llvm-project/llvm/lib/Target/X86/X86ScheduleBtVer2.td

825 lines
29 KiB
TableGen
Raw Normal View History

//=- X86ScheduleBtVer2.td - X86 BtVer2 (Jaguar) Scheduling ---*- tablegen -*-=//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the machine model for AMD btver2 (Jaguar) to support
// instruction scheduling and other instruction cost heuristics. Based off AMD Software
// Optimization Guide for AMD Family 16h Processors & Instruction Latency appendix.
//
//===----------------------------------------------------------------------===//
def BtVer2Model : SchedMachineModel {
// All x86 instructions are modeled as a single micro-op, and btver2 can
// decode 2 instructions per cycle.
let IssueWidth = 2;
let MicroOpBufferSize = 64; // Retire Control Unit
let LoadLatency = 5; // FPU latency (worse case cf Integer 3 cycle latency)
let HighLatency = 25;
let MispredictPenalty = 14; // Minimum branch misdirection penalty
let PostRAScheduler = 1;
// FIXME: SSE4/AVX is unimplemented. This flag is set to allow
// the scheduler to assign a default model to unrecognized opcodes.
let CompleteModel = 0;
}
let SchedModel = BtVer2Model in {
// Jaguar can issue up to 6 micro-ops in one cycle
def JALU0 : ProcResource<1>; // Integer Pipe0: integer ALU0 (also handle FP->INT jam)
def JALU1 : ProcResource<1>; // Integer Pipe1: integer ALU1/MUL/DIV
def JLAGU : ProcResource<1>; // Integer Pipe2: LAGU
def JSAGU : ProcResource<1>; // Integer Pipe3: SAGU (also handles 3-operand LEA)
def JFPU0 : ProcResource<1>; // Vector/FPU Pipe0: VALU0/VIMUL/FPA
def JFPU1 : ProcResource<1>; // Vector/FPU Pipe1: VALU1/STC/FPM
// Integer Pipe Scheduler
def JALU01 : ProcResGroup<[JALU0, JALU1]> {
let BufferSize=20;
}
// AGU Pipe Scheduler
def JLSAGU : ProcResGroup<[JLAGU, JSAGU]> {
let BufferSize=12;
}
// Fpu Pipe Scheduler
def JFPU01 : ProcResGroup<[JFPU0, JFPU1]> {
let BufferSize=18;
}
// Functional units
def JDiv : ProcResource<1>; // integer division
def JMul : ProcResource<1>; // integer multiplication
def JVALU0 : ProcResource<1>; // vector integer
def JVALU1 : ProcResource<1>; // vector integer
def JVIMUL : ProcResource<1>; // vector integer multiplication
def JSTC : ProcResource<1>; // vector store/convert
def JFPM : ProcResource<1>; // FP multiplication
def JFPA : ProcResource<1>; // FP addition
// Functional unit groups
def JFPX : ProcResGroup<[JFPA, JFPM]>;
def JVALU : ProcResGroup<[JVALU0, JVALU1]>;
// Integer loads are 3 cycles, so ReadAfterLd registers needn't be available until 3
// cycles after the memory operand.
def : ReadAdvance<ReadAfterLd, 3>;
// Many SchedWrites are defined in pairs with and without a folded load.
// Instructions with folded loads are usually micro-fused, so they only appear
// as two micro-ops when dispatched by the schedulers.
// This multiclass defines the resource usage for variants with and without
// folded loads.
multiclass JWriteResIntPair<X86FoldableSchedWrite SchedRW,
list<ProcResourceKind> ExePorts,
int Lat, list<int> Res = [1], int UOps = 1> {
// Register variant is using a single cycle on ExePort.
def : WriteRes<SchedRW, ExePorts> {
let Latency = Lat;
let ResourceCycles = Res;
let NumMicroOps = UOps;
}
// Memory variant also uses a cycle on JLAGU and adds 3 cycles to the
// latency.
def : WriteRes<SchedRW.Folded, !listconcat([JLAGU], ExePorts)> {
let Latency = !add(Lat, 3);
let ResourceCycles = !listconcat([1], Res);
let NumMicroOps = UOps;
}
}
multiclass JWriteResFpuPair<X86FoldableSchedWrite SchedRW,
list<ProcResourceKind> ExePorts,
int Lat, list<int> Res = [1], int UOps = 1> {
// Register variant is using a single cycle on ExePort.
def : WriteRes<SchedRW, ExePorts> {
let Latency = Lat;
let ResourceCycles = Res;
let NumMicroOps = UOps;
}
// Memory variant also uses a cycle on JLAGU and adds 5 cycles to the
// latency.
def : WriteRes<SchedRW.Folded, !listconcat([JLAGU], ExePorts)> {
let Latency = !add(Lat, 5);
let ResourceCycles = !listconcat([1], Res);
let NumMicroOps = UOps;
}
}
// A folded store needs a cycle on the SAGU for the store data.
def : WriteRes<WriteRMW, [JSAGU]>;
////////////////////////////////////////////////////////////////////////////////
// Arithmetic.
