llvm-project/clang/lib/Frontend/InitPreprocessor.cpp

1064 lines
43 KiB
C++
Raw Normal View History

//===--- InitPreprocessor.cpp - PP initialization code. ---------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the clang::InitializePreprocessor function.
//
//===----------------------------------------------------------------------===//
#include "clang/Basic/FileManager.h"
#include "clang/Basic/MacroBuilder.h"
#include "clang/Basic/SourceManager.h"
#include "clang/Basic/TargetInfo.h"
#include "clang/Basic/Version.h"
#include "clang/Frontend/FrontendDiagnostic.h"
#include "clang/Frontend/FrontendOptions.h"
#include "clang/Frontend/Utils.h"
#include "clang/Lex/HeaderSearch.h"
#include "clang/Lex/PTHManager.h"
#include "clang/Lex/Preprocessor.h"
#include "clang/Lex/PreprocessorOptions.h"
#include "clang/Serialization/ASTReader.h"
#include "llvm/ADT/APFloat.h"
2009-11-03 05:48:09 +08:00
using namespace clang;
static bool MacroBodyEndsInBackslash(StringRef MacroBody) {
while (!MacroBody.empty() && isWhitespace(MacroBody.back()))
MacroBody = MacroBody.drop_back();
return !MacroBody.empty() && MacroBody.back() == '\\';
}
// Append a #define line to Buf for Macro. Macro should be of the form XXX,
// in which case we emit "#define XXX 1" or "XXX=Y z W" in which case we emit
// "#define XXX Y z W". To get a #define with no value, use "XXX=".
static void DefineBuiltinMacro(MacroBuilder &Builder, StringRef Macro,
DiagnosticsEngine &Diags) {
std::pair<StringRef, StringRef> MacroPair = Macro.split('=');
StringRef MacroName = MacroPair.first;
StringRef MacroBody = MacroPair.second;
if (MacroName.size() != Macro.size()) {
// Per GCC -D semantics, the macro ends at \n if it exists.
StringRef::size_type End = MacroBody.find_first_of("\n\r");
if (End != StringRef::npos)
Diags.Report(diag::warn_fe_macro_contains_embedded_newline)
<< MacroName;
MacroBody = MacroBody.substr(0, End);
// We handle macro bodies which end in a backslash by appending an extra
// backslash+newline. This makes sure we don't accidentally treat the
// backslash as a line continuation marker.
if (MacroBodyEndsInBackslash(MacroBody))
Builder.defineMacro(MacroName, Twine(MacroBody) + "\\\n");
else
Builder.defineMacro(MacroName, MacroBody);
} else {
// Push "macroname 1".
Builder.defineMacro(Macro);
}
}
/// AddImplicitInclude - Add an implicit \#include of the specified file to the
/// predefines buffer.
/// As these includes are generated by -include arguments the header search
/// logic is going to search relatively to the current working directory.
static void AddImplicitInclude(MacroBuilder &Builder, StringRef File) {
Builder.append(Twine("#include \"") + File + "\"");
}
static void AddImplicitIncludeMacros(MacroBuilder &Builder, StringRef File) {
Builder.append(Twine("#__include_macros \"") + File + "\"");
// Marker token to stop the __include_macros fetch loop.
Builder.append("##"); // ##?
}
/// AddImplicitIncludePTH - Add an implicit \#include using the original file
/// used to generate a PTH cache.
static void AddImplicitIncludePTH(MacroBuilder &Builder, Preprocessor &PP,
StringRef ImplicitIncludePTH) {
PTHManager *P = PP.getPTHManager();
// Null check 'P' in the corner case where it couldn't be created.
const char *OriginalFile = P ? P->getOriginalSourceFile() : nullptr;
if (!OriginalFile) {
PP.getDiagnostics().Report(diag::err_fe_pth_file_has_no_source_header)
<< ImplicitIncludePTH;
return;
}
AddImplicitInclude(Builder, OriginalFile);
}
/// \brief Add an implicit \#include using the original file used to generate
/// a PCH file.
static void AddImplicitIncludePCH(MacroBuilder &Builder, Preprocessor &PP,
const PCHContainerReader &PCHContainerRdr,
StringRef ImplicitIncludePCH) {
std::string OriginalFile =
ASTReader::getOriginalSourceFile(ImplicitIncludePCH, PP.getFileManager(),
PCHContainerRdr, PP.getDiagnostics());
if (OriginalFile.empty())
return;
AddImplicitInclude(Builder, OriginalFile);
}
/// PickFP - This is used to pick a value based on the FP semantics of the
/// specified FP model.
template <typename T>
static T PickFP(const llvm::fltSemantics *Sem, T IEEESingleVal,
T IEEEDoubleVal, T X87DoubleExtendedVal, T PPCDoubleDoubleVal,
T IEEEQuadVal) {
if (Sem == (const llvm::fltSemantics*)&llvm::APFloat::IEEEsingle)
return IEEESingleVal;
if (Sem == (const llvm::fltSemantics*)&llvm::APFloat::IEEEdouble)
return IEEEDoubleVal;
if (Sem == (const llvm::fltSemantics*)&llvm::APFloat::x87DoubleExtended)
return X87DoubleExtendedVal;
if (Sem == (const llvm::fltSemantics*)&llvm::APFloat::PPCDoubleDouble)
return PPCDoubleDoubleVal;
assert(Sem == (const llvm::fltSemantics*)&llvm::APFloat::IEEEquad);
return IEEEQuadVal;
}
static void DefineFloatMacros(MacroBuilder &Builder, StringRef Prefix,
const llvm::fltSemantics *Sem, StringRef Ext) {
const char *DenormMin, *Epsilon, *Max, *Min;
DenormMin = PickFP(Sem, "1.40129846e-45", "4.9406564584124654e-324",
"3.64519953188247460253e-4951",
"4.94065645841246544176568792868221e-324",
"6.47517511943802511092443895822764655e-4966");
int Digits = PickFP(Sem, 6, 15, 18, 31, 33);
int DecimalDigits = PickFP(Sem, 9, 17, 21, 33, 36);
Epsilon = PickFP(Sem, "1.19209290e-7", "2.2204460492503131e-16",
"1.08420217248550443401e-19",
"4.94065645841246544176568792868221e-324",
"1.92592994438723585305597794258492732e-34");
int MantissaDigits = PickFP(Sem, 24, 53, 64, 106, 113);
int Min10Exp = PickFP(Sem, -37, -307, -4931, -291, -4931);
int Max10Exp = PickFP(Sem, 38, 308, 4932, 308, 4932);
int MinExp = PickFP(Sem, -125, -1021, -16381, -968, -16381);
int MaxExp = PickFP(Sem, 128, 1024, 16384, 1024, 16384);
Min = PickFP(Sem, "1.17549435e-38", "2.2250738585072014e-308",
"3.36210314311209350626e-4932",
"2.00416836000897277799610805135016e-292",
"3.36210314311209350626267781732175260e-4932");
Max = PickFP(Sem, "3.40282347e+38", "1.7976931348623157e+308",
"1.18973149535723176502e+4932",
"1.79769313486231580793728971405301e+308",
"1.18973149535723176508575932662800702e+4932");
SmallString<32> DefPrefix;
DefPrefix = "__";
DefPrefix += Prefix;
DefPrefix += "_";
Builder.defineMacro(DefPrefix + "DENORM_MIN__", Twine(DenormMin)+Ext);
Builder.defineMacro(DefPrefix + "HAS_DENORM__");
Builder.defineMacro(DefPrefix + "DIG__", Twine(Digits));
Builder.defineMacro(DefPrefix + "DECIMAL_DIG__", Twine(DecimalDigits));
Builder.defineMacro(DefPrefix + "EPSILON__", Twine(Epsilon)+Ext);
Builder.defineMacro(DefPrefix + "HAS_INFINITY__");
Builder.defineMacro(DefPrefix + "HAS_QUIET_NAN__");
Builder.defineMacro(DefPrefix + "MANT_DIG__", Twine(MantissaDigits));
Builder.defineMacro(DefPrefix + "MAX_10_EXP__", Twine(Max10Exp));
Builder.defineMacro(DefPrefix + "MAX_EXP__", Twine(MaxExp));
Builder.defineMacro(DefPrefix + "MAX__", Twine(Max)+Ext);
Builder.defineMacro(DefPrefix + "MIN_10_EXP__","("+Twine(Min10Exp)+")");
Builder.defineMacro(DefPrefix + "MIN_EXP__", "("+Twine(MinExp)+")");
Builder.defineMacro(DefPrefix + "MIN__", Twine(Min)+Ext);
}
/// DefineTypeSize - Emit a macro to the predefines buffer that declares a macro
/// named MacroName with the max value for a type with width 'TypeWidth' a
/// signedness of 'isSigned' and with a value suffix of 'ValSuffix' (e.g. LL).
