llvm-project/clang/utils/TableGen/ClangAttrEmitter.cpp

2924 lines
106 KiB
C++
Raw Normal View History

//===- ClangAttrEmitter.cpp - Generate Clang attribute handling =-*- C++ -*--=//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// These tablegen backends emit Clang attribute processing code
//
//===----------------------------------------------------------------------===//
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/TableGen/Error.h"
#include "llvm/TableGen/Record.h"
#include "llvm/TableGen/StringMatcher.h"
#include "llvm/TableGen/TableGenBackend.h"
#include <algorithm>
#include <cctype>
#include <memory>
#include <set>
#include <sstream>
using namespace llvm;
class FlattenedSpelling {
std::string V, N, NS;
bool K;
public:
FlattenedSpelling(const std::string &Variety, const std::string &Name,
const std::string &Namespace, bool KnownToGCC) :
V(Variety), N(Name), NS(Namespace), K(KnownToGCC) {}
explicit FlattenedSpelling(const Record &Spelling) :
V(Spelling.getValueAsString("Variety")),
N(Spelling.getValueAsString("Name")) {
assert(V != "GCC" && "Given a GCC spelling, which means this hasn't been"
"flattened!");
if (V == "CXX11" || V == "Pragma")
NS = Spelling.getValueAsString("Namespace");
bool Unset;
K = Spelling.getValueAsBitOrUnset("KnownToGCC", Unset);
}
const std::string &variety() const { return V; }
const std::string &name() const { return N; }
const std::string &nameSpace() const { return NS; }
bool knownToGCC() const { return K; }
};
std::vector<FlattenedSpelling> GetFlattenedSpellings(const Record &Attr) {
std::vector<Record *> Spellings = Attr.getValueAsListOfDefs("Spellings");
std::vector<FlattenedSpelling> Ret;
for (const auto &Spelling : Spellings) {
if (Spelling->getValueAsString("Variety") == "GCC") {
// Gin up two new spelling objects to add into the list.
Ret.push_back(FlattenedSpelling("GNU", Spelling->getValueAsString("Name"),
"", true));
Ret.push_back(FlattenedSpelling(
"CXX11", Spelling->getValueAsString("Name"), "gnu", true));
} else
Ret.push_back(FlattenedSpelling(*Spelling));
}
return Ret;
}
static std::string ReadPCHRecord(StringRef type) {
return StringSwitch<std::string>(type)
.EndsWith("Decl *", "GetLocalDeclAs<"
+ std::string(type, 0, type.size()-1) + ">(F, Record[Idx++])")
.Case("TypeSourceInfo *", "GetTypeSourceInfo(F, Record, Idx)")
.Case("Expr *", "ReadExpr(F)")
.Case("IdentifierInfo *", "GetIdentifierInfo(F, Record, Idx)")
.Default("Record[Idx++]");
}
// Assumes that the way to get the value is SA->getname()
static std::string WritePCHRecord(StringRef type, StringRef name) {
return StringSwitch<std::string>(type)
.EndsWith("Decl *", "AddDeclRef(" + std::string(name) +
", Record);\n")
.Case("TypeSourceInfo *",
"AddTypeSourceInfo(" + std::string(name) + ", Record);\n")
.Case("Expr *", "AddStmt(" + std::string(name) + ");\n")
.Case("IdentifierInfo *",
"AddIdentifierRef(" + std::string(name) + ", Record);\n")
.Default("Record.push_back(" + std::string(name) + ");\n");
}
// Normalize attribute name by removing leading and trailing
// underscores. For example, __foo, foo__, __foo__ would
// become foo.
static StringRef NormalizeAttrName(StringRef AttrName) {
if (AttrName.startswith("__"))
AttrName = AttrName.substr(2, AttrName.size());
if (AttrName.endswith("__"))
AttrName = AttrName.substr(0, AttrName.size() - 2);
return AttrName;
}
// Normalize the name by removing any and all leading and trailing underscores.
// This is different from NormalizeAttrName in that it also handles names like
// _pascal and __pascal.
static StringRef NormalizeNameForSpellingComparison(StringRef Name) {
while (Name.startswith("_"))
Name = Name.substr(1, Name.size());
while (Name.endswith("_"))
Name = Name.substr(0, Name.size() - 1);
return Name;
}
// Normalize attribute spelling only if the spelling has both leading
// and trailing underscores. For example, __ms_struct__ will be
// normalized to "ms_struct"; __cdecl will remain intact.
static StringRef NormalizeAttrSpelling(StringRef AttrSpelling) {
if (AttrSpelling.startswith("__") && AttrSpelling.endswith("__")) {
AttrSpelling = AttrSpelling.substr(2, AttrSpelling.size() - 4);
}
return AttrSpelling;
}
typedef std::vector<std::pair<std::string, const Record *>> ParsedAttrMap;
static ParsedAttrMap getParsedAttrList(const RecordKeeper &Records,
ParsedAttrMap *Dupes = nullptr) {
std::vector<Record *> Attrs = Records.getAllDerivedDefinitions("Attr");
std::set<std::string> Seen;
ParsedAttrMap R;
for (const auto *Attr : Attrs) {
if (Attr->getValueAsBit("SemaHandler")) {
std::string AN;
if (Attr->isSubClassOf("TargetSpecificAttr") &&
!Attr->isValueUnset("ParseKind")) {
AN = Attr->getValueAsString("ParseKind");
// If this attribute has already been handled, it does not need to be
// handled again.
if (Seen.find(AN) != Seen.end()) {
if (Dupes)
Dupes->push_back(std::make_pair(AN, Attr));
continue;
}
Seen.insert(AN);
} else
AN = NormalizeAttrName(Attr->getName()).str();
R.push_back(std::make_pair(AN, Attr));
}
}
return R;
}
namespace {
class Argument {
std::string lowerName, upperName;
StringRef attrName;
bool isOpt;
public:
Argument(const Record &Arg, StringRef Attr)
: lowerName(Arg.getValueAsString("Name")), upperName(lowerName),
attrName(Attr), isOpt(false) {
if (!lowerName.empty()) {
lowerName[0] = std::tolower(lowerName[0]);
upperName[0] = std::toupper(upperName[0]);
}
}
virtual ~Argument() {}
StringRef getLowerName() const { return lowerName; }
StringRef getUpperName() const { return upperName; }
StringRef getAttrName() const { return attrName; }
bool isOptional() const { return isOpt; }
void setOptional(bool set) { isOpt = set; }
// These functions print the argument contents formatted in different ways.
virtual void writeAccessors(raw_ostream &OS) const = 0;
virtual void writeAccessorDefinitions(raw_ostream &OS) const {}
virtual void writeASTVisitorTraversal(raw_ostream &OS) const {}
virtual void writeCloneArgs(raw_ostream &OS) const = 0;
virtual void writeTemplateInstantiationArgs(raw_ostream &OS) const = 0;
virtual void writeTemplateInstantiation(raw_ostream &OS) const {}
virtual void writeCtorBody(raw_ostream &OS) const {}
virtual void writeCtorInitializers(raw_ostream &OS) const = 0;
virtual void writeCtorDefaultInitializers(raw_ostream &OS) const = 0;
virtual void writeCtorParameters(raw_ostream &OS) const = 0;
virtual void writeDeclarations(raw_ostream &OS) const = 0;
virtual void writePCHReadArgs(raw_ostream &OS) const = 0;
virtual void writePCHReadDecls(raw_ostream &OS) const = 0;
virtual void writePCHWrite(raw_ostream &OS) const = 0;
virtual void writeValue(raw_ostream &OS) const = 0;
virtual void writeDump(raw_ostream &OS) const = 0;
virtual void writeDumpChildren(raw_ostream &OS) const {}
virtual void writeHasChildren(raw_ostream &OS) const { OS << "false"; }
virtual bool isEnumArg() const { return false; }
virtual bool isVariadicEnumArg() const { return false; }
virtual bool isVariadic() const { return false; }
virtual void writeImplicitCtorArgs(raw_ostream &OS) const {
OS << getUpperName();
}
};
class SimpleArgument : public Argument {
std::string type;
public:
SimpleArgument(const Record &Arg, StringRef Attr, std::string T)
: Argument(Arg, Attr), type(T)
{}
std::string getType() const { return type; }
void writeAccessors(raw_ostream &OS) const override {
OS << " " << type << " get" << getUpperName() << "() const {\n";
OS << " return " << getLowerName() << ";\n";
OS << " }";
}
void writeCloneArgs(raw_ostream &OS) const override {
OS << getLowerName();
}
void writeTemplateInstantiationArgs(raw_ostream &OS) const override {
OS << "A->get" << getUpperName() << "()";
}
void writeCtorInitializers(raw_ostream &OS) const override {
OS << getLowerName() << "(" << getUpperName() << ")";
}
void writeCtorDefaultInitializers(raw_ostream &OS) const override {
OS << getLowerName() << "()";
}
void writeCtorParameters(raw_ostream &OS) const override {
OS << type << " " << getUpperName();
}
void writeDeclarations(raw_ostream &OS) const override {
OS << type << " " << getLowerName() << ";";
}
void writePCHReadDecls(raw_ostream &OS) const override {
std::string read = ReadPCHRecord(type);
OS << " " << type << " " << getLowerName() << " = " << read << ";\n";
}
void writePCHReadArgs(raw_ostream &OS) const override {
OS << getLowerName();
}
void writePCHWrite(raw_ostream &OS) const override {
OS << " " << WritePCHRecord(type, "SA->get" +
std::string(getUpperName()) + "()");
}
void writeValue(raw_ostream &OS) const override {
if (type == "FunctionDecl *") {
OS << "\" << get" << getUpperName()
<< "()->getNameInfo().getAsString() << \"";
} else if (type == "IdentifierInfo *") {
OS << "\" << get" << getUpperName() << "()->getName() << \"";
} else if (type == "TypeSourceInfo *") {
OS << "\" << get" << getUpperName() << "().getAsString() << \"";
} else {
OS << "\" << get" << getUpperName() << "() << \"";
}
}
void writeDump(raw_ostream &OS) const override {
if (type == "FunctionDecl *") {
OS << " OS << \" \";\n";
OS << " dumpBareDeclRef(SA->get" << getUpperName() << "());\n";
} else if (type == "IdentifierInfo *") {
OS << " OS << \" \" << SA->get" << getUpperName()
<< "()->getName();\n";
} else if (type == "TypeSourceInfo *") {
OS << " OS << \" \" << SA->get" << getUpperName()
<< "().getAsString();\n";
} else if (type == "bool") {
OS << " if (SA->get" << getUpperName() << "()) OS << \" "
<< getUpperName() << "\";\n";
} else if (type == "int" || type == "unsigned") {
OS << " OS << \" \" << SA->get" << getUpperName() << "();\n";
} else {
llvm_unreachable("Unknown SimpleArgument type!");
}
}
};
class DefaultSimpleArgument : public SimpleArgument {
int64_t Default;
public:
DefaultSimpleArgument(const Record &Arg, StringRef Attr,
std::string T, int64_t Default)
: SimpleArgument(Arg, Attr, T), Default(Default) {}
void writeAccessors(raw_ostream &OS) const override {
SimpleArgument::writeAccessors(OS);
OS << "\n\n static const " << getType() << " Default" << getUpperName()
<< " = " << Default << ";";
}
};
class StringArgument : public Argument {
public:
StringArgument(const Record &Arg, StringRef Attr)
: Argument(Arg, Attr)
{}
void writeAccessors(raw_ostream &OS) const override {
OS << " llvm::StringRef get" << getUpperName() << "() const {\n";
OS << " return llvm::StringRef(" << getLowerName() << ", "
<< getLowerName() << "Length);\n";
OS << " }\n";
OS << " unsigned get" << getUpperName() << "Length() const {\n";
OS << " return " << getLowerName() << "Length;\n";
OS << " }\n";
OS << " void set" << getUpperName()
<< "(ASTContext &C, llvm::StringRef S) {\n";
OS << " " << getLowerName() << "Length = S.size();\n";
OS << " this->" << getLowerName() << " = new (C, 1) char ["
<< getLowerName() << "Length];\n";
OS << " std::memcpy(this->" << getLowerName() << ", S.data(), "
<< getLowerName() << "Length);\n";
OS << " }";
}
void writeCloneArgs(raw_ostream &OS) const override {
OS << "get" << getUpperName() << "()";
}
void writeTemplateInstantiationArgs(raw_ostream &OS) const override {
OS << "A->get" << getUpperName() << "()";
}
void writeCtorBody(raw_ostream &OS) const override {
OS << " std::memcpy(" << getLowerName() << ", " << getUpperName()
<< ".data(), " << getLowerName() << "Length);";
}
void writeCtorInitializers(raw_ostream &OS) const override {
OS << getLowerName() << "Length(" << getUpperName() << ".size()),"
<< getLowerName() << "(new (Ctx, 1) char[" << getLowerName()
<< "Length])";
}
void writeCtorDefaultInitializers(raw_ostream &OS) const override {
OS << getLowerName() << "Length(0)," << getLowerName() << "(0)";
}
void writeCtorParameters(raw_ostream &OS) const override {
OS << "llvm::StringRef " << getUpperName();
}
void writeDeclarations(raw_ostream &OS) const override {
OS << "unsigned " << getLowerName() << "Length;\n";
OS << "char *" << getLowerName() << ";";
}
void writePCHReadDecls(raw_ostream &OS) const override {
OS << " std::string " << getLowerName()
<< "= ReadString(Record, Idx);\n";
}
void writePCHReadArgs(raw_ostream &OS) const override {
OS << getLowerName();
}
void writePCHWrite(raw_ostream &OS) const override {
OS << " AddString(SA->get" << getUpperName() << "(), Record);\n";
}
void writeValue(raw_ostream &OS) const override {
OS << "\\\"\" << get" << getUpperName() << "() << \"\\\"";
}
void writeDump(raw_ostream &OS) const override {
OS << " OS << \" \\\"\" << SA->get" << getUpperName()
<< "() << \"\\\"\";\n";
}
};
class AlignedArgument : public Argument {
public:
AlignedArgument(const Record &Arg, StringRef Attr)
: Argument(Arg, Attr)
{}
void writeAccessors(raw_ostream &OS) const override {
OS << " bool is" << getUpperName() << "Dependent() const;\n";
OS << " unsigned get" << getUpperName() << "(ASTContext &Ctx) const;\n";
OS << " bool is" << getUpperName() << "Expr() const {\n";
OS << " return is" << getLowerName() << "Expr;\n";
OS << " }\n";
OS << " Expr *get" << getUpperName() << "Expr() const {\n";
OS << " assert(is" << getLowerName() << "Expr);\n";
OS << " return " << getLowerName() << "Expr;\n";
OS << " }\n";
OS << " TypeSourceInfo *get" << getUpperName() << "Type() const {\n";
OS << " assert(!is" << getLowerName() << "Expr);\n";
OS << " return " << getLowerName() << "Type;\n";
OS << " }";
}
void writeAccessorDefinitions(raw_ostream &OS) const override {
OS << "bool " << getAttrName() << "Attr::is" << getUpperName()
<< "Dependent() const {\n";
OS << " if (is" << getLowerName() << "Expr)\n";
OS << " return " << getLowerName() << "Expr && (" << getLowerName()
<< "Expr->isValueDependent() || " << getLowerName()
<< "Expr->isTypeDependent());\n";
OS << " else\n";
OS << " return " << getLowerName()
<< "Type->getType()->isDependentType();\n";
OS << "}\n";
// FIXME: Do not do the calculation here
// FIXME: Handle types correctly
// A null pointer means maximum alignment
// FIXME: Load the platform-specific maximum alignment, rather than
// 16, the x86 max.
