llvm-project/lldb/source/Symbol/LineTable.cpp

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

567 lines
21 KiB
C++
Raw Normal View History

//===-- LineTable.cpp -----------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "lldb/Symbol/LineTable.h"
#include "lldb/Core/Address.h"
#include "lldb/Core/Module.h"
#include "lldb/Core/Section.h"
#include "lldb/Symbol/CompileUnit.h"
#include "lldb/Utility/Stream.h"
#include <algorithm>
using namespace lldb;
using namespace lldb_private;
// LineTable constructor
LineTable::LineTable(CompileUnit *comp_unit)
: m_comp_unit(comp_unit), m_entries() {}
LineTable::LineTable(CompileUnit *comp_unit,
std::vector<std::unique_ptr<LineSequence>> &&sequences)
: m_comp_unit(comp_unit), m_entries() {
LineTable::Entry::LessThanBinaryPredicate less_than_bp(this);
llvm::stable_sort(sequences, less_than_bp);
for (const auto &sequence : sequences) {
LineSequenceImpl *seq = static_cast<LineSequenceImpl *>(sequence.get());
m_entries.insert(m_entries.end(), seq->m_entries.begin(),
seq->m_entries.end());
}
}
// Destructor
LineTable::~LineTable() {}
void LineTable::InsertLineEntry(lldb::addr_t file_addr, uint32_t line,
uint16_t column, uint16_t file_idx,
bool is_start_of_statement,
bool is_start_of_basic_block,
bool is_prologue_end, bool is_epilogue_begin,
bool is_terminal_entry) {
Entry entry(file_addr, line, column, file_idx, is_start_of_statement,
is_start_of_basic_block, is_prologue_end, is_epilogue_begin,
is_terminal_entry);
LineTable::Entry::LessThanBinaryPredicate less_than_bp(this);
entry_collection::iterator pos =
llvm::upper_bound(m_entries, entry, less_than_bp);
// Stream s(stdout);
// s << "\n\nBefore:\n";
// Dump (&s, Address::DumpStyleFileAddress);
m_entries.insert(pos, entry);
// s << "After:\n";
// Dump (&s, Address::DumpStyleFileAddress);
}
LineSequence::LineSequence() {}
void LineTable::LineSequenceImpl::Clear() { m_entries.clear(); }
std::unique_ptr<LineSequence> LineTable::CreateLineSequenceContainer() {
return std::make_unique<LineTable::LineSequenceImpl>();
}
void LineTable::AppendLineEntryToSequence(
LineSequence *sequence, lldb::addr_t file_addr, uint32_t line,
uint16_t column, uint16_t file_idx, bool is_start_of_statement,
bool is_start_of_basic_block, bool is_prologue_end, bool is_epilogue_begin,
bool is_terminal_entry) {
assert(sequence != nullptr);
LineSequenceImpl *seq = reinterpret_cast<LineSequenceImpl *>(sequence);
Entry entry(file_addr, line, column, file_idx, is_start_of_statement,
is_start_of_basic_block, is_prologue_end, is_epilogue_begin,
is_terminal_entry);
entry_collection &entries = seq->m_entries;
// Replace the last entry if the address is the same, otherwise append it. If
// we have multiple line entries at the same address, this indicates illegal
// DWARF so this "fixes" the line table to be correct. If not fixed this can
// cause a line entry's address that when resolved back to a symbol context,
// could resolve to a different line entry. We really want a
// 1 to 1 mapping
// here to avoid these kinds of inconsistencies. We will need tor revisit
// this if the DWARF line tables are updated to allow multiple entries at the
// same address legally.
if (!entries.empty() && entries.back().file_addr == file_addr) {
// GCC don't use the is_prologue_end flag to mark the first instruction
// after the prologue.