static void DefineTypeSize(const Twine &MacroName, unsigned TypeWidth,
StringRef ValSuffix, bool isSigned,
MacroBuilder &Builder) {
llvm::APInt MaxVal = isSigned ? llvm::APInt::getSignedMaxValue(TypeWidth)
: llvm::APInt::getMaxValue(TypeWidth);
Builder.defineMacro(MacroName, MaxVal.toString(10, isSigned) + ValSuffix);
}
/// DefineTypeSize - An overloaded helper that uses TargetInfo to determine
/// the width, suffix, and signedness of the given type
static void DefineTypeSize(const Twine &MacroName, TargetInfo::IntType Ty,
const TargetInfo &TI, MacroBuilder &Builder) {
DefineTypeSize(MacroName, TI.getTypeWidth(Ty), TI.getTypeConstantSuffix(Ty),
TI.isTypeSigned(Ty), Builder);
}
static void DefineFmt(const Twine &Prefix, TargetInfo::IntType Ty,
const TargetInfo &TI, MacroBuilder &Builder) {
bool IsSigned = TI.isTypeSigned(Ty);
StringRef FmtModifier = TI.getTypeFormatModifier(Ty);
for (const char *Fmt = IsSigned ? "di" : "ouxX"; *Fmt; ++Fmt) {
Builder.defineMacro(Prefix + "_FMT" + Twine(*Fmt) + "__",
Twine("\"") + FmtModifier + Twine(*Fmt) + "\"");
}
}
static void DefineType(const Twine &MacroName, TargetInfo::IntType Ty,
MacroBuilder &Builder) {
Builder.defineMacro(MacroName, TargetInfo::getTypeName(Ty));
}
static void DefineTypeWidth(StringRef MacroName, TargetInfo::IntType Ty,
const TargetInfo &TI, MacroBuilder &Builder) {
Builder.defineMacro(MacroName, Twine(TI.getTypeWidth(Ty)));
}
static void DefineTypeSizeof(StringRef MacroName, unsigned BitWidth,
const TargetInfo &TI, MacroBuilder &Builder) {
Builder.defineMacro(MacroName,
Twine(BitWidth / TI.getCharWidth()));
}
static void DefineExactWidthIntType(TargetInfo::IntType Ty,
const TargetInfo &TI,
MacroBuilder &Builder) {
int TypeWidth = TI.getTypeWidth(Ty);
bool IsSigned = TI.isTypeSigned(Ty);
// Use the target specified int64 type, when appropriate, so that [u]int64_t
// ends up being defined in terms of the correct type.
if (TypeWidth == 64)
Ty = IsSigned ? TI.getInt64Type() : TI.getUInt64Type();
const char *Prefix = IsSigned ? "__INT" : "__UINT";
DefineType(Prefix + Twine(TypeWidth) + "_TYPE__", Ty, Builder);
DefineFmt(Prefix + Twine(TypeWidth), Ty, TI, Builder);
StringRef ConstSuffix(TI.getTypeConstantSuffix(Ty));
Builder.defineMacro(Prefix + Twine(TypeWidth) + "_C_SUFFIX__", ConstSuffix);
}
static void DefineExactWidthIntTypeSize(TargetInfo::IntType Ty,
const TargetInfo &TI,
MacroBuilder &Builder) {
int TypeWidth = TI.getTypeWidth(Ty);
bool IsSigned = TI.isTypeSigned(Ty);
// Use the target specified int64 type, when appropriate, so that [u]int64_t
// ends up being defined in terms of the correct type.
if (TypeWidth == 64)
Ty = IsSigned ? TI.getInt64Type() : TI.getUInt64Type();
const char *Prefix = IsSigned ? "__INT" : "__UINT";
DefineTypeSize(Prefix + Twine(TypeWidth) + "_MAX__", Ty, TI, Builder);
}
static void DefineLeastWidthIntType(unsigned TypeWidth, bool IsSigned,
const TargetInfo &TI,
MacroBuilder &Builder) {
TargetInfo::IntType Ty = TI.getLeastIntTypeByWidth(TypeWidth, IsSigned);
if (Ty == TargetInfo::NoInt)
return;
const char *Prefix = IsSigned ? "__INT_LEAST" : "__UINT_LEAST";
DefineType(Prefix + Twine(TypeWidth) + "_TYPE__", Ty, Builder);
DefineTypeSize(Prefix + Twine(TypeWidth) + "_MAX__", Ty, TI, Builder);
DefineFmt(Prefix + Twine(TypeWidth), Ty, TI, Builder);
}
static void DefineFastIntType(unsigned TypeWidth, bool IsSigned,
const TargetInfo &TI, MacroBuilder &Builder) {
// stdint.h currently defines the fast int types as equivalent to the least
// types.
TargetInfo::IntType Ty = TI.getLeastIntTypeByWidth(TypeWidth, IsSigned);
if (Ty == TargetInfo::NoInt)
return;
const char *Prefix = IsSigned ? "__INT_FAST" : "__UINT_FAST";
DefineType(Prefix + Twine(TypeWidth) + "_TYPE__", Ty, Builder);
DefineTypeSize(Prefix + Twine(TypeWidth) + "_MAX__", Ty, TI, Builder);
DefineFmt(Prefix + Twine(TypeWidth), Ty, TI, Builder);
}
/// Get the value the ATOMIC_*_LOCK_FREE macro should have for a type with
/// the specified properties.
static const char *getLockFreeValue(unsigned TypeWidth, unsigned TypeAlign,
unsigned InlineWidth) {
// Fully-aligned, power-of-2 sizes no larger than the inline
// width will be inlined as lock-free operations.
if (TypeWidth == TypeAlign && (TypeWidth & (TypeWidth - 1)) == 0 &&
TypeWidth <= InlineWidth)
return "2"; // "always lock free"
// We cannot be certain what operations the lib calls might be
// able to implement as lock-free on future processors.
return "1"; // "sometimes lock free"
}
/// \brief Add definitions required for a smooth interaction between
/// Objective-C++ automated reference counting and libstdc++ (4.2).
static void AddObjCXXARCLibstdcxxDefines(const LangOptions &LangOpts,
MacroBuilder &Builder) {
Builder.defineMacro("_GLIBCXX_PREDEFINED_OBJC_ARC_IS_SCALAR");
std::string Result;
{
// Provide specializations for the __is_scalar type trait so that
// lifetime-qualified objects are not considered "scalar" types, which
// libstdc++ uses as an indicator of the presence of trivial copy, assign,
// default-construct, and destruct semantics (none of which hold for
// lifetime-qualified objects in ARC).