////////////////////////////////////////////////////////////////////////////////
defm : JWriteResIntPair<WriteALU, [JALU01], 1>;
defm : JWriteResIntPair<WriteIMul, [JALU1, JMul], 3, [1, 1], 2>; // i8/i16/i32 multiplication
defm : JWriteResIntPair<WriteIDiv, [JALU1, JDiv], 41, [1, 41], 2>; // Worst case (i64 division)
def : WriteRes<WriteIMulH, [JALU1]> {
let Latency = 6;
let ResourceCycles = [4];
}
// This is for simple LEAs with one or two input operands.
// FIXME: SAGU 3-operand LEA
def : WriteRes<WriteLEA, [JALU01]>;
// FIXME: Why do bitcounts use WriteIMul?
def JWriteLZCNT : SchedWriteRes<[JALU01]> {
}
def JWriteLZCNTLd : SchedWriteRes<[JLAGU, JALU01]> {
let Latency = 4;
}
def : InstRW<[JWriteLZCNT], (instrs LZCNT16rr, LZCNT32rr, LZCNT64rr,
POPCNT16rr, POPCNT32rr, POPCNT64rr)>;
def : InstRW<[JWriteLZCNTLd], (instrs LZCNT16rm, LZCNT32rm, LZCNT64rm,
POPCNT16rm, POPCNT32rm, POPCNT64rm)>;
def JWriteTZCNT : SchedWriteRes<[JALU01]> {
let Latency = 2;
let ResourceCycles = [2];
}
def JWriteTZCNTLd : SchedWriteRes<[JLAGU, JALU01]> {
let Latency = 5;
let ResourceCycles = [1, 2];
}
def : InstRW<[JWriteTZCNT], (instrs TZCNT16rr, TZCNT32rr, TZCNT64rr)>;
def : InstRW<[JWriteTZCNTLd], (instrs TZCNT16rm, TZCNT32rm, TZCNT64rm)>;
def JWriteIMul64 : SchedWriteRes<[JALU1, JMul]> {
let Latency = 6;
let ResourceCycles = [1, 4];
let NumMicroOps = 2;
}
def JWriteIMul64Ld : SchedWriteRes<[JLAGU, JALU1, JMul]> {
let Latency = 9;
let ResourceCycles = [1, 1, 4];
let NumMicroOps = 2;
}
def : InstRW<[JWriteIMul64], (instrs MUL64r, IMUL64r)>;
def : InstRW<[JWriteIMul64Ld], (instrs MUL64m, IMUL64m)>;
def JWriteIDiv8 : SchedWriteRes<[JALU1, JDiv]> {
let Latency = 12;
let ResourceCycles = [1, 12];
}
def JWriteIDiv8Ld : SchedWriteRes<[JLAGU, JALU1, JDiv]> {
let Latency = 15;
let ResourceCycles = [1, 1, 12];
}
def : InstRW<[JWriteIDiv8], (instrs DIV8r, IDIV8r)>;
def : InstRW<[JWriteIDiv8Ld], (instrs DIV8m, IDIV8m)>;
def JWriteIDiv16 : SchedWriteRes<[JALU1, JDiv]> {
let Latency = 17;
let ResourceCycles = [1, 17];
let NumMicroOps = 2;
}
def JWriteIDiv16Ld : SchedWriteRes<[JLAGU, JALU1, JDiv]> {
let Latency = 20;
let ResourceCycles = [1, 1, 17];
let NumMicroOps = 2;
}
def : InstRW<[JWriteIDiv16], (instrs DIV16r, IDIV16r)>;
def : InstRW<[JWriteIDiv16Ld], (instrs DIV16m, IDIV16m)>;
def JWriteIDiv32 : SchedWriteRes<[JALU1, JDiv]> {
let Latency = 25;
let ResourceCycles = [1, 25];
let NumMicroOps = 2;
}
def JWriteIDiv32Ld : SchedWriteRes<[JLAGU, JALU1, JDiv]> {
let Latency = 28;
let ResourceCycles = [1, 1, 25];
let NumMicroOps = 2;
}
def : InstRW<[JWriteIDiv32], (instrs DIV32r, IDIV32r)>;
def : InstRW<[JWriteIDiv32Ld], (instrs DIV32m, IDIV32m)>;
def JWriteCRC32 : SchedWriteRes<[JALU01]> {
let Latency = 3;
let ResourceCycles = [4];
let NumMicroOps = 3;
}
def : InstRW<[JWriteCRC32], (instrs CRC32r32r8, CRC32r32r16, CRC32r32r32,
CRC32r64r8, CRC32r64r64)>;
def JWriteCRC32Ld : SchedWriteRes<[JLAGU, JALU01]> {
let Latency = 6;
let ResourceCycles = [1, 4];
let NumMicroOps = 3;
}
def : InstRW<[JWriteCRC32Ld], (instrs CRC32r32m8, CRC32r32m16, CRC32r32m32,
CRC32r64m8, CRC32r64m64)>;
////////////////////////////////////////////////////////////////////////////////
// Integer shifts and rotates.