OS << "unsigned " << getAttrName() << "Attr::get" << getUpperName()
<< "(ASTContext &Ctx) const {\n";
OS << " assert(!is" << getUpperName() << "Dependent());\n";
OS << " if (is" << getLowerName() << "Expr)\n";
OS << " return (" << getLowerName() << "Expr ? " << getLowerName()
<< "Expr->EvaluateKnownConstInt(Ctx).getZExtValue() : 16)"
<< "* Ctx.getCharWidth();\n";
OS << " else\n";
OS << " return 0; // FIXME\n";
OS << "}\n";
}
void writeCloneArgs(raw_ostream &OS) const override {
OS << "is" << getLowerName() << "Expr, is" << getLowerName()
<< "Expr ? static_cast<void*>(" << getLowerName()
<< "Expr) : " << getLowerName()
<< "Type";
}
void writeTemplateInstantiationArgs(raw_ostream &OS) const override {
// FIXME: move the definition in Sema::InstantiateAttrs to here.
// In the meantime, aligned attributes are cloned.
}
void writeCtorBody(raw_ostream &OS) const override {
OS << " if (is" << getLowerName() << "Expr)\n";
OS << " " << getLowerName() << "Expr = reinterpret_cast<Expr *>("
<< getUpperName() << ");\n";
OS << " else\n";
OS << " " << getLowerName()
<< "Type = reinterpret_cast<TypeSourceInfo *>(" << getUpperName()
<< ");";
}
void writeCtorInitializers(raw_ostream &OS) const override {
OS << "is" << getLowerName() << "Expr(Is" << getUpperName() << "Expr)";
}
void writeCtorDefaultInitializers(raw_ostream &OS) const override {
OS << "is" << getLowerName() << "Expr(false)";
}
void writeCtorParameters(raw_ostream &OS) const override {
OS << "bool Is" << getUpperName() << "Expr, void *" << getUpperName();
}
void writeImplicitCtorArgs(raw_ostream &OS) const override {
OS << "Is" << getUpperName() << "Expr, " << getUpperName();
}
void writeDeclarations(raw_ostream &OS) const override {
OS << "bool is" << getLowerName() << "Expr;\n";
OS << "union {\n";
OS << "Expr *" << getLowerName() << "Expr;\n";
OS << "TypeSourceInfo *" << getLowerName() << "Type;\n";
OS << "};";
}
void writePCHReadArgs(raw_ostream &OS) const override {
OS << "is" << getLowerName() << "Expr, " << getLowerName() << "Ptr";
}
void writePCHReadDecls(raw_ostream &OS) const override {
OS << " bool is" << getLowerName() << "Expr = Record[Idx++];\n";
OS << " void *" << getLowerName() << "Ptr;\n";
OS << " if (is" << getLowerName() << "Expr)\n";
OS << " " << getLowerName() << "Ptr = ReadExpr(F);\n";
OS << " else\n";
OS << " " << getLowerName()
<< "Ptr = GetTypeSourceInfo(F, Record, Idx);\n";
}
void writePCHWrite(raw_ostream &OS) const override {
OS << " Record.push_back(SA->is" << getUpperName() << "Expr());\n";
OS << " if (SA->is" << getUpperName() << "Expr())\n";
OS << " AddStmt(SA->get" << getUpperName() << "Expr());\n";
OS << " else\n";
OS << " AddTypeSourceInfo(SA->get" << getUpperName()
<< "Type(), Record);\n";
}
void writeValue(raw_ostream &OS) const override {
OS << "\";\n";
// The aligned attribute argument expression is optional.
OS << " if (is" << getLowerName() << "Expr && "
<< getLowerName() << "Expr)\n";
OS << " " << getLowerName() << "Expr->printPretty(OS, 0, Policy);\n";
OS << " OS << \"";
}
void writeDump(raw_ostream &OS) const override {
}
void writeDumpChildren(raw_ostream &OS) const override {
OS << " if (SA->is" << getUpperName() << "Expr()) {\n";
OS << " lastChild();\n";
OS << " dumpStmt(SA->get" << getUpperName() << "Expr());\n";
OS << " } else\n";
OS << " dumpType(SA->get" << getUpperName()
<< "Type()->getType());\n";
}
void writeHasChildren(raw_ostream &OS) const override {
OS << "SA->is" << getUpperName() << "Expr()";
}
};
class VariadicArgument : public Argument {
std::string Type, ArgName, ArgSizeName, RangeName;
protected:
// Assumed to receive a parameter: raw_ostream OS.
virtual void writeValueImpl(raw_ostream &OS) const {
OS << " OS << Val;\n";
}
public:
VariadicArgument(const Record &Arg, StringRef Attr, std::string T)
: Argument(Arg, Attr), Type(T), ArgName(getLowerName().str() + "_"),
ArgSizeName(ArgName + "Size"), RangeName(getLowerName()) {}
std::string getType() const { return Type; }
bool isVariadic() const override { return true; }
void writeAccessors(raw_ostream &OS) const override {
std::string IteratorType = getLowerName().str() + "_iterator";
std::string BeginFn = getLowerName().str() + "_begin()";
std::string EndFn = getLowerName().str() + "_end()";
OS << " typedef " << Type << "* " << IteratorType << ";\n";
OS << " " << IteratorType << " " << BeginFn << " const {"
<< " return " << ArgName << "; }\n";
OS << " " << IteratorType << " " << EndFn << " const {"
<< " return " << ArgName << " + " << ArgSizeName << "; }\n";
OS << " unsigned " << getLowerName() << "_size() const {"
<< " return " << ArgSizeName << "; }\n";
OS << " llvm::iterator_range<" << IteratorType << "> " << RangeName
<< "() const { return llvm::make_range(" << BeginFn << ", " << EndFn
<< "); }\n";
}
void writeCloneArgs(raw_ostream &OS) const override {
OS << ArgName << ", " << ArgSizeName;
}
void writeTemplateInstantiationArgs(raw_ostream &OS) const override {
// This isn't elegant, but we have to go through public methods...
OS << "A->" << getLowerName() << "_begin(), "
<< "A->" << getLowerName() << "_size()";
}
void writeCtorBody(raw_ostream &OS) const override {
OS << " std::copy(" << getUpperName() << ", " << getUpperName()
<< " + " << ArgSizeName << ", " << ArgName << ");";
}
void writeCtorInitializers(raw_ostream &OS) const override {
OS << ArgSizeName << "(" << getUpperName() << "Size), "
<< ArgName << "(new (Ctx, 16) " << getType() << "["
<< ArgSizeName << "])";
}
void writeCtorDefaultInitializers(raw_ostream &OS) const override {
OS << ArgSizeName << "(0), " << ArgName << "(nullptr)";
}
void writeCtorParameters(raw_ostream &OS) const override {
OS << getType() << " *" << getUpperName() << ", unsigned "
<< getUpperName() << "Size";
}
void writeImplicitCtorArgs(raw_ostream &OS) const override {
OS << getUpperName() << ", " << getUpperName() << "Size";
}
void writeDeclarations(raw_ostream &OS) const override {
OS << " unsigned " << ArgSizeName << ";\n";
OS << " " << getType() << " *" << ArgName << ";";
}
void writePCHReadDecls(raw_ostream &OS) const override {
OS << " unsigned " << getLowerName() << "Size = Record[Idx++];\n";
OS << " SmallVector<" << Type << ", 4> " << getLowerName()
<< ";\n";
OS << " " << getLowerName() << ".reserve(" << getLowerName()
<< "Size);\n";
OS << " for (unsigned i = " << getLowerName() << "Size; i; --i)\n";
std::string read = ReadPCHRecord(Type);
OS << " " << getLowerName() << ".push_back(" << read << ");\n";
}
void writePCHReadArgs(raw_ostream &OS) const override {
OS << getLowerName() << ".data(), " << getLowerName() << "Size";
}
void writePCHWrite(raw_ostream &OS) const override {
OS << " Record.push_back(SA->" << getLowerName() << "_size());\n";
OS << " for (auto &Val : SA->" << RangeName << "())\n";
OS << " " << WritePCHRecord(Type, "Val");
}
void writeValue(raw_ostream &OS) const override {
OS << "\";\n";
OS << " bool isFirst = true;\n"
<< " for (const auto &Val : " << RangeName << "()) {\n"
<< " if (isFirst) isFirst = false;\n"
<< " else OS << \", \";\n";
writeValueImpl(OS);
OS << " }\n";
OS << " OS << \"";
}
void writeDump(raw_ostream &OS) const override {
OS << " for (const auto &Val : SA->" << RangeName << "())\n";
OS << " OS << \" \" << Val;\n";
}
};
// Unique the enums, but maintain the original declaration ordering.
std::vector<std::string>
uniqueEnumsInOrder(const std::vector<std::string> &enums) {
std::vector<std::string> uniques;
std::set<std::string> unique_set(enums.begin(), enums.end());
for (const auto &i : enums) {
std::set<std::string>::iterator set_i = unique_set.find(i);
if (set_i != unique_set.end()) {
uniques.push_back(i);
unique_set.erase(set_i);
}
}
return uniques;
}
class EnumArgument : public Argument {
std::string type;
std::vector<std::string> values, enums, uniques;
public:
EnumArgument(const Record &Arg, StringRef Attr)
: Argument(Arg, Attr), type(Arg.getValueAsString("Type")),
values(Arg.getValueAsListOfStrings("Values")),
enums(Arg.getValueAsListOfStrings("Enums")),
uniques(uniqueEnumsInOrder(enums))
{
// FIXME: Emit a proper error
assert(!uniques.empty());
}
bool isEnumArg() const override { return true; }
void writeAccessors(raw_ostream &OS) const override {
OS << " " << type << " get" << getUpperName() << "() const {\n";
OS << " return " << getLowerName() << ";\n";
OS << " }";
}
void writeCloneArgs(raw_ostream &OS) const override {
OS << getLowerName();
}
void writeTemplateInstantiationArgs(raw_ostream &OS) const override {
OS << "A->get" << getUpperName() << "()";
}
void writeCtorInitializers(raw_ostream &OS) const override {
OS << getLowerName() << "(" << getUpperName() << ")";
}
void writeCtorDefaultInitializers(raw_ostream &OS) const override {
OS << getLowerName() << "(" << type << "(0))";
}
void writeCtorParameters(raw_ostream &OS) const override {
OS << type << " " << getUpperName();
}
void writeDeclarations(raw_ostream &OS) const override {
std::vector<std::string>::const_iterator i = uniques.begin(),
e = uniques.end();
// The last one needs to not have a comma.
--e;
OS << "public:\n";
OS << " enum " << type << " {\n";
for (; i != e; ++i)
OS << " " << *i << ",\n";
OS << " " << *e << "\n";
OS << " };\n";
OS << "private:\n";
OS << " " << type << " " << getLowerName() << ";";
}
void writePCHReadDecls(raw_ostream &OS) const override {
OS << " " << getAttrName() << "Attr::" << type << " " << getLowerName()
<< "(static_cast<" << getAttrName() << "Attr::" << type
<< ">(Record[Idx++]));\n";
}
void writePCHReadArgs(raw_ostream &OS) const override {
OS << getLowerName();
}
void writePCHWrite(raw_ostream &OS) const override {
OS << "Record.push_back(SA->get" << getUpperName() << "());\n";
}
void writeValue(raw_ostream &OS) const override {
// FIXME: this isn't 100% correct -- some enum arguments require printing
// as a string literal, while others require printing as an identifier.
// Tablegen currently does not distinguish between the two forms.