llvm::raw_string_ostream Out(Result);
Out << "namespace std {\n"
<< "\n"
<< "struct __true_type;\n"
<< "struct __false_type;\n"
<< "\n";
Out << "template<typename _Tp> struct __is_scalar;\n"
<< "\n";
Define weak and __weak to mean ARC-style weak references, even in MRC. Previously, __weak was silently accepted and ignored in MRC mode. That makes this a potentially source-breaking change that we have to roll out cautiously. Accordingly, for the time being, actual support for __weak references in MRC is experimental, and the compiler will reject attempts to actually form such references. The intent is to eventually enable the feature by default in all non-GC modes. (It is, of course, incompatible with ObjC GC's interpretation of __weak.) If you like, you can enable this feature with -Xclang -fobjc-weak but like any -Xclang option, this option may be removed at any point, e.g. if/when it is eventually enabled by default. This patch also enables the use of the ARC __unsafe_unretained qualifier in MRC. Unlike __weak, this is being enabled immediately. Since variables are essentially __unsafe_unretained by default in MRC, the only practical uses are (1) communication and (2) changing the default behavior of by-value block capture. As an implementation matter, this means that the ObjC ownership qualifiers may appear in any ObjC language mode, and so this patch removes a number of checks for getLangOpts().ObjCAutoRefCount that were guarding the processing of these qualifiers. I don't expect this to be a significant drain on performance; it may even be faster to just check for these qualifiers directly on a type (since it's probably in a register anyway) than to do N dependent loads to grab the LangOptions. rdar://9674298 llvm-svn: 251041
2015-10-23 02:38:17 +08:00
if (LangOpts.ObjCAutoRefCount) {
Out << "template<typename _Tp>\n"
<< "struct __is_scalar<__attribute__((objc_ownership(strong))) _Tp> {\n"
<< " enum { __value = 0 };\n"
<< " typedef __false_type __type;\n"
<< "};\n"
<< "\n";
}
Define weak and __weak to mean ARC-style weak references, even in MRC. Previously, __weak was silently accepted and ignored in MRC mode. That makes this a potentially source-breaking change that we have to roll out cautiously. Accordingly, for the time being, actual support for __weak references in MRC is experimental, and the compiler will reject attempts to actually form such references. The intent is to eventually enable the feature by default in all non-GC modes. (It is, of course, incompatible with ObjC GC's interpretation of __weak.) If you like, you can enable this feature with -Xclang -fobjc-weak but like any -Xclang option, this option may be removed at any point, e.g. if/when it is eventually enabled by default. This patch also enables the use of the ARC __unsafe_unretained qualifier in MRC. Unlike __weak, this is being enabled immediately. Since variables are essentially __unsafe_unretained by default in MRC, the only practical uses are (1) communication and (2) changing the default behavior of by-value block capture. As an implementation matter, this means that the ObjC ownership qualifiers may appear in any ObjC language mode, and so this patch removes a number of checks for getLangOpts().ObjCAutoRefCount that were guarding the processing of these qualifiers. I don't expect this to be a significant drain on performance; it may even be faster to just check for these qualifiers directly on a type (since it's probably in a register anyway) than to do N dependent loads to grab the LangOptions. rdar://9674298 llvm-svn: 251041
2015-10-23 02:38:17 +08:00
if (LangOpts.ObjCWeak) {
Out << "template<typename _Tp>\n"
<< "struct __is_scalar<__attribute__((objc_ownership(weak))) _Tp> {\n"
<< " enum { __value = 0 };\n"
<< " typedef __false_type __type;\n"
<< "};\n"
<< "\n";
}
Define weak and __weak to mean ARC-style weak references, even in MRC. Previously, __weak was silently accepted and ignored in MRC mode. That makes this a potentially source-breaking change that we have to roll out cautiously. Accordingly, for the time being, actual support for __weak references in MRC is experimental, and the compiler will reject attempts to actually form such references. The intent is to eventually enable the feature by default in all non-GC modes. (It is, of course, incompatible with ObjC GC's interpretation of __weak.) If you like, you can enable this feature with -Xclang -fobjc-weak but like any -Xclang option, this option may be removed at any point, e.g. if/when it is eventually enabled by default. This patch also enables the use of the ARC __unsafe_unretained qualifier in MRC. Unlike __weak, this is being enabled immediately. Since variables are essentially __unsafe_unretained by default in MRC, the only practical uses are (1) communication and (2) changing the default behavior of by-value block capture. As an implementation matter, this means that the ObjC ownership qualifiers may appear in any ObjC language mode, and so this patch removes a number of checks for getLangOpts().ObjCAutoRefCount that were guarding the processing of these qualifiers. I don't expect this to be a significant drain on performance; it may even be faster to just check for these qualifiers directly on a type (since it's probably in a register anyway) than to do N dependent loads to grab the LangOptions. rdar://9674298 llvm-svn: 251041
2015-10-23 02:38:17 +08:00
if (LangOpts.ObjCAutoRefCount) {
Out << "template<typename _Tp>\n"
<< "struct __is_scalar<__attribute__((objc_ownership(autoreleasing)))"
<< " _Tp> {\n"
<< " enum { __value = 0 };\n"
<< " typedef __false_type __type;\n"
<< "};\n"
<< "\n";
}
Out << "}\n";
}
Builder.append(Result);
}
static void InitializeStandardPredefinedMacros(const TargetInfo &TI,
const LangOptions &LangOpts,
const FrontendOptions &FEOpts,
MacroBuilder &Builder) {
if (!LangOpts.MSVCCompat && !LangOpts.TraditionalCPP)
Builder.defineMacro("__STDC__");
if (LangOpts.Freestanding)
Builder.defineMacro("__STDC_HOSTED__", "0");
else
Builder.defineMacro("__STDC_HOSTED__");
if (!LangOpts.CPlusPlus) {
if (LangOpts.C11)
Builder.defineMacro("__STDC_VERSION__", "201112L");
else if (LangOpts.C99)
Builder.defineMacro("__STDC_VERSION__", "199901L");
else if (!LangOpts.GNUMode && LangOpts.Digraphs)
Builder.defineMacro("__STDC_VERSION__", "199409L");
} else {
// FIXME: Use correct value for C++17.
if (LangOpts.CPlusPlus1z)
Builder.defineMacro("__cplusplus", "201406L");
// C++1y [cpp.predefined]p1:
// The name __cplusplus is defined to the value 201402L when compiling a
// C++ translation unit.
else if (LangOpts.CPlusPlus14)
Builder.defineMacro("__cplusplus", "201402L");
// C++11 [cpp.predefined]p1:
// The name __cplusplus is defined to the value 201103L when compiling a
// C++ translation unit.
else if (LangOpts.CPlusPlus11)
Builder.defineMacro("__cplusplus", "201103L");
// C++03 [cpp.predefined]p1:
// The name __cplusplus is defined to the value 199711L when compiling a
// C++ translation unit.
else
Builder.defineMacro("__cplusplus", "199711L");
}
// In C11 these are environment macros. In C++11 they are only defined
// as part of <cuchar>. To prevent breakage when mixing C and C++
// code, define these macros unconditionally. We can define them
// unconditionally, as Clang always uses UTF-16 and UTF-32 for 16-bit
// and 32-bit character literals.
Builder.defineMacro("__STDC_UTF_16__", "1");
Builder.defineMacro("__STDC_UTF_32__", "1");
if (LangOpts.ObjC1)
Builder.defineMacro("__OBJC__");
// OpenCL v1.0/1.1 s6.9, v1.2/2.0 s6.10: Preprocessor Directives and Macros.
if (LangOpts.OpenCL) {
// OpenCL v1.0 and v1.1 do not have a predefined macro to indicate the
// language standard with which the program is compiled. __OPENCL_VERSION__
// is for the OpenCL version supported by the OpenCL device, which is not
// necessarily the language standard with which the program is compiled.