////////////////////////////////////////////////////////////////////////////////
defm : JWriteResIntPair<WriteShift, [JALU01], 1>;
def JWriteSHLDrri : SchedWriteRes<[JALU01]> {
let Latency = 3;
let ResourceCycles = [6];
let NumMicroOps = 6;
}
def: InstRW<[JWriteSHLDrri], (instrs SHLD16rri8, SHLD32rri8, SHLD64rri8,
SHRD16rri8, SHRD32rri8, SHRD64rri8)>;
def JWriteSHLDrrCL : SchedWriteRes<[JALU01]> {
let Latency = 4;
let ResourceCycles = [8];
let NumMicroOps = 7;
}
def: InstRW<[JWriteSHLDrrCL], (instrs SHLD16rrCL, SHLD32rrCL, SHLD64rrCL,
SHRD16rrCL, SHRD32rrCL, SHRD64rrCL)>;
def JWriteSHLDm : SchedWriteRes<[JLAGU, JALU01]> {
let Latency = 9;
let ResourceCycles = [1, 22];
let NumMicroOps = 8;
}
def: InstRW<[JWriteSHLDm],(instrs SHLD16mri8, SHLD32mri8, SHLD64mri8,
SHLD16mrCL, SHLD32mrCL, SHLD64mrCL,
SHRD16mri8, SHRD32mri8, SHRD64mri8,
SHRD16mrCL, SHRD32mrCL, SHRD64mrCL)>;
////////////////////////////////////////////////////////////////////////////////
// Loads, stores, and moves, not folded with other operations.
////////////////////////////////////////////////////////////////////////////////
def : WriteRes<WriteLoad, [JLAGU]> { let Latency = 5; }
def : WriteRes<WriteStore, [JSAGU]>;
def : WriteRes<WriteMove, [JALU01]>;
// Treat misc copies as a move.
def : InstRW<[WriteMove], (instrs COPY)>;
////////////////////////////////////////////////////////////////////////////////
// Idioms that clear a register, like xorps %xmm0, %xmm0.
// These can often bypass execution ports completely.
////////////////////////////////////////////////////////////////////////////////
def : WriteRes<WriteZero, []>;
////////////////////////////////////////////////////////////////////////////////
// Branches don't produce values, so they have no latency, but they still
// consume resources. Indirect branches can fold loads.
////////////////////////////////////////////////////////////////////////////////
defm : JWriteResIntPair<WriteJump, [JALU01], 1>;
////////////////////////////////////////////////////////////////////////////////
// Special case scheduling classes.
////////////////////////////////////////////////////////////////////////////////
def : WriteRes<WriteSystem, [JALU01]> { let Latency = 100; }
def : WriteRes<WriteMicrocoded, [JALU01]> { let Latency = 100; }
def : WriteRes<WriteFence, [JSAGU]>;
// Nops don't have dependencies, so there's no actual latency, but we set this
// to '1' to tell the scheduler that the nop uses an ALU slot for a cycle.
def : WriteRes<WriteNop, [JALU01]> { let Latency = 1; }
////////////////////////////////////////////////////////////////////////////////
// Floating point. This covers both scalar and vector operations.
// FIXME: should we bother splitting JFPU pipe + unit stages for fast instructions?
// FIXME: Double precision latencies
// FIXME: SS vs PS latencies
////////////////////////////////////////////////////////////////////////////////
def : WriteRes<WriteFLoad, [JLAGU]> { let Latency = 5; }
def : WriteRes<WriteFStore, [JSAGU]>;
def : WriteRes<WriteFMove, [JFPU01]>;
defm : JWriteResFpuPair<WriteFAdd, [JFPU0, JFPA], 3>;
defm : JWriteResFpuPair<WriteFMul, [JFPU1, JFPM], 2>;
defm : JWriteResFpuPair<WriteFMA, [JFPU1, JFPM], 2>; // NOTE: Doesn't exist on Jaguar.
defm : JWriteResFpuPair<WriteFRcp, [JFPU1, JFPM], 2>;
defm : JWriteResFpuPair<WriteFRsqrt, [JFPU1, JFPM], 2>;
defm : JWriteResFpuPair<WriteFDiv, [JFPU1, JFPM], 19, [1, 19]>;
defm : JWriteResFpuPair<WriteFSqrt, [JFPU1, JFPM], 21, [1, 21]>;
defm : JWriteResFpuPair<WriteFShuffle, [JFPU01, JFPX], 1>;
defm : JWriteResFpuPair<WriteFBlend, [JFPU01, JFPX], 1>;
defm : JWriteResFpuPair<WriteFVarBlend, [JFPU01, JFPX], 2, [1, 4], 3>;
defm : JWriteResFpuPair<WriteFShuffle256, [JFPU01, JFPX], 1>;
////////////////////////////////////////////////////////////////////////////////
// Conversions.
// FIXME: integer pipes
////////////////////////////////////////////////////////////////////////////////
defm : JWriteResFpuPair<WriteCvtF2I, [JFPU1, JSTC], 3>; // Float -> Integer.
defm : JWriteResFpuPair<WriteCvtI2F, [JFPU1, JSTC], 3>; // Integer -> Float.
defm : JWriteResFpuPair<WriteCvtF2F, [JFPU1, JSTC], 3>; // Float -> Float size conversion.
