llvm-project/clang-tools-extra/clangd/index/Background.cpp

474 lines
16 KiB
C++
Raw Normal View History

//===-- Background.cpp - Build an index in a background thread ------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "index/Background.h"
#include "ClangdUnit.h"
#include "Compiler.h"
#include "Logger.h"
#include "SourceCode.h"
#include "Threading.h"
#include "Trace.h"
#include "URI.h"
#include "index/IndexAction.h"
#include "index/MemIndex.h"
#include "index/Serialization.h"
#include "index/SymbolCollector.h"
#include "clang/Basic/SourceLocation.h"
#include "clang/Basic/SourceManager.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/ScopeExit.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/Support/SHA1.h"
#include <chrono>
#include <memory>
#include <numeric>
#include <queue>
#include <random>
#include <string>
#include <thread>
using namespace llvm;
namespace clang {
namespace clangd {
namespace {
// Resolves URI to file paths with cache.
class URIToFileCache {
public:
URIToFileCache(llvm::StringRef HintPath) : HintPath(HintPath) {}
llvm::StringRef resolve(llvm::StringRef FileURI) {
auto I = URIToPathCache.try_emplace(FileURI);
if (I.second) {
auto U = URI::parse(FileURI);
if (!U) {
elog("Failed to parse URI {0}: {1}", FileURI, U.takeError());
assert(false && "Failed to parse URI");
return "";
}
auto Path = URI::resolve(*U, HintPath);
if (!Path) {
elog("Failed to resolve URI {0}: {1}", FileURI, Path.takeError());
assert(false && "Failed to resolve URI");
return "";
}
I.first->second = *Path;
}
return I.first->second;
}
private:
std::string HintPath;
llvm::StringMap<std::string> URIToPathCache;
};
// We keep only the node "U" and its edges. Any node other than "U" will be
// empty in the resultant graph.
IncludeGraph getSubGraph(const URI &U, const IncludeGraph &FullGraph) {
IncludeGraph IG;
std::string FileURI = U.toString();
auto Entry = IG.try_emplace(FileURI).first;
auto &Node = Entry->getValue();
Node = FullGraph.lookup(Entry->getKey());
Node.URI = Entry->getKey();
// URIs inside nodes must point into the keys of the same IncludeGraph.
for (auto &Include : Node.DirectIncludes) {
auto I = IG.try_emplace(Include).first;
I->getValue().URI = I->getKey();
Include = I->getKey();
}
return IG;
}
// Creates a filter to not collect index results from files with unchanged
// digests.
// \p FileDigests contains file digests for the current indexed files, and all
// changed files will be added to \p FilesToUpdate.
decltype(SymbolCollector::Options::FileFilter)
createFileFilter(const llvm::StringMap<FileDigest> &FileDigests,
llvm::StringMap<FileDigest> &FilesToUpdate) {
return [&FileDigests, &FilesToUpdate](const SourceManager &SM, FileID FID) {
StringRef Path;
if (const auto *F = SM.getFileEntryForID(FID))
Path = F->getName();
if (Path.empty())
return false; // Skip invalid files.
SmallString<128> AbsPath(Path);
if (std::error_code EC =
SM.getFileManager().getVirtualFileSystem()->makeAbsolute(AbsPath)) {
elog("Warning: could not make absolute file: {0}", EC.message());
return false; // Skip files without absolute path.
}
sys::path::remove_dots(AbsPath, /*remove_dot_dot=*/true);
auto Digest = digestFile(SM, FID);
if (!Digest)
return false;
auto D = FileDigests.find(AbsPath);
if (D != FileDigests.end() && D->second == Digest)
return false; // Skip files that haven't changed.
