llvm-project/llvm/test/CodeGen/X86/avx-intrinsics-x86.ll

1037 lines
50 KiB
LLVM
Raw Normal View History

; NOTE: Assertions have been autogenerated by utils/update_llc_test_checks.py
; RUN: llc < %s -mtriple=i686-unknown-unknown -mattr=+pclmul,+avx -show-mc-encoding | FileCheck %s --check-prefixes=CHECK,X86,AVX,X86-AVX
; RUN: llc < %s -mtriple=i686-unknown-unknown -mattr=+pclmul,+avx512f,+avx512bw,+avx512dq,+avx512vl -show-mc-encoding | FileCheck %s --check-prefixes=CHECK,X86,AVX512VL,X86-AVX512VL
; RUN: llc < %s -mtriple=x86_64-unknown-unknown -mattr=+pclmul,+avx -show-mc-encoding | FileCheck %s --check-prefixes=CHECK,X64,AVX,X64-AVX
; RUN: llc < %s -mtriple=x86_64-unknown-unknown -mattr=+pclmul,+avx512f,+avx512bw,+avx512dq,+avx512vl -show-mc-encoding | FileCheck %s --check-prefixes=CHECK,X64,AVX512VL,X64-AVX512VL
define <4 x double> @test_x86_avx_addsub_pd_256(<4 x double> %a0, <4 x double> %a1) {
; CHECK-LABEL: test_x86_avx_addsub_pd_256:
; CHECK: # %bb.0:
; CHECK-NEXT: vaddsubpd %ymm1, %ymm0, %ymm0 # encoding: [0xc5,0xfd,0xd0,0xc1]
; CHECK-NEXT: ret{{[l|q]}} # encoding: [0xc3]
%res = call <4 x double> @llvm.x86.avx.addsub.pd.256(<4 x double> %a0, <4 x double> %a1) ; <<4 x double>> [#uses=1]
ret <4 x double> %res
}
declare <4 x double> @llvm.x86.avx.addsub.pd.256(<4 x double>, <4 x double>) nounwind readnone
define <8 x float> @test_x86_avx_addsub_ps_256(<8 x float> %a0, <8 x float> %a1) {
; CHECK-LABEL: test_x86_avx_addsub_ps_256:
; CHECK: # %bb.0:
; CHECK-NEXT: vaddsubps %ymm1, %ymm0, %ymm0 # encoding: [0xc5,0xff,0xd0,0xc1]
; CHECK-NEXT: ret{{[l|q]}} # encoding: [0xc3]
%res = call <8 x float> @llvm.x86.avx.addsub.ps.256(<8 x float> %a0, <8 x float> %a1) ; <<8 x float>> [#uses=1]
ret <8 x float> %res
}
declare <8 x float> @llvm.x86.avx.addsub.ps.256(<8 x float>, <8 x float>) nounwind readnone
define <4 x double> @test_x86_avx_blendv_pd_256(<4 x double> %a0, <4 x double> %a1, <4 x double> %a2) {
; CHECK-LABEL: test_x86_avx_blendv_pd_256:
; CHECK: # %bb.0:
; CHECK-NEXT: vblendvpd %ymm2, %ymm1, %ymm0, %ymm0 # encoding: [0xc4,0xe3,0x7d,0x4b,0xc1,0x20]
; CHECK-NEXT: ret{{[l|q]}} # encoding: [0xc3]
%res = call <4 x double> @llvm.x86.avx.blendv.pd.256(<4 x double> %a0, <4 x double> %a1, <4 x double> %a2) ; <<4 x double>> [#uses=1]
ret <4 x double> %res
}
declare <4 x double> @llvm.x86.avx.blendv.pd.256(<4 x double>, <4 x double>, <4 x double>) nounwind readnone
define <8 x float> @test_x86_avx_blendv_ps_256(<8 x float> %a0, <8 x float> %a1, <8 x float> %a2) {
; CHECK-LABEL: test_x86_avx_blendv_ps_256:
; CHECK: # %bb.0:
; CHECK-NEXT: vblendvps %ymm2, %ymm1, %ymm0, %ymm0 # encoding: [0xc4,0xe3,0x7d,0x4a,0xc1,0x20]
; CHECK-NEXT: ret{{[l|q]}} # encoding: [0xc3]
%res = call <8 x float> @llvm.x86.avx.blendv.ps.256(<8 x float> %a0, <8 x float> %a1, <8 x float> %a2) ; <<8 x float>> [#uses=1]
ret <8 x float> %res
}
declare <8 x float> @llvm.x86.avx.blendv.ps.256(<8 x float>, <8 x float>, <8 x float>) nounwind readnone
define <4 x double> @test_x86_avx_cmp_pd_256(<4 x double> %a0, <4 x double> %a1) {
; CHECK-LABEL: test_x86_avx_cmp_pd_256:
; CHECK: # %bb.0:
; CHECK-NEXT: vcmpordpd %ymm1, %ymm0, %ymm0 # encoding: [0xc5,0xfd,0xc2,0xc1,0x07]
; CHECK-NEXT: ret{{[l|q]}} # encoding: [0xc3]
%res = call <4 x double> @llvm.x86.avx.cmp.pd.256(<4 x double> %a0, <4 x double> %a1, i8 7) ; <<4 x double>> [#uses=1]
ret <4 x double> %res
}
declare <4 x double> @llvm.x86.avx.cmp.pd.256(<4 x double>, <4 x double>, i8) nounwind readnone
define <8 x float> @test_x86_avx_cmp_ps_256(<8 x float> %a0, <8 x float> %a1) {
; CHECK-LABEL: test_x86_avx_cmp_ps_256:
; CHECK: # %bb.0:
; CHECK-NEXT: vcmpordps %ymm1, %ymm0, %ymm0 # encoding: [0xc5,0xfc,0xc2,0xc1,0x07]
; CHECK-NEXT: ret{{[l|q]}} # encoding: [0xc3]
%res = call <8 x float> @llvm.x86.avx.cmp.ps.256(<8 x float> %a0, <8 x float> %a1, i8 7) ; <<8 x float>> [#uses=1]
ret <8 x float> %res
}
define <8 x float> @test_x86_avx_cmp_ps_256_pseudo_op(<8 x float> %a0, <8 x float> %a1) {
; CHECK-LABEL: test_x86_avx_cmp_ps_256_pseudo_op:
; CHECK: # %bb.0:
; CHECK-NEXT: vcmpeqps %ymm1, %ymm0, %ymm1 # encoding: [0xc5,0xfc,0xc2,0xc9,0x00]
; CHECK-NEXT: vcmpltps %ymm1, %ymm0, %ymm1 # encoding: [0xc5,0xfc,0xc2,0xc9,0x01]
; CHECK-NEXT: vcmpleps %ymm1, %ymm0, %ymm1 # encoding: [0xc5,0xfc,0xc2,0xc9,0x02]
; CHECK-NEXT: vcmpunordps %ymm1, %ymm0, %ymm1 # encoding: [0xc5,0xfc,0xc2,0xc9,0x03]
; CHECK-NEXT: vcmpneqps %ymm1, %ymm0, %ymm1 # encoding: [0xc5,0xfc,0xc2,0xc9,0x04]
; CHECK-NEXT: vcmpnltps %ymm1, %ymm0, %ymm1 # encoding: [0xc5,0xfc,0xc2,0xc9,0x05]
; CHECK-NEXT: vcmpnleps %ymm1, %ymm0, %ymm1 # encoding: [0xc5,0xfc,0xc2,0xc9,0x06]
; CHECK-NEXT: vcmpordps %ymm1, %ymm0, %ymm1 # encoding: [0xc5,0xfc,0xc2,0xc9,0x07]
; CHECK-NEXT: vcmpeq_uqps %ymm1, %ymm0, %ymm1 # encoding: [0xc5,0xfc,0xc2,0xc9,0x08]
; CHECK-NEXT: vcmpngeps %ymm1, %ymm0, %ymm1 # encoding: [0xc5,0xfc,0xc2,0xc9,0x09]
; CHECK-NEXT: vcmpngtps %ymm1, %ymm0, %ymm1 # encoding: [0xc5,0xfc,0xc2,0xc9,0x0a]
; CHECK-NEXT: vcmpfalseps %ymm1, %ymm0, %ymm1 # encoding: [0xc5,0xfc,0xc2,0xc9,0x0b]
; CHECK-NEXT: vcmpneq_oqps %ymm1, %ymm0, %ymm1 # encoding: [0xc5,0xfc,0xc2,0xc9,0x0c]
; CHECK-NEXT: vcmpgeps %ymm1, %ymm0, %ymm1 # encoding: [0xc5,0xfc,0xc2,0xc9,0x0d]
; CHECK-NEXT: vcmpgtps %ymm1, %ymm0, %ymm1 # encoding: [0xc5,0xfc,0xc2,0xc9,0x0e]
; CHECK-NEXT: vcmptrueps %ymm1, %ymm0, %ymm1 # encoding: [0xc5,0xfc,0xc2,0xc9,0x0f]
; CHECK-NEXT: vcmpeq_osps %ymm1, %ymm0, %ymm1 # encoding: [0xc5,0xfc,0xc2,0xc9,0x10]
; CHECK-NEXT: vcmplt_oqps %ymm1, %ymm0, %ymm1 # encoding: [0xc5,0xfc,0xc2,0xc9,0x11]
; CHECK-NEXT: vcmple_oqps %ymm1, %ymm0, %ymm1 # encoding: [0xc5,0xfc,0xc2,0xc9,0x12]
; CHECK-NEXT: vcmpunord_sps %ymm1, %ymm0, %ymm1 # encoding: [0xc5,0xfc,0xc2,0xc9,0x13]
; CHECK-NEXT: vcmpneq_usps %ymm1, %ymm0, %ymm1 # encoding: [0xc5,0xfc,0xc2,0xc9,0x14]
; CHECK-NEXT: vcmpnlt_uqps %ymm1, %ymm0, %ymm1 # encoding: [0xc5,0xfc,0xc2,0xc9,0x15]
; CHECK-NEXT: vcmpnle_uqps %ymm1, %ymm0, %ymm1 # encoding: [0xc5,0xfc,0xc2,0xc9,0x16]
; CHECK-NEXT: vcmpord_sps %ymm1, %ymm0, %ymm1 # encoding: [0xc5,0xfc,0xc2,0xc9,0x17]
; CHECK-NEXT: vcmpeq_usps %ymm1, %ymm0, %ymm1 # encoding: [0xc5,0xfc,0xc2,0xc9,0x18]
; CHECK-NEXT: vcmpnge_uqps %ymm1, %ymm0, %ymm1 # encoding: [0xc5,0xfc,0xc2,0xc9,0x19]