////////////////////////////////////////////////////////////////////////////////
// Vector integer operations.
////////////////////////////////////////////////////////////////////////////////
def : WriteRes<WriteVecLoad, [JLAGU]> { let Latency = 5; }
def : WriteRes<WriteVecStore, [JSAGU]>;
def : WriteRes<WriteVecMove, [JFPU01]>;
defm : JWriteResFpuPair<WriteVecALU, [JFPU01, JVALU], 1>;
defm : JWriteResFpuPair<WriteVecShift, [JFPU01, JVALU], 1>;
defm : JWriteResFpuPair<WriteVecIMul, [JFPU0, JVIMUL], 2>;
defm : JWriteResFpuPair<WriteMPSAD, [JFPU0, JVIMUL], 3, [1, 2]>;
defm : JWriteResFpuPair<WriteShuffle, [JFPU01, JVALU], 1>;
defm : JWriteResFpuPair<WriteBlend, [JFPU01, JVALU], 1>;
defm : JWriteResFpuPair<WriteVarBlend, [JFPU01, JVALU], 2, [1, 4], 3>;
defm : JWriteResFpuPair<WriteVecLogic, [JFPU01, JVALU], 1>;
defm : JWriteResFpuPair<WriteShuffle256, [JFPU01, JVALU], 1>;
defm : JWriteResFpuPair<WriteVarVecShift, [JFPU01, JVALU], 1>; // NOTE: Doesn't exist on Jaguar.
////////////////////////////////////////////////////////////////////////////////
// SSE42 String instructions.
// FIXME: approximate latencies + pipe dependencies
////////////////////////////////////////////////////////////////////////////////
defm : JWriteResFpuPair<WritePCmpIStrI, [JFPU1, JFPU0], 7, [2, 2], 3>;
defm : JWriteResFpuPair<WritePCmpIStrM, [JFPU1, JFPU0], 8, [2, 2], 3>;
defm : JWriteResFpuPair<WritePCmpEStrI, [JFPU1, JLAGU, JFPU01, JFPU1, JFPU0], 14, [5, 5, 5, 5, 5], 9>;
defm : JWriteResFpuPair<WritePCmpEStrM, [JFPU1, JLAGU, JFPU01, JFPU1, JFPU0], 14, [5, 5, 5, 5, 5], 9>;
////////////////////////////////////////////////////////////////////////////////
// AES Instructions.
////////////////////////////////////////////////////////////////////////////////
defm : JWriteResFpuPair<WriteAESIMC, [JFPU0, JVIMUL], 2>;
defm : JWriteResFpuPair<WriteAESKeyGen, [JFPU0, JVIMUL], 2>;
defm : JWriteResFpuPair<WriteAESDecEnc, [JFPU0, JVIMUL], 3>;
////////////////////////////////////////////////////////////////////////////////
// Horizontal add/sub instructions.
////////////////////////////////////////////////////////////////////////////////
defm : JWriteResFpuPair<WriteFHAdd, [JFPU0, JFPA], 3>;
defm : JWriteResFpuPair<WritePHAdd, [JFPU01, JVALU], 1>;
def JWriteFHAddY: SchedWriteRes<[JFPU0, JFPA]> {
let Latency = 3;
let ResourceCycles = [2, 2];
}
def : InstRW<[JWriteFHAddY], (instrs VHADDPDYrr, VHADDPSYrr, VHSUBPDYrr, VHSUBPSYrr)>;
def JWriteFHAddYLd: SchedWriteRes<[JLAGU, JFPU0, JFPA]> {
let Latency = 8;
let ResourceCycles = [1, 2, 2];
}
def : InstRW<[JWriteFHAddYLd], (instrs VHADDPDYrm, VHADDPSYrm, VHSUBPDYrm, VHSUBPSYrm)>;
////////////////////////////////////////////////////////////////////////////////
// Carry-less multiplication instructions.
////////////////////////////////////////////////////////////////////////////////
defm : JWriteResFpuPair<WriteCLMul, [JFPU0, JVIMUL], 2>;
////////////////////////////////////////////////////////////////////////////////
// SSE4.1 instructions.
////////////////////////////////////////////////////////////////////////////////
def JWriteDPPS: SchedWriteRes<[JFPU0, JFPU1]> {
let Latency = 11;
let ResourceCycles = [3, 3];
let NumMicroOps = 5;
}
def : InstRW<[JWriteDPPS], (instrs DPPSrri, VDPPSrri)>;
def JWriteDPPSLd: SchedWriteRes<[JLAGU, JFPU0, JFPU1]> {
let Latency = 16;
let ResourceCycles = [1, 3, 3];
let NumMicroOps = 6;
}
def : InstRW<[JWriteDPPSLd], (instrs DPPSrmi, VDPPSrmi)>;
def JWriteDPPD: SchedWriteRes<[JFPU0, JFPU1]> {
let Latency = 9;
let ResourceCycles = [3, 3];
let NumMicroOps = 3;
}
def : InstRW<[JWriteDPPD], (instrs DPPDrri, VDPPDrri)>;
def JWriteDPPDLd: SchedWriteRes<[JLAGU, JFPU0, JFPU1]> {
let Latency = 14;
let ResourceCycles = [1, 3, 3];
let NumMicroOps = 3;
}
def : InstRW<[JWriteDPPDLd], (instrs DPPDrmi, VDPPDrmi)>;
////////////////////////////////////////////////////////////////////////////////
// SSE4A instructions.
