAmt))))) &&
|
|
|
|
match(Op1, m_ConstantInt(Cst1)) &&
|
|
|
|
// Only do this when A has multiple uses. This is most important to do
|
|
|
|
// when it exposes other optimizations.
|
|
|
|
!A->hasOneUse()) {
|
|
|
|
unsigned ASize =cast<IntegerType>(A->getType())->getPrimitiveSizeInBits();
|
2011-10-01 02:09:53 +08:00
|
|
|
|
2011-04-27 04:18:20 +08:00
|
|
|
if (ShAmt < ASize) {
|
|
|
|
APInt MaskV =
|
|
|
|
APInt::getLowBitsSet(ASize, Op0->getType()->getPrimitiveSizeInBits());
|
|
|
|
MaskV <<= ShAmt;
|
2011-10-01 02:09:53 +08:00
|
|
|
|
2011-04-27 04:18:20 +08:00
|
|
|
APInt CmpV = Cst1->getValue().zext(ASize);
|
|
|
|
CmpV <<= ShAmt;
|
2011-10-01 02:09:53 +08:00
|
|
|
|
2011-04-27 04:18:20 +08:00
|
|
|
Value *Mask = Builder->CreateAnd(A, Builder->getInt(MaskV));
|
|
|
|
return new ICmpInst(I.getPredicate(), Mask, Builder->getInt(CmpV));
|
|
|
|
}
|
|
|
|
}
|
2010-01-04 15:37:31 +08:00
|
|
|
}
|
2011-10-01 02:09:53 +08:00
|
|
|
|
2014-11-07 07:23:30 +08:00
|
|
|
// The 'cmpxchg' instruction returns an aggregate containing the old value and
|
|
|
|
// an i1 which indicates whether or not we successfully did the swap.
|
|
|
|
//
|
|
|
|
// Replace comparisons between the old value and the expected value with the
|
|
|
|
// indicator that 'cmpxchg' returns.
|
|
|
|
//
|
|
|
|
// N.B. This transform is only valid when the 'cmpxchg' is not permitted to
|
|
|
|
// spuriously fail. In those cases, the old value may equal the expected
|
|
|
|
// value but it is possible for the swap to not occur.
|
|
|
|
if (I.getPredicate() == ICmpInst::ICMP_EQ)
|
|
|
|
if (auto *EVI = dyn_cast<ExtractValueInst>(Op0))
|
|
|
|
if (auto *ACXI = dyn_cast<AtomicCmpXchgInst>(EVI->getAggregateOperand()))
|
|
|
|
if (EVI->getIndices()[0] == 0 && ACXI->getCompareOperand() == Op1 &&
|
|
|
|
!ACXI->isWeak())
|
|
|
|
return ExtractValueInst::Create(ACXI, 1);
|
|
|
|
|
2010-01-04 15:37:31 +08:00
|
|
|
{
|
|
|
|
Value *X; ConstantInt *Cst;
|
|
|
|
// icmp X+Cst, X
|
|
|
|
if (match(Op0, m_Add(m_Value(X), m_ConstantInt(Cst))) && Op1 == X)
|
2013-09-21 06:12:42 +08:00
|
|
|
return FoldICmpAddOpCst(I, X, Cst, I.getPredicate());
|
2010-01-04 15:37:31 +08:00
|
|
|
|
|
|
|
// icmp X, X+Cst
|
|
|
|
if (match(Op1, m_Add(m_Value(X), m_ConstantInt(Cst))) && Op0 == X)
|
2013-09-21 06:12:42 +08:00
|
|
|
return FoldICmpAddOpCst(I, X, Cst, I.getSwappedPredicate());
|
2010-01-04 15:37:31 +08:00
|
|
|
}
|
2014-04-25 13:29:35 +08:00
|
|
|
return Changed ? &I : nullptr;
|
2010-01-04 15:37:31 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
/// FoldFCmp_IntToFP_Cst - Fold fcmp ([us]itofp x, cst) if possible.