// Instead of it it is issuing a line table entry for the first instruction
// of the prologue and one for the first instruction after the prologue. If
// the size of the prologue is 0 instruction then the 2 line entry will
// have the same file address. Removing it will remove our ability to
// properly detect the location of the end of prologe so we set the
// prologue_end flag to preserve this information (setting the prologue_end
// flag for an entry what is after the prologue end don't have any effect)
entry.is_prologue_end = entry.file_idx == entries.back().file_idx;
entries.back() = entry;
} else
entries.push_back(entry);
}
void LineTable::InsertSequence(LineSequence *sequence) {
assert(sequence != nullptr);
LineSequenceImpl *seq = reinterpret_cast<LineSequenceImpl *>(sequence);
if (seq->m_entries.empty())
return;
Entry &entry = seq->m_entries.front();
// If the first entry address in this sequence is greater than or equal to
// the address of the last item in our entry collection, just append.
if (m_entries.empty() ||
!Entry::EntryAddressLessThan(entry, m_entries.back())) {
m_entries.insert(m_entries.end(), seq->m_entries.begin(),
seq->m_entries.end());
return;
}
// Otherwise, find where this belongs in the collection
entry_collection::iterator begin_pos = m_entries.begin();
entry_collection::iterator end_pos = m_entries.end();
LineTable::Entry::LessThanBinaryPredicate less_than_bp(this);
entry_collection::iterator pos =
upper_bound(begin_pos, end_pos, entry, less_than_bp);
// We should never insert a sequence in the middle of another sequence
if (pos != begin_pos) {
while (pos < end_pos && !((pos - 1)->is_terminal_entry))
pos++;
}
#ifndef NDEBUG
// If we aren't inserting at the beginning, the previous entry should
// terminate a sequence.
if (pos != begin_pos) {
entry_collection::iterator prev_pos = pos - 1;
assert(prev_pos->is_terminal_entry);
}
#endif
m_entries.insert(pos, seq->m_entries.begin(), seq->m_entries.end());
}
LineTable::Entry::LessThanBinaryPredicate::LessThanBinaryPredicate(
LineTable *line_table)
: m_line_table(line_table) {}
bool LineTable::Entry::LessThanBinaryPredicate::
operator()(const LineTable::Entry &a, const LineTable::Entry &b) const {
#define LT_COMPARE(a, b) \
if (a != b) \
return a < b
LT_COMPARE(a.file_addr, b.file_addr);
// b and a reversed on purpose below.
LT_COMPARE(b.is_terminal_entry, a.is_terminal_entry);
LT_COMPARE(a.line, b.line);
LT_COMPARE(a.column, b.column);
LT_COMPARE(a.is_start_of_statement, b.is_start_of_statement);
LT_COMPARE(a.is_start_of_basic_block, b.is_start_of_basic_block);
// b and a reversed on purpose below.
LT_COMPARE(b.is_prologue_end, a.is_prologue_end);
LT_COMPARE(a.is_epilogue_begin, b.is_epilogue_begin);
LT_COMPARE(a.file_idx, b.file_idx);
return false;
#undef LT_COMPARE
}
bool LineTable::Entry::LessThanBinaryPredicate::
operator()(const std::unique_ptr<LineSequence> &sequence_a,
const std::unique_ptr<LineSequence> &sequence_b) const {
auto *seq_a = static_cast<const LineSequenceImpl *>(sequence_a.get());
auto *seq_b = static_cast<const LineSequenceImpl *>(sequence_b.get());
return (*this)(seq_a->m_entries.front(), seq_b->m_entries.front());
}
uint32_t LineTable::GetSize() const { return m_entries.size(); }
bool LineTable::GetLineEntryAtIndex(uint32_t idx, LineEntry &line_entry) {
if (idx < m_entries.size()) {
ConvertEntryAtIndexToLineEntry(idx, line_entry);
return true;
}
line_entry.Clear();
return false;
}
bool LineTable::FindLineEntryByAddress(const Address &so_addr,
LineEntry &line_entry,
uint32_t *index_ptr) {
if (index_ptr != nullptr)
*index_ptr = UINT32_MAX;
bool success = false;
if (so_addr.GetModule().get() == m_comp_unit->GetModule().get()) {
Entry search_entry;
search_entry.file_addr = so_addr.GetFileAddress();
if (search_entry.file_addr != LLDB_INVALID_ADDRESS) {
entry_collection::const_iterator begin_pos = m_entries.begin();
entry_collection::const_iterator end_pos = m_entries.end();
entry_collection::const_iterator pos = lower_bound(
begin_pos, end_pos, search_entry, Entry::EntryAddressLessThan);
if (pos != end_pos) {
if (pos != begin_pos) {
if (pos->file_addr != search_entry.file_addr)
--pos;
else if (pos->file_addr == search_entry.file_addr) {
// If this is a termination entry, it shouldn't match since entries
// with the "is_terminal_entry" member set to true are termination
// entries that define the range for the previous entry.
if (pos->is_terminal_entry) {
// The matching entry is a terminal entry, so we skip ahead to
// the next entry to see if there is another entry following this
// one whose section/offset matches.