; CHECK-NEXT: vcmpngt_uqps %ymm1, %ymm0, %ymm1 # encoding: [0xc5,0xfc,0xc2,0xc9,0x1a]
; CHECK-NEXT: vcmpfalse_osps %ymm1, %ymm0, %ymm1 # encoding: [0xc5,0xfc,0xc2,0xc9,0x1b]
; CHECK-NEXT: vcmpneq_osps %ymm1, %ymm0, %ymm1 # encoding: [0xc5,0xfc,0xc2,0xc9,0x1c]
; CHECK-NEXT: vcmpge_oqps %ymm1, %ymm0, %ymm1 # encoding: [0xc5,0xfc,0xc2,0xc9,0x1d]
; CHECK-NEXT: vcmpgt_oqps %ymm1, %ymm0, %ymm1 # encoding: [0xc5,0xfc,0xc2,0xc9,0x1e]
; CHECK-NEXT: vcmptrue_usps %ymm1, %ymm0, %ymm0 # encoding: [0xc5,0xfc,0xc2,0xc1,0x1f]
; CHECK-NEXT: ret{{[l|q]}} # encoding: [0xc3]
%a2 = call <8 x float> @llvm.x86.avx.cmp.ps.256(<8 x float> %a0, <8 x float> %a1, i8 0) ; <<8 x float>> [#uses=1]
%a3 = call <8 x float> @llvm.x86.avx.cmp.ps.256(<8 x float> %a0, <8 x float> %a2, i8 1) ; <<8 x float>> [#uses=1]
%a4 = call <8 x float> @llvm.x86.avx.cmp.ps.256(<8 x float> %a0, <8 x float> %a3, i8 2) ; <<8 x float>> [#uses=1]
%a5 = call <8 x float> @llvm.x86.avx.cmp.ps.256(<8 x float> %a0, <8 x float> %a4, i8 3) ; <<8 x float>> [#uses=1]
%a6 = call <8 x float> @llvm.x86.avx.cmp.ps.256(<8 x float> %a0, <8 x float> %a5, i8 4) ; <<8 x float>> [#uses=1]
%a7 = call <8 x float> @llvm.x86.avx.cmp.ps.256(<8 x float> %a0, <8 x float> %a6, i8 5) ; <<8 x float>> [#uses=1]
%a8 = call <8 x float> @llvm.x86.avx.cmp.ps.256(<8 x float> %a0, <8 x float> %a7, i8 6) ; <<8 x float>> [#uses=1]
%a9 = call <8 x float> @llvm.x86.avx.cmp.ps.256(<8 x float> %a0, <8 x float> %a8, i8 7) ; <<8 x float>> [#uses=1]
%a10 = call <8 x float> @llvm.x86.avx.cmp.ps.256(<8 x float> %a0, <8 x float> %a9, i8 8) ; <<8 x float>> [#uses=1]
%a11 = call <8 x float> @llvm.x86.avx.cmp.ps.256(<8 x float> %a0, <8 x float> %a10, i8 9) ; <<8 x float>> [#uses=1]
%a12 = call <8 x float> @llvm.x86.avx.cmp.ps.256(<8 x float> %a0, <8 x float> %a11, i8 10) ; <<8 x float>> [#uses=1]
%a13 = call <8 x float> @llvm.x86.avx.cmp.ps.256(<8 x float> %a0, <8 x float> %a12, i8 11) ; <<8 x float>> [#uses=1]
%a14 = call <8 x float> @llvm.x86.avx.cmp.ps.256(<8 x float> %a0, <8 x float> %a13, i8 12) ; <<8 x float>> [#uses=1]
%a15 = call <8 x float> @llvm.x86.avx.cmp.ps.256(<8 x float> %a0, <8 x float> %a14, i8 13) ; <<8 x float>> [#uses=1]
%a16 = call <8 x float> @llvm.x86.avx.cmp.ps.256(<8 x float> %a0, <8 x float> %a15, i8 14) ; <<8 x float>> [#uses=1]
%a17 = call <8 x float> @llvm.x86.avx.cmp.ps.256(<8 x float> %a0, <8 x float> %a16, i8 15) ; <<8 x float>> [#uses=1]
%a18 = call <8 x float> @llvm.x86.avx.cmp.ps.256(<8 x float> %a0, <8 x float> %a17, i8 16) ; <<8 x float>> [#uses=1]
%a19 = call <8 x float> @llvm.x86.avx.cmp.ps.256(<8 x float> %a0, <8 x float> %a18, i8 17) ; <<8 x float>> [#uses=1]
%a20 = call <8 x float> @llvm.x86.avx.cmp.ps.256(<8 x float> %a0, <8 x float> %a19, i8 18) ; <<8 x float>> [#uses=1]
%a21 = call <8 x float> @llvm.x86.avx.cmp.ps.256(<8 x float> %a0, <8 x float> %a20, i8 19) ; <<8 x float>> [#uses=1]
%a22 = call <8 x float> @llvm.x86.avx.cmp.ps.256(<8 x float> %a0, <8 x float> %a21, i8 20) ; <<8 x float>> [#uses=1]
%a23 = call <8 x float> @llvm.x86.avx.cmp.ps.256(<8 x float> %a0, <8 x float> %a22, i8 21) ; <<8 x float>> [#uses=1]
%a24 = call <8 x float> @llvm.x86.avx.cmp.ps.256(<8 x float> %a0, <8 x float> %a23, i8 22) ; <<8 x float>> [#uses=1]
%a25 = call <8 x float> @llvm.x86.avx.cmp.ps.256(<8 x float> %a0, <8 x float> %a24, i8 23) ; <<8 x float>> [#uses=1]
%a26 = call <8 x float> @llvm.x86.avx.cmp.ps.256(<8 x float> %a0, <8 x float> %a25, i8 24) ; <<8 x float>> [#uses=1]
%a27 = call <8 x float> @llvm.x86.avx.cmp.ps.256(<8 x float> %a0, <8 x float> %a26, i8 25) ; <<8 x float>> [#uses=1]
%a28 = call <8 x float> @llvm.x86.avx.cmp.ps.256(<8 x float> %a0, <8 x float> %a27, i8 26) ; <<8 x float>> [#uses=1]
%a29 = call <8 x float> @llvm.x86.avx.cmp.ps.256(<8 x float> %a0, <8 x float> %a28, i8 27) ; <<8 x float>> [#uses=1]
%a30 = call <8 x float> @llvm.x86.avx.cmp.ps.256(<8 x float> %a0, <8 x float> %a29, i8 28) ; <<8 x float>> [#uses=1]
%a31 = call <8 x float> @llvm.x86.avx.cmp.ps.256(<8 x float> %a0, <8 x float> %a30, i8 29) ; <<8 x float>> [#uses=1]
%a32 = call <8 x float> @llvm.x86.avx.cmp.ps.256(<8 x float> %a0, <8 x float> %a31, i8 30) ; <<8 x float>> [#uses=1]
%res = call <8 x float> @llvm.x86.avx.cmp.ps.256(<8 x float> %a0, <8 x float> %a32, i8 31) ; <<8 x float>> [#uses=1]
ret <8 x float> %res
}
declare <8 x float> @llvm.x86.avx.cmp.ps.256(<8 x float>, <8 x float>, i8) nounwind readnone
define <4 x float> @test_x86_avx_cvt_pd2_ps_256(<4 x double> %a0) {
; AVX-LABEL: test_x86_avx_cvt_pd2_ps_256:
; AVX: # %bb.0:
; AVX-NEXT: vcvtpd2ps %ymm0, %xmm0 # encoding: [0xc5,0xfd,0x5a,0xc0]
; AVX-NEXT: vzeroupper # encoding: [0xc5,0xf8,0x77]
; AVX-NEXT: ret{{[l|q]}} # encoding: [0xc3]
;
; AVX512VL-LABEL: test_x86_avx_cvt_pd2_ps_256:
; AVX512VL: # %bb.0:
; AVX512VL-NEXT: vcvtpd2ps %ymm0, %xmm0 # EVEX TO VEX Compression encoding: [0xc5,0xfd,0x5a,0xc0]
; AVX512VL-NEXT: vzeroupper # encoding: [0xc5,0xf8,0x77]
; AVX512VL-NEXT: ret{{[l|q]}} # encoding: [0xc3]
%res = call <4 x float> @llvm.x86.avx.cvt.pd2.ps.256(<4 x double> %a0) ; <<4 x float>> [#uses=1]
ret <4 x float> %res
}
declare <4 x float> @llvm.x86.avx.cvt.pd2.ps.256(<4 x double>) nounwind readnone
define <4 x i32> @test_x86_avx_cvt_pd2dq_256(<4 x double> %a0) {
; AVX-LABEL: test_x86_avx_cvt_pd2dq_256:
; AVX: # %bb.0:
; AVX-NEXT: vcvtpd2dq %ymm0, %xmm0 # encoding: [0xc5,0xff,0xe6,0xc0]
; AVX-NEXT: vzeroupper # encoding: [0xc5,0xf8,0x77]
; AVX-NEXT: ret{{[l|q]}} # encoding: [0xc3]
;
; AVX512VL-LABEL: test_x86_avx_cvt_pd2dq_256:
; AVX512VL: # %bb.0:
; AVX512VL-NEXT: vcvtpd2dq %ymm0, %xmm0 # EVEX TO VEX Compression encoding: [0xc5,0xff,0xe6,0xc0]
; AVX512VL-NEXT: vzeroupper # encoding: [0xc5,0xf8,0x77]
; AVX512VL-NEXT: ret{{[l|q]}} # encoding: [0xc3]
%res = call <4 x i32> @llvm.x86.avx.cvt.pd2dq.256(<4 x double> %a0) ; <<4 x i32>> [#uses=1]
ret <4 x i32> %res
}
declare <4 x i32> @llvm.x86.avx.cvt.pd2dq.256(<4 x double>) nounwind readnone
define <8 x i32> @test_x86_avx_cvt_ps2dq_256(<8 x float> %a0) {
; AVX-LABEL: test_x86_avx_cvt_ps2dq_256:
; AVX: # %bb.0:
; AVX-NEXT: vcvtps2dq %ymm0, %ymm0 # encoding: [0xc5,0xfd,0x5b,0xc0]
; AVX-NEXT: ret{{[l|q]}} # encoding: [0xc3]
;
; AVX512VL-LABEL: test_x86_avx_cvt_ps2dq_256:
; AVX512VL: # %bb.0:
; AVX512VL-NEXT: vcvtps2dq %ymm0, %ymm0 # EVEX TO VEX Compression encoding: [0xc5,0xfd,0x5b,0xc0]
; AVX512VL-NEXT: ret{{[l|q]}} # encoding: [0xc3]
%res = call <8 x i32> @llvm.x86.avx.cvt.ps2dq.256(<8 x float> %a0) ; <<8 x i32>> [#uses=1]
ret <8 x i32> %res
}
declare <8 x i32> @llvm.x86.avx.cvt.ps2dq.256(<8 x float>) nounwind readnone
define <4 x i32> @test_x86_avx_cvtt_pd2dq_256(<4 x double> %a0) {
; AVX-LABEL: test_x86_avx_cvtt_pd2dq_256:
; AVX: # %bb.0:
; AVX-NEXT: vcvttpd2dq %ymm0, %xmm0 # encoding: [0xc5,0xfd,0xe6,0xc0]
; AVX-NEXT: vzeroupper # encoding: [0xc5,0xf8,0x77]
; AVX-NEXT: ret{{[l|q]}} # encoding: [0xc3]
;
; AVX512VL-LABEL: test_x86_avx_cvtt_pd2dq_256:
; AVX512VL: # %bb.0:
; AVX512VL-NEXT: vcvttpd2dq %ymm0, %xmm0 # EVEX TO VEX Compression encoding: [0xc5,0xfd,0xe6,0xc0]
; AVX512VL-NEXT: vzeroupper # encoding: [0xc5,0xf8,0x77]
; AVX512VL-NEXT: ret{{[l|q]}} # encoding: [0xc3]
%res = call <4 x i32> @llvm.x86.avx.cvtt.pd2dq.256(<4 x double> %a0) ; <<4 x i32>> [#uses=1]
ret <4 x i32> %res
}
declare <4 x i32> @llvm.x86.avx.cvtt.pd2dq.256(<4 x double>) nounwind readnone
define <8 x i32> @test_x86_avx_cvtt_ps2dq_256(<8 x float> %a0) {
; AVX-LABEL: test_x86_avx_cvtt_ps2dq_256:
; AVX: # %bb.0:
; AVX-NEXT: vcvttps2dq %ymm0, %ymm0 # encoding: [0xc5,0xfe,0x5b,0xc0]
; AVX-NEXT: ret{{[l|q]}} # encoding: [0xc3]
;
; AVX512VL-LABEL: test_x86_avx_cvtt_ps2dq_256:
; AVX512VL: # %bb.0:
; AVX512VL-NEXT: vcvttps2dq %ymm0, %ymm0 # EVEX TO VEX Compression encoding: [0xc5,0xfe,0x5b,0xc0]
; AVX512VL-NEXT: ret{{[l|q]}} # encoding: [0xc3]
%res = call <8 x i32> @llvm.x86.avx.cvtt.ps2dq.256(<8 x float> %a0) ; <<8 x i32>> [#uses=1]
ret <8 x i32> %res
}
declare <8 x i32> @llvm.x86.avx.cvtt.ps2dq.256(<8 x float>) nounwind readnone
define <8 x float> @test_x86_avx_dp_ps_256(<8 x float> %a0, <8 x float> %a1) {
; CHECK-LABEL: test_x86_avx_dp_ps_256:
; CHECK: # %bb.0:
; CHECK-NEXT: vdpps $7, %ymm1, %ymm0, %ymm0 # encoding: [0xc4,0xe3,0x7d,0x40,0xc1,0x07]
; CHECK-NEXT: ret{{[l|q]}} # encoding: [0xc3]
[x86] Fix a pretty horrible bug and inconsistency in the x86 asm parsing (and latent bug in the instruction definitions). This is effectively a revert of r136287 which tried to address a specific and narrow case of immediate operands failing to be accepted by x86 instructions with a pretty heavy hammer: it introduced a new kind of operand that behaved differently. All of that is removed with this commit, but the test cases are both preserved and enhanced. The core problem that r136287 and this commit are trying to handle is that gas accepts both of the following instructions: insertps $192, %xmm0, %xmm1 insertps $-64, %xmm0, %xmm1 These will encode to the same byte sequence, with the immediate occupying an 8-bit entry. The first form was fixed by r136287 but that broke the prior handling of the second form! =[ Ironically, we would still emit the second form in some cases and then be unable to re-assemble the output. The reason why the first instruction failed to be handled is because prior to r136287 the operands ere marked 'i32i8imm' which forces them to be sign-extenable. Clearly, that won't work for 192 in a single byte. However, making thim zero-extended or "unsigned" doesn't really address the core issue either because it breaks negative immediates. The correct fix is to make these operands 'i8imm' reflecting that they can be either signed or unsigned but must be 8-bit immediates. This patch backs out r136287 and then changes those places as well as some others to use 'i8imm' rather than one of the extended variants. Naturally, this broke something else. The custom DAG nodes had to be updated to have a much more accurate type constraint of an i8 node, and a bunch of Pat immediates needed to be specified as i8 values. The fallout didn't end there though. We also then ceased to be able to match the instruction-specific intrinsics to the instructions so modified. Digging, this is because they too used i32 rather than i8 in their signature. So I've also switched those intrinsics to i8 arguments in line with the instructions. In order to make the intrinsic adjustments of course, I also had to add auto upgrading for the intrinsics. I suspect that the intrinsic argument types may have led everything down this rabbit hole. Pretty happy with the result. llvm-svn: 217310
2014-09-06 18:00:01 +08:00
%res = call <8 x float> @llvm.x86.avx.dp.ps.256(<8 x float> %a0, <8 x float> %a1, i8 7) ; <<8 x float>> [#uses=1]
ret <8 x float> %res
}
[x86] Fix a pretty horrible bug and inconsistency in the x86 asm parsing (and latent bug in the instruction definitions). This is effectively a revert of r136287 which tried to address a specific and narrow case of immediate operands failing to be accepted by x86 instructions with a pretty heavy hammer: it introduced a new kind of operand that behaved differently. All of that is removed with this commit, but the test cases are both preserved and enhanced. The core problem that r136287 and this commit are trying to handle is that gas accepts both of the following instructions: insertps $192, %xmm0, %xmm1 insertps $-64, %xmm0, %xmm1 These will encode to the same byte sequence, with the immediate occupying an 8-bit entry. The first form was fixed by r136287 but that broke the prior handling of the second form! =[ Ironically, we would still emit the second form in some cases and then be unable to re-assemble the output. The reason why the first instruction failed to be handled is because prior to r136287 the operands ere marked 'i32i8imm' which forces them to be sign-extenable. Clearly, that won't work for 192 in a single byte. However, making thim zero-extended or "unsigned" doesn't really address the core issue either because it breaks negative immediates. The correct fix is to make these operands 'i8imm' reflecting that they can be either signed or unsigned but must be 8-bit immediates. This patch backs out r136287 and then changes those places as well as some others to use 'i8imm' rather than one of the extended variants. Naturally, this broke something else. The custom DAG nodes had to be updated to have a much more accurate type constraint of an i8 node, and a bunch of Pat immediates needed to be specified as i8 values. The fallout didn't end there though. We also then ceased to be able to match the instruction-specific intrinsics to the instructions so modified. Digging, this is because they too used i32 rather than i8 in their signature. So I've also switched those intrinsics to i8 arguments in line with the instructions. In order to make the intrinsic adjustments of course, I also had to add auto upgrading for the intrinsics. I suspect that the intrinsic argument types may have led everything down this rabbit hole. Pretty happy with the result. llvm-svn: 217310