FilesToUpdate[AbsPath] = *Digest;
return true;
};
}
} // namespace
BackgroundIndex::BackgroundIndex(
Context BackgroundContext, StringRef ResourceDir,
const FileSystemProvider &FSProvider, const GlobalCompilationDatabase &CDB,
BackgroundIndexStorage::Factory IndexStorageFactory,
size_t BuildIndexPeriodMs, size_t ThreadPoolSize)
: SwapIndex(make_unique<MemIndex>()), ResourceDir(ResourceDir),
FSProvider(FSProvider), CDB(CDB),
BackgroundContext(std::move(BackgroundContext)),
BuildIndexPeriodMs(BuildIndexPeriodMs),
SymbolsUpdatedSinceLastIndex(false),
IndexStorageFactory(std::move(IndexStorageFactory)),
CommandsChanged(
CDB.watch([&](const std::vector<std::string> &ChangedFiles) {
enqueue(ChangedFiles);
})) {
assert(ThreadPoolSize > 0 && "Thread pool size can't be zero.");
assert(this->IndexStorageFactory && "Storage factory can not be null!");
while (ThreadPoolSize--)
ThreadPool.emplace_back([this] { run(); });
if (BuildIndexPeriodMs > 0) {
log("BackgroundIndex: build symbol index periodically every {0} ms.",
BuildIndexPeriodMs);
ThreadPool.emplace_back([this] { buildIndex(); });
}
}
BackgroundIndex::~BackgroundIndex() {
stop();
for (auto &Thread : ThreadPool)
Thread.join();
}
void BackgroundIndex::stop() {
{
std::lock_guard<std::mutex> QueueLock(QueueMu);
std::lock_guard<std::mutex> IndexLock(IndexMu);
ShouldStop = true;
}
QueueCV.notify_all();
IndexCV.notify_all();
}
void BackgroundIndex::run() {
WithContext Background(BackgroundContext.clone());
while (true) {
Optional<Task> Task;
ThreadPriority Priority;
{
std::unique_lock<std::mutex> Lock(QueueMu);
QueueCV.wait(Lock, [&] { return ShouldStop || !Queue.empty(); });
if (ShouldStop) {
Queue.clear();
QueueCV.notify_all();
return;
}
++NumActiveTasks;
std::tie(Task, Priority) = std::move(Queue.front());
Queue.pop_front();
}
if (Priority != ThreadPriority::Normal)
setCurrentThreadPriority(Priority);
(*Task)();
if (Priority != ThreadPriority::Normal)
setCurrentThreadPriority(ThreadPriority::Normal);
{
std::unique_lock<std::mutex> Lock(QueueMu);
assert(NumActiveTasks > 0 && "before decrementing");
--NumActiveTasks;
}
QueueCV.notify_all();
}
}
2018-11-27 00:00:11 +08:00
bool BackgroundIndex::blockUntilIdleForTest(
llvm::Optional<double> TimeoutSeconds) {
std::unique_lock<std::mutex> Lock(QueueMu);
2018-11-27 00:00:11 +08:00
return wait(Lock, QueueCV, timeoutSeconds(TimeoutSeconds),
[&] { return Queue.empty() && NumActiveTasks == 0; });
}
void BackgroundIndex::enqueue(const std::vector<std::string> &ChangedFiles) {
enqueueTask(
[this, ChangedFiles] {
trace::Span Tracer("BackgroundIndexEnqueue");
// We're doing this asynchronously, because we'll read shards here too.
// FIXME: read shards here too.
log("Enqueueing {0} commands for indexing", ChangedFiles.size());
SPAN_ATTACH(Tracer, "files", int64_t(ChangedFiles.size()));
// We shuffle the files because processing them in a random order should
// quickly give us good coverage of headers in the project.
std::vector<unsigned> Permutation(ChangedFiles.size());
std::iota(Permutation.begin(), Permutation.end(), 0);
std::mt19937 Generator(std::random_device{}());
std::shuffle(Permutation.begin(), Permutation.end(), Generator);
for (const unsigned I : Permutation)
enqueue(ChangedFiles[I]);
},
ThreadPriority::Normal);
}
void BackgroundIndex::enqueue(const std::string &File) {
ProjectInfo Project;
if (auto Cmd = CDB.getCompileCommand(File, &Project)) {
auto *Storage = IndexStorageFactory(Project.SourceRoot);
// Set priority to low, since background indexing is a long running
// task we do not want to eat up cpu when there are any other high
// priority threads.
enqueueTask(Bind(
[this, File, Storage](tooling::CompileCommand Cmd) {
Cmd.CommandLine.push_back("-resource-dir=" + ResourceDir);
if (auto Error = index(std::move(Cmd), Storage))
log("Indexing {0} failed: {1}", File, std::move(Error));
},
std::move(*Cmd)),
ThreadPriority::Low);
}
}
void BackgroundIndex::enqueueTask(Task T, ThreadPriority Priority) {
{
std::lock_guard<std::mutex> Lock(QueueMu);
auto I = Queue.end();
// We first store the tasks with Normal priority in the front of the queue.
