llvm-project/lld/ELF/Target.h

268 lines
9.9 KiB
C
Raw Normal View History

//===- Target.h -------------------------------------------------*- C++ -*-===//
//
// The LLVM Linker
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#ifndef LLD_ELF_TARGET_H
#define LLD_ELF_TARGET_H
#include "InputSection.h"
#include "lld/Common/ErrorHandler.h"
#include "llvm/Object/ELF.h"
#include "llvm/Support/MathExtras.h"
namespace lld {
std::string toString(elf::RelType Type);
2016-02-28 08:25:54 +08:00
namespace elf {
class Defined;
[ELF] Implement infrastructure for thunk code creation Some targets might require creation of thunks. For example, MIPS targets require stubs to call PIC code from non-PIC one. The patch implements infrastructure for thunk code creation and provides support for MIPS LA25 stubs. Any MIPS PIC code function is invoked with its address in register $t9. So if we have a branch instruction from non-PIC code to the PIC one we cannot make the jump directly and need to create a small stub to save the target function address. See page 3-38 ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf - In relocation scanning phase we ask target about thunk creation necessity by calling `TagetInfo::needsThunk` method. The `InputSection` class maintains list of Symbols requires thunk creation. - Reassigning offsets performed for each input sections after relocation scanning complete because position of each section might change due thunk creation. - The patch introduces new dedicated value for DefinedSynthetic symbols DefinedSynthetic::SectionEnd. Synthetic symbol with that value always points to the end of the corresponding output section. That allows to escape updating synthetic symbols if output sections sizes changes after relocation scanning due thunk creation. - In the `InputSection::writeTo` method we write thunks after corresponding input section. Each thunk is written by calling `TargetInfo::writeThunk` method. - The patch supports the only type of thunk code for each target. For now, it is enough. Differential Revision: http://reviews.llvm.org/D17934 llvm-svn: 265059
2016-04-01 05:26:23 +08:00
class InputFile;
class Symbol;
class TargetInfo {
public:
virtual uint32_t calcEFlags() const { return 0; }
virtual RelType getDynRel(RelType Type) const { return Type; }
virtual void writeGotPltHeader(uint8_t *Buf) const {}
virtual void writeGotHeader(uint8_t *Buf) const {}
virtual void writeGotPlt(uint8_t *Buf, const Symbol &S) const {};
virtual void writeIgotPlt(uint8_t *Buf, const Symbol &S) const;
virtual int64_t getImplicitAddend(const uint8_t *Buf, RelType Type) const;
2016-01-29 11:00:30 +08:00
// If lazy binding is supported, the first entry of the PLT has code
// to call the dynamic linker to resolve PLT entries the first time
// they are called. This function writes that code.
virtual void writePltHeader(uint8_t *Buf) const {}
2016-01-29 11:00:30 +08:00
virtual void writePlt(uint8_t *Buf, uint64_t GotEntryAddr,
uint64_t PltEntryAddr, int32_t Index,
unsigned RelOff) const {}
virtual void addPltHeaderSymbols(InputSection &IS) const {}
virtual void addPltSymbols(InputSection &IS, uint64_t Off) const {}
unsigned getPltEntryOffset(unsigned Index) const {
return Index * PltEntrySize + PltHeaderSize;
}
// Returns true if a relocation only uses the low bits of a value such that
2018-04-27 13:50:40 +08:00
// all those bits are in the same page. For example, if the relocation
// only uses the low 12 bits in a system with 4k pages. If this is true, the
// bits will always have the same value at runtime and we don't have to emit
// a dynamic relocation.
virtual bool usesOnlyLowPageBits(RelType Type) const;
2016-01-08 10:41:35 +08:00
// Decide whether a Thunk is needed for the relocation from File
// targeting S.
virtual bool needsThunk(RelExpr Expr, RelType RelocType,
const InputFile *File, uint64_t BranchAddr,
const Symbol &S) const;
// On systems with range extensions we place collections of Thunks at
// regular spacings that enable the majority of branches reach the Thunks.
