llvm-project/mlir/lib/Analysis/LinearTransform.cpp

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

166 lines
6.4 KiB
C++
Raw Normal View History

//===- LinearTransform.cpp - MLIR LinearTransform Class -------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/Analysis/LinearTransform.h"
#include "mlir/Analysis/AffineStructures.h"
namespace mlir {
LinearTransform::LinearTransform(Matrix &&oMatrix) : matrix(oMatrix) {}
LinearTransform::LinearTransform(const Matrix &oMatrix) : matrix(oMatrix) {}
// Set M(row, targetCol) to its remainder on division by M(row, sourceCol)
// by subtracting from column targetCol an appropriate integer multiple of
// sourceCol. This brings M(row, targetCol) to the range [0, M(row, sourceCol)).
// Apply the same column operation to otherMatrix, with the same integer
// multiple.
static void modEntryColumnOperation(Matrix &m, unsigned row, unsigned sourceCol,
unsigned targetCol, Matrix &otherMatrix) {
assert(m(row, sourceCol) != 0 && "Cannot divide by zero!");
assert((m(row, sourceCol) > 0 && m(row, targetCol) > 0) &&
"Operands must be positive!");
int64_t ratio = m(row, targetCol) / m(row, sourceCol);
m.addToColumn(sourceCol, targetCol, -ratio);
otherMatrix.addToColumn(sourceCol, targetCol, -ratio);
}
std::pair<unsigned, LinearTransform>
LinearTransform::makeTransformToColumnEchelon(Matrix m) {
// We start with an identity result matrix and perform operations on m
// until m is in column echelon form. We apply the same sequence of operations
// on resultMatrix to obtain a transform that takes m to column echelon
// form.
Matrix resultMatrix = Matrix::identity(m.getNumColumns());
unsigned echelonCol = 0;
// Invariant: in all rows above row, all columns from echelonCol onwards
// are all zero elements. In an iteration, if the curent row has any non-zero
// elements echelonCol onwards, we bring one to echelonCol and use it to
// make all elements echelonCol + 1 onwards zero.
for (unsigned row = 0; row < m.getNumRows(); ++row) {
// Search row for a non-empty entry, starting at echelonCol.
unsigned nonZeroCol = echelonCol;
for (unsigned e = m.getNumColumns(); nonZeroCol < e; ++nonZeroCol) {
if (m(row, nonZeroCol) == 0)
continue;
break;
}
// Continue to the next row with the same echelonCol if this row is all
// zeros from echelonCol onwards.
if (nonZeroCol == m.getNumColumns())
continue;
// Bring the non-zero column to echelonCol. This doesn't affect rows
// above since they are all zero at these columns.
if (nonZeroCol != echelonCol) {
m.swapColumns(nonZeroCol, echelonCol);
resultMatrix.swapColumns(nonZeroCol, echelonCol);
}
// Make m(row, echelonCol) non-negative.
if (m(row, echelonCol) < 0) {
m.negateColumn(echelonCol);
resultMatrix.negateColumn(echelonCol);
}
// Make all the entries in row after echelonCol zero.
for (unsigned i = echelonCol + 1, e = m.getNumColumns(); i < e; ++i) {
// We make m(row, i) non-negative, and then apply the Euclidean GCD
// algorithm to (row, i) and (row, echelonCol). At the end, one of them
// has value equal to the gcd of the two entries, and the other is zero.
if (m(row, i) < 0) {
m.negateColumn(i);
resultMatrix.negateColumn(i);
}
unsigned targetCol = i, sourceCol = echelonCol;
// At every step, we set m(row, targetCol) %= m(row, sourceCol), and
// swap the indices sourceCol and targetCol. (not the columns themselves)
// This modulo is implemented as a subtraction
// m(row, targetCol) -= quotient * m(row, sourceCol),
// where quotient = floor(m(row, targetCol) / m(row, sourceCol)),
// which brings m(row, targetCol) to the range [0, m(row, sourceCol)).
//
// We are only allowed column operations; we perform the above
// for every row, i.e., the above subtraction is done as a column
// operation. This does not affect any rows above us since they are
// guaranteed to be zero at these columns.
while (m(row, targetCol) != 0 && m(row, sourceCol) != 0) {
modEntryColumnOperation(m, row, sourceCol, targetCol, resultMatrix);
std::swap(targetCol, sourceCol);
}
// One of (row, echelonCol) and (row, i) is zero and the other is the gcd.
// Make it so that (row, echelonCol) holds the non-zero value.
if (m(row, echelonCol) == 0) {
m.swapColumns(i, echelonCol);
resultMatrix.swapColumns(i, echelonCol);
}
}
++echelonCol;
}
return {echelonCol, LinearTransform(std::move(resultMatrix))};
}
SmallVector<int64_t, 8>
LinearTransform::postMultiplyRow(ArrayRef<int64_t> rowVec) const {
assert(rowVec.size() == matrix.getNumRows() &&
"row vector dimension should match transform output dimension");
SmallVector<int64_t, 8> result(matrix.getNumColumns(), 0);
for (unsigned col = 0, e = matrix.getNumColumns(); col < e; ++col)
for (unsigned i = 0, e = matrix.getNumRows(); i < e; ++i)
result[col] += rowVec[i] * matrix(i, col);
return result;
}
SmallVector<int64_t, 8>
LinearTransform::preMultiplyColumn(ArrayRef<int64_t> colVec) const {
assert(matrix.getNumColumns() == colVec.size() &&
"column vector dimension should match transform input dimension");
SmallVector<int64_t, 8> result(matrix.getNumRows(), 0);
for (unsigned row = 0, e = matrix.getNumRows(); row < e; row++)
for (unsigned i = 0, e = matrix.getNumColumns(); i < e; i++)
result[row] += matrix(row, i) * colVec[i];
return result;
}
FlatAffineConstraints
LinearTransform::applyTo(const FlatAffineConstraints &fac) const {
FlatAffineConstraints result(fac.getNumIds());
for (unsigned i = 0, e = fac.getNumEqualities(); i < e; ++i) {
ArrayRef<int64_t> eq = fac.getEquality(i);
int64_t c = eq.back();
SmallVector<int64_t, 8> newEq = postMultiplyRow(eq.drop_back());
newEq.push_back(c);
result.addEquality(newEq);
}
for (unsigned i = 0, e = fac.getNumInequalities(); i < e; ++i) {
ArrayRef<int64_t> ineq = fac.getInequality(i);
int64_t c = ineq.back();
SmallVector<int64_t, 8> newIneq = postMultiplyRow(ineq.drop_back());
newIneq.push_back(c);
result.addInequality(newIneq);
}
return result;
}
} // namespace mlir