2014-09-06 18:00:01 +08:00
declare <8 x float> @llvm.x86.avx.dp.ps.256(<8 x float>, <8 x float>, i8) nounwind readnone
define <4 x double> @test_x86_avx_hadd_pd_256(<4 x double> %a0, <4 x double> %a1) {
; CHECK-LABEL: test_x86_avx_hadd_pd_256:
; CHECK: # %bb.0:
; CHECK-NEXT: vhaddpd %ymm1, %ymm0, %ymm0 # encoding: [0xc5,0xfd,0x7c,0xc1]
; CHECK-NEXT: ret{{[l|q]}} # encoding: [0xc3]
%res = call <4 x double> @llvm.x86.avx.hadd.pd.256(<4 x double> %a0, <4 x double> %a1) ; <<4 x double>> [#uses=1]
ret <4 x double> %res
}
declare <4 x double> @llvm.x86.avx.hadd.pd.256(<4 x double>, <4 x double>) nounwind readnone
define <8 x float> @test_x86_avx_hadd_ps_256(<8 x float> %a0, <8 x float> %a1) {
; CHECK-LABEL: test_x86_avx_hadd_ps_256:
; CHECK: # %bb.0:
; CHECK-NEXT: vhaddps %ymm1, %ymm0, %ymm0 # encoding: [0xc5,0xff,0x7c,0xc1]
; CHECK-NEXT: ret{{[l|q]}} # encoding: [0xc3]
%res = call <8 x float> @llvm.x86.avx.hadd.ps.256(<8 x float> %a0, <8 x float> %a1) ; <<8 x float>> [#uses=1]
ret <8 x float> %res
}
declare <8 x float> @llvm.x86.avx.hadd.ps.256(<8 x float>, <8 x float>) nounwind readnone
define <4 x double> @test_x86_avx_hsub_pd_256(<4 x double> %a0, <4 x double> %a1) {
; CHECK-LABEL: test_x86_avx_hsub_pd_256:
; CHECK: # %bb.0:
; CHECK-NEXT: vhsubpd %ymm1, %ymm0, %ymm0 # encoding: [0xc5,0xfd,0x7d,0xc1]
; CHECK-NEXT: ret{{[l|q]}} # encoding: [0xc3]
%res = call <4 x double> @llvm.x86.avx.hsub.pd.256(<4 x double> %a0, <4 x double> %a1) ; <<4 x double>> [#uses=1]
ret <4 x double> %res
}
declare <4 x double> @llvm.x86.avx.hsub.pd.256(<4 x double>, <4 x double>) nounwind readnone
define <8 x float> @test_x86_avx_hsub_ps_256(<8 x float> %a0, <8 x float> %a1) {
; CHECK-LABEL: test_x86_avx_hsub_ps_256:
; CHECK: # %bb.0:
; CHECK-NEXT: vhsubps %ymm1, %ymm0, %ymm0 # encoding: [0xc5,0xff,0x7d,0xc1]
; CHECK-NEXT: ret{{[l|q]}} # encoding: [0xc3]
%res = call <8 x float> @llvm.x86.avx.hsub.ps.256(<8 x float> %a0, <8 x float> %a1) ; <<8 x float>> [#uses=1]
ret <8 x float> %res
}
declare <8 x float> @llvm.x86.avx.hsub.ps.256(<8 x float>, <8 x float>) nounwind readnone
define <32 x i8> @test_x86_avx_ldu_dq_256(i8* %a0) {
; X86-LABEL: test_x86_avx_ldu_dq_256:
; X86: # %bb.0:
; X86-NEXT: movl {{[0-9]+}}(%esp), %eax # encoding: [0x8b,0x44,0x24,0x04]
; X86-NEXT: vlddqu (%eax), %ymm0 # encoding: [0xc5,0xff,0xf0,0x00]
; X86-NEXT: retl # encoding: [0xc3]
;
; X64-LABEL: test_x86_avx_ldu_dq_256:
; X64: # %bb.0:
; X64-NEXT: vlddqu (%rdi), %ymm0 # encoding: [0xc5,0xff,0xf0,0x07]
; X64-NEXT: retq # encoding: [0xc3]
%res = call <32 x i8> @llvm.x86.avx.ldu.dq.256(i8* %a0) ; <<32 x i8>> [#uses=1]
ret <32 x i8> %res
}
declare <32 x i8> @llvm.x86.avx.ldu.dq.256(i8*) nounwind readonly
define <2 x double> @test_x86_avx_maskload_pd(i8* %a0, <2 x i64> %mask) {
; X86-LABEL: test_x86_avx_maskload_pd:
; X86: # %bb.0:
; X86-NEXT: movl {{[0-9]+}}(%esp), %eax # encoding: [0x8b,0x44,0x24,0x04]
; X86-NEXT: vmaskmovpd (%eax), %xmm0, %xmm0 # encoding: [0xc4,0xe2,0x79,0x2d,0x00]
; X86-NEXT: retl # encoding: [0xc3]
;
; X64-LABEL: test_x86_avx_maskload_pd:
; X64: # %bb.0:
; X64-NEXT: vmaskmovpd (%rdi), %xmm0, %xmm0 # encoding: [0xc4,0xe2,0x79,0x2d,0x07]
; X64-NEXT: retq # encoding: [0xc3]
%res = call <2 x double> @llvm.x86.avx.maskload.pd(i8* %a0, <2 x i64> %mask) ; <<2 x double>> [#uses=1]
ret <2 x double> %res
}
declare <2 x double> @llvm.x86.avx.maskload.pd(i8*, <2 x i64>) nounwind readonly
define <4 x double> @test_x86_avx_maskload_pd_256(i8* %a0, <4 x i64> %mask) {
; X86-LABEL: test_x86_avx_maskload_pd_256:
; X86: # %bb.0:
; X86-NEXT: movl {{[0-9]+}}(%esp), %eax # encoding: [0x8b,0x44,0x24,0x04]
; X86-NEXT: vmaskmovpd (%eax), %ymm0, %ymm0 # encoding: [0xc4,0xe2,0x7d,0x2d,0x00]
; X86-NEXT: retl # encoding: [0xc3]
;
; X64-LABEL: test_x86_avx_maskload_pd_256:
; X64: # %bb.0:
; X64-NEXT: vmaskmovpd (%rdi), %ymm0, %ymm0 # encoding: [0xc4,0xe2,0x7d,0x2d,0x07]
; X64-NEXT: retq # encoding: [0xc3]
%res = call <4 x double> @llvm.x86.avx.maskload.pd.256(i8* %a0, <4 x i64> %mask) ; <<4 x double>> [#uses=1]
ret <4 x double> %res
}
declare <4 x double> @llvm.x86.avx.maskload.pd.256(i8*, <4 x i64>) nounwind readonly
define <4 x float> @test_x86_avx_maskload_ps(i8* %a0, <4 x i32> %mask) {
; X86-LABEL: test_x86_avx_maskload_ps:
; X86: # %bb.0:
; X86-NEXT: movl {{[0-9]+}}(%esp), %eax # encoding: [0x8b,0x44,0x24,0x04]
; X86-NEXT: vmaskmovps (%eax), %xmm0, %xmm0 # encoding: [0xc4,0xe2,0x79,0x2c,0x00]
; X86-NEXT: retl # encoding: [0xc3]
;
; X64-LABEL: test_x86_avx_maskload_ps:
; X64: # %bb.0:
; X64-NEXT: vmaskmovps (%rdi), %xmm0, %xmm0 # encoding: [0xc4,0xe2,0x79,0x2c,0x07]
; X64-NEXT: retq # encoding: [0xc3]
%res = call <4 x float> @llvm.x86.avx.maskload.ps(i8* %a0, <4 x i32> %mask) ; <<4 x float>> [#uses=1]
ret <4 x float> %res
}
declare <4 x float> @llvm.x86.avx.maskload.ps(i8*, <4 x i32>) nounwind readonly
define <8 x float> @test_x86_avx_maskload_ps_256(i8* %a0, <8 x i32> %mask) {
; X86-LABEL: test_x86_avx_maskload_ps_256:
; X86: # %bb.0:
; X86-NEXT: movl {{[0-9]+}}(%esp), %eax # encoding: [0x8b,0x44,0x24,0x04]
; X86-NEXT: vmaskmovps (%eax), %ymm0, %ymm0 # encoding: [0xc4,0xe2,0x7d,0x2c,0x00]
; X86-NEXT: retl # encoding: [0xc3]
;
; X64-LABEL: test_x86_avx_maskload_ps_256:
; X64: # %bb.0:
; X64-NEXT: vmaskmovps (%rdi), %ymm0, %ymm0 # encoding: [0xc4,0xe2,0x7d,0x2c,0x07]
; X64-NEXT: retq # encoding: [0xc3]
%res = call <8 x float> @llvm.x86.avx.maskload.ps.256(i8* %a0, <8 x i32> %mask) ; <<8 x float>> [#uses=1]
ret <8 x float> %res
}
declare <8 x float> @llvm.x86.avx.maskload.ps.256(i8*, <8 x i32>) nounwind readonly
define void @test_x86_avx_maskstore_pd(i8* %a0, <2 x i64> %mask, <2 x double> %a2) {
; X86-LABEL: test_x86_avx_maskstore_pd:
; X86: # %bb.0:
; X86-NEXT: movl {{[0-9]+}}(%esp), %eax # encoding: [0x8b,0x44,0x24,0x04]