++pos;
if (pos != end_pos) {
if (pos->file_addr != search_entry.file_addr)
pos = end_pos;
}
}
if (pos != end_pos) {
// While in the same section/offset backup to find the first line
// entry that matches the address in case there are multiple
while (pos != begin_pos) {
entry_collection::const_iterator prev_pos = pos - 1;
if (prev_pos->file_addr == search_entry.file_addr &&
prev_pos->is_terminal_entry == false)
--pos;
else
break;
}
}
}
}
else
{
// There might be code in the containing objfile before the first
// line table entry. Make sure that does not get considered part of
// the first line table entry.
if (pos->file_addr > so_addr.GetFileAddress())
return false;
}
// Make sure we have a valid match and that the match isn't a
// terminating entry for a previous line...
if (pos != end_pos && pos->is_terminal_entry == false) {
uint32_t match_idx = std::distance(begin_pos, pos);
success = ConvertEntryAtIndexToLineEntry(match_idx, line_entry);
if (index_ptr != nullptr && success)
*index_ptr = match_idx;
}
}
}
}
return success;
}
bool LineTable::ConvertEntryAtIndexToLineEntry(uint32_t idx,
LineEntry &line_entry) {
if (idx >= m_entries.size())
return false;
const Entry &entry = m_entries[idx];
ModuleSP module_sp(m_comp_unit->GetModule());
if (!module_sp)
return false;
addr_t file_addr = entry.file_addr;
// A terminal entry can point outside of a module or a section. Decrement the
// address to ensure it resolves correctly.
if (entry.is_terminal_entry)
--file_addr;
if (!module_sp->ResolveFileAddress(file_addr,
line_entry.range.GetBaseAddress()))
return false;
// Now undo the decrement above.
if (entry.is_terminal_entry)
line_entry.range.GetBaseAddress().Slide(1);
if (!entry.is_terminal_entry && idx + 1 < m_entries.size())
line_entry.range.SetByteSize(m_entries[idx + 1].file_addr -
entry.file_addr);
else
line_entry.range.SetByteSize(0);
line_entry.file =
m_comp_unit->GetSupportFiles().GetFileSpecAtIndex(entry.file_idx);
line_entry.original_file =
m_comp_unit->GetSupportFiles().GetFileSpecAtIndex(entry.file_idx);
line_entry.line = entry.line;
line_entry.column = entry.column;
line_entry.is_start_of_statement = entry.is_start_of_statement;
line_entry.is_start_of_basic_block = entry.is_start_of_basic_block;
line_entry.is_prologue_end = entry.is_prologue_end;
line_entry.is_epilogue_begin = entry.is_epilogue_begin;
line_entry.is_terminal_entry = entry.is_terminal_entry;
return true;
}
uint32_t LineTable::FindLineEntryIndexByFileIndex(
uint32_t start_idx, const std::vector<uint32_t> &file_indexes,
const SourceLocationSpec &src_location_spec, LineEntry *line_entry_ptr) {
const size_t count = m_entries.size();
Looking at some of the test suite failures in DWARF in .o files with the debug map showed that the location lists in the .o files needed some refactoring in order to work. The case that was failing was where a function that was in the "__TEXT.__textcoal_nt" in the .o file, and in the "__TEXT.__text" section in the main executable. This made symbol lookup fail due to the way we were finding a real address in the debug map which was by finding the section that the function was in in the .o file and trying to find this in the main executable. Now the section list supports finding a linked address in a section or any child sections. After fixing this, we ran into issue that were due to DWARF and how it represents locations lists. DWARF makes a list of address ranges and expressions that go along with those address ranges. The location addresses are expressed in terms of a compile unit address + offset. This works fine as long as nothing moves around. When stuff moves around and offsets change between the remapped compile unit base address and the new function address, then we can run into trouble. To deal with this, we now store supply a location list slide amount to any location list expressions that will allow us to make the location list addresses into zero based offsets from the object that owns the location list (always a function in our case). With these fixes we can now re-link random address ranges inside the debugger for use with our DWARF + debug map, incremental linking, and more. Another issue that arose when doing the DWARF in the .o files was that GCC 4.2 emits a ".debug_aranges" that only mentions functions that are externally visible. This makes .debug_aranges useless to us and we now generate a real address range lookup table in the DWARF parser at the same time as we index the name tables (that are needed because .debug_pubnames is just as useless). llvm-gcc doesn't generate a .debug_aranges section, though this could be fixed, we aren't going to rely upon it. Renamed a bunch of "UINT_MAX" to "UINT32_MAX". llvm-svn: 113829