// A shared OpenCL header file requires a macro to indicate the language
// standard. As a workaround, __OPENCL_C_VERSION__ is defined for
// OpenCL v1.0 and v1.1.
switch (LangOpts.OpenCLVersion) {
case 100:
Builder.defineMacro("__OPENCL_C_VERSION__", "100");
break;
case 110:
Builder.defineMacro("__OPENCL_C_VERSION__", "110");
break;
case 120:
Builder.defineMacro("__OPENCL_C_VERSION__", "120");
break;
case 200:
Builder.defineMacro("__OPENCL_C_VERSION__", "200");
break;
default:
llvm_unreachable("Unsupported OpenCL version");
}
Builder.defineMacro("CL_VERSION_1_0", "100");
Builder.defineMacro("CL_VERSION_1_1", "110");
Builder.defineMacro("CL_VERSION_1_2", "120");
Builder.defineMacro("CL_VERSION_2_0", "200");
if (TI.isLittleEndian())
Builder.defineMacro("__ENDIAN_LITTLE__");
if (LangOpts.FastRelaxedMath)
Builder.defineMacro("__FAST_RELAXED_MATH__");
}
// Not "standard" per se, but available even with the -undef flag.
if (LangOpts.AsmPreprocessor)
Builder.defineMacro("__ASSEMBLER__");
if (LangOpts.CUDA)
Builder.defineMacro("__CUDA__");
}
/// Initialize the predefined C++ language feature test macros defined in
/// ISO/IEC JTC1/SC22/WG21 (C++) SD-6: "SG10 Feature Test Recommendations".
static void InitializeCPlusPlusFeatureTestMacros(const LangOptions &LangOpts,
MacroBuilder &Builder) {
// C++98 features.
if (LangOpts.RTTI)
Builder.defineMacro("__cpp_rtti", "199711");
if (LangOpts.CXXExceptions)
Builder.defineMacro("__cpp_exceptions", "199711");
// C++11 features.
if (LangOpts.CPlusPlus11) {
Builder.defineMacro("__cpp_unicode_characters", "200704");
Builder.defineMacro("__cpp_raw_strings", "200710");
Builder.defineMacro("__cpp_unicode_literals", "200710");
Builder.defineMacro("__cpp_user_defined_literals", "200809");
Builder.defineMacro("__cpp_lambdas", "200907");
Builder.defineMacro("__cpp_constexpr",
LangOpts.CPlusPlus14 ? "201304" : "200704");
Builder.defineMacro("__cpp_range_based_for", "200907");
Builder.defineMacro("__cpp_static_assert", "200410");
Builder.defineMacro("__cpp_decltype", "200707");
Builder.defineMacro("__cpp_attributes", "200809");
Builder.defineMacro("__cpp_rvalue_references", "200610");
Builder.defineMacro("__cpp_variadic_templates", "200704");
Builder.defineMacro("__cpp_initializer_lists", "200806");
Builder.defineMacro("__cpp_delegating_constructors", "200604");
Builder.defineMacro("__cpp_nsdmi", "200809");
Builder.defineMacro("__cpp_inheriting_constructors", "200802");
Builder.defineMacro("__cpp_ref_qualifiers", "200710");
Builder.defineMacro("__cpp_alias_templates", "200704");
}
// C++14 features.
if (LangOpts.CPlusPlus14) {
Builder.defineMacro("__cpp_binary_literals", "201304");
Builder.defineMacro("__cpp_digit_separators", "201309");
Builder.defineMacro("__cpp_init_captures", "201304");
Builder.defineMacro("__cpp_generic_lambdas", "201304");
Builder.defineMacro("__cpp_decltype_auto", "201304");
Builder.defineMacro("__cpp_return_type_deduction", "201304");
Builder.defineMacro("__cpp_aggregate_nsdmi", "201304");
Builder.defineMacro("__cpp_variable_templates", "201304");
}
if (LangOpts.SizedDeallocation)
Builder.defineMacro("__cpp_sized_deallocation", "201309");
if (LangOpts.ConceptsTS)
Builder.defineMacro("__cpp_experimental_concepts", "1");
if (LangOpts.Coroutines)
Builder.defineMacro("__cpp_coroutines", "1");
}
static void InitializePredefinedMacros(const TargetInfo &TI,
const LangOptions &LangOpts,
const FrontendOptions &FEOpts,
MacroBuilder &Builder) {
// Compiler version introspection macros.
Builder.defineMacro("__llvm__"); // LLVM Backend
Builder.defineMacro("__clang__"); // Clang Frontend
#define TOSTR2(X) #X
#define TOSTR(X) TOSTR2(X)
Builder.defineMacro("__clang_major__", TOSTR(CLANG_VERSION_MAJOR));
Builder.defineMacro("__clang_minor__", TOSTR(CLANG_VERSION_MINOR));
Builder.defineMacro("__clang_patchlevel__", TOSTR(CLANG_VERSION_PATCHLEVEL));
Simplify Clang's version number configuration in CMake. Currently, the Clang version is computed as follows: 1. LLVM defines major, minor, and patch versions, all statically set. Today, these are 4, 0, and 0, respectively. 2. The static version numbers are combined into PACKAGE_VERSION along with a suffix, so the result today looks like "4.0.0svn". 3. Clang extracts CLANG_VERSION from PACKAGE_VERSION using a regexp. The regexp allows the patch level to omitted, and drops any non-digit trailing values. Today, this result looks like "4.0.0". 4. CLANG_VERSION is then split further into CLANG_VERSION_MAJOR and CLANG_VERSION_MINOR. Today, these resolve to 4 and 0, respectively. 5. If CLANG_VERSION matches a regexp with three version components, then CLANG_VERSION_PATCHLEVEL is extracted and the CLANG_HAS_VERSION_PATCHLEVEL variable is set to 1. Today, these values are 0 and 1, respectively. 6. The CLANG_VERSION_* variables (and CLANG_HAS_VERSION_PATCHLEVEL) are configured into [llvm/tools/clang/]include/clang/Basic/Version.inc verbatim by CMake. 7. In [llvm/tools/clang/]include/clang/Basic/Version.h, macros are defined conditionally, based on CLANG_HAS_VERSION_PATCHLEVEL, to compute CLANG_VERSION_STRING as either a two- or three-level version number. Today, this value is "4.0.0", because despite the patchlevel being 0, it was matched by regexp and is thus "HAS"ed by the preprocessor. This string is then used wherever Clang's "version" is needed [*]. [*] Including, notably, by compiler-rt, for computing its installation path. This change collapses steps 2-5 by defaulting Clang to use LLVM's (non-string) version components for the Clang version (see [*] for why not PACKAGE_VERSION), and collapses steps 6 and 7 by simply writing CLANG_VERSION_STRING into Version.inc. The Clang version today always uses the patchlevel form, so the collapsed Version.inc does not have logic for a version without a patch level. Historically speaking, this technique began with the VER file in r82085 (which survives in the form of the regexp in #3). The major, minor, and patchlevel versions were introduced by r106863 (which remains in #4-6). The VER file itself was deleted in favor of the LLVM version number in r106914. On the LLVM side, the individual LLVM_VERSION_MAJOR, LLVM_VERSION_MINOR, and PACKAGE_VERSION weren't introduced for nearly two more years, until r150405. llvm-svn: 281666
2016-09-16 06:12:26 +08:00
#undef TOSTR
#undef TOSTR2
Builder.defineMacro("__clang_version__",
"\"" CLANG_VERSION_STRING " "
+ getClangFullRepositoryVersion() + "\"");
if (!LangOpts.MSVCCompat) {
// Currently claim to be compatible with GCC 4.2.1-5621, but only if we're
// not compiling for MSVC compatibility
Builder.defineMacro("__GNUC_MINOR__", "2");
Builder.defineMacro("__GNUC_PATCHLEVEL__", "1");
Builder.defineMacro("__GNUC__", "4");
Builder.defineMacro("__GXX_ABI_VERSION", "1002");
}
// Define macros for the C11 / C++11 memory orderings
Builder.defineMacro("__ATOMIC_RELAXED", "0");
Builder.defineMacro("__ATOMIC_CONSUME", "1");
Builder.defineMacro("__ATOMIC_ACQUIRE", "2");
Builder.defineMacro("__ATOMIC_RELEASE", "3");
Builder.defineMacro("__ATOMIC_ACQ_REL", "4");
Builder.defineMacro("__ATOMIC_SEQ_CST", "5");
// Support for #pragma redefine_extname (Sun compatibility)
Builder.defineMacro("__PRAGMA_REDEFINE_EXTNAME", "1");
// As sad as it is, enough software depends on the __VERSION__ for version
// checks that it is necessary to report 4.2.1 (the base GCC version we claim
// compatibility with) first.
Builder.defineMacro("__VERSION__", "\"4.2.1 Compatible " +
Twine(getClangFullCPPVersion()) + "\"");
// Initialize language-specific preprocessor defines.