; X86-NEXT: vmaskmovpd %xmm1, %xmm0, (%eax) # encoding: [0xc4,0xe2,0x79,0x2f,0x08]
; X86-NEXT: retl # encoding: [0xc3]
;
; X64-LABEL: test_x86_avx_maskstore_pd:
; X64: # %bb.0:
; X64-NEXT: vmaskmovpd %xmm1, %xmm0, (%rdi) # encoding: [0xc4,0xe2,0x79,0x2f,0x0f]
; X64-NEXT: retq # encoding: [0xc3]
call void @llvm.x86.avx.maskstore.pd(i8* %a0, <2 x i64> %mask, <2 x double> %a2)
ret void
}
declare void @llvm.x86.avx.maskstore.pd(i8*, <2 x i64>, <2 x double>) nounwind
define void @test_x86_avx_maskstore_pd_256(i8* %a0, <4 x i64> %mask, <4 x double> %a2) {
; X86-LABEL: test_x86_avx_maskstore_pd_256:
; X86: # %bb.0:
; X86-NEXT: movl {{[0-9]+}}(%esp), %eax # encoding: [0x8b,0x44,0x24,0x04]
; X86-NEXT: vmaskmovpd %ymm1, %ymm0, (%eax) # encoding: [0xc4,0xe2,0x7d,0x2f,0x08]
; X86-NEXT: vzeroupper # encoding: [0xc5,0xf8,0x77]
; X86-NEXT: retl # encoding: [0xc3]
;
; X64-LABEL: test_x86_avx_maskstore_pd_256:
; X64: # %bb.0:
; X64-NEXT: vmaskmovpd %ymm1, %ymm0, (%rdi) # encoding: [0xc4,0xe2,0x7d,0x2f,0x0f]
; X64-NEXT: vzeroupper # encoding: [0xc5,0xf8,0x77]
; X64-NEXT: retq # encoding: [0xc3]
call void @llvm.x86.avx.maskstore.pd.256(i8* %a0, <4 x i64> %mask, <4 x double> %a2)
ret void
}
declare void @llvm.x86.avx.maskstore.pd.256(i8*, <4 x i64>, <4 x double>) nounwind
define void @test_x86_avx_maskstore_ps(i8* %a0, <4 x i32> %mask, <4 x float> %a2) {
; X86-LABEL: test_x86_avx_maskstore_ps:
; X86: # %bb.0:
; X86-NEXT: movl {{[0-9]+}}(%esp), %eax # encoding: [0x8b,0x44,0x24,0x04]
; X86-NEXT: vmaskmovps %xmm1, %xmm0, (%eax) # encoding: [0xc4,0xe2,0x79,0x2e,0x08]
; X86-NEXT: retl # encoding: [0xc3]
;
; X64-LABEL: test_x86_avx_maskstore_ps:
; X64: # %bb.0:
; X64-NEXT: vmaskmovps %xmm1, %xmm0, (%rdi) # encoding: [0xc4,0xe2,0x79,0x2e,0x0f]
; X64-NEXT: retq # encoding: [0xc3]
call void @llvm.x86.avx.maskstore.ps(i8* %a0, <4 x i32> %mask, <4 x float> %a2)
ret void
}
declare void @llvm.x86.avx.maskstore.ps(i8*, <4 x i32>, <4 x float>) nounwind
define void @test_x86_avx_maskstore_ps_256(i8* %a0, <8 x i32> %mask, <8 x float> %a2) {
; X86-LABEL: test_x86_avx_maskstore_ps_256:
; X86: # %bb.0:
; X86-NEXT: movl {{[0-9]+}}(%esp), %eax # encoding: [0x8b,0x44,0x24,0x04]
; X86-NEXT: vmaskmovps %ymm1, %ymm0, (%eax) # encoding: [0xc4,0xe2,0x7d,0x2e,0x08]
; X86-NEXT: vzeroupper # encoding: [0xc5,0xf8,0x77]
; X86-NEXT: retl # encoding: [0xc3]
;
; X64-LABEL: test_x86_avx_maskstore_ps_256:
; X64: # %bb.0:
; X64-NEXT: vmaskmovps %ymm1, %ymm0, (%rdi) # encoding: [0xc4,0xe2,0x7d,0x2e,0x0f]
; X64-NEXT: vzeroupper # encoding: [0xc5,0xf8,0x77]
; X64-NEXT: retq # encoding: [0xc3]
call void @llvm.x86.avx.maskstore.ps.256(i8* %a0, <8 x i32> %mask, <8 x float> %a2)
ret void
}
declare void @llvm.x86.avx.maskstore.ps.256(i8*, <8 x i32>, <8 x float>) nounwind
define <4 x double> @test_x86_avx_max_pd_256(<4 x double> %a0, <4 x double> %a1) {
; AVX-LABEL: test_x86_avx_max_pd_256:
; AVX: # %bb.0:
; AVX-NEXT: vmaxpd %ymm1, %ymm0, %ymm0 # encoding: [0xc5,0xfd,0x5f,0xc1]
; AVX-NEXT: ret{{[l|q]}} # encoding: [0xc3]
;
; AVX512VL-LABEL: test_x86_avx_max_pd_256:
; AVX512VL: # %bb.0:
; AVX512VL-NEXT: vmaxpd %ymm1, %ymm0, %ymm0 # EVEX TO VEX Compression encoding: [0xc5,0xfd,0x5f,0xc1]
; AVX512VL-NEXT: ret{{[l|q]}} # encoding: [0xc3]
%res = call <4 x double> @llvm.x86.avx.max.pd.256(<4 x double> %a0, <4 x double> %a1) ; <<4 x double>> [#uses=1]
ret <4 x double> %res
}
declare <4 x double> @llvm.x86.avx.max.pd.256(<4 x double>, <4 x double>) nounwind readnone
define <8 x float> @test_x86_avx_max_ps_256(<8 x float> %a0, <8 x float> %a1) {
; AVX-LABEL: test_x86_avx_max_ps_256:
; AVX: # %bb.0:
; AVX-NEXT: vmaxps %ymm1, %ymm0, %ymm0 # encoding: [0xc5,0xfc,0x5f,0xc1]
; AVX-NEXT: ret{{[l|q]}} # encoding: [0xc3]
;
; AVX512VL-LABEL: test_x86_avx_max_ps_256:
; AVX512VL: # %bb.0:
; AVX512VL-NEXT: vmaxps %ymm1, %ymm0, %ymm0 # EVEX TO VEX Compression encoding: [0xc5,0xfc,0x5f,0xc1]
; AVX512VL-NEXT: ret{{[l|q]}} # encoding: [0xc3]
%res = call <8 x float> @llvm.x86.avx.max.ps.256(<8 x float> %a0, <8 x float> %a1) ; <<8 x float>> [#uses=1]
ret <8 x float> %res
}
declare <8 x float> @llvm.x86.avx.max.ps.256(<8 x float>, <8 x float>) nounwind readnone
define <4 x double> @test_x86_avx_min_pd_256(<4 x double> %a0, <4 x double> %a1) {
; AVX-LABEL: test_x86_avx_min_pd_256:
; AVX: # %bb.0:
; AVX-NEXT: vminpd %ymm1, %ymm0, %ymm0 # encoding: [0xc5,0xfd,0x5d,0xc1]
; AVX-NEXT: ret{{[l|q]}} # encoding: [0xc3]
;
; AVX512VL-LABEL: test_x86_avx_min_pd_256:
; AVX512VL: # %bb.0:
; AVX512VL-NEXT: vminpd %ymm1, %ymm0, %ymm0 # EVEX TO VEX Compression encoding: [0xc5,0xfd,0x5d,0xc1]
; AVX512VL-NEXT: ret{{[l|q]}} # encoding: [0xc3]
%res = call <4 x double> @llvm.x86.avx.min.pd.256(<4 x double> %a0, <4 x double> %a1) ; <<4 x double>> [#uses=1]
ret <4 x double> %res
}
declare <4 x double> @llvm.x86.avx.min.pd.256(<4 x double>, <4 x double>) nounwind readnone
define <8 x float> @test_x86_avx_min_ps_256(<8 x float> %a0, <8 x float> %a1) {
; AVX-LABEL: test_x86_avx_min_ps_256:
; AVX: # %bb.0:
; AVX-NEXT: vminps %ymm1, %ymm0, %ymm0 # encoding: [0xc5,0xfc,0x5d,0xc1]
; AVX-NEXT: ret{{[l|q]}} # encoding: [0xc3]
;
; AVX512VL-LABEL: test_x86_avx_min_ps_256:
; AVX512VL: # %bb.0:
; AVX512VL-NEXT: vminps %ymm1, %ymm0, %ymm0 # EVEX TO VEX Compression encoding: [0xc5,0xfc,0x5d,0xc1]
; AVX512VL-NEXT: ret{{[l|q]}} # encoding: [0xc3]
%res = call <8 x float> @llvm.x86.avx.min.ps.256(<8 x float> %a0, <8 x float> %a1) ; <<8 x float>> [#uses=1]
ret <8 x float> %res
}
declare <8 x float> @llvm.x86.avx.min.ps.256(<8 x float>, <8 x float>) nounwind readnone
define i32 @test_x86_avx_movmsk_pd_256(<4 x double> %a0) {
; CHECK-LABEL: test_x86_avx_movmsk_pd_256:
; CHECK: # %bb.0:
; CHECK-NEXT: vmovmskpd %ymm0, %eax # encoding: [0xc5,0xfd,0x50,0xc0]
; CHECK-NEXT: vzeroupper # encoding: [0xc5,0xf8,0x77]
; CHECK-NEXT: ret{{[l|q]}} # encoding: [0xc3]
%res = call i32 @llvm.x86.avx.movmsk.pd.256(<4 x double> %a0) ; <i32> [#uses=1]
ret i32 %res
}
declare i32 @llvm.x86.avx.movmsk.pd.256(<4 x double>) nounwind readnone
define i32 @test_x86_avx_movmsk_ps_256(<8 x float> %a0) {
; CHECK-LABEL: test_x86_avx_movmsk_ps_256:
; CHECK: # %bb.0:
; CHECK-NEXT: vmovmskps %ymm0, %eax # encoding: [0xc5,0xfc,0x50,0xc0]
; CHECK-NEXT: vzeroupper # encoding: [0xc5,0xf8,0x77]