////////////////////////////////////////////////////////////////////////////////
def JWriteEXTRQ: SchedWriteRes<[JFPU01, JVALU]> {
}
def : InstRW<[JWriteEXTRQ], (instrs EXTRQ, EXTRQI)>;
def JWriteINSERTQ: SchedWriteRes<[JFPU01, JVALU]> {
let Latency = 2;
let ResourceCycles = [1, 4];
}
def : InstRW<[JWriteINSERTQ], (instrs INSERTQ, INSERTQI)>;
////////////////////////////////////////////////////////////////////////////////
// F16C instructions.
////////////////////////////////////////////////////////////////////////////////
def JWriteCVT3: SchedWriteRes<[JFPU1, JSTC]> {
let Latency = 3;
}
def : InstRW<[JWriteCVT3], (instrs VCVTPS2PHrr, VCVTPH2PSrr)>;
def JWriteCVT3St: SchedWriteRes<[JFPU1, JSTC, JSAGU]> {
let Latency = 3;
}
def : InstRW<[JWriteCVT3St], (instrs VCVTPS2PHmr)>;
def JWriteCVT3Ld: SchedWriteRes<[JLAGU, JFPU1, JSTC]> {
let Latency = 8;
}
def : InstRW<[JWriteCVT3Ld], (instrs VCVTPH2PSrm)>;
def JWriteCVTPS2PHY: SchedWriteRes<[JFPU1, JSTC, JFPX]> {
let Latency = 6;
let ResourceCycles = [2, 2, 2];
let NumMicroOps = 3;
}
def : InstRW<[JWriteCVTPS2PHY], (instrs VCVTPS2PHYrr)>;
def JWriteCVTPS2PHYSt: SchedWriteRes<[JFPU1, JSTC, JFPX, JSAGU]> {
let Latency = 11;
let ResourceCycles = [2, 2, 2, 1];
let NumMicroOps = 3;
}
def : InstRW<[JWriteCVTPS2PHYSt], (instrs VCVTPS2PHYmr)>;
def JWriteCVTPH2PSY: SchedWriteRes<[JFPU1, JSTC]> {
let Latency = 3;
let ResourceCycles = [2, 2];
let NumMicroOps = 2;
}
def : InstRW<[JWriteCVTPH2PSY], (instrs VCVTPH2PSYrr)>;
def JWriteCVTPH2PSYLd: SchedWriteRes<[JLAGU, JFPU1, JSTC]> {
let Latency = 8;
let ResourceCycles = [1, 2, 2];
let NumMicroOps = 2;
}
def : InstRW<[JWriteCVTPH2PSYLd], (instrs VCVTPH2PSYrm)>;
////////////////////////////////////////////////////////////////////////////////
// AVX instructions.
////////////////////////////////////////////////////////////////////////////////
def JWriteFLogic: SchedWriteRes<[JFPU01, JFPX]> {
}
def : InstRW<[JWriteFLogic], (instrs ORPDrr, ORPSrr, VORPDrr, VORPSrr,
XORPDrr, XORPSrr, VXORPDrr, VXORPSrr,
ANDPDrr, ANDPSrr, VANDPDrr, VANDPSrr,
ANDNPDrr, ANDNPSrr, VANDNPDrr, VANDNPSrr)>;
def JWriteFLogicLd: SchedWriteRes<[JLAGU, JFPU01, JFPX]> {
let Latency = 6;
}
def : InstRW<[JWriteFLogicLd], (instrs ORPDrm, ORPSrm, VORPDrm, VORPSrm,
XORPDrm, XORPSrm, VXORPDrm, VXORPSrm,
ANDPDrm, ANDPSrm, VANDPDrm, VANDPSrm,
ANDNPDrm, ANDNPSrm, VANDNPDrm, VANDNPSrm)>;
def JWriteFLogicY: SchedWriteRes<[JFPU01, JFPX]> {
let ResourceCycles = [2, 2];
let NumMicroOps = 2;
}
def : InstRW<[JWriteFLogicY], (instrs VORPDYrr, VORPSYrr,
VXORPDYrr, VXORPSYrr,
VANDPDYrr, VANDPSYrr,
VANDNPDYrr, VANDNPSYrr)>;
def JWriteFLogicYLd: SchedWriteRes<[JLAGU, JFPU01, JFPX]> {
let Latency = 6;
let ResourceCycles = [1, 2, 2];
let NumMicroOps = 3;
}
def : InstRW<[JWriteFLogicYLd], (instrs VORPDYrm, VORPSYrm,
VXORPDYrm, VXORPSYrm,
VANDPDYrm, VANDPSYrm,
VANDNPDYrm, VANDNPSYrm)>;
def JWriteVDPPSY: SchedWriteRes<[JFPU1, JFPU0]> {
let Latency = 12;
let ResourceCycles = [6, 6];
let NumMicroOps = 10;
}
def : InstRW<[JWriteVDPPSY], (instrs VDPPSYrri)>;