2010-09-14 10:20:48 +08:00
size_t best_match = UINT32_MAX;
for (size_t idx = start_idx; idx < count; ++idx) {
// Skip line table rows that terminate the previous row (is_terminal_entry
// is non-zero)
if (m_entries[idx].is_terminal_entry)
continue;
if (!llvm::is_contained(file_indexes, m_entries[idx].file_idx))
continue;
// Exact match always wins. Otherwise try to find the closest line > the
// desired line.
// FIXME: Maybe want to find the line closest before and the line closest
// after and
// if they're not in the same function, don't return a match.
uint32_t line = src_location_spec.GetLine().getValueOr(0);
if (m_entries[idx].line < line) {
continue;
} else if (m_entries[idx].line == line) {
if (line_entry_ptr)
ConvertEntryAtIndexToLineEntry(idx, *line_entry_ptr);
return idx;
} else if (!src_location_spec.GetExactMatch()) {
if (best_match == UINT32_MAX)
best_match = idx;
else if (m_entries[idx].line < m_entries[best_match].line)
best_match = idx;
}
}
Looking at some of the test suite failures in DWARF in .o files with the debug map showed that the location lists in the .o files needed some refactoring in order to work. The case that was failing was where a function that was in the "__TEXT.__textcoal_nt" in the .o file, and in the "__TEXT.__text" section in the main executable. This made symbol lookup fail due to the way we were finding a real address in the debug map which was by finding the section that the function was in in the .o file and trying to find this in the main executable. Now the section list supports finding a linked address in a section or any child sections. After fixing this, we ran into issue that were due to DWARF and how it represents locations lists. DWARF makes a list of address ranges and expressions that go along with those address ranges. The location addresses are expressed in terms of a compile unit address + offset. This works fine as long as nothing moves around. When stuff moves around and offsets change between the remapped compile unit base address and the new function address, then we can run into trouble. To deal with this, we now store supply a location list slide amount to any location list expressions that will allow us to make the location list addresses into zero based offsets from the object that owns the location list (always a function in our case). With these fixes we can now re-link random address ranges inside the debugger for use with our DWARF + debug map, incremental linking, and more. Another issue that arose when doing the DWARF in the .o files was that GCC 4.2 emits a ".debug_aranges" that only mentions functions that are externally visible. This makes .debug_aranges useless to us and we now generate a real address range lookup table in the DWARF parser at the same time as we index the name tables (that are needed because .debug_pubnames is just as useless). llvm-gcc doesn't generate a .debug_aranges section, though this could be fixed, we aren't going to rely upon it. Renamed a bunch of "UINT_MAX" to "UINT32_MAX". llvm-svn: 113829
2010-09-14 10:20:48 +08:00
if (best_match != UINT32_MAX) {
if (line_entry_ptr)
ConvertEntryAtIndexToLineEntry(best_match, *line_entry_ptr);
return best_match;
}