; CHECK-NEXT: ret{{[l|q]}} # encoding: [0xc3]
%res = call i32 @llvm.x86.avx.movmsk.ps.256(<8 x float> %a0) ; <i32> [#uses=1]
ret i32 %res
}
declare i32 @llvm.x86.avx.movmsk.ps.256(<8 x float>) nounwind readnone
define i32 @test_x86_avx_ptestc_256(<4 x i64> %a0, <4 x i64> %a1) {
; CHECK-LABEL: test_x86_avx_ptestc_256:
; CHECK: # %bb.0:
; CHECK-NEXT: xorl %eax, %eax # encoding: [0x31,0xc0]
; CHECK-NEXT: vptest %ymm1, %ymm0 # encoding: [0xc4,0xe2,0x7d,0x17,0xc1]
; CHECK-NEXT: setb %al # encoding: [0x0f,0x92,0xc0]
; CHECK-NEXT: vzeroupper # encoding: [0xc5,0xf8,0x77]
; CHECK-NEXT: ret{{[l|q]}} # encoding: [0xc3]
%res = call i32 @llvm.x86.avx.ptestc.256(<4 x i64> %a0, <4 x i64> %a1) ; <i32> [#uses=1]
ret i32 %res
}
declare i32 @llvm.x86.avx.ptestc.256(<4 x i64>, <4 x i64>) nounwind readnone
define i32 @test_x86_avx_ptestnzc_256(<4 x i64> %a0, <4 x i64> %a1) {
; CHECK-LABEL: test_x86_avx_ptestnzc_256:
; CHECK: # %bb.0:
; CHECK-NEXT: xorl %eax, %eax # encoding: [0x31,0xc0]
; CHECK-NEXT: vptest %ymm1, %ymm0 # encoding: [0xc4,0xe2,0x7d,0x17,0xc1]
; CHECK-NEXT: seta %al # encoding: [0x0f,0x97,0xc0]
; CHECK-NEXT: vzeroupper # encoding: [0xc5,0xf8,0x77]
; CHECK-NEXT: ret{{[l|q]}} # encoding: [0xc3]
%res = call i32 @llvm.x86.avx.ptestnzc.256(<4 x i64> %a0, <4 x i64> %a1) ; <i32> [#uses=1]
ret i32 %res
}
declare i32 @llvm.x86.avx.ptestnzc.256(<4 x i64>, <4 x i64>) nounwind readnone
define i32 @test_x86_avx_ptestz_256(<4 x i64> %a0, <4 x i64> %a1) {
; CHECK-LABEL: test_x86_avx_ptestz_256:
; CHECK: # %bb.0:
; CHECK-NEXT: xorl %eax, %eax # encoding: [0x31,0xc0]
; CHECK-NEXT: vptest %ymm1, %ymm0 # encoding: [0xc4,0xe2,0x7d,0x17,0xc1]
; CHECK-NEXT: sete %al # encoding: [0x0f,0x94,0xc0]
; CHECK-NEXT: vzeroupper # encoding: [0xc5,0xf8,0x77]
; CHECK-NEXT: ret{{[l|q]}} # encoding: [0xc3]
%res = call i32 @llvm.x86.avx.ptestz.256(<4 x i64> %a0, <4 x i64> %a1) ; <i32> [#uses=1]
ret i32 %res
}
declare i32 @llvm.x86.avx.ptestz.256(<4 x i64>, <4 x i64>) nounwind readnone
define <8 x float> @test_x86_avx_rcp_ps_256(<8 x float> %a0) {
[X86] Don't use RCP14 and RSQRT14 for reciprocal estimations or for legacy SSE rcp/rsqrt intrinsics when AVX512 features are enabled. Summary: AVX512 added RCP14 and RSQRT instructions which improve accuracy over the legacy RCP and RSQRT instruction, but not enough accuracy to remove the need for a Newton Raphson refinement. Currently we use these new instructions for the legacy packed SSE instrinics, but not the scalar instrinsics. And we use it for fast math optimization of division and reciprocal sqrt. I think switching the legacy instrinsics maybe surprising to the user since it changes the answer based on which processor you're using regardless of any fastmath settings. It's also weird that we did something different between scalar and packed. As far at the reciprocal estimation, I think it creates unnecessary deltas in our output behavior (and prevents EVEX->VEX). A little playing around with gcc and icc and godbolt suggest they don't change which instructions they use here. This patch adds new X86ISD nodes for the RCP14/RSQRT14 and uses those for the new intrinsics. Leaving the old intrinsics to use the old instructions. Going forward I think our focus should be on -Supporting 512-bit vectors, which will have to use the RCP14/RSQRT14. -Using RSQRT28/RCP28 to remove the Newton Raphson step on processors with AVX512ER -Supporting double precision. Reviewers: zvi, DavidKreitzer, RKSimon Reviewed By: RKSimon Subscribers: llvm-commits Differential Revision: https://reviews.llvm.org/D39583 llvm-svn: 317413
2017-11-05 02:26:41 +08:00
; CHECK-LABEL: test_x86_avx_rcp_ps_256:
; CHECK: # %bb.0:
[X86] Don't use RCP14 and RSQRT14 for reciprocal estimations or for legacy SSE rcp/rsqrt intrinsics when AVX512 features are enabled. Summary: AVX512 added RCP14 and RSQRT instructions which improve accuracy over the legacy RCP and RSQRT instruction, but not enough accuracy to remove the need for a Newton Raphson refinement. Currently we use these new instructions for the legacy packed SSE instrinics, but not the scalar instrinsics. And we use it for fast math optimization of division and reciprocal sqrt. I think switching the legacy instrinsics maybe surprising to the user since it changes the answer based on which processor you're using regardless of any fastmath settings. It's also weird that we did something different between scalar and packed. As far at the reciprocal estimation, I think it creates unnecessary deltas in our output behavior (and prevents EVEX->VEX). A little playing around with gcc and icc and godbolt suggest they don't change which instructions they use here. This patch adds new X86ISD nodes for the RCP14/RSQRT14 and uses those for the new intrinsics. Leaving the old intrinsics to use the old instructions. Going forward I think our focus should be on -Supporting 512-bit vectors, which will have to use the RCP14/RSQRT14. -Using RSQRT28/RCP28 to remove the Newton Raphson step on processors with AVX512ER -Supporting double precision. Reviewers: zvi, DavidKreitzer, RKSimon Reviewed By: RKSimon Subscribers: llvm-commits Differential Revision: https://reviews.llvm.org/D39583 llvm-svn: 317413
2017-11-05 02:26:41 +08:00
; CHECK-NEXT: vrcpps %ymm0, %ymm0 # encoding: [0xc5,0xfc,0x53,0xc0]
; CHECK-NEXT: ret{{[l|q]}} # encoding: [0xc3]
%res = call <8 x float> @llvm.x86.avx.rcp.ps.256(<8 x float> %a0) ; <<8 x float>> [#uses=1]
ret <8 x float> %res
}
declare <8 x float> @llvm.x86.avx.rcp.ps.256(<8 x float>) nounwind readnone
define <4 x double> @test_x86_avx_round_pd_256(<4 x double> %a0) {
; AVX-LABEL: test_x86_avx_round_pd_256:
; AVX: # %bb.0:
; AVX-NEXT: vroundpd $7, %ymm0, %ymm0 # encoding: [0xc4,0xe3,0x7d,0x09,0xc0,0x07]
; AVX-NEXT: ret{{[l|q]}} # encoding: [0xc3]
;
; AVX512VL-LABEL: test_x86_avx_round_pd_256:
; AVX512VL: # %bb.0:
; AVX512VL-NEXT: vroundpd $7, %ymm0, %ymm0 # EVEX TO VEX Compression encoding: [0xc4,0xe3,0x7d,0x09,0xc0,0x07]
; AVX512VL-NEXT: ret{{[l|q]}} # encoding: [0xc3]
%res = call <4 x double> @llvm.x86.avx.round.pd.256(<4 x double> %a0, i32 7) ; <<4 x double>> [#uses=1]
ret <4 x double> %res
}
declare <4 x double> @llvm.x86.avx.round.pd.256(<4 x double>, i32) nounwind readnone