|
|
|
|
Instruction *InstCombiner::FoldFCmp_IntToFP_Cst(FCmpInst &I,
|
|
|
|
Instruction *LHSI,
|
|
|
|
Constant *RHSC) {
|
2014-04-25 13:29:35 +08:00
|
|
|
if (!isa<ConstantFP>(RHSC)) return nullptr;
|
2010-01-04 15:37:31 +08:00
|
|
|
const APFloat &RHS = cast<ConstantFP>(RHSC)->getValueAPF();
|
2011-10-01 02:09:53 +08:00
|
|
|
|
2010-01-04 15:37:31 +08:00
|
|
|
// Get the width of the mantissa. We don't want to hack on conversions that
|
|
|
|
// might lose information from the integer, e.g. "i64 -> float"
|
|
|
|
int MantissaWidth = LHSI->getType()->getFPMantissaWidth();
|
2014-04-25 13:29:35 +08:00
|
|
|
if (MantissaWidth == -1) return nullptr; // Unknown.
|
2011-10-01 02:09:53 +08:00
|
|
|
|
2015-01-06 23:50:59 +08:00
|
|
|
IntegerType *IntTy = cast<IntegerType>(LHSI->getOperand(0)->getType());
|
|
|
|
|
2010-01-04 15:37:31 +08:00
|
|
|
bool LHSUnsigned = isa<UIToFPInst>(LHSI);
|
2011-10-01 02:09:53 +08:00
|
|
|
|
2015-01-06 23:50:59 +08:00
|
|
|
if (I.isEquality()) {
|
|
|
|
FCmpInst::Predicate P = I.getPredicate();
|
|
|
|
bool IsExact = false;
|
|
|
|
APSInt RHSCvt(IntTy->getBitWidth(), LHSUnsigned);
|
|
|
|
RHS.convertToInteger(RHSCvt, APFloat::rmNearestTiesToEven, &IsExact);
|
|
|
|
|
|
|
|
// If the floating point constant isn't an integer value, we know if we will
|
|
|
|
// ever compare equal / not equal to it.
|
|
|
|
if (!IsExact) {
|
|
|
|
// TODO: Can never be -0.0 and other non-representable values
|
|
|
|
APFloat RHSRoundInt(RHS);
|
|
|
|
RHSRoundInt.roundToIntegral(APFloat::rmNearestTiesToEven);
|
|
|
|
if (RHS.compare(RHSRoundInt) != APFloat::cmpEqual) {
|
|
|
|
if (P == FCmpInst::FCMP_OEQ || P == FCmpInst::FCMP_UEQ)
|
2016-02-02 06:23:39 +08:00
|
|
|
return replaceInstUsesWith(I, Builder->getFalse());
|
2015-01-06 23:50:59 +08:00
|
|
|
|
|
|
|
assert(P == FCmpInst::FCMP_ONE || P == FCmpInst::FCMP_UNE);
|
2016-02-02 06:23:39 +08:00
|
|
|
return replaceInstUsesWith(I, Builder->getTrue());
|
2015-01-06 23:50:59 +08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// TODO: If the constant is exactly representable, is it always OK to do
|
|
|
|
// equality compares as integer?
|
|
|
|
}
|
|
|
|
|
2015-09-16 01:51:59 +08:00
|
|
|
// Check to see that the input is converted from an integer type that is small
|
|
|
|
// enough that preserves all bits. TODO: check here for "known" sign bits.
|
|
|
|
// This would allow us to handle (fptosi (x >>s 62) to float) if x is i64 f.e.
|
|
|
|
unsigned InputSize = IntTy->getScalarSizeInBits();
|
2015-01-06 23:50:59 +08:00
|
|
|
|
2015-09-16 01:51:59 +08:00
|
|
|
// Following test does NOT adjust InputSize downwards for signed inputs,
|
|
|
|
// because the most negative value still requires all the mantissa bits
|
|
|
|
// to distinguish it from one less than that value.
|
|
|
|
if ((int)InputSize > MantissaWidth) {
|
|
|
|
// Conversion would lose accuracy. Check if loss can impact comparison.
|
|
|
|
int Exp = ilogb(RHS);
|
|
|
|
if (Exp == APFloat::IEK_Inf) {
|
|
|
|
int MaxExponent = ilogb(APFloat::getLargest(RHS.getSemantics()));
|
|
|
|
if (MaxExponent < (int)InputSize - !LHSUnsigned)
|
|
|
|
// Conversion could create infinity.
|
|
|
|
return nullptr;
|
|
|
|
} else {
|
|
|
|
// Note that if RHS is zero or NaN, then Exp is negative
|
|
|
|
// and first condition is trivially false.
|
|
|
|
if (MantissaWidth <= Exp && Exp <= (int)InputSize - !LHSUnsigned)
|
|
|
|
// Conversion could affect comparison.