Looking at some of the test suite failures in DWARF in .o files with the debug map showed that the location lists in the .o files needed some refactoring in order to work. The case that was failing was where a function that was in the "__TEXT.__textcoal_nt" in the .o file, and in the "__TEXT.__text" section in the main executable. This made symbol lookup fail due to the way we were finding a real address in the debug map which was by finding the section that the function was in in the .o file and trying to find this in the main executable. Now the section list supports finding a linked address in a section or any child sections. After fixing this, we ran into issue that were due to DWARF and how it represents locations lists. DWARF makes a list of address ranges and expressions that go along with those address ranges. The location addresses are expressed in terms of a compile unit address + offset. This works fine as long as nothing moves around. When stuff moves around and offsets change between the remapped compile unit base address and the new function address, then we can run into trouble. To deal with this, we now store supply a location list slide amount to any location list expressions that will allow us to make the location list addresses into zero based offsets from the object that owns the location list (always a function in our case). With these fixes we can now re-link random address ranges inside the debugger for use with our DWARF + debug map, incremental linking, and more. Another issue that arose when doing the DWARF in the .o files was that GCC 4.2 emits a ".debug_aranges" that only mentions functions that are externally visible. This makes .debug_aranges useless to us and we now generate a real address range lookup table in the DWARF parser at the same time as we index the name tables (that are needed because .debug_pubnames is just as useless). llvm-gcc doesn't generate a .debug_aranges section, though this could be fixed, we aren't going to rely upon it. Renamed a bunch of "UINT_MAX" to "UINT32_MAX". llvm-svn: 113829
2010-09-14 10:20:48 +08:00
return UINT32_MAX;
}
uint32_t LineTable::FindLineEntryIndexByFileIndex(
uint32_t start_idx, uint32_t file_idx,
const SourceLocationSpec &src_location_spec, LineEntry *line_entry_ptr) {
const size_t count = m_entries.size();
size_t best_match = UINT32_MAX;
for (size_t idx = start_idx; idx < count; ++idx) {
// Skip line table rows that terminate the previous row (is_terminal_entry
// is non-zero)
if (m_entries[idx].is_terminal_entry)
continue;
if (m_entries[idx].file_idx != file_idx)
continue;
// Exact match always wins. Otherwise try to find the closest line > the
// desired line.
// FIXME: Maybe want to find the line closest before and the line closest
// after and
// if they're not in the same function, don't return a match.
uint32_t line = src_location_spec.GetLine().getValueOr(0);
if (m_entries[idx].line < line) {
continue;
} else if (m_entries[idx].line == line) {
if (line_entry_ptr)
ConvertEntryAtIndexToLineEntry(idx, *line_entry_ptr);
return idx;
} else if (!src_location_spec.GetExactMatch()) {
if (best_match == UINT32_MAX)
best_match = idx;
else if (m_entries[idx].line < m_entries[best_match].line)
best_match = idx;
}
}
Looking at some of the test suite failures in DWARF in .o files with the debug map showed that the location lists in the .o files needed some refactoring in order to work. The case that was failing was where a function that was in the "__TEXT.__textcoal_nt" in the .o file, and in the "__TEXT.__text" section in the main executable. This made symbol lookup fail due to the way we were finding a real address in the debug map which was by finding the section that the function was in in the .o file and trying to find this in the main executable. Now the section list supports finding a linked address in a section or any child sections. After fixing this, we ran into issue that were due to DWARF and how it represents locations lists. DWARF makes a list of address ranges and expressions that go along with those address ranges. The location addresses are expressed in terms of a compile unit address + offset. This works fine as long as nothing moves around. When stuff moves around and offsets change between the remapped compile unit base address and the new function address, then we can run into trouble. To deal with this, we now store supply a location list slide amount to any location list expressions that will allow us to make the location list addresses into zero based offsets from the object that owns the location list (always a function in our case). With these fixes we can now re-link random address ranges inside the debugger for use with our DWARF + debug map, incremental linking, and more. Another issue that arose when doing the DWARF in the .o files was that GCC 4.2 emits a ".debug_aranges" that only mentions functions that are externally visible. This makes .debug_aranges useless to us and we now generate a real address range lookup table in the DWARF parser at the same time as we index the name tables (that are needed because .debug_pubnames is just as useless). llvm-gcc doesn't generate a .debug_aranges section, though this could be fixed, we aren't going to rely upon it. Renamed a bunch of "UINT_MAX" to "UINT32_MAX". llvm-svn: 113829