define <8 x float> @test_x86_avx_round_ps_256(<8 x float> %a0) {
; AVX-LABEL: test_x86_avx_round_ps_256:
; AVX: # %bb.0:
; AVX-NEXT: vroundps $7, %ymm0, %ymm0 # encoding: [0xc4,0xe3,0x7d,0x08,0xc0,0x07]
; AVX-NEXT: ret{{[l|q]}} # encoding: [0xc3]
;
; AVX512VL-LABEL: test_x86_avx_round_ps_256:
; AVX512VL: # %bb.0:
; AVX512VL-NEXT: vroundps $7, %ymm0, %ymm0 # EVEX TO VEX Compression encoding: [0xc4,0xe3,0x7d,0x08,0xc0,0x07]
; AVX512VL-NEXT: ret{{[l|q]}} # encoding: [0xc3]
%res = call <8 x float> @llvm.x86.avx.round.ps.256(<8 x float> %a0, i32 7) ; <<8 x float>> [#uses=1]
ret <8 x float> %res
}
declare <8 x float> @llvm.x86.avx.round.ps.256(<8 x float>, i32) nounwind readnone
define <8 x float> @test_x86_avx_rsqrt_ps_256(<8 x float> %a0) {
[X86] Don't use RCP14 and RSQRT14 for reciprocal estimations or for legacy SSE rcp/rsqrt intrinsics when AVX512 features are enabled. Summary: AVX512 added RCP14 and RSQRT instructions which improve accuracy over the legacy RCP and RSQRT instruction, but not enough accuracy to remove the need for a Newton Raphson refinement. Currently we use these new instructions for the legacy packed SSE instrinics, but not the scalar instrinsics. And we use it for fast math optimization of division and reciprocal sqrt. I think switching the legacy instrinsics maybe surprising to the user since it changes the answer based on which processor you're using regardless of any fastmath settings. It's also weird that we did something different between scalar and packed. As far at the reciprocal estimation, I think it creates unnecessary deltas in our output behavior (and prevents EVEX->VEX). A little playing around with gcc and icc and godbolt suggest they don't change which instructions they use here. This patch adds new X86ISD nodes for the RCP14/RSQRT14 and uses those for the new intrinsics. Leaving the old intrinsics to use the old instructions. Going forward I think our focus should be on -Supporting 512-bit vectors, which will have to use the RCP14/RSQRT14. -Using RSQRT28/RCP28 to remove the Newton Raphson step on processors with AVX512ER -Supporting double precision. Reviewers: zvi, DavidKreitzer, RKSimon Reviewed By: RKSimon Subscribers: llvm-commits Differential Revision: https://reviews.llvm.org/D39583 llvm-svn: 317413
2017-11-05 02:26:41 +08:00
; CHECK-LABEL: test_x86_avx_rsqrt_ps_256:
; CHECK: # %bb.0:
[X86] Don't use RCP14 and RSQRT14 for reciprocal estimations or for legacy SSE rcp/rsqrt intrinsics when AVX512 features are enabled. Summary: AVX512 added RCP14 and RSQRT instructions which improve accuracy over the legacy RCP and RSQRT instruction, but not enough accuracy to remove the need for a Newton Raphson refinement. Currently we use these new instructions for the legacy packed SSE instrinics, but not the scalar instrinsics. And we use it for fast math optimization of division and reciprocal sqrt. I think switching the legacy instrinsics maybe surprising to the user since it changes the answer based on which processor you're using regardless of any fastmath settings. It's also weird that we did something different between scalar and packed. As far at the reciprocal estimation, I think it creates unnecessary deltas in our output behavior (and prevents EVEX->VEX). A little playing around with gcc and icc and godbolt suggest they don't change which instructions they use here. This patch adds new X86ISD nodes for the RCP14/RSQRT14 and uses those for the new intrinsics. Leaving the old intrinsics to use the old instructions. Going forward I think our focus should be on -Supporting 512-bit vectors, which will have to use the RCP14/RSQRT14. -Using RSQRT28/RCP28 to remove the Newton Raphson step on processors with AVX512ER -Supporting double precision. Reviewers: zvi, DavidKreitzer, RKSimon Reviewed By: RKSimon Subscribers: llvm-commits Differential Revision: https://reviews.llvm.org/D39583 llvm-svn: 317413
2017-11-05 02:26:41 +08:00
; CHECK-NEXT: vrsqrtps %ymm0, %ymm0 # encoding: [0xc5,0xfc,0x52,0xc0]
; CHECK-NEXT: ret{{[l|q]}} # encoding: [0xc3]
%res = call <8 x float> @llvm.x86.avx.rsqrt.ps.256(<8 x float> %a0) ; <<8 x float>> [#uses=1]
ret <8 x float> %res
}
declare <8 x float> @llvm.x86.avx.rsqrt.ps.256(<8 x float>) nounwind readnone
define <2 x double> @test_x86_avx_vpermilvar_pd(<2 x double> %a0, <2 x i64> %a1) {
; AVX-LABEL: test_x86_avx_vpermilvar_pd:
; AVX: # %bb.0:
; AVX-NEXT: vpermilpd %xmm1, %xmm0, %xmm0 # encoding: [0xc4,0xe2,0x79,0x0d,0xc1]
; AVX-NEXT: ret{{[l|q]}} # encoding: [0xc3]
;
; AVX512VL-LABEL: test_x86_avx_vpermilvar_pd:
; AVX512VL: # %bb.0:
; AVX512VL-NEXT: vpermilpd %xmm1, %xmm0, %xmm0 # EVEX TO VEX Compression encoding: [0xc4,0xe2,0x79,0x0d,0xc1]
; AVX512VL-NEXT: ret{{[l|q]}} # encoding: [0xc3]
%res = call <2 x double> @llvm.x86.avx.vpermilvar.pd(<2 x double> %a0, <2 x i64> %a1) ; <<2 x double>> [#uses=1]
ret <2 x double> %res
}
declare <2 x double> @llvm.x86.avx.vpermilvar.pd(<2 x double>, <2 x i64>) nounwind readnone
define <4 x double> @test_x86_avx_vpermilvar_pd_256(<4 x double> %a0, <4 x i64> %a1) {
; AVX-LABEL: test_x86_avx_vpermilvar_pd_256:
; AVX: # %bb.0:
; AVX-NEXT: vpermilpd %ymm1, %ymm0, %ymm0 # encoding: [0xc4,0xe2,0x7d,0x0d,0xc1]
; AVX-NEXT: ret{{[l|q]}} # encoding: [0xc3]
;
; AVX512VL-LABEL: test_x86_avx_vpermilvar_pd_256:
; AVX512VL: # %bb.0:
; AVX512VL-NEXT: vpermilpd %ymm1, %ymm0, %ymm0 # EVEX TO VEX Compression encoding: [0xc4,0xe2,0x7d,0x0d,0xc1]
; AVX512VL-NEXT: ret{{[l|q]}} # encoding: [0xc3]
%res = call <4 x double> @llvm.x86.avx.vpermilvar.pd.256(<4 x double> %a0, <4 x i64> %a1) ; <<4 x double>> [#uses=1]
ret <4 x double> %res
}
declare <4 x double> @llvm.x86.avx.vpermilvar.pd.256(<4 x double>, <4 x i64>) nounwind readnone
define <4 x double> @test_x86_avx_vpermilvar_pd_256_2(<4 x double> %a0) {
; AVX-LABEL: test_x86_avx_vpermilvar_pd_256_2:
; AVX: # %bb.0:
; AVX-NEXT: vpermilpd $9, %ymm0, %ymm0 # encoding: [0xc4,0xe3,0x7d,0x05,0xc0,0x09]
; AVX-NEXT: # ymm0 = ymm0[1,0,2,3]
; AVX-NEXT: ret{{[l|q]}} # encoding: [0xc3]
;
; AVX512VL-LABEL: test_x86_avx_vpermilvar_pd_256_2:
; AVX512VL: # %bb.0:
; AVX512VL-NEXT: vpermilpd $9, %ymm0, %ymm0 # EVEX TO VEX Compression encoding: [0xc4,0xe3,0x7d,0x05,0xc0,0x09]
; AVX512VL-NEXT: # ymm0 = ymm0[1,0,2,3]
; AVX512VL-NEXT: ret{{[l|q]}} # encoding: [0xc3]