def JWriteVDPPSYLd: SchedWriteRes<[JLAGU, JFPU1, JFPU0]> {
let Latency = 17;
let ResourceCycles = [1, 6, 6];
let NumMicroOps = 11;
}
def : InstRW<[JWriteVDPPSYLd, ReadAfterLd], (instrs VDPPSYrmi)>;
def JWriteFAddY: SchedWriteRes<[JFPU0, JFPA]> {
let Latency = 3;
let ResourceCycles = [2, 2];
}
def : InstRW<[JWriteFAddY], (instrs VADDPDYrr, VADDPSYrr,
VSUBPDYrr, VSUBPSYrr,
VADDSUBPDYrr, VADDSUBPSYrr)>;
def JWriteFAddYLd: SchedWriteRes<[JLAGU, JFPU0, JFPA]> {
let Latency = 8;
let ResourceCycles = [1, 2, 2];
}
def : InstRW<[JWriteFAddYLd, ReadAfterLd], (instrs VADDPDYrm, VADDPSYrm,
VSUBPDYrm, VSUBPSYrm,
VADDSUBPDYrm, VADDSUBPSYrm)>;
def JWriteFDivY: SchedWriteRes<[JFPU1, JFPM]> {
let Latency = 38;
let ResourceCycles = [1, 38];
}
def : InstRW<[JWriteFDivY], (instrs VDIVPDYrr, VDIVPSYrr)>;
def JWriteFDivYLd: SchedWriteRes<[JLAGU, JFPU1, JFPM]> {
let Latency = 43;
let ResourceCycles = [1, 1, 38];
}
def : InstRW<[JWriteFDivYLd, ReadAfterLd], (instrs VDIVPDYrm, VDIVPSYrm)>;
def JWriteVMULYPD: SchedWriteRes<[JFPU1, JFPM]> {
let Latency = 4;
let ResourceCycles = [1, 4];
}
def : InstRW<[JWriteVMULYPD], (instrs VMULPDYrr)>;
def JWriteVMULYPDLd: SchedWriteRes<[JLAGU, JFPU1, JFPM]> {
let Latency = 9;
let ResourceCycles = [1, 1, 4];
}
def : InstRW<[JWriteVMULYPDLd, ReadAfterLd], (instrs VMULPDYrm)>;
def JWriteVMULYPS: SchedWriteRes<[JFPU1, JFPM]> {
let Latency = 2;
let ResourceCycles = [1, 2];
}
def : InstRW<[JWriteVMULYPS], (instrs VMULPSYrr, VRCPPSYr, VRSQRTPSYr)>;
def JWriteVMULYPSLd: SchedWriteRes<[JLAGU, JFPU1, JFPM]> {
let Latency = 7;
let ResourceCycles = [1, 1, 2];
}
def : InstRW<[JWriteVMULYPSLd, ReadAfterLd], (instrs VMULPSYrm, VRCPPSYm, VRSQRTPSYm)>;
def JWriteVMULPD: SchedWriteRes<[JFPU1, JFPM]> {
let Latency = 4;
let ResourceCycles = [1, 2];
}
def : InstRW<[JWriteVMULPD], (instrs MULPDrr, MULSDrr, VMULPDrr, VMULSDrr)>;
def JWriteVMULPDLd: SchedWriteRes<[JLAGU, JFPU1, JFPM]> {
let Latency = 9;
let ResourceCycles = [1, 1, 2];
}
def : InstRW<[JWriteVMULPDLd], (instrs MULPDrm, MULSDrm, VMULPDrm, VMULSDrm)>;
def JWriteVCVTY: SchedWriteRes<[JSTC]> {
let Latency = 3;
let ResourceCycles = [2];
}
def : InstRW<[JWriteVCVTY], (instrs VCVTDQ2PDYrr, VCVTDQ2PSYrr,
VCVTPS2DQYrr, VCVTTPS2DQYrr,
VROUNDYPDr, VROUNDYPSr)>;
def JWriteVCVTYLd: SchedWriteRes<[JLAGU, JSTC]> {
let Latency = 8;
let ResourceCycles = [1, 2];
}
def : InstRW<[JWriteVCVTYLd, ReadAfterLd], (instrs VCVTDQ2PDYrm, VCVTDQ2PSYrm,
VCVTPS2DQYrm, VCVTTPS2DQYrm,
VROUNDYPDm, VROUNDYPSm)>;
def JWriteVMOVNTDQSt: SchedWriteRes<[JSTC, JSAGU]> {
let Latency = 2;
}
def : InstRW<[JWriteVMOVNTDQSt], (instrs MOVNTDQmr, VMOVNTDQmr)>;
def JWriteMOVNTSt: SchedWriteRes<[JSTC, JSAGU]> {
let Latency = 3;
}
def : InstRW<[JWriteMOVNTSt], (instrs MOVNTPDmr, MOVNTPSmr, MOVNTSD, MOVNTSS, VMOVNTPDmr, VMOVNTPSmr)>;
def JWriteVMOVNTPYSt: SchedWriteRes<[JSTC, JSAGU]> {
let Latency = 3;
let ResourceCycles = [2,1];
}
def : InstRW<[JWriteVMOVNTPYSt], (instrs VMOVNTDQYmr, VMOVNTPDYmr, VMOVNTPSYmr)>;
def JWriteFCmp: SchedWriteRes<[JFPU0]> {
