llvm-project/llvm/lib/Bitcode/Writer/ValueEnumerator.cpp

461 lines
16 KiB
C++
Raw Normal View History

//===-- ValueEnumerator.cpp - Number values and types for bitcode writer --===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the ValueEnumerator class.
//
//===----------------------------------------------------------------------===//
#include "ValueEnumerator.h"
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Module.h"
#include "llvm/TypeSymbolTable.h"
#include "llvm/ValueSymbolTable.h"
#include "llvm/Instructions.h"
#include <algorithm>
using namespace llvm;
static bool isSingleValueType(const std::pair<const llvm::Type*,
unsigned int> &P) {
return P.first->isSingleValueType();
}
static bool isIntegerValue(const std::pair<const Value*, unsigned> &V) {
return V.first->getType()->isIntegerTy();
}
static bool CompareByFrequency(const std::pair<const llvm::Type*,
unsigned int> &P1,
const std::pair<const llvm::Type*,
unsigned int> &P2) {
return P1.second > P2.second;
}
/// ValueEnumerator - Enumerate module-level information.
ValueEnumerator::ValueEnumerator(const Module *M) {
// Enumerate the global variables.
for (Module::const_global_iterator I = M->global_begin(),
E = M->global_end(); I != E; ++I)
EnumerateValue(I);
// Enumerate the functions.
for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I) {
EnumerateValue(I);
EnumerateAttributes(cast<Function>(I)->getAttributes());
}
// Enumerate the aliases.
for (Module::const_alias_iterator I = M->alias_begin(), E = M->alias_end();
I != E; ++I)
EnumerateValue(I);
// Remember what is the cutoff between globalvalue's and other constants.
unsigned FirstConstant = Values.size();
// Enumerate the global variable initializers.
for (Module::const_global_iterator I = M->global_begin(),
E = M->global_end(); I != E; ++I)
if (I->hasInitializer())
EnumerateValue(I->getInitializer());
// Enumerate the aliasees.
for (Module::const_alias_iterator I = M->alias_begin(), E = M->alias_end();
I != E; ++I)
EnumerateValue(I->getAliasee());
// Enumerate types used by the type symbol table.
EnumerateTypeSymbolTable(M->getTypeSymbolTable());
// Insert constants and metadata that are named at module level into the slot
// pool so that the module symbol table can refer to them...
EnumerateValueSymbolTable(M->getValueSymbolTable());
EnumerateMDSymbolTable(M->getMDSymbolTable());
2009-12-31 08:51:46 +08:00
SmallVector<std::pair<unsigned, MDNode*>, 8> MDs;
// Enumerate types used by function bodies and argument lists.
for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) {
for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
I != E; ++I)
EnumerateType(I->getType());
for (Function::const_iterator BB = F->begin(), E = F->end(); BB != E; ++BB)
for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E;++I){
for (User::const_op_iterator OI = I->op_begin(), E = I->op_end();
OI != E; ++OI) {
if (MDNode *MD = dyn_cast<MDNode>(*OI))
if (MD->isFunctionLocal() && MD->getFunction())
// These will get enumerated during function-incorporation.
continue;
EnumerateOperandType(*OI);
}
EnumerateType(I->getType());
if (const CallInst *CI = dyn_cast<CallInst>(I))
EnumerateAttributes(CI->getAttributes());
else if (const InvokeInst *II = dyn_cast<InvokeInst>(I))
EnumerateAttributes(II->getAttributes());
// Enumerate metadata attached with this instruction.
MDs.clear();
I->getAllMetadata(MDs);
for (unsigned i = 0, e = MDs.size(); i != e; ++i)
EnumerateMetadata(MDs[i].second);
}
}
// Optimize constant ordering.