// Then we store low priority tasks. Normal priority tasks are pretty rare,
// they should not grow beyond single-digit numbers, so it is OK to do
// linear search and insert after that.
if (Priority == ThreadPriority::Normal) {
I = llvm::find_if(Queue, [](const std::pair<Task, ThreadPriority> &Elem) {
return Elem.second == ThreadPriority::Low;
});
}
Queue.insert(I, {std::move(T), Priority});
}
QueueCV.notify_all();
}
/// Given index results from a TU, only update files in \p FilesToUpdate.
void BackgroundIndex::update(StringRef MainFile, IndexFileIn Index,
const StringMap<FileDigest> &FilesToUpdate,
BackgroundIndexStorage *IndexStorage) {
// Partition symbols/references into files.
struct File {
DenseSet<const Symbol *> Symbols;
DenseSet<const Ref *> Refs;
};
StringMap<File> Files;
URIToFileCache URICache(MainFile);
for (const auto &Sym : *Index.Symbols) {
if (Sym.CanonicalDeclaration) {
auto DeclPath = URICache.resolve(Sym.CanonicalDeclaration.FileURI);
if (FilesToUpdate.count(DeclPath) != 0)
Files[DeclPath].Symbols.insert(&Sym);
}
// For symbols with different declaration and definition locations, we store
// the full symbol in both the header file and the implementation file, so
// that merging can tell the preferred symbols (from canonical headers) from
// other symbols (e.g. forward declarations).
if (Sym.Definition &&
Sym.Definition.FileURI != Sym.CanonicalDeclaration.FileURI) {
auto DefPath = URICache.resolve(Sym.Definition.FileURI);
if (FilesToUpdate.count(DefPath) != 0)
Files[DefPath].Symbols.insert(&Sym);
}
}
DenseMap<const Ref *, SymbolID> RefToIDs;
for (const auto &SymRefs : *Index.Refs) {
for (const auto &R : SymRefs.second) {
auto Path = URICache.resolve(R.Location.FileURI);
if (FilesToUpdate.count(Path) != 0) {
auto &F = Files[Path];
RefToIDs[&R] = SymRefs.first;
F.Refs.insert(&R);
}
}
}
// Build and store new slabs for each updated file.
for (const auto &F : Files) {
StringRef Path = F.first();
vlog("Update symbols in {0}", Path);
SymbolSlab::Builder Syms;
RefSlab::Builder Refs;
for (const auto *S : F.second.Symbols)
Syms.insert(*S);
for (const auto *R : F.second.Refs)
Refs.insert(RefToIDs[R], *R);
auto SS = llvm::make_unique<SymbolSlab>(std::move(Syms).build());
auto RS = llvm::make_unique<RefSlab>(std::move(Refs).build());
auto IG = llvm::make_unique<IncludeGraph>(
getSubGraph(URI::create(Path), Index.Sources.getValue()));
auto Hash = FilesToUpdate.lookup(Path);
// We need to store shards before updating the index, since the latter
// consumes slabs.
if (IndexStorage) {
IndexFileOut Shard;
Shard.Symbols = SS.get();
Shard.Refs = RS.get();
Shard.Sources = IG.get();
if (auto Error = IndexStorage->storeShard(Path, Shard))
elog("Failed to write background-index shard for file {0}: {1}", Path,
std::move(Error));
}
std::lock_guard<std::mutex> Lock(DigestsMu);
// This can override a newer version that is added in another thread,
// if this thread sees the older version but finishes later. This should be
// rare in practice.
IndexedFileDigests[Path] = Hash;
IndexedSymbols.update(Path, std::move(SS), std::move(RS));
}
}
void BackgroundIndex::buildIndex() {
assert(BuildIndexPeriodMs > 0);
while (true) {
{
std::unique_lock<std::mutex> Lock(IndexMu);
if (ShouldStop) // Avoid waiting if stopped.
break;
// Wait until this is notified to stop or `BuildIndexPeriodMs` has past.
IndexCV.wait_for(Lock, std::chrono::milliseconds(BuildIndexPeriodMs));
if (ShouldStop) // Avoid rebuilding index if stopped.
break;
}
if (!SymbolsUpdatedSinceLastIndex.exchange(false))
continue;
// There can be symbol update right after the flag is reset above and before
// index is rebuilt below. The new index would contain the updated symbols
// but the flag would still be true. This is fine as we would simply run an
// extra index build.