OS << "\\\"\" << " << getAttrName() << "Attr::Convert" << type << "ToStr(get"
<< getUpperName() << "()) << \"\\\"";
}
void writeDump(raw_ostream &OS) const override {
OS << " switch(SA->get" << getUpperName() << "()) {\n";
for (const auto &I : uniques) {
OS << " case " << getAttrName() << "Attr::" << I << ":\n";
OS << " OS << \" " << I << "\";\n";
OS << " break;\n";
}
OS << " }\n";
}
void writeConversion(raw_ostream &OS) const {
OS << " static bool ConvertStrTo" << type << "(StringRef Val, ";
OS << type << " &Out) {\n";
OS << " Optional<" << type << "> R = llvm::StringSwitch<Optional<";
OS << type << ">>(Val)\n";
for (size_t I = 0; I < enums.size(); ++I) {
OS << " .Case(\"" << values[I] << "\", ";
OS << getAttrName() << "Attr::" << enums[I] << ")\n";
}
OS << " .Default(Optional<" << type << ">());\n";
OS << " if (R) {\n";
OS << " Out = *R;\n return true;\n }\n";
OS << " return false;\n";
OS << " }\n\n";
// Mapping from enumeration values back to enumeration strings isn't
// trivial because some enumeration values have multiple named
// enumerators, such as type_visibility(internal) and
// type_visibility(hidden) both mapping to TypeVisibilityAttr::Hidden.
OS << " static const char *Convert" << type << "ToStr("
<< type << " Val) {\n"
<< " switch(Val) {\n";
std::set<std::string> Uniques;
for (size_t I = 0; I < enums.size(); ++I) {
if (Uniques.insert(enums[I]).second)
OS << " case " << getAttrName() << "Attr::" << enums[I]
<< ": return \"" << values[I] << "\";\n";
}
OS << " }\n"
<< " llvm_unreachable(\"No enumerator with that value\");\n"
<< " }\n";
}
};
class VariadicEnumArgument: public VariadicArgument {
std::string type, QualifiedTypeName;
std::vector<std::string> values, enums, uniques;
protected:
void writeValueImpl(raw_ostream &OS) const override {
// FIXME: this isn't 100% correct -- some enum arguments require printing
// as a string literal, while others require printing as an identifier.
// Tablegen currently does not distinguish between the two forms.
OS << " OS << \"\\\"\" << " << getAttrName() << "Attr::Convert" << type
<< "ToStr(Val)" << "<< \"\\\"\";\n";
}
public:
VariadicEnumArgument(const Record &Arg, StringRef Attr)
: VariadicArgument(Arg, Attr, Arg.getValueAsString("Type")),
type(Arg.getValueAsString("Type")),
values(Arg.getValueAsListOfStrings("Values")),
enums(Arg.getValueAsListOfStrings("Enums")),
uniques(uniqueEnumsInOrder(enums))
{
QualifiedTypeName = getAttrName().str() + "Attr::" + type;
// FIXME: Emit a proper error
assert(!uniques.empty());
}
bool isVariadicEnumArg() const override { return true; }
void writeDeclarations(raw_ostream &OS) const override {
std::vector<std::string>::const_iterator i = uniques.begin(),
e = uniques.end();
// The last one needs to not have a comma.
--e;
OS << "public:\n";
OS << " enum " << type << " {\n";
for (; i != e; ++i)
OS << " " << *i << ",\n";
OS << " " << *e << "\n";
OS << " };\n";
OS << "private:\n";
VariadicArgument::writeDeclarations(OS);
}
void writeDump(raw_ostream &OS) const override {
OS << " for (" << getAttrName() << "Attr::" << getLowerName()
<< "_iterator I = SA->" << getLowerName() << "_begin(), E = SA->"
<< getLowerName() << "_end(); I != E; ++I) {\n";
OS << " switch(*I) {\n";
for (const auto &UI : uniques) {
OS << " case " << getAttrName() << "Attr::" << UI << ":\n";
OS << " OS << \" " << UI << "\";\n";
OS << " break;\n";
}
OS << " }\n";
OS << " }\n";
}
void writePCHReadDecls(raw_ostream &OS) const override {
OS << " unsigned " << getLowerName() << "Size = Record[Idx++];\n";
OS << " SmallVector<" << QualifiedTypeName << ", 4> " << getLowerName()
<< ";\n";
OS << " " << getLowerName() << ".reserve(" << getLowerName()
<< "Size);\n";
OS << " for (unsigned i = " << getLowerName() << "Size; i; --i)\n";
OS << " " << getLowerName() << ".push_back(" << "static_cast<"
<< QualifiedTypeName << ">(Record[Idx++]));\n";
}
void writePCHWrite(raw_ostream &OS) const override {
OS << " Record.push_back(SA->" << getLowerName() << "_size());\n";
OS << " for (" << getAttrName() << "Attr::" << getLowerName()
<< "_iterator i = SA->" << getLowerName() << "_begin(), e = SA->"
<< getLowerName() << "_end(); i != e; ++i)\n";
OS << " " << WritePCHRecord(QualifiedTypeName, "(*i)");
}
void writeConversion(raw_ostream &OS) const {
OS << " static bool ConvertStrTo" << type << "(StringRef Val, ";
OS << type << " &Out) {\n";
OS << " Optional<" << type << "> R = llvm::StringSwitch<Optional<";
OS << type << ">>(Val)\n";
for (size_t I = 0; I < enums.size(); ++I) {
OS << " .Case(\"" << values[I] << "\", ";
OS << getAttrName() << "Attr::" << enums[I] << ")\n";
}
OS << " .Default(Optional<" << type << ">());\n";
OS << " if (R) {\n";
OS << " Out = *R;\n return true;\n }\n";
OS << " return false;\n";
OS << " }\n\n";
OS << " static const char *Convert" << type << "ToStr("
<< type << " Val) {\n"
<< " switch(Val) {\n";
std::set<std::string> Uniques;
for (size_t I = 0; I < enums.size(); ++I) {
if (Uniques.insert(enums[I]).second)
OS << " case " << getAttrName() << "Attr::" << enums[I]
<< ": return \"" << values[I] << "\";\n";
}
OS << " }\n"
<< " llvm_unreachable(\"No enumerator with that value\");\n"
<< " }\n";
}
};
class VersionArgument : public Argument {
public:
VersionArgument(const Record &Arg, StringRef Attr)
: Argument(Arg, Attr)
{}
void writeAccessors(raw_ostream &OS) const override {
OS << " VersionTuple get" << getUpperName() << "() const {\n";
OS << " return " << getLowerName() << ";\n";
OS << " }\n";
OS << " void set" << getUpperName()
<< "(ASTContext &C, VersionTuple V) {\n";
OS << " " << getLowerName() << " = V;\n";
OS << " }";
}
void writeCloneArgs(raw_ostream &OS) const override {
OS << "get" << getUpperName() << "()";
}
void writeTemplateInstantiationArgs(raw_ostream &OS) const override {
OS << "A->get" << getUpperName() << "()";
}
void writeCtorInitializers(raw_ostream &OS) const override {
OS << getLowerName() << "(" << getUpperName() << ")";
}
void writeCtorDefaultInitializers(raw_ostream &OS) const override {
OS << getLowerName() << "()";
}
void writeCtorParameters(raw_ostream &OS) const override {
OS << "VersionTuple " << getUpperName();
}
void writeDeclarations(raw_ostream &OS) const override {
OS << "VersionTuple " << getLowerName() << ";\n";
}
void writePCHReadDecls(raw_ostream &OS) const override {
OS << " VersionTuple " << getLowerName()
<< "= ReadVersionTuple(Record, Idx);\n";
}
void writePCHReadArgs(raw_ostream &OS) const override {
OS << getLowerName();
}
void writePCHWrite(raw_ostream &OS) const override {
OS << " AddVersionTuple(SA->get" << getUpperName() << "(), Record);\n";
}
void writeValue(raw_ostream &OS) const override {
OS << getLowerName() << "=\" << get" << getUpperName() << "() << \"";
}
void writeDump(raw_ostream &OS) const override {
OS << " OS << \" \" << SA->get" << getUpperName() << "();\n";
}
};
class ExprArgument : public SimpleArgument {
public:
ExprArgument(const Record &Arg, StringRef Attr)
: SimpleArgument(Arg, Attr, "Expr *")
{}
void writeASTVisitorTraversal(raw_ostream &OS) const override {
OS << " if (!"
<< "getDerived().TraverseStmt(A->get" << getUpperName() << "()))\n";
OS << " return false;\n";
}
void writeTemplateInstantiationArgs(raw_ostream &OS) const override {
OS << "tempInst" << getUpperName();
}
void writeTemplateInstantiation(raw_ostream &OS) const override {
OS << " " << getType() << " tempInst" << getUpperName() << ";\n";
OS << " {\n";
OS << " EnterExpressionEvaluationContext "
<< "Unevaluated(S, Sema::Unevaluated);\n";
OS << " ExprResult " << "Result = S.SubstExpr("
<< "A->get" << getUpperName() << "(), TemplateArgs);\n";
OS << " tempInst" << getUpperName() << " = "
<< "Result.getAs<Expr>();\n";
OS << " }\n";
}
void writeDump(raw_ostream &OS) const override {}
void writeDumpChildren(raw_ostream &OS) const override {
OS << " lastChild();\n";
OS << " dumpStmt(SA->get" << getUpperName() << "());\n";
}
void writeHasChildren(raw_ostream &OS) const override { OS << "true"; }
};
class VariadicExprArgument : public VariadicArgument {
public:
VariadicExprArgument(const Record &Arg, StringRef Attr)
: VariadicArgument(Arg, Attr, "Expr *")
{}
void writeASTVisitorTraversal(raw_ostream &OS) const override {
OS << " {\n";
OS << " " << getType() << " *I = A->" << getLowerName()
<< "_begin();\n";
OS << " " << getType() << " *E = A->" << getLowerName()
<< "_end();\n";
OS << " for (; I != E; ++I) {\n";
OS << " if (!getDerived().TraverseStmt(*I))\n";
OS << " return false;\n";
OS << " }\n";
OS << " }\n";
}
void writeTemplateInstantiationArgs(raw_ostream &OS) const override {
OS << "tempInst" << getUpperName() << ", "
<< "A->" << getLowerName() << "_size()";
}
void writeTemplateInstantiation(raw_ostream &OS) const override {
OS << " " << getType() << " *tempInst" << getUpperName()
<< " = new (C, 16) " << getType()
<< "[A->" << getLowerName() << "_size()];\n";
OS << " {\n";
OS << " EnterExpressionEvaluationContext "
<< "Unevaluated(S, Sema::Unevaluated);\n";
OS << " " << getType() << " *TI = tempInst" << getUpperName()
<< ";\n";
OS << " " << getType() << " *I = A->" << getLowerName()
<< "_begin();\n";
OS << " " << getType() << " *E = A->" << getLowerName()
<< "_end();\n";
OS << " for (; I != E; ++I, ++TI) {\n";
OS << " ExprResult Result = S.SubstExpr(*I, TemplateArgs);\n";
OS << " *TI = Result.getAs<Expr>();\n";
OS << " }\n";
OS << " }\n";
}
void writeDump(raw_ostream &OS) const override {}
void writeDumpChildren(raw_ostream &OS) const override {
OS << " for (" << getAttrName() << "Attr::" << getLowerName()
<< "_iterator I = SA->" << getLowerName() << "_begin(), E = SA->"
<< getLowerName() << "_end(); I != E; ++I) {\n";
OS << " if (I + 1 == E)\n";
OS << " lastChild();\n";
OS << " dumpStmt(*I);\n";
OS << " }\n";
}
void writeHasChildren(raw_ostream &OS) const override {
OS << "SA->" << getLowerName() << "_begin() != "
<< "SA->" << getLowerName() << "_end()";
}
};
class TypeArgument : public SimpleArgument {
public:
TypeArgument(const Record &Arg, StringRef Attr)
: SimpleArgument(Arg, Attr, "TypeSourceInfo *")
{}
void writeAccessors(raw_ostream &OS) const override {
OS << " QualType get" << getUpperName() << "() const {\n";
OS << " return " << getLowerName() << "->getType();\n";
OS << " }";
OS << " " << getType() << " get" << getUpperName() << "Loc() const {\n";
OS << " return " << getLowerName() << ";\n";
OS << " }";
}
void writeTemplateInstantiationArgs(raw_ostream &OS) const override {
OS << "A->get" << getUpperName() << "Loc()";
}
void writePCHWrite(raw_ostream &OS) const override {
OS << " " << WritePCHRecord(
getType(), "SA->get" + std::string(getUpperName()) + "Loc()");
}
};
}
static std::unique_ptr<Argument>
createArgument(const Record &Arg, StringRef Attr,
const Record *Search = nullptr) {
if (!Search)
Search = &Arg;
std::unique_ptr<Argument> Ptr;
llvm::StringRef ArgName = Search->getName();
if (ArgName == "AlignedArgument")
Ptr = llvm::make_unique<AlignedArgument>(Arg, Attr);
else if (ArgName == "EnumArgument")
Ptr = llvm::make_unique<EnumArgument>(Arg, Attr);
else if (ArgName == "ExprArgument")
Ptr = llvm::make_unique<ExprArgument>(Arg, Attr);
else if (ArgName == "FunctionArgument")
Ptr = llvm::make_unique<SimpleArgument>(Arg, Attr, "FunctionDecl *");
else if (ArgName == "IdentifierArgument")
Ptr = llvm::make_unique<SimpleArgument>(Arg, Attr, "IdentifierInfo *");
else if (ArgName == "DefaultBoolArgument")
Ptr = llvm::make_unique<DefaultSimpleArgument>(
Arg, Attr, "bool", Arg.getValueAsBit("Default"));
else if (ArgName == "BoolArgument")
Ptr = llvm::make_unique<SimpleArgument>(Arg, Attr, "bool");
else if (ArgName == "DefaultIntArgument")
Ptr = llvm::make_unique<DefaultSimpleArgument>(
Arg, Attr, "int", Arg.getValueAsInt("Default"));
else if (ArgName == "IntArgument")
Ptr = llvm::make_unique<SimpleArgument>(Arg, Attr, "int");
else if (ArgName == "StringArgument")
Ptr = llvm::make_unique<StringArgument>(Arg, Attr);
else if (ArgName == "TypeArgument")
Ptr = llvm::make_unique<TypeArgument>(Arg, Attr);
else if (ArgName == "UnsignedArgument")
Ptr = llvm::make_unique<SimpleArgument>(Arg, Attr, "unsigned");
else if (ArgName == "VariadicUnsignedArgument")
Ptr = llvm::make_unique<VariadicArgument>(Arg, Attr, "unsigned");
else if (ArgName == "VariadicEnumArgument")
Ptr = llvm::make_unique<VariadicEnumArgument>(Arg, Attr);
else if (ArgName == "VariadicExprArgument")
Ptr = llvm::make_unique<VariadicExprArgument>(Arg, Attr);
else if (ArgName == "VersionArgument")
Ptr = llvm::make_unique<VersionArgument>(Arg, Attr);
if (!Ptr) {
// Search in reverse order so that the most-derived type is handled first.