OptimizeConstants(FirstConstant, Values.size());
// Sort the type table by frequency so that most commonly used types are early
// in the table (have low bit-width).
std::stable_sort(Types.begin(), Types.end(), CompareByFrequency);
// Partition the Type ID's so that the single-value types occur before the
// aggregate types. This allows the aggregate types to be dropped from the
// type table after parsing the global variable initializers.
std::partition(Types.begin(), Types.end(), isSingleValueType);
// Now that we rearranged the type table, rebuild TypeMap.
for (unsigned i = 0, e = Types.size(); i != e; ++i)
TypeMap[Types[i].first] = i+1;
}
unsigned ValueEnumerator::getInstructionID(const Instruction *Inst) const {
InstructionMapType::const_iterator I = InstructionMap.find(Inst);
assert (I != InstructionMap.end() && "Instruction is not mapped!");
return I->second;
}
void ValueEnumerator::setInstructionID(const Instruction *I) {
InstructionMap[I] = InstructionCount++;
}
unsigned ValueEnumerator::getValueID(const Value *V) const {
if (isa<MDNode>(V) || isa<MDString>(V)) {
ValueMapType::const_iterator I = MDValueMap.find(V);
assert(I != MDValueMap.end() && "Value not in slotcalculator!");
return I->second-1;
}
ValueMapType::const_iterator I = ValueMap.find(V);
assert(I != ValueMap.end() && "Value not in slotcalculator!");
return I->second-1;
}
// Optimize constant ordering.
namespace {
struct CstSortPredicate {
ValueEnumerator &VE;
explicit CstSortPredicate(ValueEnumerator &ve) : VE(ve) {}
bool operator()(const std::pair<const Value*, unsigned> &LHS,
const std::pair<const Value*, unsigned> &RHS) {
// Sort by plane.
if (LHS.first->getType() != RHS.first->getType())
return VE.getTypeID(LHS.first->getType()) <
VE.getTypeID(RHS.first->getType());
// Then by frequency.
return LHS.second > RHS.second;
}
};
}
/// OptimizeConstants - Reorder constant pool for denser encoding.
void ValueEnumerator::OptimizeConstants(unsigned CstStart, unsigned CstEnd) {
if (CstStart == CstEnd || CstStart+1 == CstEnd) return;
CstSortPredicate P(*this);
std::stable_sort(Values.begin()+CstStart, Values.begin()+CstEnd, P);
// Ensure that integer constants are at the start of the constant pool. This
// is important so that GEP structure indices come before gep constant exprs.
std::partition(Values.begin()+CstStart, Values.begin()+CstEnd,
isIntegerValue);
// Rebuild the modified portion of ValueMap.
for (; CstStart != CstEnd; ++CstStart)
ValueMap[Values[CstStart].first] = CstStart+1;
}
/// EnumerateTypeSymbolTable - Insert all of the types in the specified symbol
/// table.
void ValueEnumerator::EnumerateTypeSymbolTable(const TypeSymbolTable &TST) {
for (TypeSymbolTable::const_iterator TI = TST.begin(), TE = TST.end();
TI != TE; ++TI)
EnumerateType(TI->second);
}
/// EnumerateValueSymbolTable - Insert all of the values in the specified symbol
/// table into the values table.
void ValueEnumerator::EnumerateValueSymbolTable(const ValueSymbolTable &VST) {
for (ValueSymbolTable::const_iterator VI = VST.begin(), VE = VST.end();
VI != VE; ++VI)
EnumerateValue(VI->getValue());
}
/// EnumerateMDSymbolTable - Insert all of the values in the specified metadata
/// table.
void ValueEnumerator::EnumerateMDSymbolTable(const MDSymbolTable &MST) {
for (MDSymbolTable::const_iterator MI = MST.begin(), ME = MST.end();
MI != ME; ++MI)
EnumerateValue(MI->getValue());
}
void ValueEnumerator::EnumerateNamedMDNode(const NamedMDNode *MD) {
// Check to see if it's already in!
unsigned &MDValueID = MDValueMap[MD];
if (MDValueID) {
// Increment use count.
MDValues[MDValueID-1].second++;
return;
}
// Enumerate the type of this value.