|
|
|
|
return nullptr;
|
|
|
|
}
|
|
|
|
}
|
2011-10-01 02:09:53 +08:00
|
|
|
|
2010-01-04 15:37:31 +08:00
|
|
|
// Otherwise, we can potentially simplify the comparison. We know that it
|
|
|
|
// will always come through as an integer value and we know the constant is
|
|
|
|
// not a NAN (it would have been previously simplified).
|
|
|
|
assert(!RHS.isNaN() && "NaN comparison not already folded!");
|
2011-10-01 02:09:53 +08:00
|
|
|
|
2010-01-04 15:37:31 +08:00
|
|
|
ICmpInst::Predicate Pred;
|
|
|
|
switch (I.getPredicate()) {
|
|
|
|
default: llvm_unreachable("Unexpected predicate!");
|
|
|
|
case FCmpInst::FCMP_UEQ:
|
|
|
|
case FCmpInst::FCMP_OEQ:
|
|
|
|
Pred = ICmpInst::ICMP_EQ;
|
|
|
|
break;
|
|
|
|
case FCmpInst::FCMP_UGT:
|
|
|
|
case FCmpInst::FCMP_OGT:
|
|
|
|
Pred = LHSUnsigned ? ICmpInst::ICMP_UGT : ICmpInst::ICMP_SGT;
|
|
|
|
break;
|
|
|
|
case FCmpInst::FCMP_UGE:
|
|
|
|
case FCmpInst::FCMP_OGE:
|
|
|
|
Pred = LHSUnsigned ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_SGE;
|
|
|
|
break;
|
|
|
|
case FCmpInst::FCMP_ULT:
|
|
|
|
case FCmpInst::FCMP_OLT:
|
|
|
|
Pred = LHSUnsigned ? ICmpInst::ICMP_ULT : ICmpInst::ICMP_SLT;
|
|
|
|
break;
|
|
|
|
case FCmpInst::FCMP_ULE:
|
|
|
|
case FCmpInst::FCMP_OLE:
|
|
|
|
Pred = LHSUnsigned ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_SLE;
|
|
|
|
break;
|
|
|
|
case FCmpInst::FCMP_UNE:
|
|
|
|
case FCmpInst::FCMP_ONE:
|
|
|
|
Pred = ICmpInst::ICMP_NE;
|
|
|
|
break;
|
|
|
|
case FCmpInst::FCMP_ORD:
|
2016-02-02 06:23:39 +08:00
|
|
|
return replaceInstUsesWith(I, Builder->getTrue());
|
2010-01-04 15:37:31 +08:00
|
|
|
case FCmpInst::FCMP_UNO:
|
2016-02-02 06:23:39 +08:00
|
|
|
return replaceInstUsesWith(I, Builder->getFalse());
|
2010-01-04 15:37:31 +08:00
|
|
|
}
|
2011-10-01 02:09:53 +08:00
|
|
|
|
2010-01-04 15:37:31 +08:00
|
|
|
// Now we know that the APFloat is a normal number, zero or inf.
|
2011-10-01 02:09:53 +08:00
|
|
|
|
2010-01-04 15:37:31 +08:00
|
|
|
// See if the FP constant is too large for the integer. For example,
|
|
|
|
// comparing an i8 to 300.0.
|
|
|
|
unsigned IntWidth = IntTy->getScalarSizeInBits();
|
2011-10-01 02:09:53 +08:00
|
|
|
|
2010-01-04 15:37:31 +08:00
|
|
|
if (!LHSUnsigned) {
|
|
|
|
// If the RHS value is > SignedMax, fold the comparison. This handles +INF
|
|
|
|
// and large values.
|
2013-06-28 05:58:19 +08:00
|
|
|
APFloat SMax(RHS.getSemantics());
|
2010-01-04 15:37:31 +08:00
|
|
|
SMax.convertFromAPInt(APInt::getSignedMaxValue(IntWidth), true,
|
|
|
|
APFloat::rmNearestTiesToEven);
|
|
|
|
if (SMax.compare(RHS) == APFloat::cmpLessThan) { // smax < 13123.0
|
|
|
|
if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SLT ||
|
|
|
|
Pred == ICmpInst::ICMP_SLE)
|
2016-02-02 06:23:39 +08:00
|
|
|
return replaceInstUsesWith(I, Builder->getTrue());
|
|
|
|
return replaceInstUsesWith(I, Builder->getFalse());
|
2010-01-04 15:37:31 +08:00
|
|
|
}
|
|
|
|
} else {
|
|
|
|
// If the RHS value is > UnsignedMax, fold the comparison. This handles
|
|
|
|
// +INF and large values.