std::vector<Record*> Bases = Search->getSuperClasses();
for (const auto *Base : llvm::make_range(Bases.rbegin(), Bases.rend())) {
if ((Ptr = createArgument(Arg, Attr, Base)))
break;
}
}
if (Ptr && Arg.getValueAsBit("Optional"))
Ptr->setOptional(true);
return Ptr;
}
static void writeAvailabilityValue(raw_ostream &OS) {
OS << "\" << getPlatform()->getName();\n"
<< " if (!getIntroduced().empty()) OS << \", introduced=\" << getIntroduced();\n"
<< " if (!getDeprecated().empty()) OS << \", deprecated=\" << getDeprecated();\n"
<< " if (!getObsoleted().empty()) OS << \", obsoleted=\" << getObsoleted();\n"
<< " if (getUnavailable()) OS << \", unavailable\";\n"
<< " OS << \"";
}
static void writeGetSpellingFunction(Record &R, raw_ostream &OS) {
std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(R);
OS << "const char *" << R.getName() << "Attr::getSpelling() const {\n";
if (Spellings.empty()) {
OS << " return \"(No spelling)\";\n}\n\n";
return;
}
OS << " switch (SpellingListIndex) {\n"
" default:\n"
" llvm_unreachable(\"Unknown attribute spelling!\");\n"
" return \"(No spelling)\";\n";
for (unsigned I = 0; I < Spellings.size(); ++I)
OS << " case " << I << ":\n"
" return \"" << Spellings[I].name() << "\";\n";
// End of the switch statement.
OS << " }\n";
// End of the getSpelling function.
OS << "}\n\n";
}
static void
writePrettyPrintFunction(Record &R,
const std::vector<std::unique_ptr<Argument>> &Args,
raw_ostream &OS) {
std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(R);
OS << "void " << R.getName() << "Attr::printPretty("
<< "raw_ostream &OS, const PrintingPolicy &Policy) const {\n";
if (Spellings.empty()) {
OS << "}\n\n";
return;
}
OS <<
" switch (SpellingListIndex) {\n"
" default:\n"
" llvm_unreachable(\"Unknown attribute spelling!\");\n"
" break;\n";
for (unsigned I = 0; I < Spellings.size(); ++ I) {
llvm::SmallString<16> Prefix;
llvm::SmallString<8> Suffix;
// The actual spelling of the name and namespace (if applicable)
// of an attribute without considering prefix and suffix.
llvm::SmallString<64> Spelling;
std::string Name = Spellings[I].name();
std::string Variety = Spellings[I].variety();
if (Variety == "GNU") {
Prefix = " __attribute__((";
Suffix = "))";
} else if (Variety == "CXX11") {
Prefix = " [[";
Suffix = "]]";
std::string Namespace = Spellings[I].nameSpace();
if (!Namespace.empty()) {
Spelling += Namespace;
Spelling += "::";
}
} else if (Variety == "Declspec") {
Prefix = " __declspec(";
Suffix = ")";
} else if (Variety == "Keyword") {
Prefix = " ";
Suffix = "";
} else if (Variety == "Pragma") {
Prefix = "#pragma ";
Suffix = "\n";
std::string Namespace = Spellings[I].nameSpace();
if (!Namespace.empty()) {
Spelling += Namespace;
Spelling += " ";
}
} else {
llvm_unreachable("Unknown attribute syntax variety!");
}
Spelling += Name;
OS <<
" case " << I << " : {\n"
" OS << \"" + Prefix.str() + Spelling.str();
if (Variety == "Pragma") {
OS << " \";\n";
OS << " printPrettyPragma(OS, Policy);\n";
OS << " break;\n";
OS << " }\n";
continue;
}
// FIXME: always printing the parenthesis isn't the correct behavior for
// attributes which have optional arguments that were not provided. For
// instance: __attribute__((aligned)) will be pretty printed as
// __attribute__((aligned())). The logic should check whether there is only
// a single argument, and if it is optional, whether it has been provided.
if (!Args.empty())
OS << "(";
if (Spelling == "availability") {
writeAvailabilityValue(OS);
} else {
for (auto I = Args.begin(), E = Args.end(); I != E; ++ I) {
if (I != Args.begin()) OS << ", ";
(*I)->writeValue(OS);
}
}
if (!Args.empty())
OS << ")";
OS << Suffix.str() + "\";\n";
OS <<
" break;\n"
" }\n";
}
// End of the switch statement.
OS << "}\n";
// End of the print function.
OS << "}\n\n";
}
/// \brief Return the index of a spelling in a spelling list.
static unsigned
getSpellingListIndex(const std::vector<FlattenedSpelling> &SpellingList,
const FlattenedSpelling &Spelling) {
assert(SpellingList.size() && "Spelling list is empty!");
for (unsigned Index = 0; Index < SpellingList.size(); ++Index) {
const FlattenedSpelling &S = SpellingList[Index];
if (S.variety() != Spelling.variety())
continue;
if (S.nameSpace() != Spelling.nameSpace())
continue;
if (S.name() != Spelling.name())
continue;
return Index;
}
llvm_unreachable("Unknown spelling!");
}
static void writeAttrAccessorDefinition(const Record &R, raw_ostream &OS) {
std::vector<Record*> Accessors = R.getValueAsListOfDefs("Accessors");
for (const auto *Accessor : Accessors) {
std::string Name = Accessor->getValueAsString("Name");
std::vector<FlattenedSpelling> Spellings =
GetFlattenedSpellings(*Accessor);
std::vector<FlattenedSpelling> SpellingList = GetFlattenedSpellings(R);
assert(SpellingList.size() &&
"Attribute with empty spelling list can't have accessors!");
OS << " bool " << Name << "() const { return SpellingListIndex == ";
for (unsigned Index = 0; Index < Spellings.size(); ++Index) {
OS << getSpellingListIndex(SpellingList, Spellings[Index]);
if (Index != Spellings.size() -1)
OS << " ||\n SpellingListIndex == ";
else
OS << "; }\n";
}
}
}
static bool
SpellingNamesAreCommon(const std::vector<FlattenedSpelling>& Spellings) {
assert(!Spellings.empty() && "An empty list of spellings was provided");
std::string FirstName = NormalizeNameForSpellingComparison(
Spellings.front().name());
for (const auto &Spelling :
llvm::make_range(std::next(Spellings.begin()), Spellings.end())) {
std::string Name = NormalizeNameForSpellingComparison(Spelling.name());
if (Name != FirstName)
return false;
}
return true;
}
typedef std::map<unsigned, std::string> SemanticSpellingMap;
static std::string
CreateSemanticSpellings(const std::vector<FlattenedSpelling> &Spellings,
SemanticSpellingMap &Map) {
// The enumerants are automatically generated based on the variety,
// namespace (if present) and name for each attribute spelling. However,
// care is taken to avoid trampling on the reserved namespace due to
// underscores.
std::string Ret(" enum Spelling {\n");
std::set<std::string> Uniques;
unsigned Idx = 0;
for (auto I = Spellings.begin(), E = Spellings.end(); I != E; ++I, ++Idx) {
const FlattenedSpelling &S = *I;
std::string Variety = S.variety();
std::string Spelling = S.name();
std::string Namespace = S.nameSpace();
std::string EnumName = "";
EnumName += (Variety + "_");
if (!Namespace.empty())
EnumName += (NormalizeNameForSpellingComparison(Namespace).str() +
"_");
EnumName += NormalizeNameForSpellingComparison(Spelling);
// Even if the name is not unique, this spelling index corresponds to a
// particular enumerant name that we've calculated.
Map[Idx] = EnumName;
// Since we have been stripping underscores to avoid trampling on the
// reserved namespace, we may have inadvertently created duplicate
// enumerant names. These duplicates are not considered part of the
// semantic spelling, and can be elided.
if (Uniques.find(EnumName) != Uniques.end())
continue;
Uniques.insert(EnumName);
if (I != Spellings.begin())
Ret += ",\n";
Ret += " " + EnumName;
}
Ret += "\n };\n\n";
return Ret;
}
void WriteSemanticSpellingSwitch(const std::string &VarName,
const SemanticSpellingMap &Map,
raw_ostream &OS) {
OS << " switch (" << VarName << ") {\n default: "
<< "llvm_unreachable(\"Unknown spelling list index\");\n";
for (const auto &I : Map)
OS << " case " << I.first << ": return " << I.second << ";\n";
OS << " }\n";
}
// Emits the LateParsed property for attributes.
static void emitClangAttrLateParsedList(RecordKeeper &Records, raw_ostream &OS) {
OS << "#if defined(CLANG_ATTR_LATE_PARSED_LIST)\n";
std::vector<Record*> Attrs = Records.getAllDerivedDefinitions("Attr");
for (const auto *Attr : Attrs) {
bool LateParsed = Attr->getValueAsBit("LateParsed");
if (LateParsed) {
std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(*Attr);
// FIXME: Handle non-GNU attributes
for (const auto &I : Spellings) {
if (I.variety() != "GNU")
continue;
OS << ".Case(\"" << I.name() << "\", " << LateParsed << ")\n";
}
}
}
OS << "#endif // CLANG_ATTR_LATE_PARSED_LIST\n\n";
}
/// \brief Emits the first-argument-is-type property for attributes.
static void emitClangAttrTypeArgList(RecordKeeper &Records, raw_ostream &OS) {
OS << "#if defined(CLANG_ATTR_TYPE_ARG_LIST)\n";
std::vector<Record *> Attrs = Records.getAllDerivedDefinitions("Attr");
for (const auto *Attr : Attrs) {
// Determine whether the first argument is a type.
std::vector<Record *> Args = Attr->getValueAsListOfDefs("Args");
if (Args.empty())
continue;
if (Args[0]->getSuperClasses().back()->getName() != "TypeArgument")
continue;
// All these spellings take a single type argument.
std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(*Attr);
std::set<std::string> Emitted;
for (const auto &S : Spellings) {
if (Emitted.insert(S.name()).second)
OS << ".Case(\"" << S.name() << "\", " << "true" << ")\n";
}
}
OS << "#endif // CLANG_ATTR_TYPE_ARG_LIST\n\n";
}
/// \brief Emits the parse-arguments-in-unevaluated-context property for
/// attributes.
static void emitClangAttrArgContextList(RecordKeeper &Records, raw_ostream &OS) {
OS << "#if defined(CLANG_ATTR_ARG_CONTEXT_LIST)\n";
ParsedAttrMap Attrs = getParsedAttrList(Records);
for (const auto &I : Attrs) {
const Record &Attr = *I.second;
if (!Attr.getValueAsBit("ParseArgumentsAsUnevaluated"))
continue;
// All these spellings take are parsed unevaluated.
std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(Attr);
std::set<std::string> Emitted;
for (const auto &S : Spellings) {
if (Emitted.insert(S.name()).second)
OS << ".Case(\"" << S.name() << "\", " << "true" << ")\n";
}
}
OS << "#endif // CLANG_ATTR_ARG_CONTEXT_LIST\n\n";
}
static bool isIdentifierArgument(Record *Arg) {
return !Arg->getSuperClasses().empty() &&
llvm::StringSwitch<bool>(Arg->getSuperClasses().back()->getName())
.Case("IdentifierArgument", true)
.Case("EnumArgument", true)
.Default(false);
}
// Emits the first-argument-is-identifier property for attributes.
static void emitClangAttrIdentifierArgList(RecordKeeper &Records, raw_ostream &OS) {
OS << "#if defined(CLANG_ATTR_IDENTIFIER_ARG_LIST)\n";
std::vector<Record*> Attrs = Records.getAllDerivedDefinitions("Attr");
for (const auto *Attr : Attrs) {
// Determine whether the first argument is an identifier.
std::vector<Record *> Args = Attr->getValueAsListOfDefs("Args");
if (Args.empty() || !isIdentifierArgument(Args[0]))
continue;
// All these spellings take an identifier argument.
std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(*Attr);
std::set<std::string> Emitted;
for (const auto &S : Spellings) {
if (Emitted.insert(S.name()).second)
OS << ".Case(\"" << S.name() << "\", " << "true" << ")\n";
}
}
OS << "#endif // CLANG_ATTR_IDENTIFIER_ARG_LIST\n\n";
}
namespace clang {
// Emits the class definitions for attributes.
void EmitClangAttrClass(RecordKeeper &Records, raw_ostream &OS) {
emitSourceFileHeader("Attribute classes' definitions", OS);
OS << "#ifndef LLVM_CLANG_ATTR_CLASSES_INC\n";
OS << "#define LLVM_CLANG_ATTR_CLASSES_INC\n\n";
std::vector<Record*> Attrs = Records.getAllDerivedDefinitions("Attr");
for (const auto *Attr : Attrs) {
const Record &R = *Attr;
// FIXME: Currently, documentation is generated as-needed due to the fact
// that there is no way to allow a generated project "reach into" the docs
// directory (for instance, it may be an out-of-tree build). However, we want
// to ensure that every attribute has a Documentation field, and produce an
// error if it has been neglected. Otherwise, the on-demand generation which
// happens server-side will fail. This code is ensuring that functionality,
// even though this Emitter doesn't technically need the documentation.