EnumerateType(MD->getType());
for (unsigned i = 0, e = MD->getNumOperands(); i != e; ++i)
if (MDNode *E = MD->getOperand(i))
EnumerateValue(E);
MDValues.push_back(std::make_pair(MD, 1U));
MDValueMap[MD] = Values.size();
}
void ValueEnumerator::EnumerateMetadata(const Value *MD) {
assert((isa<MDNode>(MD) || isa<MDString>(MD)) && "Invalid metadata kind");
// Check to see if it's already in!
unsigned &MDValueID = MDValueMap[MD];
if (MDValueID) {
// Increment use count.
MDValues[MDValueID-1].second++;
return;
}
// Enumerate the type of this value.
EnumerateType(MD->getType());
if (const MDNode *N = dyn_cast<MDNode>(MD)) {
MDValues.push_back(std::make_pair(MD, 1U));
MDValueMap[MD] = MDValues.size();
MDValueID = MDValues.size();
for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
if (Value *V = N->getOperand(i))
EnumerateValue(V);
else
EnumerateType(Type::getVoidTy(MD->getContext()));
}
return;
}
// Add the value.
2009-12-31 08:51:46 +08:00
assert(isa<MDString>(MD) && "Unknown metadata kind");
MDValues.push_back(std::make_pair(MD, 1U));
MDValueID = MDValues.size();
}
void ValueEnumerator::EnumerateValue(const Value *V) {
2009-12-31 08:51:46 +08:00
assert(!V->getType()->isVoidTy() && "Can't insert void values!");
if (isa<MDNode>(V) || isa<MDString>(V))
return EnumerateMetadata(V);
else if (const NamedMDNode *NMD = dyn_cast<NamedMDNode>(V))
return EnumerateNamedMDNode(NMD);
// Check to see if it's already in!
unsigned &ValueID = ValueMap[V];
if (ValueID) {
// Increment use count.
Values[ValueID-1].second++;
return;
}
// Enumerate the type of this value.
EnumerateType(V->getType());
if (const Constant *C = dyn_cast<Constant>(V)) {
if (isa<GlobalValue>(C)) {
// Initializers for globals are handled explicitly elsewhere.
} else if (isa<ConstantArray>(C) && cast<ConstantArray>(C)->isString()) {
// Do not enumerate the initializers for an array of simple characters.
// The initializers just polute the value table, and we emit the strings
// specially.
} else if (C->getNumOperands()) {
// If a constant has operands, enumerate them. This makes sure that if a
// constant has uses (for example an array of const ints), that they are
// inserted also.
// We prefer to enumerate them with values before we enumerate the user
// itself. This makes it more likely that we can avoid forward references
// in the reader. We know that there can be no cycles in the constants
// graph that don't go through a global variable.
for (User::const_op_iterator I = C->op_begin(), E = C->op_end();
I != E; ++I)
if (!isa<BasicBlock>(*I)) // Don't enumerate BB operand to BlockAddress.
EnumerateValue(*I);
// Finally, add the value. Doing this could make the ValueID reference be
// dangling, don't reuse it.
Values.push_back(std::make_pair(V, 1U));
ValueMap[V] = Values.size();
return;
}
}
// Add the value.
Values.push_back(std::make_pair(V, 1U));
ValueID = Values.size();
}
void ValueEnumerator::EnumerateType(const Type *Ty) {
unsigned &TypeID = TypeMap[Ty];
if (TypeID) {
// If we've already seen this type, just increase its occurrence count.
Types[TypeID-1].second++;
return;
}
// First time we saw this type, add it.