|
2013-06-28 05:58:19 +08:00
|
|
|
APFloat UMax(RHS.getSemantics());
|
2010-01-04 15:37:31 +08:00
|
|
|
UMax.convertFromAPInt(APInt::getMaxValue(IntWidth), false,
|
|
|
|
APFloat::rmNearestTiesToEven);
|
|
|
|
if (UMax.compare(RHS) == APFloat::cmpLessThan) { // umax < 13123.0
|
|
|
|
if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_ULT ||
|
|
|
|
Pred == ICmpInst::ICMP_ULE)
|
2016-02-02 06:23:39 +08:00
|
|
|
return replaceInstUsesWith(I, Builder->getTrue());
|
|
|
|
return replaceInstUsesWith(I, Builder->getFalse());
|
2010-01-04 15:37:31 +08:00
|
|
|
}
|
|
|
|
}
|
2011-10-01 02:09:53 +08:00
|
|
|
|
2010-01-04 15:37:31 +08:00
|
|
|
if (!LHSUnsigned) {
|
|
|
|
// See if the RHS value is < SignedMin.
|
2013-06-28 05:58:19 +08:00
|
|
|
APFloat SMin(RHS.getSemantics());
|
2010-01-04 15:37:31 +08:00
|
|
|
SMin.convertFromAPInt(APInt::getSignedMinValue(IntWidth), true,
|
|
|
|
APFloat::rmNearestTiesToEven);
|
|
|
|
if (SMin.compare(RHS) == APFloat::cmpGreaterThan) { // smin > 12312.0
|
|
|
|
if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT ||
|
|
|
|
Pred == ICmpInst::ICMP_SGE)
|
2016-02-02 06:23:39 +08:00
|
|
|
return replaceInstUsesWith(I, Builder->getTrue());
|
|
|
|
return replaceInstUsesWith(I, Builder->getFalse());
|
2010-01-04 15:37:31 +08:00
|
|
|
}
|
2012-02-14 07:05:18 +08:00
|
|
|
} else {
|
|
|
|
// See if the RHS value is < UnsignedMin.
|
2013-06-28 05:58:19 +08:00
|
|
|
APFloat SMin(RHS.getSemantics());
|
2012-02-14 07:05:18 +08:00
|
|
|
SMin.convertFromAPInt(APInt::getMinValue(IntWidth), true,
|
|
|
|
APFloat::rmNearestTiesToEven);
|
|
|
|
if (SMin.compare(RHS) == APFloat::cmpGreaterThan) { // umin > 12312.0
|
|
|
|
if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_UGT ||
|
|
|
|
Pred == ICmpInst::ICMP_UGE)
|
2016-02-02 06:23:39 +08:00
|
|
|
return replaceInstUsesWith(I, Builder->getTrue());
|
|
|
|
return replaceInstUsesWith(I, Builder->getFalse());
|
2012-02-14 07:05:18 +08:00
|
|
|
}
|
2010-01-04 15:37:31 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
// Okay, now we know that the FP constant fits in the range [SMIN, SMAX] or
|
|
|
|
// [0, UMAX], but it may still be fractional. See if it is fractional by
|
|
|
|
// casting the FP value to the integer value and back, checking for equality.
|
|
|
|
// Don't do this for zero, because -0.0 is not fractional.
|
|
|
|
Constant *RHSInt = LHSUnsigned
|
|
|
|
? ConstantExpr::getFPToUI(RHSC, IntTy)
|
|
|
|
: ConstantExpr::getFPToSI(RHSC, IntTy);
|
|
|
|
if (!RHS.isZero()) {
|
|
|
|
bool Equal = LHSUnsigned
|
|
|
|
? ConstantExpr::getUIToFP(RHSInt, RHSC->getType()) == RHSC
|
|
|
|
: ConstantExpr::getSIToFP(RHSInt, RHSC->getType()) == RHSC;
|
|
|
|
if (!Equal) {
|
|
|
|
// If we had a comparison against a fractional value, we have to adjust
|
|
|
|
// the compare predicate and sometimes the value. RHSC is rounded towards
|
|
|
|
// zero at this point.