// When attribute documentation can be generated as part of the build
// itself, this code can be removed.
(void)R.getValueAsListOfDefs("Documentation");
if (!R.getValueAsBit("ASTNode"))
continue;
const std::vector<Record *> Supers = R.getSuperClasses();
assert(!Supers.empty() && "Forgot to specify a superclass for the attr");
std::string SuperName;
for (const auto *Super : llvm::make_range(Supers.rbegin(), Supers.rend())) {
const Record &R = *Super;
if (R.getName() != "TargetSpecificAttr" && SuperName.empty())
SuperName = R.getName();
}
OS << "class " << R.getName() << "Attr : public " << SuperName << " {\n";
std::vector<Record*> ArgRecords = R.getValueAsListOfDefs("Args");
std::vector<std::unique_ptr<Argument>> Args;
Args.reserve(ArgRecords.size());
for (const auto *ArgRecord : ArgRecords) {
Args.emplace_back(createArgument(*ArgRecord, R.getName()));
Args.back()->writeDeclarations(OS);
OS << "\n\n";
}
OS << "\npublic:\n";
std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(R);
// If there are zero or one spellings, all spelling-related functionality
// can be elided. If all of the spellings share the same name, the spelling
// functionality can also be elided.
bool ElideSpelling = (Spellings.size() <= 1) ||
SpellingNamesAreCommon(Spellings);
// This maps spelling index values to semantic Spelling enumerants.
SemanticSpellingMap SemanticToSyntacticMap;
if (!ElideSpelling)
OS << CreateSemanticSpellings(Spellings, SemanticToSyntacticMap);
OS << " static " << R.getName() << "Attr *CreateImplicit(";
OS << "ASTContext &Ctx";
if (!ElideSpelling)
OS << ", Spelling S";
for (auto const &ai : Args) {
OS << ", ";
ai->writeCtorParameters(OS);
}
OS << ", SourceRange Loc = SourceRange()";
OS << ") {\n";
OS << " " << R.getName() << "Attr *A = new (Ctx) " << R.getName();
OS << "Attr(Loc, Ctx, ";
for (auto const &ai : Args) {
ai->writeImplicitCtorArgs(OS);
OS << ", ";
}
OS << (ElideSpelling ? "0" : "S") << ");\n";
OS << " A->setImplicit(true);\n";
OS << " return A;\n }\n\n";
OS << " " << R.getName() << "Attr(SourceRange R, ASTContext &Ctx\n";
bool HasOpt = false;
for (auto const &ai : Args) {
OS << " , ";
ai->writeCtorParameters(OS);
OS << "\n";
if (ai->isOptional())
HasOpt = true;
}
OS << " , ";
OS << "unsigned SI\n";
OS << " )\n";
OS << " : " << SuperName << "(attr::" << R.getName() << ", R, SI)\n";
for (auto const &ai : Args) {
OS << " , ";
ai->writeCtorInitializers(OS);
OS << "\n";
}
OS << " {\n";
for (auto const &ai : Args) {
ai->writeCtorBody(OS);
OS << "\n";
}
OS << " }\n\n";
// If there are optional arguments, write out a constructor that elides the
// optional arguments as well.
if (HasOpt) {
OS << " " << R.getName() << "Attr(SourceRange R, ASTContext &Ctx\n";
for (auto const &ai : Args) {
if (!ai->isOptional()) {
OS << " , ";
ai->writeCtorParameters(OS);
OS << "\n";
}
}
OS << " , ";
OS << "unsigned SI\n";
OS << " )\n";
OS << " : " << SuperName << "(attr::" << R.getName() << ", R, SI)\n";
for (auto const &ai : Args) {
OS << " , ";
ai->writeCtorDefaultInitializers(OS);
OS << "\n";
}
OS << " {\n";
for (auto const &ai : Args) {
if (!ai->isOptional()) {
ai->writeCtorBody(OS);
OS << "\n";
}
}
OS << " }\n\n";
}
OS << " " << R.getName() << "Attr *clone(ASTContext &C) const override;\n";
OS << " void printPretty(raw_ostream &OS,\n"
<< " const PrintingPolicy &Policy) const override;\n";
OS << " const char *getSpelling() const override;\n";
if (!ElideSpelling) {
assert(!SemanticToSyntacticMap.empty() && "Empty semantic mapping list");
OS << " Spelling getSemanticSpelling() const {\n";
WriteSemanticSpellingSwitch("SpellingListIndex", SemanticToSyntacticMap,
OS);
OS << " }\n";
}
writeAttrAccessorDefinition(R, OS);
for (auto const &ai : Args) {
ai->writeAccessors(OS);
OS << "\n\n";
if (ai->isEnumArg())
static_cast<const EnumArgument *>(ai.get())->writeConversion(OS);
else if (ai->isVariadicEnumArg())
static_cast<const VariadicEnumArgument *>(ai.get())
->writeConversion(OS);
}
OS << R.getValueAsString("AdditionalMembers");
OS << "\n\n";
OS << " static bool classof(const Attr *A) { return A->getKind() == "
<< "attr::" << R.getName() << "; }\n";
bool LateParsed = R.getValueAsBit("LateParsed");
OS << " bool isLateParsed() const override { return "
<< LateParsed << "; }\n";
if (R.getValueAsBit("DuplicatesAllowedWhileMerging"))
OS << " bool duplicatesAllowed() const override { return true; }\n\n";
OS << "};\n\n";
}
OS << "#endif\n";
}
// Emits the class method definitions for attributes.
void EmitClangAttrImpl(RecordKeeper &Records, raw_ostream &OS) {
emitSourceFileHeader("Attribute classes' member function definitions", OS);
std::vector<Record*> Attrs = Records.getAllDerivedDefinitions("Attr");
for (auto *Attr : Attrs) {
Record &R = *Attr;
if (!R.getValueAsBit("ASTNode"))
continue;
std::vector<Record*> ArgRecords = R.getValueAsListOfDefs("Args");
std::vector<std::unique_ptr<Argument>> Args;
for (const auto *Arg : ArgRecords)
Args.emplace_back(createArgument(*Arg, R.getName()));
for (auto const &ai : Args)
ai->writeAccessorDefinitions(OS);
OS << R.getName() << "Attr *" << R.getName()
<< "Attr::clone(ASTContext &C) const {\n";
OS << " auto *A = new (C) " << R.getName() << "Attr(getLocation(), C";
for (auto const &ai : Args) {
OS << ", ";
ai->writeCloneArgs(OS);
}
OS << ", getSpellingListIndex());\n";
OS << " A->Inherited = Inherited;\n";
OS << " A->IsPackExpansion = IsPackExpansion;\n";
OS << " A->Implicit = Implicit;\n";
OS << " return A;\n}\n\n";
writePrettyPrintFunction(R, Args, OS);
writeGetSpellingFunction(R, OS);
}
}
} // end namespace clang
static void EmitAttrList(raw_ostream &OS, StringRef Class,
const std::vector<Record*> &AttrList) {
std::vector<Record*>::const_iterator i = AttrList.begin(), e = AttrList.end();
if (i != e) {
// Move the end iterator back to emit the last attribute.
for(--e; i != e; ++i) {
if (!(*i)->getValueAsBit("ASTNode"))
continue;
OS << Class << "(" << (*i)->getName() << ")\n";
}
OS << "LAST_" << Class << "(" << (*i)->getName() << ")\n\n";
}
}
namespace clang {
// Emits the enumeration list for attributes.
void EmitClangAttrList(RecordKeeper &Records, raw_ostream &OS) {
emitSourceFileHeader("List of all attributes that Clang recognizes", OS);
OS << "#ifndef LAST_ATTR\n";
OS << "#define LAST_ATTR(NAME) ATTR(NAME)\n";
OS << "#endif\n\n";
OS << "#ifndef INHERITABLE_ATTR\n";
OS << "#define INHERITABLE_ATTR(NAME) ATTR(NAME)\n";
OS << "#endif\n\n";
OS << "#ifndef LAST_INHERITABLE_ATTR\n";
OS << "#define LAST_INHERITABLE_ATTR(NAME) INHERITABLE_ATTR(NAME)\n";
OS << "#endif\n\n";
OS << "#ifndef INHERITABLE_PARAM_ATTR\n";
OS << "#define INHERITABLE_PARAM_ATTR(NAME) ATTR(NAME)\n";
OS << "#endif\n\n";
OS << "#ifndef LAST_INHERITABLE_PARAM_ATTR\n";
OS << "#define LAST_INHERITABLE_PARAM_ATTR(NAME)"
" INHERITABLE_PARAM_ATTR(NAME)\n";
OS << "#endif\n\n";
Record *InhClass = Records.getClass("InheritableAttr");
Record *InhParamClass = Records.getClass("InheritableParamAttr");
std::vector<Record*> Attrs = Records.getAllDerivedDefinitions("Attr"),
NonInhAttrs, InhAttrs, InhParamAttrs;
for (auto *Attr : Attrs) {
if (!Attr->getValueAsBit("ASTNode"))
continue;
if (Attr->isSubClassOf(InhParamClass))
InhParamAttrs.push_back(Attr);
else if (Attr->isSubClassOf(InhClass))
InhAttrs.push_back(Attr);
else
NonInhAttrs.push_back(Attr);
}
EmitAttrList(OS, "INHERITABLE_PARAM_ATTR", InhParamAttrs);
EmitAttrList(OS, "INHERITABLE_ATTR", InhAttrs);
EmitAttrList(OS, "ATTR", NonInhAttrs);
OS << "#undef LAST_ATTR\n";
OS << "#undef INHERITABLE_ATTR\n";
OS << "#undef LAST_INHERITABLE_ATTR\n";
OS << "#undef LAST_INHERITABLE_PARAM_ATTR\n";
OS << "#undef ATTR\n";
}
// Emits the code to read an attribute from a precompiled header.
void EmitClangAttrPCHRead(RecordKeeper &Records, raw_ostream &OS) {
emitSourceFileHeader("Attribute deserialization code", OS);
Record *InhClass = Records.getClass("InheritableAttr");
std::vector<Record*> Attrs = Records.getAllDerivedDefinitions("Attr"),
ArgRecords;
std::vector<std::unique_ptr<Argument>> Args;
OS << " switch (Kind) {\n";
OS << " default:\n";
OS << " llvm_unreachable(\"Unknown attribute!\");\n";
for (const auto *Attr : Attrs) {
const Record &R = *Attr;
if (!R.getValueAsBit("ASTNode"))
continue;
OS << " case attr::" << R.getName() << ": {\n";
if (R.isSubClassOf(InhClass))
OS << " bool isInherited = Record[Idx++];\n";
OS << " bool isImplicit = Record[Idx++];\n";
OS << " unsigned Spelling = Record[Idx++];\n";
ArgRecords = R.getValueAsListOfDefs("Args");
Args.clear();
for (const auto *Arg : ArgRecords) {
Args.emplace_back(createArgument(*Arg, R.getName()));
Args.back()->writePCHReadDecls(OS);
}
OS << " New = new (Context) " << R.getName() << "Attr(Range, Context";
for (auto const &ri : Args) {
OS << ", ";
ri->writePCHReadArgs(OS);
}
OS << ", Spelling);\n";
if (R.isSubClassOf(InhClass))
OS << " cast<InheritableAttr>(New)->setInherited(isInherited);\n";
OS << " New->setImplicit(isImplicit);\n";
OS << " break;\n";
OS << " }\n";
}
OS << " }\n";
}
// Emits the code to write an attribute to a precompiled header.
void EmitClangAttrPCHWrite(RecordKeeper &Records, raw_ostream &OS) {
emitSourceFileHeader("Attribute serialization code", OS);
Record *InhClass = Records.getClass("InheritableAttr");
std::vector<Record*> Attrs = Records.getAllDerivedDefinitions("Attr"), Args;
OS << " switch (A->getKind()) {\n";
OS << " default:\n";
OS << " llvm_unreachable(\"Unknown attribute kind!\");\n";
OS << " break;\n";
for (const auto *Attr : Attrs) {
const Record &R = *Attr;
if (!R.getValueAsBit("ASTNode"))
continue;
OS << " case attr::" << R.getName() << ": {\n";
Args = R.getValueAsListOfDefs("Args");
if (R.isSubClassOf(InhClass) || !Args.empty())
OS << " const " << R.getName() << "Attr *SA = cast<" << R.getName()
<< "Attr>(A);\n";
if (R.isSubClassOf(InhClass))
OS << " Record.push_back(SA->isInherited());\n";
OS << " Record.push_back(A->isImplicit());\n";
OS << " Record.push_back(A->getSpellingListIndex());\n";
for (const auto *Arg : Args)
createArgument(*Arg, R.getName())->writePCHWrite(OS);
OS << " break;\n";
OS << " }\n";
}
OS << " }\n";
}
static void GenerateHasAttrSpellingStringSwitch(
const std::vector<Record *> &Attrs, raw_ostream &OS,
const std::string &Variety = "", const std::string &Scope = "") {
for (const auto *Attr : Attrs) {
// It is assumed that there will be an llvm::Triple object named T within
// scope that can be used to determine whether the attribute exists in
// a given target.
std::string Test;
if (Attr->isSubClassOf("TargetSpecificAttr")) {
const Record *R = Attr->getValueAsDef("Target");
std::vector<std::string> Arches = R->getValueAsListOfStrings("Arches");
Test += "(";
for (auto AI = Arches.begin(), AE = Arches.end(); AI != AE; ++AI) {
std::string Part = *AI;
Test += "T.getArch() == llvm::Triple::" + Part;
if (AI + 1 != AE)
Test += " || ";
}
Test += ")";
std::vector<std::string> OSes;
if (!R->isValueUnset("OSes")) {
Test += " && (";
std::vector<std::string> OSes = R->getValueAsListOfStrings("OSes");
for (auto AI = OSes.begin(), AE = OSes.end(); AI != AE; ++AI) {
std::string Part = *AI;
Test += "T.getOS() == llvm::Triple::" + Part;
if (AI + 1 != AE)
Test += " || ";
}
Test += ")";
}
// If this is the C++11 variety, also add in the LangOpts test.
if (Variety == "CXX11")
Test += " && LangOpts.CPlusPlus11";
} else if (Variety == "CXX11")
// C++11 mode should be checked against LangOpts, which is presumed to be
// present in the caller.