Types.push_back(std::make_pair(Ty, 1U));
TypeID = Types.size();
// Enumerate subtypes.
for (Type::subtype_iterator I = Ty->subtype_begin(), E = Ty->subtype_end();
I != E; ++I)
EnumerateType(*I);
}
// Enumerate the types for the specified value. If the value is a constant,
// walk through it, enumerating the types of the constant.
void ValueEnumerator::EnumerateOperandType(const Value *V) {
EnumerateType(V->getType());
if (const Constant *C = dyn_cast<Constant>(V)) {
// If this constant is already enumerated, ignore it, we know its type must
// be enumerated.
if (ValueMap.count(V)) return;
// This constant may have operands, make sure to enumerate the types in
// them.
for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i) {
const User *Op = C->getOperand(i);
// Don't enumerate basic blocks here, this happens as operands to
// blockaddress.
if (isa<BasicBlock>(Op)) continue;
EnumerateOperandType(cast<Constant>(Op));
}
if (const MDNode *N = dyn_cast<MDNode>(V)) {
for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
if (Value *Elem = N->getOperand(i))
EnumerateOperandType(Elem);
}
} else if (isa<MDString>(V) || isa<MDNode>(V))
EnumerateValue(V);
}
void ValueEnumerator::EnumerateAttributes(const AttrListPtr &PAL) {
if (PAL.isEmpty()) return; // null is always 0.
// Do a lookup.
unsigned &Entry = AttributeMap[PAL.getRawPointer()];
if (Entry == 0) {
// Never saw this before, add it.
Attributes.push_back(PAL);
Entry = Attributes.size();
}
}
void ValueEnumerator::incorporateFunction(const Function &F) {
InstructionCount = 0;
NumModuleValues = Values.size();
// Adding function arguments to the value table.
for(Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end();
I != E; ++I)
EnumerateValue(I);
FirstFuncConstantID = Values.size();
// Add all function-level constants to the value table.
for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E; ++I)
for (User::const_op_iterator OI = I->op_begin(), E = I->op_end();
OI != E; ++OI) {
if ((isa<Constant>(*OI) && !isa<GlobalValue>(*OI)) ||
isa<InlineAsm>(*OI))
EnumerateValue(*OI);
}
BasicBlocks.push_back(BB);
ValueMap[BB] = BasicBlocks.size();
}
// Optimize the constant layout.
OptimizeConstants(FirstFuncConstantID, Values.size());
// Add the function's parameter attributes so they are available for use in
// the function's instruction.
EnumerateAttributes(F.getAttributes());
FirstInstID = Values.size();
SmallVector<MDNode *, 8> FunctionLocalMDs;
// Add all of the instructions.
for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E; ++I) {
for (User::const_op_iterator OI = I->op_begin(), E = I->op_end();
OI != E; ++OI) {
if (MDNode *MD = dyn_cast<MDNode>(*OI))
if (MD->isFunctionLocal() && MD->getFunction())
// Enumerate metadata after the instructions they might refer to.
FunctionLocalMDs.push_back(MD);
}
if (!I->getType()->isVoidTy())
EnumerateValue(I);
}
}
// Add all of the function-local metadata.
for (unsigned i = 0, e = FunctionLocalMDs.size(); i != e; ++i)
EnumerateOperandType(FunctionLocalMDs[i]);
}
void ValueEnumerator::purgeFunction() {
/// Remove purged values from the ValueMap.
for (unsigned i = NumModuleValues, e = Values.size(); i != e; ++i)
ValueMap.erase(Values[i].first);
for (unsigned i = 0, e = BasicBlocks.size(); i != e; ++i)
ValueMap.erase(BasicBlocks[i]);
Values.resize(NumModuleValues);
BasicBlocks.clear();
}
static void IncorporateFunctionInfoGlobalBBIDs(const Function *F,
DenseMap<const BasicBlock*, unsigned> &IDMap) {
unsigned Counter = 0;
for (Function::const_iterator BB = F->begin(), E = F->end(); BB != E; ++BB)
IDMap[BB] = ++Counter;
}
/// getGlobalBasicBlockID - This returns the function-specific ID for the
/// specified basic block. This is relatively expensive information, so it
/// should only be used by rare constructs such as address-of-label.
unsigned ValueEnumerator::getGlobalBasicBlockID(const BasicBlock *BB) const {
unsigned &Idx = GlobalBasicBlockIDs[BB];
if (Idx != 0)
return Idx-1;
IncorporateFunctionInfoGlobalBBIDs(BB->getParent(), GlobalBasicBlockIDs);
return getGlobalBasicBlockID(BB);
}