|
|
|
|
switch (Pred) {
|
|
|
|
default: llvm_unreachable("Unexpected integer comparison!");
|
|
|
|
case ICmpInst::ICMP_NE: // (float)int != 4.4 --> true
|
2016-02-02 06:23:39 +08:00
|
|
|
return replaceInstUsesWith(I, Builder->getTrue());
|
2010-01-04 15:37:31 +08:00
|
|
|
case ICmpInst::ICMP_EQ: // (float)int == 4.4 --> false
|
2016-02-02 06:23:39 +08:00
|
|
|
return replaceInstUsesWith(I, Builder->getFalse());
|
2010-01-04 15:37:31 +08:00
|
|
|
case ICmpInst::ICMP_ULE:
|
|
|
|
// (float)int <= 4.4 --> int <= 4
|
|
|
|
// (float)int <= -4.4 --> false
|
|
|
|
if (RHS.isNegative())
|
2016-02-02 06:23:39 +08:00
|
|
|
return replaceInstUsesWith(I, Builder->getFalse());
|
2010-01-04 15:37:31 +08:00
|
|
|
break;
|
|
|
|
case ICmpInst::ICMP_SLE:
|
|
|
|
// (float)int <= 4.4 --> int <= 4
|
|
|
|
// (float)int <= -4.4 --> int < -4
|
|
|
|
if (RHS.isNegative())
|
|
|
|
Pred = ICmpInst::ICMP_SLT;
|
|
|
|
break;
|
|
|
|
case ICmpInst::ICMP_ULT:
|
|
|
|
// (float)int < -4.4 --> false
|
|
|
|
// (float)int < 4.4 --> int <= 4
|
|
|
|
if (RHS.isNegative())
|
2016-02-02 06:23:39 +08:00
|
|
|
return replaceInstUsesWith(I, Builder->getFalse());
|
2010-01-04 15:37:31 +08:00
|
|
|
Pred = ICmpInst::ICMP_ULE;
|
|
|
|
break;
|
|
|
|
case ICmpInst::ICMP_SLT:
|
|
|
|
// (float)int < -4.4 --> int < -4
|
|
|
|
// (float)int < 4.4 --> int <= 4
|
|
|
|
if (!RHS.isNegative())
|
|
|
|
Pred = ICmpInst::ICMP_SLE;
|
|
|
|
break;
|
|
|
|
case ICmpInst::ICMP_UGT:
|
|
|
|
// (float)int > 4.4 --> int > 4
|
|
|
|
// (float)int > -4.4 --> true
|
|
|
|
if (RHS.isNegative())
|
2016-02-02 06:23:39 +08:00
|
|
|
return replaceInstUsesWith(I, Builder->getTrue());
|
2010-01-04 15:37:31 +08:00
|
|
|
break;
|
|
|
|
case ICmpInst::ICMP_SGT:
|
|
|
|
// (float)int > 4.4 --> int > 4
|
|
|
|
// (float)int > -4.4 --> int >= -4
|
|
|
|
if (RHS.isNegative())
|
|
|
|
Pred = ICmpInst::ICMP_SGE;
|
|
|
|
break;
|
|
|
|
case ICmpInst::ICMP_UGE:
|
|
|
|
// (float)int >= -4.4 --> true
|
|
|
|
// (float)int >= 4.4 --> int > 4
|
2012-08-08 06:35:16 +08:00
|
|
|
if (RHS.isNegative())
|
2016-02-02 06:23:39 +08:00
|
|
|
return replaceInstUsesWith(I, Builder->getTrue());
|
2010-01-04 15:37:31 +08:00
|
|
|
Pred = ICmpInst::ICMP_UGT;
|
|
|
|
break;
|
|
|
|
case ICmpInst::ICMP_SGE:
|
|
|
|
// (float)int >= -4.4 --> int >= -4
|
|
|
|
// (float)int >= 4.4 --> int > 4
|
|
|
|
if (!RHS.isNegative())
|
|
|
|
Pred = ICmpInst::ICMP_SGT;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Lower this FP comparison into an appropriate integer version of the
|
|
|
|
// comparison.