Test = "LangOpts.CPlusPlus11";
else
Test = "true";
std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(*Attr);
for (const auto &S : Spellings)
if (Variety.empty() || (Variety == S.variety() &&
(Scope.empty() || Scope == S.nameSpace())))
OS << " .Case(\"" << S.name() << "\", " << Test << ")\n";
}
OS << " .Default(false);\n";
}
// Emits the list of spellings for attributes.
void EmitClangAttrHasAttrImpl(RecordKeeper &Records, raw_ostream &OS) {
emitSourceFileHeader("Code to implement the __has_attribute logic", OS);
// Separate all of the attributes out into four group: generic, C++11, GNU,
// and declspecs. Then generate a big switch statement for each of them.
std::vector<Record *> Attrs = Records.getAllDerivedDefinitions("Attr");
std::vector<Record *> Declspec, GNU, Pragma;
std::map<std::string, std::vector<Record *>> CXX;
// Walk over the list of all attributes, and split them out based on the
// spelling variety.
for (auto *R : Attrs) {
std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(*R);
for (const auto &SI : Spellings) {
std::string Variety = SI.variety();
if (Variety == "GNU")
GNU.push_back(R);
else if (Variety == "Declspec")
Declspec.push_back(R);
else if (Variety == "CXX11")
CXX[SI.nameSpace()].push_back(R);
else if (Variety == "Pragma")
Pragma.push_back(R);
}
}
OS << "switch (Syntax) {\n";
OS << "case AttrSyntax::Generic:\n";
OS << " return llvm::StringSwitch<bool>(Name)\n";
GenerateHasAttrSpellingStringSwitch(Attrs, OS);
OS << "case AttrSyntax::GNU:\n";
OS << " return llvm::StringSwitch<bool>(Name)\n";
GenerateHasAttrSpellingStringSwitch(GNU, OS, "GNU");
OS << "case AttrSyntax::Declspec:\n";
OS << " return llvm::StringSwitch<bool>(Name)\n";
GenerateHasAttrSpellingStringSwitch(Declspec, OS, "Declspec");
OS << "case AttrSyntax::Pragma:\n";
OS << " return llvm::StringSwitch<bool>(Name)\n";
GenerateHasAttrSpellingStringSwitch(Pragma, OS, "Pragma");
OS << "case AttrSyntax::CXX: {\n";
// C++11-style attributes are further split out based on the Scope.
for (std::map<std::string, std::vector<Record *>>::iterator I = CXX.begin(),
E = CXX.end();
I != E; ++I) {
if (I != CXX.begin())
OS << " else ";
if (I->first.empty())
OS << "if (!Scope || Scope->getName() == \"\") {\n";
else
OS << "if (Scope->getName() == \"" << I->first << "\") {\n";
OS << " return llvm::StringSwitch<bool>(Name)\n";
GenerateHasAttrSpellingStringSwitch(I->second, OS, "CXX11", I->first);
OS << "}";
}
OS << "\n}\n";
OS << "}\n";
}
void EmitClangAttrSpellingListIndex(RecordKeeper &Records, raw_ostream &OS) {
emitSourceFileHeader("Code to translate different attribute spellings "
"into internal identifiers", OS);
OS <<
" switch (AttrKind) {\n"
" default:\n"
" llvm_unreachable(\"Unknown attribute kind!\");\n"
" break;\n";
ParsedAttrMap Attrs = getParsedAttrList(Records);
for (const auto &I : Attrs) {
const Record &R = *I.second;
std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(R);
OS << " case AT_" << I.first << ": {\n";
for (unsigned I = 0; I < Spellings.size(); ++ I) {
OS << " if (Name == \"" << Spellings[I].name() << "\" && "
<< "SyntaxUsed == "
<< StringSwitch<unsigned>(Spellings[I].variety())
.Case("GNU", 0)
.Case("CXX11", 1)
.Case("Declspec", 2)
.Case("Keyword", 3)
.Case("Pragma", 4)
.Default(0)
<< " && Scope == \"" << Spellings[I].nameSpace() << "\")\n"
<< " return " << I << ";\n";
}
OS << " break;\n";
OS << " }\n";
}
OS << " }\n";
OS << " return 0;\n";
}
// Emits code used by RecursiveASTVisitor to visit attributes
void EmitClangAttrASTVisitor(RecordKeeper &Records, raw_ostream &OS) {
emitSourceFileHeader("Used by RecursiveASTVisitor to visit attributes.", OS);
std::vector<Record*> Attrs = Records.getAllDerivedDefinitions("Attr");
// Write method declarations for Traverse* methods.
// We emit this here because we only generate methods for attributes that
// are declared as ASTNodes.
OS << "#ifdef ATTR_VISITOR_DECLS_ONLY\n\n";
for (const auto *Attr : Attrs) {
const Record &R = *Attr;
if (!R.getValueAsBit("ASTNode"))
continue;
OS << " bool Traverse"
<< R.getName() << "Attr(" << R.getName() << "Attr *A);\n";
OS << " bool Visit"
<< R.getName() << "Attr(" << R.getName() << "Attr *A) {\n"
<< " return true; \n"
<< " };\n";
}
OS << "\n#else // ATTR_VISITOR_DECLS_ONLY\n\n";
// Write individual Traverse* methods for each attribute class.
for (const auto *Attr : Attrs) {
const Record &R = *Attr;
if (!R.getValueAsBit("ASTNode"))
continue;
OS << "template <typename Derived>\n"
<< "bool VISITORCLASS<Derived>::Traverse"
<< R.getName() << "Attr(" << R.getName() << "Attr *A) {\n"
<< " if (!getDerived().VisitAttr(A))\n"
<< " return false;\n"
<< " if (!getDerived().Visit" << R.getName() << "Attr(A))\n"
<< " return false;\n";
std::vector<Record*> ArgRecords = R.getValueAsListOfDefs("Args");
for (const auto *Arg : ArgRecords)
createArgument(*Arg, R.getName())->writeASTVisitorTraversal(OS);
OS << " return true;\n";
OS << "}\n\n";
}
// Write generic Traverse routine
OS << "template <typename Derived>\n"
<< "bool VISITORCLASS<Derived>::TraverseAttr(Attr *A) {\n"
<< " if (!A)\n"
<< " return true;\n"
<< "\n"
<< " switch (A->getKind()) {\n"
<< " default:\n"
<< " return true;\n";
for (const auto *Attr : Attrs) {
const Record &R = *Attr;
if (!R.getValueAsBit("ASTNode"))
continue;
OS << " case attr::" << R.getName() << ":\n"
<< " return getDerived().Traverse" << R.getName() << "Attr("
<< "cast<" << R.getName() << "Attr>(A));\n";
}
OS << " }\n"; // end case
OS << "}\n"; // end function
OS << "#endif // ATTR_VISITOR_DECLS_ONLY\n";
}
// Emits code to instantiate dependent attributes on templates.
void EmitClangAttrTemplateInstantiate(RecordKeeper &Records, raw_ostream &OS) {
emitSourceFileHeader("Template instantiation code for attributes", OS);
std::vector<Record*> Attrs = Records.getAllDerivedDefinitions("Attr");
OS << "namespace clang {\n"
<< "namespace sema {\n\n"
<< "Attr *instantiateTemplateAttribute(const Attr *At, ASTContext &C, "
<< "Sema &S,\n"
<< " const MultiLevelTemplateArgumentList &TemplateArgs) {\n"
<< " switch (At->getKind()) {\n"
<< " default:\n"
<< " break;\n";
for (const auto *Attr : Attrs) {
const Record &R = *Attr;
if (!R.getValueAsBit("ASTNode"))
continue;
OS << " case attr::" << R.getName() << ": {\n";
bool ShouldClone = R.getValueAsBit("Clone");
if (!ShouldClone) {
OS << " return NULL;\n";
OS << " }\n";
continue;
}
OS << " const " << R.getName() << "Attr *A = cast<"
<< R.getName() << "Attr>(At);\n";
bool TDependent = R.getValueAsBit("TemplateDependent");
if (!TDependent) {
OS << " return A->clone(C);\n";
OS << " }\n";
continue;
}
std::vector<Record*> ArgRecords = R.getValueAsListOfDefs("Args");
std::vector<std::unique_ptr<Argument>> Args;
Args.reserve(ArgRecords.size());
for (const auto *ArgRecord : ArgRecords)
Args.emplace_back(createArgument(*ArgRecord, R.getName()));
for (auto const &ai : Args)
ai->writeTemplateInstantiation(OS);
OS << " return new (C) " << R.getName() << "Attr(A->getLocation(), C";
for (auto const &ai : Args) {
OS << ", ";
ai->writeTemplateInstantiationArgs(OS);
}
OS << ", A->getSpellingListIndex());\n }\n";
}
OS << " } // end switch\n"
<< " llvm_unreachable(\"Unknown attribute!\");\n"
<< " return 0;\n"
<< "}\n\n"
<< "} // end namespace sema\n"
<< "} // end namespace clang\n";
}
// Emits the list of parsed attributes.
void EmitClangAttrParsedAttrList(RecordKeeper &Records, raw_ostream &OS) {
emitSourceFileHeader("List of all attributes that Clang recognizes", OS);
OS << "#ifndef PARSED_ATTR\n";
OS << "#define PARSED_ATTR(NAME) NAME\n";
OS << "#endif\n\n";
ParsedAttrMap Names = getParsedAttrList(Records);
for (const auto &I : Names) {
OS << "PARSED_ATTR(" << I.first << ")\n";
}
}
static bool isArgVariadic(const Record &R, StringRef AttrName) {
return createArgument(R, AttrName)->isVariadic();
}
static void emitArgInfo(const Record &R, std::stringstream &OS) {
// This function will count the number of arguments specified for the
// attribute and emit the number of required arguments followed by the
// number of optional arguments.
std::vector<Record *> Args = R.getValueAsListOfDefs("Args");
unsigned ArgCount = 0, OptCount = 0;
bool HasVariadic = false;
for (const auto *Arg : Args) {
Arg->getValueAsBit("Optional") ? ++OptCount : ++ArgCount;
if (!HasVariadic && isArgVariadic(*Arg, R.getName()))
HasVariadic = true;
}
// If there is a variadic argument, we will set the optional argument count
// to its largest value. Since it's currently a 4-bit number, we set it to 15.
OS << ArgCount << ", " << (HasVariadic ? 15 : OptCount);
}
static void GenerateDefaultAppertainsTo(raw_ostream &OS) {
OS << "static bool defaultAppertainsTo(Sema &, const AttributeList &,";
OS << "const Decl *) {\n";
OS << " return true;\n";
OS << "}\n\n";
}
static std::string CalculateDiagnostic(const Record &S) {
// If the SubjectList object has a custom diagnostic associated with it,
// return that directly.
std::string CustomDiag = S.getValueAsString("CustomDiag");
if (!CustomDiag.empty())
return CustomDiag;
// Given the list of subjects, determine what diagnostic best fits.
enum {
Func = 1U << 0,
Var = 1U << 1,
ObjCMethod = 1U << 2,
Param = 1U << 3,
Class = 1U << 4,
GenericRecord = 1U << 5,
Type = 1U << 6,
ObjCIVar = 1U << 7,
ObjCProp = 1U << 8,
ObjCInterface = 1U << 9,
Block = 1U << 10,
Namespace = 1U << 11,
Field = 1U << 12,
CXXMethod = 1U << 13,
ObjCProtocol = 1U << 14
};
uint32_t SubMask = 0;
std::vector<Record *> Subjects = S.getValueAsListOfDefs("Subjects");
for (const auto *Subject : Subjects) {
const Record &R = *Subject;
std::string Name;
if (R.isSubClassOf("SubsetSubject")) {
PrintError(R.getLoc(), "SubsetSubjects should use a custom diagnostic");
// As a fallback, look through the SubsetSubject to see what its base
// type is, and use that. This needs to be updated if SubsetSubjects
// are allowed within other SubsetSubjects.
Name = R.getValueAsDef("Base")->getName();
} else
Name = R.getName();
uint32_t V = StringSwitch<uint32_t>(Name)
.Case("Function", Func)
.Case("Var", Var)
.Case("ObjCMethod", ObjCMethod)
.Case("ParmVar", Param)
.Case("TypedefName", Type)
.Case("ObjCIvar", ObjCIVar)
.Case("ObjCProperty", ObjCProp)
.Case("Record", GenericRecord)
.Case("ObjCInterface", ObjCInterface)
.Case("ObjCProtocol", ObjCProtocol)
.Case("Block", Block)
.Case("CXXRecord", Class)
.Case("Namespace", Namespace)
.Case("Field", Field)
.Case("CXXMethod", CXXMethod)
.Default(0);
if (!V) {
// Something wasn't in our mapping, so be helpful and let the developer
// know about it.