reset(
IndexedSymbols.buildIndex(IndexType::Heavy, DuplicateHandling::Merge));
log("BackgroundIndex: rebuilt symbol index.");
}
}
Error BackgroundIndex::index(tooling::CompileCommand Cmd,
BackgroundIndexStorage *IndexStorage) {
trace::Span Tracer("BackgroundIndex");
SPAN_ATTACH(Tracer, "file", Cmd.Filename);
SmallString<128> AbsolutePath;
if (sys::path::is_absolute(Cmd.Filename)) {
AbsolutePath = Cmd.Filename;
} else {
AbsolutePath = Cmd.Directory;
sys::path::append(AbsolutePath, Cmd.Filename);
}
auto FS = FSProvider.getFileSystem();
auto Buf = FS->getBufferForFile(AbsolutePath);
if (!Buf)
return errorCodeToError(Buf.getError());
auto Hash = digest(Buf->get()->getBuffer());
// Take a snapshot of the digests to avoid locking for each file in the TU.
llvm::StringMap<FileDigest> DigestsSnapshot;
{
std::lock_guard<std::mutex> Lock(DigestsMu);
if (IndexedFileDigests.lookup(AbsolutePath) == Hash) {
vlog("No need to index {0}, already up to date", AbsolutePath);
return Error::success();
}
DigestsSnapshot = IndexedFileDigests;
}
log("Indexing {0} (digest:={1})", Cmd.Filename, toHex(Hash));
ParseInputs Inputs;
Inputs.FS = std::move(FS);
Inputs.FS->setCurrentWorkingDirectory(Cmd.Directory);
Inputs.CompileCommand = std::move(Cmd);
auto CI = buildCompilerInvocation(Inputs);
if (!CI)
return createStringError(inconvertibleErrorCode(),
"Couldn't build compiler invocation");
IgnoreDiagnostics IgnoreDiags;
auto Clang = prepareCompilerInstance(
std::move(CI), /*Preamble=*/nullptr, std::move(*Buf),
std::make_shared<PCHContainerOperations>(), Inputs.FS, IgnoreDiags);
if (!Clang)
return createStringError(inconvertibleErrorCode(),
"Couldn't build compiler instance");
SymbolCollector::Options IndexOpts;
StringMap<FileDigest> FilesToUpdate;
IndexOpts.FileFilter = createFileFilter(DigestsSnapshot, FilesToUpdate);
IndexFileIn Index;
auto Action = createStaticIndexingAction(
IndexOpts, [&](SymbolSlab S) { Index.Symbols = std::move(S); },
[&](RefSlab R) { Index.Refs = std::move(R); },
[&](IncludeGraph IG) { Index.Sources = std::move(IG); });
// We're going to run clang here, and it could potentially crash.
// We could use CrashRecoveryContext to try to make indexing crashes nonfatal,
// but the leaky "recovery" is pretty scary too in a long-running process.
// If crashes are a real problem, maybe we should fork a child process.
const FrontendInputFile &Input = Clang->getFrontendOpts().Inputs.front();
if (!Action->BeginSourceFile(*Clang, Input))
return createStringError(inconvertibleErrorCode(),
"BeginSourceFile() failed");
if (!Action->Execute())
return createStringError(inconvertibleErrorCode(), "Execute() failed");
Action->EndSourceFile();
if (Clang->hasDiagnostics() &&
Clang->getDiagnostics().hasUncompilableErrorOccurred()) {
return createStringError(inconvertibleErrorCode(),
"IndexingAction failed: has uncompilable errors");
}
assert(Index.Symbols && Index.Refs && Index.Sources
&& "Symbols, Refs and Sources must be set.");
log("Indexed {0} ({1} symbols, {2} refs, {3} files)",
Inputs.CompileCommand.Filename, Index.Symbols->size(),
Index.Refs->numRefs(), Index.Sources->size());
SPAN_ATTACH(Tracer, "symbols", int(Index.Symbols->size()));
SPAN_ATTACH(Tracer, "refs", int(Index.Refs->numRefs()));
SPAN_ATTACH(Tracer, "sources", int(Index.Sources->size()));
update(AbsolutePath, std::move(Index), FilesToUpdate, IndexStorage);
{
// Make sure hash for the main file is always updated even if there is no
// index data in it.
std::lock_guard<std::mutex> Lock(DigestsMu);
IndexedFileDigests[AbsolutePath] = Hash;
}
if (BuildIndexPeriodMs > 0)
SymbolsUpdatedSinceLastIndex = true;
else
reset(
IndexedSymbols.buildIndex(IndexType::Light, DuplicateHandling::Merge));
return Error::success();
}
} // namespace clangd
} // namespace clang