|
|
|
|
return new ICmpInst(Pred, LHSI->getOperand(0), RHSInt);
|
|
|
|
}
|
|
|
|
|
|
|
|
Instruction *InstCombiner::visitFCmpInst(FCmpInst &I) {
|
|
|
|
bool Changed = false;
|
2011-10-01 02:09:53 +08:00
|
|
|
|
2010-01-04 15:37:31 +08:00
|
|
|
/// Orders the operands of the compare so that they are listed from most
|
|
|
|
/// complex to least complex. This puts constants before unary operators,
|
|
|
|
/// before binary operators.
|
|
|
|
if (getComplexity(I.getOperand(0)) < getComplexity(I.getOperand(1))) {
|
|
|
|
I.swapOperands();
|
|
|
|
Changed = true;
|
|
|
|
}
|
|
|
|
|
|
|
|
Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
|
2011-10-01 02:09:53 +08:00
|
|
|
|
2015-07-10 22:02:02 +08:00
|
|
|
if (Value *V = SimplifyFCmpInst(I.getPredicate(), Op0, Op1,
|
|
|
|
I.getFastMathFlags(), DL, TLI, DT, AC, &I))
|
2016-02-02 06:23:39 +08:00
|
|
|
return replaceInstUsesWith(I, V);
|
2010-01-04 15:37:31 +08:00
|
|
|
|
|
|
|
// Simplify 'fcmp pred X, X'
|
|
|
|
if (Op0 == Op1) {
|
|
|
|
switch (I.getPredicate()) {
|
|
|
|
default: llvm_unreachable("Unknown predicate!");
|
|
|
|
case FCmpInst::FCMP_UNO: // True if unordered: isnan(X) | isnan(Y)
|
|
|
|
case FCmpInst::FCMP_ULT: // True if unordered or less than
|
|
|
|
case FCmpInst::FCMP_UGT: // True if unordered or greater than
|
|
|
|
case FCmpInst::FCMP_UNE: // True if unordered or not equal
|
|
|
|
// Canonicalize these to be 'fcmp uno %X, 0.0'.
|
|
|
|
I.setPredicate(FCmpInst::FCMP_UNO);
|
|
|
|
I.setOperand(1, Constant::getNullValue(Op0->getType()));
|
|
|
|
return &I;
|
2011-10-01 02:09:53 +08:00
|
|
|
|
2010-01-04 15:37:31 +08:00
|
|
|
case FCmpInst::FCMP_ORD: // True if ordered (no nans)
|
|
|
|
case FCmpInst::FCMP_OEQ: // True if ordered and equal
|
|
|
|
case FCmpInst::FCMP_OGE: // True if ordered and greater than or equal
|
|
|
|
case FCmpInst::FCMP_OLE: // True if ordered and less than or equal
|
|
|
|
// Canonicalize these to be 'fcmp ord %X, 0.0'.
|
|
|
|
I.setPredicate(FCmpInst::FCMP_ORD);
|
|
|
|
I.setOperand(1, Constant::getNullValue(Op0->getType()));
|
|
|
|
return &I;
|
|
|
|
}
|
|
|
|
}
|
2011-10-01 02:09:53 +08:00
|
|
|
|
2015-05-21 02:41:25 +08:00
|
|
|
// Test if the FCmpInst instruction is used exclusively by a select as
|
|
|
|
// part of a minimum or maximum operation. If so, refrain from doing
|
|
|
|
// any other folding. This helps out other analyses which understand
|
|
|
|
// non-obfuscated minimum and maximum idioms, such as ScalarEvolution
|
|
|
|
// and CodeGen. And in this case, at least one of the comparison
|
|
|
|
// operands has at least one user besides the compare (the select),
|
|
|
|
// which would often largely negate the benefit of folding anyway.
|
|
|
|
if (I.hasOneUse())
|
|
|
|
if (SelectInst *SI = dyn_cast<SelectInst>(*I.user_begin()))
|
|
|
|
if ((SI->getOperand(1) == Op0 && SI->getOperand(2) == Op1) ||
|
|
|
|
(SI->getOperand(2) == Op0 && SI->getOperand(1) == Op1))
|
|
|
|
return nullptr;
|
|
|
|
|
2010-01-04 15:37:31 +08:00
|
|
|
// Handle fcmp with constant RHS
|
|
|
|
if (Constant *RHSC = dyn_cast<Constant>(Op1)) {
|
|
|
|
if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
|
|
|
|
switch (LHSI->getOpcode()) {
|
2011-03-31 18:12:07 +08:00
|
|
|
case Instruction::FPExt: {
|
|
|
|
// fcmp (fpext x), C -> fcmp x, (fptrunc C) if fptrunc is lossless
|
|
|
|
FPExtInst *LHSExt = cast<FPExtInst>(LHSI);
|
|
|
|
ConstantFP *RHSF = dyn_cast<ConstantFP>(RHSC);
|
|
|
|
if (!RHSF)
|
|
|
|
break;
|
|
|
|
|
|
|
|
const fltSemantics *Sem;
|
|
|
|
// FIXME: This shouldn't be here.