PrintFatalError(R.getLoc(), "Unknown subject type: " + R.getName());
return "";
}
SubMask |= V;
}
switch (SubMask) {
// For the simple cases where there's only a single entry in the mask, we
// don't have to resort to bit fiddling.
case Func: return "ExpectedFunction";
case Var: return "ExpectedVariable";
case Param: return "ExpectedParameter";
case Class: return "ExpectedClass";
case CXXMethod:
// FIXME: Currently, this maps to ExpectedMethod based on existing code,
// but should map to something a bit more accurate at some point.
case ObjCMethod: return "ExpectedMethod";
case Type: return "ExpectedType";
case ObjCInterface: return "ExpectedObjectiveCInterface";
case ObjCProtocol: return "ExpectedObjectiveCProtocol";
// "GenericRecord" means struct, union or class; check the language options
// and if not compiling for C++, strip off the class part. Note that this
// relies on the fact that the context for this declares "Sema &S".
case GenericRecord:
return "(S.getLangOpts().CPlusPlus ? ExpectedStructOrUnionOrClass : "
"ExpectedStructOrUnion)";
case Func | ObjCMethod | Block: return "ExpectedFunctionMethodOrBlock";
case Func | ObjCMethod | Class: return "ExpectedFunctionMethodOrClass";
case Func | Param:
case Func | ObjCMethod | Param: return "ExpectedFunctionMethodOrParameter";
case Func | ObjCMethod: return "ExpectedFunctionOrMethod";
case Func | Var: return "ExpectedVariableOrFunction";
// If not compiling for C++, the class portion does not apply.
case Func | Var | Class:
return "(S.getLangOpts().CPlusPlus ? ExpectedFunctionVariableOrClass : "
"ExpectedVariableOrFunction)";
case ObjCMethod | ObjCProp: return "ExpectedMethodOrProperty";
case ObjCProtocol | ObjCInterface:
return "ExpectedObjectiveCInterfaceOrProtocol";
case Field | Var: return "ExpectedFieldOrGlobalVar";
}
PrintFatalError(S.getLoc(),
"Could not deduce diagnostic argument for Attr subjects");
return "";
}
static std::string GetSubjectWithSuffix(const Record *R) {
std::string B = R->getName();
if (B == "DeclBase")
return "Decl";
return B + "Decl";
}
static std::string GenerateCustomAppertainsTo(const Record &Subject,
raw_ostream &OS) {
std::string FnName = "is" + Subject.getName();
// If this code has already been generated, simply return the previous
// instance of it.
static std::set<std::string> CustomSubjectSet;
std::set<std::string>::iterator I = CustomSubjectSet.find(FnName);
if (I != CustomSubjectSet.end())
return *I;
Record *Base = Subject.getValueAsDef("Base");
// Not currently support custom subjects within custom subjects.
if (Base->isSubClassOf("SubsetSubject")) {
PrintFatalError(Subject.getLoc(),
"SubsetSubjects within SubsetSubjects is not supported");
return "";
}
OS << "static bool " << FnName << "(const Decl *D) {\n";
OS << " if (const " << GetSubjectWithSuffix(Base) << " *S = dyn_cast<";
OS << GetSubjectWithSuffix(Base);
OS << ">(D))\n";
OS << " return " << Subject.getValueAsString("CheckCode") << ";\n";
OS << " return false;\n";
OS << "}\n\n";
CustomSubjectSet.insert(FnName);
return FnName;
}
static std::string GenerateAppertainsTo(const Record &Attr, raw_ostream &OS) {
// If the attribute does not contain a Subjects definition, then use the
// default appertainsTo logic.
if (Attr.isValueUnset("Subjects"))
return "defaultAppertainsTo";
const Record *SubjectObj = Attr.getValueAsDef("Subjects");
std::vector<Record*> Subjects = SubjectObj->getValueAsListOfDefs("Subjects");
// If the list of subjects is empty, it is assumed that the attribute
// appertains to everything.
if (Subjects.empty())
return "defaultAppertainsTo";
bool Warn = SubjectObj->getValueAsDef("Diag")->getValueAsBit("Warn");
// Otherwise, generate an appertainsTo check specific to this attribute which
// checks all of the given subjects against the Decl passed in. Return the
// name of that check to the caller.
std::string FnName = "check" + Attr.getName() + "AppertainsTo";
std::stringstream SS;
SS << "static bool " << FnName << "(Sema &S, const AttributeList &Attr, ";
SS << "const Decl *D) {\n";
SS << " if (";
for (auto I = Subjects.begin(), E = Subjects.end(); I != E; ++I) {
// If the subject has custom code associated with it, generate a function
// for it. The function cannot be inlined into this check (yet) because it
// requires the subject to be of a specific type, and were that information
// inlined here, it would not support an attribute with multiple custom
// subjects.
if ((*I)->isSubClassOf("SubsetSubject")) {
SS << "!" << GenerateCustomAppertainsTo(**I, OS) << "(D)";
} else {
SS << "!isa<" << GetSubjectWithSuffix(*I) << ">(D)";
}
if (I + 1 != E)
SS << " && ";
}
SS << ") {\n";
SS << " S.Diag(Attr.getLoc(), diag::";
SS << (Warn ? "warn_attribute_wrong_decl_type" :
"err_attribute_wrong_decl_type");
SS << ")\n";
SS << " << Attr.getName() << ";
SS << CalculateDiagnostic(*SubjectObj) << ";\n";
SS << " return false;\n";
SS << " }\n";
SS << " return true;\n";
SS << "}\n\n";
OS << SS.str();
return FnName;
}
static void GenerateDefaultLangOptRequirements(raw_ostream &OS) {
OS << "static bool defaultDiagnoseLangOpts(Sema &, ";
OS << "const AttributeList &) {\n";
OS << " return true;\n";
OS << "}\n\n";
}
static std::string GenerateLangOptRequirements(const Record &R,
raw_ostream &OS) {
// If the attribute has an empty or unset list of language requirements,
// return the default handler.
std::vector<Record *> LangOpts = R.getValueAsListOfDefs("LangOpts");
if (LangOpts.empty())
return "defaultDiagnoseLangOpts";
// Generate the test condition, as well as a unique function name for the
// diagnostic test. The list of options should usually be short (one or two
// options), and the uniqueness isn't strictly necessary (it is just for
// codegen efficiency).
std::string FnName = "check", Test;
for (auto I = LangOpts.begin(), E = LangOpts.end(); I != E; ++I) {
std::string Part = (*I)->getValueAsString("Name");
Test += "S.LangOpts." + Part;
if (I + 1 != E)
Test += " || ";
FnName += Part;
}
FnName += "LangOpts";
// If this code has already been generated, simply return the previous
// instance of it.
static std::set<std::string> CustomLangOptsSet;
std::set<std::string>::iterator I = CustomLangOptsSet.find(FnName);
if (I != CustomLangOptsSet.end())
return *I;
OS << "static bool " << FnName << "(Sema &S, const AttributeList &Attr) {\n";
OS << " if (" << Test << ")\n";
OS << " return true;\n\n";
OS << " S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) ";
OS << "<< Attr.getName();\n";
OS << " return false;\n";
OS << "}\n\n";
CustomLangOptsSet.insert(FnName);
return FnName;
}
static void GenerateDefaultTargetRequirements(raw_ostream &OS) {
OS << "static bool defaultTargetRequirements(const llvm::Triple &) {\n";
OS << " return true;\n";
OS << "}\n\n";
}
static std::string GenerateTargetRequirements(const Record &Attr,
const ParsedAttrMap &Dupes,
raw_ostream &OS) {
// If the attribute is not a target specific attribute, return the default
// target handler.
if (!Attr.isSubClassOf("TargetSpecificAttr"))
return "defaultTargetRequirements";
// Get the list of architectures to be tested for.
const Record *R = Attr.getValueAsDef("Target");
std::vector<std::string> Arches = R->getValueAsListOfStrings("Arches");
if (Arches.empty()) {
PrintError(Attr.getLoc(), "Empty list of target architectures for a "
"target-specific attr");
return "defaultTargetRequirements";
}
// If there are other attributes which share the same parsed attribute kind,
// such as target-specific attributes with a shared spelling, collapse the
// duplicate architectures. This is required because a shared target-specific
// attribute has only one AttributeList::Kind enumeration value, but it
// applies to multiple target architectures. In order for the attribute to be
// considered valid, all of its architectures need to be included.
if (!Attr.isValueUnset("ParseKind")) {
std::string APK = Attr.getValueAsString("ParseKind");
for (const auto &I : Dupes) {
if (I.first == APK) {
std::vector<std::string> DA = I.second->getValueAsDef("Target")
->getValueAsListOfStrings("Arches");
std::copy(DA.begin(), DA.end(), std::back_inserter(Arches));
}
}
}
std::string FnName = "isTarget", Test = "(";
for (auto I = Arches.begin(), E = Arches.end(); I != E; ++I) {
std::string Part = *I;
Test += "Arch == llvm::Triple::" + Part;
if (I + 1 != E)
Test += " || ";
FnName += Part;
}
Test += ")";
// If the target also requires OS testing, generate those tests as well.
bool UsesOS = false;
if (!R->isValueUnset("OSes")) {
UsesOS = true;
// We know that there was at least one arch test, so we need to and in the
// OS tests.
Test += " && (";
std::vector<std::string> OSes = R->getValueAsListOfStrings("OSes");
for (auto I = OSes.begin(), E = OSes.end(); I != E; ++I) {
std::string Part = *I;
Test += "OS == llvm::Triple::" + Part;
if (I + 1 != E)
Test += " || ";
FnName += Part;
}
Test += ")";
}
// If this code has already been generated, simply return the previous
// instance of it.
static std::set<std::string> CustomTargetSet;
std::set<std::string>::iterator I = CustomTargetSet.find(FnName);
if (I != CustomTargetSet.end())
return *I;
OS << "static bool " << FnName << "(const llvm::Triple &T) {\n";
OS << " llvm::Triple::ArchType Arch = T.getArch();\n";
if (UsesOS)
OS << " llvm::Triple::OSType OS = T.getOS();\n";
OS << " return " << Test << ";\n";
OS << "}\n\n";
CustomTargetSet.insert(FnName);
return FnName;
}
static void GenerateDefaultSpellingIndexToSemanticSpelling(raw_ostream &OS) {
OS << "static unsigned defaultSpellingIndexToSemanticSpelling("
<< "const AttributeList &Attr) {\n";
OS << " return UINT_MAX;\n";
OS << "}\n\n";
}
static std::string GenerateSpellingIndexToSemanticSpelling(const Record &Attr,
raw_ostream &OS) {
// If the attribute does not have a semantic form, we can bail out early.
if (!Attr.getValueAsBit("ASTNode"))
return "defaultSpellingIndexToSemanticSpelling";
std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(Attr);
// If there are zero or one spellings, or all of the spellings share the same
// name, we can also bail out early.
if (Spellings.size() <= 1 || SpellingNamesAreCommon(Spellings))
return "defaultSpellingIndexToSemanticSpelling";
// Generate the enumeration we will use for the mapping.
SemanticSpellingMap SemanticToSyntacticMap;
std::string Enum = CreateSemanticSpellings(Spellings, SemanticToSyntacticMap);
std::string Name = Attr.getName() + "AttrSpellingMap";
OS << "static unsigned " << Name << "(const AttributeList &Attr) {\n";
OS << Enum;
OS << " unsigned Idx = Attr.getAttributeSpellingListIndex();\n";
WriteSemanticSpellingSwitch("Idx", SemanticToSyntacticMap, OS);
OS << "}\n\n";
return Name;
}
static bool IsKnownToGCC(const Record &Attr) {
// Look at the spellings for this subject; if there are any spellings which
// claim to be known to GCC, the attribute is known to GCC.
std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(Attr);
for (const auto &I : Spellings) {
if (I.knownToGCC())
return true;
}
return false;
}
/// Emits the parsed attribute helpers
void EmitClangAttrParsedAttrImpl(RecordKeeper &Records, raw_ostream &OS) {
emitSourceFileHeader("Parsed attribute helpers", OS);
// Get the list of parsed attributes, and accept the optional list of
// duplicates due to the ParseKind.
ParsedAttrMap Dupes;
ParsedAttrMap Attrs = getParsedAttrList(Records, &Dupes);
// Generate the default appertainsTo, target and language option diagnostic,
// and spelling list index mapping methods.
GenerateDefaultAppertainsTo(OS);
GenerateDefaultLangOptRequirements(OS);
GenerateDefaultTargetRequirements(OS);
GenerateDefaultSpellingIndexToSemanticSpelling(OS);
// Generate the appertainsTo diagnostic methods and write their names into
// another mapping. At the same time, generate the AttrInfoMap object
// contents. Due to the reliance on generated code, use separate streams so
// that code will not be interleaved.
std::stringstream SS;
for (auto I = Attrs.begin(), E = Attrs.end(); I != E; ++I) {
// TODO: If the attribute's kind appears in the list of duplicates, that is
// because it is a target-specific attribute that appears multiple times.
// It would be beneficial to test whether the duplicates are "similar
// enough" to each other to not cause problems. For instance, check that
2014-01-19 05:49:37 +08:00
// the spellings are identical, and custom parsing rules match, etc.
// We need to generate struct instances based off ParsedAttrInfo from
// AttributeList.cpp.