// a value of 0 means range extension thunks are not supported.
virtual uint32_t getThunkSectionSpacing() const { return 0; }
// The function with a prologue starting at Loc was compiled with
// -fsplit-stack and it calls a function compiled without. Adjust the prologue
// to do the right thing. See https://gcc.gnu.org/wiki/SplitStacks.
// The symbols st_other flags are needed on PowerPC64 for determining the
// offset to the split-stack prologue.
virtual bool adjustPrologueForCrossSplitStack(uint8_t *Loc, uint8_t *End,
uint8_t StOther) const;
// Return true if we can reach Dst from Src with Relocation RelocType
virtual bool inBranchRange(RelType Type, uint64_t Src,
uint64_t Dst) const;
virtual RelExpr getRelExpr(RelType Type, const Symbol &S,
const uint8_t *Loc) const = 0;
virtual void relocateOne(uint8_t *Loc, RelType Type, uint64_t Val) const = 0;
virtual ~TargetInfo();
unsigned TlsGdRelaxSkip = 1;
unsigned PageSize = 4096;
unsigned DefaultMaxPageSize = 4096;
uint64_t getImageBase();
// Offset of _GLOBAL_OFFSET_TABLE_ from base of .got or .got.plt section.
uint64_t GotBaseSymOff = 0;
// True if _GLOBAL_OFFSET_TABLE_ is relative to .got.plt, false if .got.
bool GotBaseSymInGotPlt = true;
RelType CopyRel;
RelType GotRel;
RelType NoneRel;
RelType PltRel;
RelType RelativeRel;
RelType IRelativeRel;
RelType TlsDescRel;
RelType TlsGotRel;
RelType TlsModuleIndexRel;
RelType TlsOffsetRel;
unsigned GotEntrySize = 0;
unsigned GotPltEntrySize = 0;
unsigned PltEntrySize;
unsigned PltHeaderSize;
// At least on x86_64 positions 1 and 2 are used by the first plt entry
// to support lazy loading.
unsigned GotPltHeaderEntriesNum = 3;
// On PPC ELF V2 abi, the first entry in the .got is the .TOC.
unsigned GotHeaderEntriesNum = 0;
// For TLS variant 1, the TCB is a fixed size specified by the Target.
// For variant 2, the TCB is an unspecified size.
// Set to 0 for variant 2.
unsigned TcbSize = 0;
// Set to the offset (in bytes) that the thread pointer is initialized to
// point to, relative to the start of the thread local storage.
unsigned TlsTpOffset = 0;
bool NeedsThunks = false;
// A 4-byte field corresponding to one or more trap instructions, used to pad
// executable OutputSections.
uint32_t TrapInstr = 0;
// If a target needs to rewrite calls to __morestack to instead call
// __morestack_non_split when a split-stack enabled caller calls a
// non-split-stack callee this will return true. Otherwise returns false.
bool NeedsMoreStackNonSplit = true;
virtual RelExpr adjustRelaxExpr(RelType Type, const uint8_t *Data,
RelExpr Expr) const;
virtual void relaxGot(uint8_t *Loc, uint64_t Val) const;
virtual void relaxTlsGdToIe(uint8_t *Loc, RelType Type, uint64_t Val) const;
virtual void relaxTlsGdToLe(uint8_t *Loc, RelType Type, uint64_t Val) const;
virtual void relaxTlsIeToLe(uint8_t *Loc, RelType Type, uint64_t Val) const;
virtual void relaxTlsLdToLe(uint8_t *Loc, RelType Type, uint64_t Val) const;
protected:
// On FreeBSD x86_64 the first page cannot be mmaped.
// On Linux that is controled by vm.mmap_min_addr. At least on some x86_64
// installs that is 65536, so the first 15 pages cannot be used.
// Given that, the smallest value that can be used in here is 0x10000.
uint64_t DefaultImageBase = 0x10000;
};
TargetInfo *getAArch64TargetInfo();
TargetInfo *getAMDGPUTargetInfo();
TargetInfo *getARMTargetInfo();
TargetInfo *getAVRTargetInfo();
TargetInfo *getHexagonTargetInfo();
TargetInfo *getPPC64TargetInfo();
TargetInfo *getPPCTargetInfo();
TargetInfo *getRISCVTargetInfo();
TargetInfo *getSPARCV9TargetInfo();
TargetInfo *getX32TargetInfo();
TargetInfo *getX86TargetInfo();
TargetInfo *getX86_64TargetInfo();
template <class ELFT> TargetInfo *getMipsTargetInfo();
struct ErrorPlace {
InputSectionBase *IS;
std::string Loc;
};
// Returns input section and corresponding source string for the given location.