|
2011-12-17 08:04:22 +08:00
|
|
|
if (LHSExt->getSrcTy()->isHalfTy())
|
|
|
|
Sem = &APFloat::IEEEhalf;
|
|
|
|
else if (LHSExt->getSrcTy()->isFloatTy())
|
2011-03-31 18:12:07 +08:00
|
|
|
Sem = &APFloat::IEEEsingle;
|
|
|
|
else if (LHSExt->getSrcTy()->isDoubleTy())
|
|
|
|
Sem = &APFloat::IEEEdouble;
|
|
|
|
else if (LHSExt->getSrcTy()->isFP128Ty())
|
|
|
|
Sem = &APFloat::IEEEquad;
|
|
|
|
else if (LHSExt->getSrcTy()->isX86_FP80Ty())
|
|
|
|
Sem = &APFloat::x87DoubleExtended;
|
2012-10-30 20:33:18 +08:00
|
|
|
else if (LHSExt->getSrcTy()->isPPC_FP128Ty())
|
|
|
|
Sem = &APFloat::PPCDoubleDouble;
|
2011-03-31 18:12:07 +08:00
|
|
|
else
|
|
|
|
break;
|
|
|
|
|
|
|
|
bool Lossy;
|
|
|
|
APFloat F = RHSF->getValueAPF();
|
|
|
|
F.convert(*Sem, APFloat::rmNearestTiesToEven, &Lossy);
|
|
|
|
|
2011-10-01 02:45:50 +08:00
|
|
|
// Avoid lossy conversions and denormals. Zero is a special case
|
|
|
|
// that's OK to convert.
|
2011-10-01 03:58:46 +08:00
|
|
|
APFloat Fabs = F;
|
|
|
|
Fabs.clearSign();
|
2011-03-31 18:12:07 +08:00
|
|
|
if (!Lossy &&
|
2011-10-01 03:58:46 +08:00
|
|
|
((Fabs.compare(APFloat::getSmallestNormalized(*Sem)) !=
|
|
|
|
APFloat::cmpLessThan) || Fabs.isZero()))
|
2011-10-01 02:45:50 +08:00
|
|
|
|
2011-03-31 18:12:07 +08:00
|
|
|
return new FCmpInst(I.getPredicate(), LHSExt->getOperand(0),
|
|
|
|
ConstantFP::get(RHSC->getContext(), F));
|
|
|
|
break;
|
|
|
|
}
|
2010-01-04 15:37:31 +08:00
|
|
|
case Instruction::PHI:
|
|
|
|
// Only fold fcmp into the PHI if the phi and fcmp are in the same
|
|
|
|
// block. If in the same block, we're encouraging jump threading. If
|
|
|
|
// not, we are just pessimizing the code by making an i1 phi.
|
|
|
|
if (LHSI->getParent() == I.getParent())
|
2011-01-16 13:14:26 +08:00
|
|
|
if (Instruction *NV = FoldOpIntoPhi(I))
|
2010-01-04 15:37:31 +08:00
|
|
|
return NV;
|
|
|
|
break;
|
|
|
|
case Instruction::SIToFP:
|
|
|
|
case Instruction::UIToFP:
|
|
|
|
if (Instruction *NV = FoldFCmp_IntToFP_Cst(I, LHSI, RHSC))
|
|
|
|
return NV;
|
|
|
|
break;
|
2011-03-31 18:12:15 +08:00
|
|
|
case Instruction::FSub: {
|
|
|
|
// fcmp pred (fneg x), C -> fcmp swap(pred) x, -C
|
|
|
|
Value *Op;
|
|
|
|
if (match(LHSI, m_FNeg(m_Value(Op))))
|
|
|
|
return new FCmpInst(I.getSwappedPredicate(), Op,
|
|
|
|
ConstantExpr::getFNeg(RHSC));
|
|
|
|
break;
|
|
|
|
}
|
2010-02-24 14:46:09 +08:00
|
|
|
case Instruction::Load:
|
|
|
|
if (GetElementPtrInst *GEP =
|
|
|
|
dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) {
|
|
|
|
if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
|
|
|
|
if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
|
|
|
|
!cast<LoadInst>(LHSI)->isVolatile())
|
|
|
|
if (Instruction *Res = FoldCmpLoadFromIndexedGlobal(GEP, GV, I))
|
|
|
|
return Res;
|
|
|
|
}
|
|
|
|
break;
|
2012-08-19 04:06:47 +08:00
|
|
|
case Instruction::Call: {
|
2015-01-09 04:09:34 +08:00
|
|
|
if (!RHSC->isNullValue())
|
|
|
|
break;
|
|
|
|
|
2012-08-19 04:06:47 +08:00
|
|
|
CallInst *CI = cast<CallInst>(LHSI);
|
2016-04-16 01:21:03 +08:00
|
|
|
Intrinsic::ID IID = getIntrinsicIDForCall(CI, TLI);
|
|
|
|
if (IID != Intrinsic::fabs)
|
2015-01-09 04:09:34 +08:00
|
|
|
break;
|
|
|
|
|
2012-08-19 04:06:47 +08:00
|
|
|
// Various optimization for fabs compared with zero.