// Standard conforming mode?
if (!LangOpts.GNUMode && !LangOpts.MSVCCompat)
Builder.defineMacro("__STRICT_ANSI__");
if (!LangOpts.MSVCCompat && LangOpts.CPlusPlus11)
Builder.defineMacro("__GXX_EXPERIMENTAL_CXX0X__");
if (LangOpts.ObjC1) {
if (LangOpts.ObjCRuntime.isNonFragile()) {
Builder.defineMacro("__OBJC2__");
if (LangOpts.ObjCExceptions)
Builder.defineMacro("OBJC_ZEROCOST_EXCEPTIONS");
}
if (LangOpts.getGC() != LangOptions::NonGC)
Builder.defineMacro("__OBJC_GC__");
if (LangOpts.ObjCRuntime.isNeXTFamily())
Builder.defineMacro("__NEXT_RUNTIME__");
if (LangOpts.ObjCRuntime.getKind() == ObjCRuntime::ObjFW) {
VersionTuple tuple = LangOpts.ObjCRuntime.getVersion();
unsigned minor = 0;
if (tuple.getMinor().hasValue())
minor = tuple.getMinor().getValue();
unsigned subminor = 0;
if (tuple.getSubminor().hasValue())
subminor = tuple.getSubminor().getValue();
Builder.defineMacro("__OBJFW_RUNTIME_ABI__",
Twine(tuple.getMajor() * 10000 + minor * 100 +
subminor));
}
Builder.defineMacro("IBOutlet", "__attribute__((iboutlet))");
Builder.defineMacro("IBOutletCollection(ClassName)",
"__attribute__((iboutletcollection(ClassName)))");
Builder.defineMacro("IBAction", "void)__attribute__((ibaction)");
Builder.defineMacro("IBInspectable", "");
Builder.defineMacro("IB_DESIGNABLE", "");
}
if (LangOpts.CPlusPlus)
InitializeCPlusPlusFeatureTestMacros(LangOpts, Builder);
// darwin_constant_cfstrings controls this. This is also dependent
// on other things like the runtime I believe. This is set even for C code.
if (!LangOpts.NoConstantCFStrings)
Builder.defineMacro("__CONSTANT_CFSTRINGS__");
if (LangOpts.ObjC2)
Builder.defineMacro("OBJC_NEW_PROPERTIES");
if (LangOpts.PascalStrings)
Builder.defineMacro("__PASCAL_STRINGS__");
if (LangOpts.Blocks) {
Builder.defineMacro("__block", "__attribute__((__blocks__(byref)))");
Builder.defineMacro("__BLOCKS__");
}
if (!LangOpts.MSVCCompat && LangOpts.Exceptions)
Builder.defineMacro("__EXCEPTIONS");
if (!LangOpts.MSVCCompat && LangOpts.RTTI)
Builder.defineMacro("__GXX_RTTI");
if (LangOpts.SjLjExceptions)
Builder.defineMacro("__USING_SJLJ_EXCEPTIONS__");
if (LangOpts.Deprecated)
Builder.defineMacro("__DEPRECATED");
if (!LangOpts.MSVCCompat && LangOpts.CPlusPlus) {
Builder.defineMacro("__GNUG__", "4");
Builder.defineMacro("__GXX_WEAK__");
Builder.defineMacro("__private_extern__", "extern");
}
if (LangOpts.MicrosoftExt) {
if (LangOpts.WChar) {
// wchar_t supported as a keyword.
Builder.defineMacro("_WCHAR_T_DEFINED");
Builder.defineMacro("_NATIVE_WCHAR_T_DEFINED");
}
}
if (LangOpts.Optimize)
Builder.defineMacro("__OPTIMIZE__");
if (LangOpts.OptimizeSize)
Builder.defineMacro("__OPTIMIZE_SIZE__");
if (LangOpts.FastMath)
Builder.defineMacro("__FAST_MATH__");
// Initialize target-specific preprocessor defines.
// __BYTE_ORDER__ was added in GCC 4.6. It's analogous
// to the macro __BYTE_ORDER (no trailing underscores)
// from glibc's <endian.h> header.
// We don't support the PDP-11 as a target, but include
// the define so it can still be compared against.
Builder.defineMacro("__ORDER_LITTLE_ENDIAN__", "1234");
Builder.defineMacro("__ORDER_BIG_ENDIAN__", "4321");
Builder.defineMacro("__ORDER_PDP_ENDIAN__", "3412");
if (TI.isBigEndian()) {
Builder.defineMacro("__BYTE_ORDER__", "__ORDER_BIG_ENDIAN__");
Builder.defineMacro("__BIG_ENDIAN__");
} else {
Builder.defineMacro("__BYTE_ORDER__", "__ORDER_LITTLE_ENDIAN__");
Builder.defineMacro("__LITTLE_ENDIAN__");
}
if (TI.getPointerWidth(0) == 64 && TI.getLongWidth() == 64
&& TI.getIntWidth() == 32) {
Builder.defineMacro("_LP64");
Builder.defineMacro("__LP64__");
}
if (TI.getPointerWidth(0) == 32 && TI.getLongWidth() == 32
&& TI.getIntWidth() == 32) {
Builder.defineMacro("_ILP32");
Builder.defineMacro("__ILP32__");
}
// Define type sizing macros based on the target properties.
assert(TI.getCharWidth() == 8 && "Only support 8-bit char so far");
Builder.defineMacro("__CHAR_BIT__", Twine(TI.getCharWidth()));
DefineTypeSize("__SCHAR_MAX__", TargetInfo::SignedChar, TI, Builder);
DefineTypeSize("__SHRT_MAX__", TargetInfo::SignedShort, TI, Builder);
DefineTypeSize("__INT_MAX__", TargetInfo::SignedInt, TI, Builder);
DefineTypeSize("__LONG_MAX__", TargetInfo::SignedLong, TI, Builder);
DefineTypeSize("__LONG_LONG_MAX__", TargetInfo::SignedLongLong, TI, Builder);
DefineTypeSize("__WCHAR_MAX__", TI.getWCharType(), TI, Builder);
DefineTypeSize("__INTMAX_MAX__", TI.getIntMaxType(), TI, Builder);
DefineTypeSize("__SIZE_MAX__", TI.getSizeType(), TI, Builder);
DefineTypeSize("__UINTMAX_MAX__", TI.getUIntMaxType(), TI, Builder);
DefineTypeSize("__PTRDIFF_MAX__", TI.getPtrDiffType(0), TI, Builder);
DefineTypeSize("__INTPTR_MAX__", TI.getIntPtrType(), TI, Builder);
DefineTypeSize("__UINTPTR_MAX__", TI.getUIntPtrType(), TI, Builder);
DefineTypeSizeof("__SIZEOF_DOUBLE__", TI.getDoubleWidth(), TI, Builder);
DefineTypeSizeof("__SIZEOF_FLOAT__", TI.getFloatWidth(), TI, Builder);
DefineTypeSizeof("__SIZEOF_INT__", TI.getIntWidth(), TI, Builder);
DefineTypeSizeof("__SIZEOF_LONG__", TI.getLongWidth(), TI, Builder);
DefineTypeSizeof("__SIZEOF_LONG_DOUBLE__",TI.getLongDoubleWidth(),TI,Builder);
DefineTypeSizeof("__SIZEOF_LONG_LONG__", TI.getLongLongWidth(), TI, Builder);
DefineTypeSizeof("__SIZEOF_POINTER__", TI.getPointerWidth(0), TI, Builder);
DefineTypeSizeof("__SIZEOF_SHORT__", TI.getShortWidth(), TI, Builder);
DefineTypeSizeof("__SIZEOF_PTRDIFF_T__",
TI.getTypeWidth(TI.getPtrDiffType(0)), TI, Builder);
DefineTypeSizeof("__SIZEOF_SIZE_T__",
TI.getTypeWidth(TI.getSizeType()), TI, Builder);
DefineTypeSizeof("__SIZEOF_WCHAR_T__",
TI.getTypeWidth(TI.getWCharType()), TI, Builder);
DefineTypeSizeof("__SIZEOF_WINT_T__",