SS << " { ";
emitArgInfo(*I->second, SS);
SS << ", " << I->second->getValueAsBit("HasCustomParsing");
SS << ", " << I->second->isSubClassOf("TargetSpecificAttr");
SS << ", " << I->second->isSubClassOf("TypeAttr");
SS << ", " << IsKnownToGCC(*I->second);
SS << ", " << GenerateAppertainsTo(*I->second, OS);
SS << ", " << GenerateLangOptRequirements(*I->second, OS);
SS << ", " << GenerateTargetRequirements(*I->second, Dupes, OS);
SS << ", " << GenerateSpellingIndexToSemanticSpelling(*I->second, OS);
SS << " }";
if (I + 1 != E)
SS << ",";
SS << " // AT_" << I->first << "\n";
}
OS << "static const ParsedAttrInfo AttrInfoMap[AttributeList::UnknownAttribute + 1] = {\n";
OS << SS.str();
OS << "};\n\n";
}
// Emits the kind list of parsed attributes
void EmitClangAttrParsedAttrKinds(RecordKeeper &Records, raw_ostream &OS) {
emitSourceFileHeader("Attribute name matcher", OS);
std::vector<Record *> Attrs = Records.getAllDerivedDefinitions("Attr");
std::vector<StringMatcher::StringPair> GNU, Declspec, CXX11, Keywords, Pragma;
std::set<std::string> Seen;
for (const auto *A : Attrs) {
const Record &Attr = *A;
bool SemaHandler = Attr.getValueAsBit("SemaHandler");
bool Ignored = Attr.getValueAsBit("Ignored");
if (SemaHandler || Ignored) {
// Attribute spellings can be shared between target-specific attributes,
// and can be shared between syntaxes for the same attribute. For
// instance, an attribute can be spelled GNU<"interrupt"> for an ARM-
// specific attribute, or MSP430-specific attribute. Additionally, an
// attribute can be spelled GNU<"dllexport"> and Declspec<"dllexport">
// for the same semantic attribute. Ultimately, we need to map each of
// these to a single AttributeList::Kind value, but the StringMatcher
// class cannot handle duplicate match strings. So we generate a list of
// string to match based on the syntax, and emit multiple string matchers
// depending on the syntax used.
std::string AttrName;
if (Attr.isSubClassOf("TargetSpecificAttr") &&
!Attr.isValueUnset("ParseKind")) {
AttrName = Attr.getValueAsString("ParseKind");
if (Seen.find(AttrName) != Seen.end())
continue;
Seen.insert(AttrName);
} else
AttrName = NormalizeAttrName(StringRef(Attr.getName())).str();
std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(Attr);
for (const auto &S : Spellings) {
std::string RawSpelling = S.name();
std::vector<StringMatcher::StringPair> *Matches = nullptr;
std::string Spelling, Variety = S.variety();
if (Variety == "CXX11") {
Matches = &CXX11;
Spelling += S.nameSpace();
Spelling += "::";
} else if (Variety == "GNU")
Matches = &GNU;
else if (Variety == "Declspec")
Matches = &Declspec;
else if (Variety == "Keyword")
Matches = &Keywords;
else if (Variety == "Pragma")
Matches = &Pragma;
assert(Matches && "Unsupported spelling variety found");
Spelling += NormalizeAttrSpelling(RawSpelling);
if (SemaHandler)
Matches->push_back(StringMatcher::StringPair(Spelling,
"return AttributeList::AT_" + AttrName + ";"));
else
Matches->push_back(StringMatcher::StringPair(Spelling,
"return AttributeList::IgnoredAttribute;"));
}
}
}
OS << "static AttributeList::Kind getAttrKind(StringRef Name, ";
OS << "AttributeList::Syntax Syntax) {\n";
OS << " if (AttributeList::AS_GNU == Syntax) {\n";
StringMatcher("Name", GNU, OS).Emit();
OS << " } else if (AttributeList::AS_Declspec == Syntax) {\n";
StringMatcher("Name", Declspec, OS).Emit();
OS << " } else if (AttributeList::AS_CXX11 == Syntax) {\n";
StringMatcher("Name", CXX11, OS).Emit();
OS << " } else if (AttributeList::AS_Keyword == Syntax) {\n";
StringMatcher("Name", Keywords, OS).Emit();
OS << " } else if (AttributeList::AS_Pragma == Syntax) {\n";
StringMatcher("Name", Pragma, OS).Emit();
OS << " }\n";
OS << " return AttributeList::UnknownAttribute;\n"
<< "}\n";
}
// Emits the code to dump an attribute.
void EmitClangAttrDump(RecordKeeper &Records, raw_ostream &OS) {
emitSourceFileHeader("Attribute dumper", OS);
OS <<
" switch (A->getKind()) {\n"
" default:\n"
" llvm_unreachable(\"Unknown attribute kind!\");\n"
" break;\n";
std::vector<Record*> Attrs = Records.getAllDerivedDefinitions("Attr"), Args;
for (const auto *Attr : Attrs) {
const Record &R = *Attr;
if (!R.getValueAsBit("ASTNode"))
continue;
OS << " case attr::" << R.getName() << ": {\n";
// If the attribute has a semantically-meaningful name (which is determined
// by whether there is a Spelling enumeration for it), then write out the
// spelling used for the attribute.
std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(R);
if (Spellings.size() > 1 && !SpellingNamesAreCommon(Spellings))
OS << " OS << \" \" << A->getSpelling();\n";
Args = R.getValueAsListOfDefs("Args");
if (!Args.empty()) {
OS << " const " << R.getName() << "Attr *SA = cast<" << R.getName()
<< "Attr>(A);\n";
for (const auto *Arg : Args)
createArgument(*Arg, R.getName())->writeDump(OS);
// Code for detecting the last child.
OS << " bool OldMoreChildren = hasMoreChildren();\n";
OS << " bool MoreChildren;\n";
for (auto AI = Args.begin(), AE = Args.end(); AI != AE; ++AI) {
// More code for detecting the last child.
OS << " MoreChildren = OldMoreChildren";
for (auto Next = AI + 1; Next != AE; ++Next) {
OS << " || ";
createArgument(**Next, R.getName())->writeHasChildren(OS);
}
OS << ";\n";
OS << " setMoreChildren(MoreChildren);\n";
createArgument(**AI, R.getName())->writeDumpChildren(OS);
}
// Reset the last child.
OS << " setMoreChildren(OldMoreChildren);\n";
}
OS <<
" break;\n"
" }\n";
}
OS << " }\n";
}
void EmitClangAttrParserStringSwitches(RecordKeeper &Records,
raw_ostream &OS) {
emitSourceFileHeader("Parser-related llvm::StringSwitch cases", OS);
emitClangAttrArgContextList(Records, OS);
emitClangAttrIdentifierArgList(Records, OS);
emitClangAttrTypeArgList(Records, OS);
emitClangAttrLateParsedList(Records, OS);
}
class DocumentationData {
public:
const Record *Documentation;
const Record *Attribute;
DocumentationData(const Record &Documentation, const Record &Attribute)
: Documentation(&Documentation), Attribute(&Attribute) {}
};
static void WriteCategoryHeader(const Record *DocCategory,
raw_ostream &OS) {
const std::string &Name = DocCategory->getValueAsString("Name");
OS << Name << "\n" << std::string(Name.length(), '=') << "\n";
// If there is content, print that as well.
std::string ContentStr = DocCategory->getValueAsString("Content");
if (!ContentStr.empty()) {
// Trim leading and trailing newlines and spaces.
StringRef Content(ContentStr);
while (Content.startswith("\r") || Content.startswith("\n") ||
Content.startswith(" ") || Content.startswith("\t"))
Content = Content.substr(1);
while (Content.endswith("\r") || Content.endswith("\n") ||
Content.endswith(" ") || Content.endswith("\t"))
Content = Content.substr(0, Content.size() - 1);
OS << Content;
}
OS << "\n\n";
}
enum SpellingKind {
GNU = 1 << 0,
CXX11 = 1 << 1,
Declspec = 1 << 2,
Keyword = 1 << 3,
Pragma = 1 << 4
};
static void WriteDocumentation(const DocumentationData &Doc,
raw_ostream &OS) {
// FIXME: there is no way to have a per-spelling category for the attribute
// documentation. This may not be a limiting factor since the spellings
// should generally be consistently applied across the category.
std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(*Doc.Attribute);
// Determine the heading to be used for this attribute.
std::string Heading = Doc.Documentation->getValueAsString("Heading");
bool CustomHeading = !Heading.empty();
if (Heading.empty()) {
// If there's only one spelling, we can simply use that.
if (Spellings.size() == 1)
Heading = Spellings.begin()->name();
else {
std::set<std::string> Uniques;
for (auto I = Spellings.begin(), E = Spellings.end();
I != E && Uniques.size() <= 1; ++I) {
std::string Spelling = NormalizeNameForSpellingComparison(I->name());
Uniques.insert(Spelling);
}
// If the semantic map has only one spelling, that is sufficient for our
// needs.
if (Uniques.size() == 1)
Heading = *Uniques.begin();
}
}
// If the heading is still empty, it is an error.
if (Heading.empty())
PrintFatalError(Doc.Attribute->getLoc(),
"This attribute requires a heading to be specified");
// Gather a list of unique spellings; this is not the same as the semantic
// spelling for the attribute. Variations in underscores and other non-
// semantic characters are still acceptable.
std::vector<std::string> Names;
unsigned SupportedSpellings = 0;
for (const auto &I : Spellings) {
SpellingKind Kind = StringSwitch<SpellingKind>(I.variety())
.Case("GNU", GNU)
.Case("CXX11", CXX11)
.Case("Declspec", Declspec)
.Case("Keyword", Keyword)
.Case("Pragma", Pragma);
// Mask in the supported spelling.
SupportedSpellings |= Kind;
std::string Name;
if (Kind == CXX11 && !I.nameSpace().empty())
Name = I.nameSpace() + "::";
Name += I.name();
// If this name is the same as the heading, do not add it.
if (Name != Heading)
Names.push_back(Name);
}
// Print out the heading for the attribute. If there are alternate spellings,
// then display those after the heading.
if (!CustomHeading && !Names.empty()) {
Heading += " (";
for (auto I = Names.begin(), E = Names.end(); I != E; ++I) {
if (I != Names.begin())
Heading += ", ";
Heading += *I;
}
Heading += ")";
}
OS << Heading << "\n" << std::string(Heading.length(), '-') << "\n";
if (!SupportedSpellings)
PrintFatalError(Doc.Attribute->getLoc(),
"Attribute has no supported spellings; cannot be "
"documented");
// List what spelling syntaxes the attribute supports.
OS << ".. csv-table:: Supported Syntaxes\n";
OS << " :header: \"GNU\", \"C++11\", \"__declspec\", \"Keyword\",";
OS << " \"Pragma\"\n\n";
OS << " \"";
if (SupportedSpellings & GNU) OS << "X";
OS << "\",\"";
if (SupportedSpellings & CXX11) OS << "X";
OS << "\",\"";
if (SupportedSpellings & Declspec) OS << "X";
OS << "\",\"";
if (SupportedSpellings & Keyword) OS << "X";
OS << "\", \"";
if (SupportedSpellings & Pragma) OS << "X";
OS << "\"\n\n";
// If the attribute is deprecated, print a message about it, and possibly
// provide a replacement attribute.
if (!Doc.Documentation->isValueUnset("Deprecated")) {
OS << "This attribute has been deprecated, and may be removed in a future "
<< "version of Clang.";
const Record &Deprecated = *Doc.Documentation->getValueAsDef("Deprecated");
std::string Replacement = Deprecated.getValueAsString("Replacement");
if (!Replacement.empty())
OS << " This attribute has been superseded by ``"
<< Replacement << "``.";
OS << "\n\n";
}
std::string ContentStr = Doc.Documentation->getValueAsString("Content");
// Trim leading and trailing newlines and spaces.
StringRef Content(ContentStr);
while (Content.startswith("\r") || Content.startswith("\n") ||
Content.startswith(" ") || Content.startswith("\t"))
Content = Content.substr(1);
while (Content.endswith("\r") || Content.endswith("\n") ||
Content.endswith(" ") || Content.endswith("\t"))
Content = Content.substr(0, Content.size() - 1);
OS << Content;
OS << "\n\n\n";
}
void EmitClangAttrDocs(RecordKeeper &Records, raw_ostream &OS) {
// Get the documentation introduction paragraph.
const Record *Documentation = Records.getDef("GlobalDocumentation");
if (!Documentation) {
PrintFatalError("The Documentation top-level definition is missing, "
"no documentation will be generated.");
return;
}
OS << Documentation->getValueAsString("Intro") << "\n";
// Gather the Documentation lists from each of the attributes, based on the
// category provided.
std::vector<Record *> Attrs = Records.getAllDerivedDefinitions("Attr");
std::map<const Record *, std::vector<DocumentationData>> SplitDocs;
for (const auto *A : Attrs) {
const Record &Attr = *A;
std::vector<Record *> Docs = Attr.getValueAsListOfDefs("Documentation");
for (const auto *D : Docs) {
const Record &Doc = *D;
const Record *Category = Doc.getValueAsDef("Category");
// If the category is "undocumented", then there cannot be any other
// documentation categories (otherwise, the attribute would become
// documented).
std::string Cat = Category->getValueAsString("Name");
bool Undocumented = Cat == "Undocumented";
if (Undocumented && Docs.size() > 1)
PrintFatalError(Doc.getLoc(),
"Attribute is \"Undocumented\", but has multiple "
"documentation categories");
if (!Undocumented)
SplitDocs[Category].push_back(DocumentationData(Doc, Attr));
}
}
// Having split the attributes out based on what documentation goes where,
// we can begin to generate sections of documentation.
for (const auto &I : SplitDocs) {
WriteCategoryHeader(I.first, OS);
// Walk over each of the attributes in the category and write out their
// documentation.
for (const auto &Doc : I.second)
WriteDocumentation(Doc, OS);
}
}
} // end namespace clang