|
2016-04-16 01:21:03 +08:00
|
|
|
switch (I.getPredicate()) {
|
|
|
|
default:
|
|
|
|
break;
|
|
|
|
// fabs(x) < 0 --> false
|
|
|
|
case FCmpInst::FCMP_OLT:
|
|
|
|
llvm_unreachable("handled by SimplifyFCmpInst");
|
|
|
|
// fabs(x) > 0 --> x != 0
|
|
|
|
case FCmpInst::FCMP_OGT:
|
|
|
|
return new FCmpInst(FCmpInst::FCMP_ONE, CI->getArgOperand(0), RHSC);
|
|
|
|
// fabs(x) <= 0 --> x == 0
|
|
|
|
case FCmpInst::FCMP_OLE:
|
|
|
|
return new FCmpInst(FCmpInst::FCMP_OEQ, CI->getArgOperand(0), RHSC);
|
|
|
|
// fabs(x) >= 0 --> !isnan(x)
|
|
|
|
case FCmpInst::FCMP_OGE:
|
|
|
|
return new FCmpInst(FCmpInst::FCMP_ORD, CI->getArgOperand(0), RHSC);
|
|
|
|
// fabs(x) == 0 --> x == 0
|
|
|
|
// fabs(x) != 0 --> x != 0
|
|
|
|
case FCmpInst::FCMP_OEQ:
|
|
|
|
case FCmpInst::FCMP_UEQ:
|
|
|
|
case FCmpInst::FCMP_ONE:
|
|
|
|
case FCmpInst::FCMP_UNE:
|
|
|
|
return new FCmpInst(I.getPredicate(), CI->getArgOperand(0), RHSC);
|
2012-08-19 04:06:47 +08:00
|
|
|
}
|
|
|
|
}
|
2010-01-04 15:37:31 +08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2011-03-31 18:46:03 +08:00
|
|
|
// fcmp pred (fneg x), (fneg y) -> fcmp swap(pred) x, y
|
2011-03-31 18:12:22 +08:00
|
|
|
Value *X, *Y;
|
|
|
|
if (match(Op0, m_FNeg(m_Value(X))) && match(Op1, m_FNeg(m_Value(Y))))
|
2011-03-31 18:46:03 +08:00
|
|
|
return new FCmpInst(I.getSwappedPredicate(), X, Y);
|
2011-03-31 18:12:22 +08:00
|
|
|
|
2011-03-31 18:11:58 +08:00
|
|
|
// fcmp (fpext x), (fpext y) -> fcmp x, y
|
|
|
|
if (FPExtInst *LHSExt = dyn_cast<FPExtInst>(Op0))
|
|
|
|
if (FPExtInst *RHSExt = dyn_cast<FPExtInst>(Op1))
|
|
|
|
if (LHSExt->getSrcTy() == RHSExt->getSrcTy())
|
|
|
|
return new FCmpInst(I.getPredicate(), LHSExt->getOperand(0),
|
|
|
|
RHSExt->getOperand(0));
|
|
|
|
|
2014-04-25 13:29:35 +08:00
|
|
|
return Changed ? &I : nullptr;
|
2010-01-04 15:37:31 +08:00
|
|
|
}
|