TI.getTypeWidth(TI.getWIntType()), TI, Builder);
if (TI.hasInt128Type())
DefineTypeSizeof("__SIZEOF_INT128__", 128, TI, Builder);
DefineType("__INTMAX_TYPE__", TI.getIntMaxType(), Builder);
DefineFmt("__INTMAX", TI.getIntMaxType(), TI, Builder);
Builder.defineMacro("__INTMAX_C_SUFFIX__",
TI.getTypeConstantSuffix(TI.getIntMaxType()));
DefineType("__UINTMAX_TYPE__", TI.getUIntMaxType(), Builder);
DefineFmt("__UINTMAX", TI.getUIntMaxType(), TI, Builder);
Builder.defineMacro("__UINTMAX_C_SUFFIX__",
TI.getTypeConstantSuffix(TI.getUIntMaxType()));
DefineTypeWidth("__INTMAX_WIDTH__", TI.getIntMaxType(), TI, Builder);
DefineType("__PTRDIFF_TYPE__", TI.getPtrDiffType(0), Builder);
DefineFmt("__PTRDIFF", TI.getPtrDiffType(0), TI, Builder);
DefineTypeWidth("__PTRDIFF_WIDTH__", TI.getPtrDiffType(0), TI, Builder);
DefineType("__INTPTR_TYPE__", TI.getIntPtrType(), Builder);
DefineFmt("__INTPTR", TI.getIntPtrType(), TI, Builder);
DefineTypeWidth("__INTPTR_WIDTH__", TI.getIntPtrType(), TI, Builder);
DefineType("__SIZE_TYPE__", TI.getSizeType(), Builder);
DefineFmt("__SIZE", TI.getSizeType(), TI, Builder);
DefineTypeWidth("__SIZE_WIDTH__", TI.getSizeType(), TI, Builder);
DefineType("__WCHAR_TYPE__", TI.getWCharType(), Builder);
DefineTypeWidth("__WCHAR_WIDTH__", TI.getWCharType(), TI, Builder);
DefineType("__WINT_TYPE__", TI.getWIntType(), Builder);
DefineTypeWidth("__WINT_WIDTH__", TI.getWIntType(), TI, Builder);
DefineTypeWidth("__SIG_ATOMIC_WIDTH__", TI.getSigAtomicType(), TI, Builder);
DefineTypeSize("__SIG_ATOMIC_MAX__", TI.getSigAtomicType(), TI, Builder);
DefineType("__CHAR16_TYPE__", TI.getChar16Type(), Builder);
DefineType("__CHAR32_TYPE__", TI.getChar32Type(), Builder);
DefineTypeWidth("__UINTMAX_WIDTH__", TI.getUIntMaxType(), TI, Builder);
DefineType("__UINTPTR_TYPE__", TI.getUIntPtrType(), Builder);
DefineFmt("__UINTPTR", TI.getUIntPtrType(), TI, Builder);
DefineTypeWidth("__UINTPTR_WIDTH__", TI.getUIntPtrType(), TI, Builder);
DefineFloatMacros(Builder, "FLT", &TI.getFloatFormat(), "F");
DefineFloatMacros(Builder, "DBL", &TI.getDoubleFormat(), "");
DefineFloatMacros(Builder, "LDBL", &TI.getLongDoubleFormat(), "L");
// Define a __POINTER_WIDTH__ macro for stdint.h.
Builder.defineMacro("__POINTER_WIDTH__",
Twine((int)TI.getPointerWidth(0)));
// Define __BIGGEST_ALIGNMENT__ to be compatible with gcc.
Builder.defineMacro("__BIGGEST_ALIGNMENT__",
Twine(TI.getSuitableAlign() / TI.getCharWidth()) );
if (!LangOpts.CharIsSigned)
Builder.defineMacro("__CHAR_UNSIGNED__");
if (!TargetInfo::isTypeSigned(TI.getWCharType()))
Builder.defineMacro("__WCHAR_UNSIGNED__");
if (!TargetInfo::isTypeSigned(TI.getWIntType()))
Builder.defineMacro("__WINT_UNSIGNED__");
// Define exact-width integer types for stdint.h
DefineExactWidthIntType(TargetInfo::SignedChar, TI, Builder);
if (TI.getShortWidth() > TI.getCharWidth())
DefineExactWidthIntType(TargetInfo::SignedShort, TI, Builder);
if (TI.getIntWidth() > TI.getShortWidth())
DefineExactWidthIntType(TargetInfo::SignedInt, TI, Builder);
if (TI.getLongWidth() > TI.getIntWidth())
DefineExactWidthIntType(TargetInfo::SignedLong, TI, Builder);
if (TI.getLongLongWidth() > TI.getLongWidth())
DefineExactWidthIntType(TargetInfo::SignedLongLong, TI, Builder);
DefineExactWidthIntType(TargetInfo::UnsignedChar, TI, Builder);
DefineExactWidthIntTypeSize(TargetInfo::UnsignedChar, TI, Builder);
DefineExactWidthIntTypeSize(TargetInfo::SignedChar, TI, Builder);
if (TI.getShortWidth() > TI.getCharWidth()) {
DefineExactWidthIntType(TargetInfo::UnsignedShort, TI, Builder);
DefineExactWidthIntTypeSize(TargetInfo::UnsignedShort, TI, Builder);
DefineExactWidthIntTypeSize(TargetInfo::SignedShort, TI, Builder);
}
if (TI.getIntWidth() > TI.getShortWidth()) {
DefineExactWidthIntType(TargetInfo::UnsignedInt, TI, Builder);
DefineExactWidthIntTypeSize(TargetInfo::UnsignedInt, TI, Builder);
DefineExactWidthIntTypeSize(TargetInfo::SignedInt, TI, Builder);
}
if (TI.getLongWidth() > TI.getIntWidth()) {
DefineExactWidthIntType(TargetInfo::UnsignedLong, TI, Builder);
DefineExactWidthIntTypeSize(TargetInfo::UnsignedLong, TI, Builder);
DefineExactWidthIntTypeSize(TargetInfo::SignedLong, TI, Builder);
}
if (TI.getLongLongWidth() > TI.getLongWidth()) {
DefineExactWidthIntType(TargetInfo::UnsignedLongLong, TI, Builder);
DefineExactWidthIntTypeSize(TargetInfo::UnsignedLongLong, TI, Builder);
DefineExactWidthIntTypeSize(TargetInfo::SignedLongLong, TI, Builder);
}
DefineLeastWidthIntType(8, true, TI, Builder);
DefineLeastWidthIntType(8, false, TI, Builder);
DefineLeastWidthIntType(16, true, TI, Builder);
DefineLeastWidthIntType(16, false, TI, Builder);
DefineLeastWidthIntType(32, true, TI, Builder);
DefineLeastWidthIntType(32, false, TI, Builder);
DefineLeastWidthIntType(64, true, TI, Builder);
DefineLeastWidthIntType(64, false, TI, Builder);
DefineFastIntType(8, true, TI, Builder);
DefineFastIntType(8, false, TI, Builder);
DefineFastIntType(16, true, TI, Builder);
DefineFastIntType(16, false, TI, Builder);
DefineFastIntType(32, true, TI, Builder);
DefineFastIntType(32, false, TI, Builder);
DefineFastIntType(64, true, TI, Builder);
DefineFastIntType(64, false, TI, Builder);
char UserLabelPrefix[2] = {TI.getDataLayout().getGlobalPrefix(), 0};
Builder.defineMacro("__USER_LABEL_PREFIX__", UserLabelPrefix);
if (LangOpts.FastMath || LangOpts.FiniteMathOnly)
Builder.defineMacro("__FINITE_MATH_ONLY__", "1");
else
Builder.defineMacro("__FINITE_MATH_ONLY__", "0");
if (!LangOpts.MSVCCompat) {
if (LangOpts.GNUInline || LangOpts.CPlusPlus)
Builder.defineMacro("__GNUC_GNU_INLINE__");
else
Builder.defineMacro("__GNUC_STDC_INLINE__");
// The value written by __atomic_test_and_set.
// FIXME: This is target-dependent.