ErrorPlace getErrorPlace(const uint8_t *Loc);
static inline std::string getErrorLocation(const uint8_t *Loc) {
return getErrorPlace(Loc).Loc;
}
// In the PowerPC64 Elf V2 abi a function can have 2 entry points. The first is
// a global entry point (GEP) which typically is used to intiailzie the TOC
// pointer in general purpose register 2. The second is a local entry
// point (LEP) which bypasses the TOC pointer initialization code. The
// offset between GEP and LEP is encoded in a function's st_other flags.
// This function will return the offset (in bytes) from the global entry-point
// to the local entry-point.
unsigned getPPC64GlobalEntryToLocalEntryOffset(uint8_t StOther);
uint64_t getPPC64TocBase();
uint64_t getAArch64Page(uint64_t Expr);
extern TargetInfo *Target;
TargetInfo *getTarget();
template <class ELFT> bool isMipsPIC(const Defined *Sym);
static inline void reportRangeError(uint8_t *Loc, RelType Type, const Twine &V,
int64_t Min, uint64_t Max) {
ErrorPlace ErrPlace = getErrorPlace(Loc);
StringRef Hint;
if (ErrPlace.IS && ErrPlace.IS->Name.startswith(".debug"))
Hint = "; consider recompiling with -fdebug-types-section to reduce size "
"of debug sections";
error(ErrPlace.Loc + "relocation " + lld::toString(Type) +
" out of range: " + V.str() + " is not in [" + Twine(Min).str() + ", " +
Twine(Max).str() + "]" + Hint);
}
// Make sure that V can be represented as an N bit signed integer.
inline void checkInt(uint8_t *Loc, int64_t V, int N, RelType Type) {
if (V != llvm::SignExtend64(V, N))
reportRangeError(Loc, Type, Twine(V), llvm::minIntN(N), llvm::maxIntN(N));
}
// Make sure that V can be represented as an N bit unsigned integer.
inline void checkUInt(uint8_t *Loc, uint64_t V, int N, RelType Type) {
if ((V >> N) != 0)
reportRangeError(Loc, Type, Twine(V), 0, llvm::maxUIntN(N));
}
// Make sure that V can be represented as an N bit signed or unsigned integer.
inline void checkIntUInt(uint8_t *Loc, uint64_t V, int N, RelType Type) {
// For the error message we should cast V to a signed integer so that error
// messages show a small negative value rather than an extremely large one
if (V != (uint64_t)llvm::SignExtend64(V, N) && (V >> N) != 0)
reportRangeError(Loc, Type, Twine((int64_t)V), llvm::minIntN(N),
llvm::maxIntN(N));
}
inline void checkAlignment(uint8_t *Loc, uint64_t V, int N, RelType Type) {
if ((V & (N - 1)) != 0)
error(getErrorLocation(Loc) + "improper alignment for relocation " +
lld::toString(Type) + ": 0x" + llvm::utohexstr(V) +
" is not aligned to " + Twine(N) + " bytes");
}
// Endianness-aware read/write.
inline uint16_t read16(const void *P) {
return llvm::support::endian::read16(P, Config->Endianness);
}
inline uint32_t read32(const void *P) {
return llvm::support::endian::read32(P, Config->Endianness);
}
inline uint64_t read64(const void *P) {
return llvm::support::endian::read64(P, Config->Endianness);
}
inline void write16(void *P, uint16_t V) {
llvm::support::endian::write16(P, V, Config->Endianness);
}
inline void write32(void *P, uint32_t V) {
llvm::support::endian::write32(P, V, Config->Endianness);
}
inline void write64(void *P, uint64_t V) {
llvm::support::endian::write64(P, V, Config->Endianness);
}
} // namespace elf
} // namespace lld
#endif