let Latency = 2;
}
def : InstRW<[JWriteFCmp], (instregex "(V)?M(AX|IN)(P|S)(D|S)rr",
"(V)?CMPP(S|D)rri", "(V)?CMPS(S|D)rr")>;
def JWriteFCmpLd: SchedWriteRes<[JLAGU, JFPU0]> {
let Latency = 7;
}
def : InstRW<[JWriteFCmpLd], (instregex "(V)?M(AX|IN)(P|S)(D|S)rm",
"(V)?CMPP(S|D)rmi", "(V)?CMPS(S|D)rm")>;
def JWriteVCVTPDY: SchedWriteRes<[JSTC, JFPU01]> {
let Latency = 6;
let ResourceCycles = [2, 4];
}
def : InstRW<[JWriteVCVTPDY], (instrs VCVTPD2DQYrr, VCVTTPD2DQYrr, VCVTPD2PSYrr)>;
def JWriteVCVTPDYLd: SchedWriteRes<[JLAGU, JSTC, JFPU01]> {
let Latency = 11;
let ResourceCycles = [1, 2, 4];
}
def : InstRW<[JWriteVCVTPDYLd, ReadAfterLd], (instrs VCVTPD2DQYrm, VCVTTPD2DQYrm, VCVTPD2PSYrm)>;
def JWritePSHUFB: SchedWriteRes<[JFPU01]> {
let Latency = 2;
let ResourceCycles = [4];
let NumMicroOps = 3;
}
def : InstRW<[JWritePSHUFB], (instrs PSHUFBrr, VPSHUFBrr)>;
def JWritePSHUFBLd: SchedWriteRes<[JLAGU, JFPU01]> {
let Latency = 7;
let ResourceCycles = [1, 4];
let NumMicroOps = 3;
}
def : InstRW<[JWritePSHUFBLd, ReadAfterLd], (instrs PSHUFBrm, VPSHUFBrm)>;
def JWriteVPERM: SchedWriteRes<[JFPU01]> {
let Latency = 2;
let ResourceCycles = [4];
let NumMicroOps = 3;
}
def : InstRW<[JWriteVPERM], (instrs VPERMILPDrr, VPERMILPSrr)>;
def JWriteVPERMLd: SchedWriteRes<[JLAGU, JFPU01]> {
let Latency = 7;
let ResourceCycles = [1, 4];
let NumMicroOps = 3;
}
def : InstRW<[JWriteVPERMLd, ReadAfterLd], (instrs VPERMILPDrm, VPERMILPSrm)>;
def JWriteVPERMY: SchedWriteRes<[JFPU01]> {
let Latency = 3;
let ResourceCycles = [6];
let NumMicroOps = 6;
}
def : InstRW<[JWriteVPERMY], (instrs VBLENDVPDYrr, VBLENDVPSYrr, VPERMILPDYrr, VPERMILPSYrr)>;
def JWriteVPERMYLd: SchedWriteRes<[JLAGU, JFPU01]> {
let Latency = 8;
let ResourceCycles = [1, 6];
let NumMicroOps = 6;
}
def : InstRW<[JWriteVPERMYLd, ReadAfterLd], (instrs VBLENDVPDYrm, VBLENDVPSYrm, VPERMILPDYrm, VPERMILPSYrm)>;
def JWriteShuffleY: SchedWriteRes<[JFPU01]> {
let ResourceCycles = [2];
let NumMicroOps = 2;
}
def : InstRW<[JWriteShuffleY], (instrs VMOVDDUPYrr, VMOVSHDUPYrr, VMOVSLDUPYrr,
VPERMILPDYri, VPERMILPSYri, VSHUFPDYrri, VSHUFPSYrri)>;
def JWriteShuffleYLd: SchedWriteRes<[JLAGU, JFPU01]> {
let Latency = 6;
let ResourceCycles = [1, 2];
let NumMicroOps = 2;
}
def : InstRW<[JWriteShuffleYLd, ReadAfterLd], (instrs VMOVDDUPYrm, VMOVSHDUPYrm, VMOVSLDUPYrm,
VPERMILPDYmi, VPERMILPSYmi, VSHUFPDYrmi, VSHUFPSYrmi)>;
def JWriteVBROADCASTYLd: SchedWriteRes<[JLAGU, JFPU01]> {
let Latency = 6;
let ResourceCycles = [1, 4];
}
def : InstRW<[JWriteVBROADCASTYLd, ReadAfterLd], (instrs VBROADCASTSDYrm, VBROADCASTSSYrm)>;
def JWriteFPAY22: SchedWriteRes<[JFPU0]> {
let Latency = 2;
let ResourceCycles = [2];
}
def : InstRW<[JWriteFPAY22], (instregex "VCMPP(S|D)Yrri", "VM(AX|IN)P(D|S)Yrr")>;
def JWriteFPAY22Ld: SchedWriteRes<[JLAGU, JFPU0]> {
let Latency = 7;
let ResourceCycles = [1, 2];
}
def : InstRW<[JWriteFPAY22Ld, ReadAfterLd], (instregex "VCMPP(S|D)Yrmi", "VM(AX|IN)P(D|S)Yrm")>;
def JWriteVMaskMovLd: SchedWriteRes<[JLAGU,JFPU01]> {
let Latency = 6;