Builder.defineMacro("__GCC_ATOMIC_TEST_AND_SET_TRUEVAL", "1");
// Used by libc++ and libstdc++ to implement ATOMIC_<foo>_LOCK_FREE.
unsigned InlineWidthBits = TI.getMaxAtomicInlineWidth();
#define DEFINE_LOCK_FREE_MACRO(TYPE, Type) \
Builder.defineMacro("__GCC_ATOMIC_" #TYPE "_LOCK_FREE", \
getLockFreeValue(TI.get##Type##Width(), \
TI.get##Type##Align(), \
InlineWidthBits));
DEFINE_LOCK_FREE_MACRO(BOOL, Bool);
DEFINE_LOCK_FREE_MACRO(CHAR, Char);
DEFINE_LOCK_FREE_MACRO(CHAR16_T, Char16);
DEFINE_LOCK_FREE_MACRO(CHAR32_T, Char32);
DEFINE_LOCK_FREE_MACRO(WCHAR_T, WChar);
DEFINE_LOCK_FREE_MACRO(SHORT, Short);
DEFINE_LOCK_FREE_MACRO(INT, Int);
DEFINE_LOCK_FREE_MACRO(LONG, Long);
DEFINE_LOCK_FREE_MACRO(LLONG, LongLong);
Builder.defineMacro("__GCC_ATOMIC_POINTER_LOCK_FREE",
getLockFreeValue(TI.getPointerWidth(0),
TI.getPointerAlign(0),
InlineWidthBits));
#undef DEFINE_LOCK_FREE_MACRO
}
if (LangOpts.NoInlineDefine)
Builder.defineMacro("__NO_INLINE__");
if (unsigned PICLevel = LangOpts.PICLevel) {
Builder.defineMacro("__PIC__", Twine(PICLevel));
Builder.defineMacro("__pic__", Twine(PICLevel));
if (LangOpts.PIE) {
Builder.defineMacro("__PIE__", Twine(PICLevel));
Builder.defineMacro("__pie__", Twine(PICLevel));
}
Teach Clang about PIE compilations. This is the first step of PR12380. First, this patch cleans up the parsing of the PIC and PIE family of options in the driver. The existing logic failed to claim arguments all over the place resulting in kludges that marked the options as unused. Instead actually walk all of the arguments and claim them properly. We now treat -f{,no-}{pic,PIC,pie,PIE} as a single set, accepting the last one on the commandline. Previously there were lots of ordering bugs that could creep in due to the nature of the parsing. Let me know if folks would like weird things such as "-fPIE -fno-pic" to turn on PIE, but disable full PIC. This doesn't make any sense to me, but we could in theory support it. Options that seem to have intentional "trump" status (-static, -mkernel, etc) continue to do so and are commented as such. Next, a -pie-level flag is threaded into the frontend, rigged to a language option, and handled preprocessor, setting up the appropriate defines. We'll now have the correct defines when compiling with -fpie. The one place outside of the preprocessor that was inspecting the PIC level (as opposed to the relocation model, which is set and handled separately, yay!) is in the GNU ObjC runtime. I changed it to exactly preserve existing behavior. If folks want to change its behavior in the face of PIE, they can do that in a separate patch. Essentially the only functionality changed here is the preprocessor defines and bug-fixes to the argument management. Tests have been updated and extended to test all of this a bit more thoroughly. llvm-svn: 154291
2012-04-09 00:40:35 +08:00
}
// Macros to control C99 numerics and <float.h>
Builder.defineMacro("__FLT_EVAL_METHOD__", Twine(TI.getFloatEvalMethod()));
Builder.defineMacro("__FLT_RADIX__", "2");
Builder.defineMacro("__DECIMAL_DIG__", "__LDBL_DECIMAL_DIG__");
if (LangOpts.getStackProtector() == LangOptions::SSPOn)
Builder.defineMacro("__SSP__");
else if (LangOpts.getStackProtector() == LangOptions::SSPStrong)
Builder.defineMacro("__SSP_STRONG__", "2");
else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
Builder.defineMacro("__SSP_ALL__", "3");
// Define a macro that exists only when using the static analyzer.
if (FEOpts.ProgramAction == frontend::RunAnalysis)
Builder.defineMacro("__clang_analyzer__");
if (LangOpts.FastRelaxedMath)
Builder.defineMacro("__FAST_RELAXED_MATH__");
Define weak and __weak to mean ARC-style weak references, even in MRC. Previously, __weak was silently accepted and ignored in MRC mode. That makes this a potentially source-breaking change that we have to roll out cautiously. Accordingly, for the time being, actual support for __weak references in MRC is experimental, and the compiler will reject attempts to actually form such references. The intent is to eventually enable the feature by default in all non-GC modes. (It is, of course, incompatible with ObjC GC's interpretation of __weak.) If you like, you can enable this feature with -Xclang -fobjc-weak but like any -Xclang option, this option may be removed at any point, e.g. if/when it is eventually enabled by default. This patch also enables the use of the ARC __unsafe_unretained qualifier in MRC. Unlike __weak, this is being enabled immediately. Since variables are essentially __unsafe_unretained by default in MRC, the only practical uses are (1) communication and (2) changing the default behavior of by-value block capture. As an implementation matter, this means that the ObjC ownership qualifiers may appear in any ObjC language mode, and so this patch removes a number of checks for getLangOpts().ObjCAutoRefCount that were guarding the processing of these qualifiers. I don't expect this to be a significant drain on performance; it may even be faster to just check for these qualifiers directly on a type (since it's probably in a register anyway) than to do N dependent loads to grab the LangOptions. rdar://9674298 llvm-svn: 251041
2015-10-23 02:38:17 +08:00
if (FEOpts.ProgramAction == frontend::RewriteObjC ||
LangOpts.getGC() != LangOptions::NonGC) {
Builder.defineMacro("__weak", "__attribute__((objc_gc(weak)))");
Builder.defineMacro("__strong", "__attribute__((objc_gc(strong)))");
Builder.defineMacro("__autoreleasing", "");
Builder.defineMacro("__unsafe_unretained", "");
Define weak and __weak to mean ARC-style weak references, even in MRC. Previously, __weak was silently accepted and ignored in MRC mode. That makes this a potentially source-breaking change that we have to roll out cautiously. Accordingly, for the time being, actual support for __weak references in MRC is experimental, and the compiler will reject attempts to actually form such references. The intent is to eventually enable the feature by default in all non-GC modes. (It is, of course, incompatible with ObjC GC's interpretation of __weak.) If you like, you can enable this feature with -Xclang -fobjc-weak but like any -Xclang option, this option may be removed at any point, e.g. if/when it is eventually enabled by default. This patch also enables the use of the ARC __unsafe_unretained qualifier in MRC. Unlike __weak, this is being enabled immediately. Since variables are essentially __unsafe_unretained by default in MRC, the only practical uses are (1) communication and (2) changing the default behavior of by-value block capture. As an implementation matter, this means that the ObjC ownership qualifiers may appear in any ObjC language mode, and so this patch removes a number of checks for getLangOpts().ObjCAutoRefCount that were guarding the processing of these qualifiers. I don't expect this to be a significant drain on performance; it may even be faster to just check for these qualifiers directly on a type (since it's probably in a register anyway) than to do N dependent loads to grab the LangOptions. rdar://9674298 llvm-svn: 251041
2015-10-23 02:38:17 +08:00
} else if (LangOpts.ObjC1) {
Builder.defineMacro("__weak", "__attribute__((objc_ownership(weak)))");
Builder.defineMacro("__strong", "__attribute__((objc_ownership(strong)))");
Builder.defineMacro("__autoreleasing",
"__attribute__((objc_ownership(autoreleasing)))");
Builder.defineMacro("__unsafe_unretained",
"__attribute__((objc_ownership(none)))");
}
// On Darwin, there are __double_underscored variants of the type
// nullability qualifiers.
if (TI.getTriple().isOSDarwin()) {
Builder.defineMacro("__nonnull", "_Nonnull");
Builder.defineMacro("__null_unspecified", "_Null_unspecified");
Builder.defineMacro("__nullable", "_Nullable");
}
// OpenMP definition
// OpenMP 2.2:
// In implementations that support a preprocessor, the _OPENMP
// macro name is defined to have the decimal value yyyymm where
// yyyy and mm are the year and the month designations of the
// version of the OpenMP API that the implementation support.
switch (LangOpts.OpenMP) {
case 0:
break;
case 40:
Builder.defineMacro("_OPENMP", "201307");
break;
case 45:
Builder.defineMacro("_OPENMP", "201511");
break;
default:
// Default version is OpenMP 3.1
Builder.defineMacro("_OPENMP", "201107");
break;
}
// CUDA device path compilaton
if (LangOpts.CUDAIsDevice) {
// The CUDA_ARCH value is set for the GPU target specified in the NVPTX
// backend's target defines.