2010-09-14 10:20:48 +08:00
if (best_match != UINT32_MAX) {
if (line_entry_ptr)
ConvertEntryAtIndexToLineEntry(best_match, *line_entry_ptr);
return best_match;
}
Looking at some of the test suite failures in DWARF in .o files with the debug map showed that the location lists in the .o files needed some refactoring in order to work. The case that was failing was where a function that was in the "__TEXT.__textcoal_nt" in the .o file, and in the "__TEXT.__text" section in the main executable. This made symbol lookup fail due to the way we were finding a real address in the debug map which was by finding the section that the function was in in the .o file and trying to find this in the main executable. Now the section list supports finding a linked address in a section or any child sections. After fixing this, we ran into issue that were due to DWARF and how it represents locations lists. DWARF makes a list of address ranges and expressions that go along with those address ranges. The location addresses are expressed in terms of a compile unit address + offset. This works fine as long as nothing moves around. When stuff moves around and offsets change between the remapped compile unit base address and the new function address, then we can run into trouble. To deal with this, we now store supply a location list slide amount to any location list expressions that will allow us to make the location list addresses into zero based offsets from the object that owns the location list (always a function in our case). With these fixes we can now re-link random address ranges inside the debugger for use with our DWARF + debug map, incremental linking, and more. Another issue that arose when doing the DWARF in the .o files was that GCC 4.2 emits a ".debug_aranges" that only mentions functions that are externally visible. This makes .debug_aranges useless to us and we now generate a real address range lookup table in the DWARF parser at the same time as we index the name tables (that are needed because .debug_pubnames is just as useless). llvm-gcc doesn't generate a .debug_aranges section, though this could be fixed, we aren't going to rely upon it. Renamed a bunch of "UINT_MAX" to "UINT32_MAX". llvm-svn: 113829
2010-09-14 10:20:48 +08:00
return UINT32_MAX;
}
size_t LineTable::FineLineEntriesForFileIndex(uint32_t file_idx, bool append,
SymbolContextList &sc_list) {
if (!append)
sc_list.Clear();
size_t num_added = 0;
const size_t count = m_entries.size();
if (count > 0) {
SymbolContext sc(m_comp_unit);
for (size_t idx = 0; idx < count; ++idx) {
// Skip line table rows that terminate the previous row
// (is_terminal_entry is non-zero)
if (m_entries[idx].is_terminal_entry)
continue;
if (m_entries[idx].file_idx == file_idx) {
if (ConvertEntryAtIndexToLineEntry(idx, sc.line_entry)) {
++num_added;
sc_list.Append(sc);
}
}
}
}
return num_added;
}
void LineTable::Dump(Stream *s, Target *target, Address::DumpStyle style,
Address::DumpStyle fallback_style, bool show_line_ranges) {
const size_t count = m_entries.size();
LineEntry line_entry;
FileSpec prev_file;
for (size_t idx = 0; idx < count; ++idx) {
ConvertEntryAtIndexToLineEntry(idx, line_entry);
line_entry.Dump(s, target, prev_file != line_entry.original_file, style,
fallback_style, show_line_ranges);
s->EOL();
prev_file = line_entry.original_file;
}
}
void LineTable::GetDescription(Stream *s, Target *target,
DescriptionLevel level) {
const size_t count = m_entries.size();
LineEntry line_entry;
for (size_t idx = 0; idx < count; ++idx) {
ConvertEntryAtIndexToLineEntry(idx, line_entry);
line_entry.GetDescription(s, level, m_comp_unit, target, true);