let ResourceCycles = [1, 2];
}
def : InstRW<[JWriteVMaskMovLd], (instrs VMASKMOVPDrm, VMASKMOVPSrm)>;
def JWriteVMaskMovYLd: SchedWriteRes<[JLAGU,JFPU01]> {
let Latency = 6;
let ResourceCycles = [1, 4];
}
def : InstRW<[JWriteVMaskMovYLd], (instrs VMASKMOVPDYrm, VMASKMOVPSYrm)>;
def JWriteVMaskMovSt: SchedWriteRes<[JFPU01,JSAGU]> {
let Latency = 6;
let ResourceCycles = [4, 1];
}
def : InstRW<[JWriteVMaskMovSt], (instrs VMASKMOVPDmr, VMASKMOVPSmr)>;
def JWriteVMaskMovYSt: SchedWriteRes<[JFPU01,JSAGU]> {
let Latency = 6;
let ResourceCycles = [4, 1];
}
def : InstRW<[JWriteVMaskMovYSt], (instrs VMASKMOVPDYmr, VMASKMOVPSYmr)>;
// TODO: In fact we have latency '2+i'. The +i represents an additional 1 cycle transfer
// operation which moves the floating point result to the integer unit. During this
// additional cycle the floating point unit execution resources are not occupied
// and ALU0 in the integer unit is occupied instead.
def JWriteVMOVMSK: SchedWriteRes<[JFPU0]> {
let Latency = 3;
}
def : InstRW<[JWriteVMOVMSK], (instrs VMOVMSKPDrr, VMOVMSKPDYrr, VMOVMSKPSrr, VMOVMSKPSYrr)>;
// TODO: In fact we have latency '3+i'. The +i represents an additional 1 cycle transfer
// operation which moves the floating point result to the integer unit. During this
// additional cycle the floating point unit execution resources are not occupied
// and ALU0 in the integer unit is occupied instead.
def JWriteVTESTY: SchedWriteRes<[JFPU01, JFPU0]> {
let Latency = 4;
let ResourceCycles = [2, 2];
let NumMicroOps = 3;
}
def : InstRW<[JWriteVTESTY], (instrs VPTESTYrr, VTESTPDYrr, VTESTPSYrr)>;
def JWriteVTESTYLd: SchedWriteRes<[JLAGU, JFPU01, JFPU0]> {
let Latency = 9;
let ResourceCycles = [1, 2, 2];
let NumMicroOps = 3;
}
def : InstRW<[JWriteVTESTYLd], (instrs VPTESTYrm, VTESTPDYrm, VTESTPSYrm)>;
def JWriteVTEST: SchedWriteRes<[JFPU0]> {
let Latency = 3;
}
def : InstRW<[JWriteVTEST], (instrs PTESTrr, VPTESTrr, VTESTPDrr, VTESTPSrr)>;
def JWriteVTESTLd: SchedWriteRes<[JLAGU, JFPU0]> {
let Latency = 8;
}
def : InstRW<[JWriteVTESTLd], (instrs PTESTrm, VPTESTrm, VTESTPDrm, VTESTPSrm)>;
def JWriteVSQRTYPD: SchedWriteRes<[JFPU1, JFPM]> {
let Latency = 54;
let ResourceCycles = [1, 54];
}
def : InstRW<[JWriteVSQRTYPD], (instrs VSQRTPDYr)>;
def JWriteVSQRTYPDLd: SchedWriteRes<[JLAGU, JFPU1, JFPM]> {
let Latency = 59;
let ResourceCycles = [1, 1, 54];
}
def : InstRW<[JWriteVSQRTYPDLd], (instrs VSQRTPDYm)>;
def JWriteVSQRTYPS: SchedWriteRes<[JFPU1, JFPM]> {
let Latency = 42;
let ResourceCycles = [1, 42];
}
def : InstRW<[JWriteVSQRTYPS], (instrs VSQRTPSYr)>;
def JWriteVSQRTYPSLd: SchedWriteRes<[JLAGU, JFPU1, JFPM]> {
let Latency = 47;
let ResourceCycles = [1, 1, 42];
}
def : InstRW<[JWriteVSQRTYPSLd], (instrs VSQRTPSYm)>;
def JWriteJVZEROALL: SchedWriteRes<[]> {
let Latency = 90;
let NumMicroOps = 73;
}
def : InstRW<[JWriteJVZEROALL], (instrs VZEROALL)>;
def JWriteJVZEROUPPER: SchedWriteRes<[]> {
let Latency = 46;
let NumMicroOps = 37;
}
def : InstRW<[JWriteJVZEROUPPER], (instrs VZEROUPPER)>;
} // SchedModel