Builder.defineMacro("__CUDA_ARCH__");
}
// We need to communicate this to our CUDA header wrapper, which in turn
// informs the proper CUDA headers of this choice.
if (LangOpts.CUDADeviceApproxTranscendentals || LangOpts.FastMath) {
Builder.defineMacro("__CLANG_CUDA_APPROX_TRANSCENDENTALS__");
}
// OpenCL definitions.
if (LangOpts.OpenCL) {
#define OPENCLEXT(Ext) \
if (TI.getSupportedOpenCLOpts().is_##Ext##_supported( \
LangOpts.OpenCLVersion)) \
Builder.defineMacro(#Ext);
#include "clang/Basic/OpenCLExtensions.def"
}
if (TI.hasInt128Type() && LangOpts.CPlusPlus && LangOpts.GNUMode) {
Builder.defineMacro("__GLIBCXX_TYPE_INT_N_0", "__int128");
Builder.defineMacro("__GLIBCXX_BITSIZE_INT_N_0", "128");
}
// Get other target #defines.
TI.getTargetDefines(LangOpts, Builder);
}
/// InitializePreprocessor - Initialize the preprocessor getting it and the
/// environment ready to process a single file. This returns true on error.
///
void clang::InitializePreprocessor(
Preprocessor &PP, const PreprocessorOptions &InitOpts,
const PCHContainerReader &PCHContainerRdr,
const FrontendOptions &FEOpts) {
const LangOptions &LangOpts = PP.getLangOpts();
std::string PredefineBuffer;
PredefineBuffer.reserve(4080);
llvm::raw_string_ostream Predefines(PredefineBuffer);
MacroBuilder Builder(Predefines);
// Emit line markers for various builtin sections of the file. We don't do
// this in asm preprocessor mode, because "# 4" is not a line marker directive
// in this mode.
if (!PP.getLangOpts().AsmPreprocessor)
Builder.append("# 1 \"<built-in>\" 3");
// Install things like __POWERPC__, __GNUC__, etc into the macro table.
if (InitOpts.UsePredefines) {
if (LangOpts.CUDA && PP.getAuxTargetInfo())
InitializePredefinedMacros(*PP.getAuxTargetInfo(), LangOpts, FEOpts,
Builder);
InitializePredefinedMacros(PP.getTargetInfo(), LangOpts, FEOpts, Builder);
// Install definitions to make Objective-C++ ARC work well with various
// C++ Standard Library implementations.
Define weak and __weak to mean ARC-style weak references, even in MRC. Previously, __weak was silently accepted and ignored in MRC mode. That makes this a potentially source-breaking change that we have to roll out cautiously. Accordingly, for the time being, actual support for __weak references in MRC is experimental, and the compiler will reject attempts to actually form such references. The intent is to eventually enable the feature by default in all non-GC modes. (It is, of course, incompatible with ObjC GC's interpretation of __weak.) If you like, you can enable this feature with -Xclang -fobjc-weak but like any -Xclang option, this option may be removed at any point, e.g. if/when it is eventually enabled by default. This patch also enables the use of the ARC __unsafe_unretained qualifier in MRC. Unlike __weak, this is being enabled immediately. Since variables are essentially __unsafe_unretained by default in MRC, the only practical uses are (1) communication and (2) changing the default behavior of by-value block capture. As an implementation matter, this means that the ObjC ownership qualifiers may appear in any ObjC language mode, and so this patch removes a number of checks for getLangOpts().ObjCAutoRefCount that were guarding the processing of these qualifiers. I don't expect this to be a significant drain on performance; it may even be faster to just check for these qualifiers directly on a type (since it's probably in a register anyway) than to do N dependent loads to grab the LangOptions. rdar://9674298 llvm-svn: 251041
2015-10-23 02:38:17 +08:00
if (LangOpts.ObjC1 && LangOpts.CPlusPlus &&
(LangOpts.ObjCAutoRefCount || LangOpts.ObjCWeak)) {
switch (InitOpts.ObjCXXARCStandardLibrary) {
case ARCXX_nolib:
Define weak and __weak to mean ARC-style weak references, even in MRC. Previously, __weak was silently accepted and ignored in MRC mode. That makes this a potentially source-breaking change that we have to roll out cautiously. Accordingly, for the time being, actual support for __weak references in MRC is experimental, and the compiler will reject attempts to actually form such references. The intent is to eventually enable the feature by default in all non-GC modes. (It is, of course, incompatible with ObjC GC's interpretation of __weak.) If you like, you can enable this feature with -Xclang -fobjc-weak but like any -Xclang option, this option may be removed at any point, e.g. if/when it is eventually enabled by default. This patch also enables the use of the ARC __unsafe_unretained qualifier in MRC. Unlike __weak, this is being enabled immediately. Since variables are essentially __unsafe_unretained by default in MRC, the only practical uses are (1) communication and (2) changing the default behavior of by-value block capture. As an implementation matter, this means that the ObjC ownership qualifiers may appear in any ObjC language mode, and so this patch removes a number of checks for getLangOpts().ObjCAutoRefCount that were guarding the processing of these qualifiers. I don't expect this to be a significant drain on performance; it may even be faster to just check for these qualifiers directly on a type (since it's probably in a register anyway) than to do N dependent loads to grab the LangOptions. rdar://9674298 llvm-svn: 251041
2015-10-23 02:38:17 +08:00
case ARCXX_libcxx:
break;
case ARCXX_libstdcxx:
AddObjCXXARCLibstdcxxDefines(LangOpts, Builder);
break;
}
}
}
// Even with predefines off, some macros are still predefined.
// These should all be defined in the preprocessor according to the
// current language configuration.
InitializeStandardPredefinedMacros(PP.getTargetInfo(), PP.getLangOpts(),
FEOpts, Builder);
// Add on the predefines from the driver. Wrap in a #line directive to report
// that they come from the command line.
if (!PP.getLangOpts().AsmPreprocessor)
Builder.append("# 1 \"<command line>\" 1");
// Process #define's and #undef's in the order they are given.
for (unsigned i = 0, e = InitOpts.Macros.size(); i != e; ++i) {
if (InitOpts.Macros[i].second) // isUndef
Builder.undefineMacro(InitOpts.Macros[i].first);
else
DefineBuiltinMacro(Builder, InitOpts.Macros[i].first,
PP.getDiagnostics());
}
// Exit the command line and go back to <built-in> (2 is LC_LEAVE).
if (!PP.getLangOpts().AsmPreprocessor)
Builder.append("# 1 \"<built-in>\" 2");
// If -imacros are specified, include them now. These are processed before
// any -include directives.
for (unsigned i = 0, e = InitOpts.MacroIncludes.size(); i != e; ++i)
AddImplicitIncludeMacros(Builder, InitOpts.MacroIncludes[i]);
// Process -include-pch/-include-pth directives.
if (!InitOpts.ImplicitPCHInclude.empty())
AddImplicitIncludePCH(Builder, PP, PCHContainerRdr,
InitOpts.ImplicitPCHInclude);
if (!InitOpts.ImplicitPTHInclude.empty())
AddImplicitIncludePTH(Builder, PP, InitOpts.ImplicitPTHInclude);
// Process -include directives.
for (unsigned i = 0, e = InitOpts.Includes.size(); i != e; ++i) {
const std::string &Path = InitOpts.Includes[i];
AddImplicitInclude(Builder, Path);
}
// Instruct the preprocessor to skip the preamble.
PP.setSkipMainFilePreamble(InitOpts.PrecompiledPreambleBytes.first,
InitOpts.PrecompiledPreambleBytes.second);
// Copy PredefinedBuffer into the Preprocessor.
PP.setPredefines(Predefines.str());
}