s->EOL();
}
}
size_t LineTable::GetContiguousFileAddressRanges(FileAddressRanges &file_ranges,
bool append) {
if (!append)
file_ranges.Clear();
const size_t initial_count = file_ranges.GetSize();
const size_t count = m_entries.size();
LineEntry line_entry;
FileAddressRanges::Entry range(LLDB_INVALID_ADDRESS, 0);
for (size_t idx = 0; idx < count; ++idx) {
const Entry &entry = m_entries[idx];
if (entry.is_terminal_entry) {
if (range.GetRangeBase() != LLDB_INVALID_ADDRESS) {
range.SetRangeEnd(entry.file_addr);
file_ranges.Append(range);
range.Clear(LLDB_INVALID_ADDRESS);
}
} else if (range.GetRangeBase() == LLDB_INVALID_ADDRESS) {
range.SetRangeBase(entry.file_addr);
}
}
return file_ranges.GetSize() - initial_count;
}
LineTable *LineTable::LinkLineTable(const FileRangeMap &file_range_map) {
std::unique_ptr<LineTable> line_table_up(new LineTable(m_comp_unit));
LineSequenceImpl sequence;
const size_t count = m_entries.size();
LineEntry line_entry;
const FileRangeMap::Entry *file_range_entry = nullptr;
const FileRangeMap::Entry *prev_file_range_entry = nullptr;
lldb::addr_t prev_file_addr = LLDB_INVALID_ADDRESS;
bool prev_entry_was_linked = false;
bool range_changed = false;
for (size_t idx = 0; idx < count; ++idx) {
const Entry &entry = m_entries[idx];
const bool end_sequence = entry.is_terminal_entry;
const lldb::addr_t lookup_file_addr =
entry.file_addr - (end_sequence ? 1 : 0);
if (file_range_entry == nullptr ||
!file_range_entry->Contains(lookup_file_addr)) {
prev_file_range_entry = file_range_entry;
file_range_entry = file_range_map.FindEntryThatContains(lookup_file_addr);
range_changed = true;
}
lldb::addr_t prev_end_entry_linked_file_addr = LLDB_INVALID_ADDRESS;
lldb::addr_t entry_linked_file_addr = LLDB_INVALID_ADDRESS;
bool terminate_previous_entry = false;
if (file_range_entry) {
entry_linked_file_addr = entry.file_addr -
file_range_entry->GetRangeBase() +
file_range_entry->data;
// Determine if we need to terminate the previous entry when the previous
// entry was not contiguous with this one after being linked.
if (range_changed && prev_file_range_entry) {
prev_end_entry_linked_file_addr =
std::min<lldb::addr_t>(entry.file_addr,
prev_file_range_entry->GetRangeEnd()) -
prev_file_range_entry->GetRangeBase() + prev_file_range_entry->data;
if (prev_end_entry_linked_file_addr != entry_linked_file_addr)
terminate_previous_entry = prev_entry_was_linked;
}
} else if (prev_entry_was_linked) {
// This entry doesn't have a remapping and it needs to be removed. Watch
// out in case we need to terminate a previous entry needs to be
// terminated now that one line entry in a sequence is not longer valid.
if (!sequence.m_entries.empty() &&
!sequence.m_entries.back().is_terminal_entry) {
terminate_previous_entry = true;
}
}
if (terminate_previous_entry && !sequence.m_entries.empty()) {
assert(prev_file_addr != LLDB_INVALID_ADDRESS);
UNUSED_IF_ASSERT_DISABLED(prev_file_addr);
sequence.m_entries.push_back(sequence.m_entries.back());
if (prev_end_entry_linked_file_addr == LLDB_INVALID_ADDRESS)
prev_end_entry_linked_file_addr =
std::min<lldb::addr_t>(entry.file_addr,
prev_file_range_entry->GetRangeEnd()) -
prev_file_range_entry->GetRangeBase() + prev_file_range_entry->data;
sequence.m_entries.back().file_addr = prev_end_entry_linked_file_addr;
sequence.m_entries.back().is_terminal_entry = true;
// Append the sequence since we just terminated the previous one
line_table_up->InsertSequence(&sequence);
sequence.Clear();
}
// Now link the current entry
if (file_range_entry) {
// This entry has an address remapping and it needs to have its address
// relinked
sequence.m_entries.push_back(entry);
sequence.m_entries.back().file_addr = entry_linked_file_addr;
}
// If we have items in the sequence and the last entry is a terminal entry,
// insert this sequence into our new line table.
if (!sequence.m_entries.empty() &&
sequence.m_entries.back().is_terminal_entry) {
line_table_up->InsertSequence(&sequence);
sequence.Clear();
prev_entry_was_linked = false;
} else {
prev_entry_was_linked = file_range_entry != nullptr;
}
prev_file_addr = entry.file_addr;
range_changed = false;
}
if (line_table_up->m_entries.empty())
return nullptr;
return line_table_up.release();
}