%res = call <4 x double> @llvm.x86.avx.vpermilvar.pd.256(<4 x double> %a0, <4 x i64> <i64 2, i64 0, i64 0, i64 2>) ; <<4 x double>> [#uses=1]
ret <4 x double> %res
}
define <4 x float> @test_x86_avx_vpermilvar_ps(<4 x float> %a0, <4 x i32> %a1) {
; AVX-LABEL: test_x86_avx_vpermilvar_ps:
; AVX: # %bb.0:
; AVX-NEXT: vpermilps %xmm1, %xmm0, %xmm0 # encoding: [0xc4,0xe2,0x79,0x0c,0xc1]
; AVX-NEXT: ret{{[l|q]}} # encoding: [0xc3]
;
; AVX512VL-LABEL: test_x86_avx_vpermilvar_ps:
; AVX512VL: # %bb.0:
; AVX512VL-NEXT: vpermilps %xmm1, %xmm0, %xmm0 # EVEX TO VEX Compression encoding: [0xc4,0xe2,0x79,0x0c,0xc1]
; AVX512VL-NEXT: ret{{[l|q]}} # encoding: [0xc3]
%res = call <4 x float> @llvm.x86.avx.vpermilvar.ps(<4 x float> %a0, <4 x i32> %a1) ; <<4 x float>> [#uses=1]
ret <4 x float> %res
}
define <4 x float> @test_x86_avx_vpermilvar_ps_load(<4 x float> %a0, <4 x i32>* %a1) {
; X86-AVX-LABEL: test_x86_avx_vpermilvar_ps_load:
; X86-AVX: # %bb.0:
; X86-AVX-NEXT: movl {{[0-9]+}}(%esp), %eax # encoding: [0x8b,0x44,0x24,0x04]
; X86-AVX-NEXT: vpermilps (%eax), %xmm0, %xmm0 # encoding: [0xc4,0xe2,0x79,0x0c,0x00]
; X86-AVX-NEXT: retl # encoding: [0xc3]
;
; X86-AVX512VL-LABEL: test_x86_avx_vpermilvar_ps_load:
; X86-AVX512VL: # %bb.0:
; X86-AVX512VL-NEXT: movl {{[0-9]+}}(%esp), %eax # encoding: [0x8b,0x44,0x24,0x04]
; X86-AVX512VL-NEXT: vpermilps (%eax), %xmm0, %xmm0 # EVEX TO VEX Compression encoding: [0xc4,0xe2,0x79,0x0c,0x00]
; X86-AVX512VL-NEXT: retl # encoding: [0xc3]
;
; X64-AVX-LABEL: test_x86_avx_vpermilvar_ps_load:
; X64-AVX: # %bb.0:
; X64-AVX-NEXT: vpermilps (%rdi), %xmm0, %xmm0 # encoding: [0xc4,0xe2,0x79,0x0c,0x07]
; X64-AVX-NEXT: retq # encoding: [0xc3]
;
; X64-AVX512VL-LABEL: test_x86_avx_vpermilvar_ps_load:
; X64-AVX512VL: # %bb.0:
; X64-AVX512VL-NEXT: vpermilps (%rdi), %xmm0, %xmm0 # EVEX TO VEX Compression encoding: [0xc4,0xe2,0x79,0x0c,0x07]
; X64-AVX512VL-NEXT: retq # encoding: [0xc3]
%a2 = load <4 x i32>, <4 x i32>* %a1
%res = call <4 x float> @llvm.x86.avx.vpermilvar.ps(<4 x float> %a0, <4 x i32> %a2) ; <<4 x float>> [#uses=1]
ret <4 x float> %res
}
declare <4 x float> @llvm.x86.avx.vpermilvar.ps(<4 x float>, <4 x i32>) nounwind readnone
define <8 x float> @test_x86_avx_vpermilvar_ps_256(<8 x float> %a0, <8 x i32> %a1) {
; AVX-LABEL: test_x86_avx_vpermilvar_ps_256:
; AVX: # %bb.0:
; AVX-NEXT: vpermilps %ymm1, %ymm0, %ymm0 # encoding: [0xc4,0xe2,0x7d,0x0c,0xc1]
; AVX-NEXT: ret{{[l|q]}} # encoding: [0xc3]
;
; AVX512VL-LABEL: test_x86_avx_vpermilvar_ps_256:
; AVX512VL: # %bb.0:
; AVX512VL-NEXT: vpermilps %ymm1, %ymm0, %ymm0 # EVEX TO VEX Compression encoding: [0xc4,0xe2,0x7d,0x0c,0xc1]
; AVX512VL-NEXT: ret{{[l|q]}} # encoding: [0xc3]
%res = call <8 x float> @llvm.x86.avx.vpermilvar.ps.256(<8 x float> %a0, <8 x i32> %a1) ; <<8 x float>> [#uses=1]
ret <8 x float> %res
}
declare <8 x float> @llvm.x86.avx.vpermilvar.ps.256(<8 x float>, <8 x i32>) nounwind readnone
define i32 @test_x86_avx_vtestc_pd(<2 x double> %a0, <2 x double> %a1) {
; CHECK-LABEL: test_x86_avx_vtestc_pd:
; CHECK: # %bb.0:
; CHECK-NEXT: xorl %eax, %eax # encoding: [0x31,0xc0]
; CHECK-NEXT: vtestpd %xmm1, %xmm0 # encoding: [0xc4,0xe2,0x79,0x0f,0xc1]
; CHECK-NEXT: setb %al # encoding: [0x0f,0x92,0xc0]
; CHECK-NEXT: ret{{[l|q]}} # encoding: [0xc3]
%res = call i32 @llvm.x86.avx.vtestc.pd(<2 x double> %a0, <2 x double> %a1) ; <i32> [#uses=1]
ret i32 %res
}
declare i32 @llvm.x86.avx.vtestc.pd(<2 x double>, <2 x double>) nounwind readnone
define i32 @test_x86_avx_vtestc_pd_256(<4 x double> %a0, <4 x double> %a1) {
; CHECK-LABEL: test_x86_avx_vtestc_pd_256:
; CHECK: # %bb.0:
; CHECK-NEXT: xorl %eax, %eax # encoding: [0x31,0xc0]
; CHECK-NEXT: vtestpd %ymm1, %ymm0 # encoding: [0xc4,0xe2,0x7d,0x0f,0xc1]
; CHECK-NEXT: setb %al # encoding: [0x0f,0x92,0xc0]
; CHECK-NEXT: vzeroupper # encoding: [0xc5,0xf8,0x77]
; CHECK-NEXT: ret{{[l|q]}} # encoding: [0xc3]
%res = call i32 @llvm.x86.avx.vtestc.pd.256(<4 x double> %a0, <4 x double> %a1) ; <i32> [#uses=1]
ret i32 %res
}
declare i32 @llvm.x86.avx.vtestc.pd.256(<4 x double>, <4 x double>) nounwind readnone
define i32 @test_x86_avx_vtestc_ps(<4 x float> %a0, <4 x float> %a1) {
; CHECK-LABEL: test_x86_avx_vtestc_ps:
; CHECK: # %bb.0:
; CHECK-NEXT: xorl %eax, %eax # encoding: [0x31,0xc0]
; CHECK-NEXT: vtestps %xmm1, %xmm0 # encoding: [0xc4,0xe2,0x79,0x0e,0xc1]
; CHECK-NEXT: setb %al # encoding: [0x0f,0x92,0xc0]
; CHECK-NEXT: ret{{[l|q]}} # encoding: [0xc3]
%res = call i32 @llvm.x86.avx.vtestc.ps(<4 x float> %a0, <4 x float> %a1) ; <i32> [#uses=1]
ret i32 %res
}
declare i32 @llvm.x86.avx.vtestc.ps(<4 x float>, <4 x float>) nounwind readnone
define i32 @test_x86_avx_vtestc_ps_256(<8 x float> %a0, <8 x float> %a1) {
; CHECK-LABEL: test_x86_avx_vtestc_ps_256:
; CHECK: # %bb.0:
; CHECK-NEXT: xorl %eax, %eax # encoding: [0x31,0xc0]
; CHECK-NEXT: vtestps %ymm1, %ymm0 # encoding: [0xc4,0xe2,0x7d,0x0e,0xc1]
; CHECK-NEXT: setb %al # encoding: [0x0f,0x92,0xc0]
; CHECK-NEXT: vzeroupper # encoding: [0xc5,0xf8,0x77]
; CHECK-NEXT: ret{{[l|q]}} # encoding: [0xc3]
%res = call i32 @llvm.x86.avx.vtestc.ps.256(<8 x float> %a0, <8 x float> %a1) ; <i32> [#uses=1]
ret i32 %res
}
declare i32 @llvm.x86.avx.vtestc.ps.256(<8 x float>, <8 x float>) nounwind readnone
define i32 @test_x86_avx_vtestnzc_pd(<2 x double> %a0, <2 x double> %a1) {
; CHECK-LABEL: test_x86_avx_vtestnzc_pd:
; CHECK: # %bb.0:
; CHECK-NEXT: xorl %eax, %eax # encoding: [0x31,0xc0]
; CHECK-NEXT: vtestpd %xmm1, %xmm0 # encoding: [0xc4,0xe2,0x79,0x0f,0xc1]
; CHECK-NEXT: seta %al # encoding: [0x0f,0x97,0xc0]
; CHECK-NEXT: ret{{[l|q]}} # encoding: [0xc3]
%res = call i32 @llvm.x86.avx.vtestnzc.pd(<2 x double> %a0, <2 x double> %a1) ; <i32> [#uses=1]
ret i32 %res
}
declare i32 @llvm.x86.avx.vtestnzc.pd(<2 x double>, <2 x double>) nounwind readnone
define i32 @test_x86_avx_vtestnzc_pd_256(<4 x double> %a0, <4 x double> %a1) {
; CHECK-LABEL: test_x86_avx_vtestnzc_pd_256:
; CHECK: # %bb.0:
; CHECK-NEXT: xorl %eax, %eax # encoding: [0x31,0xc0]
; CHECK-NEXT: vtestpd %ymm1, %ymm0 # encoding: [0xc4,0xe2,0x7d,0x0f,0xc1]
; CHECK-NEXT: seta %al # encoding: [0x0f,0x97,0xc0]
; CHECK-NEXT: vzeroupper # encoding: [0xc5,0xf8,0x77]
; CHECK-NEXT: ret{{[l|q]}} # encoding: [0xc3]
%res = call i32 @llvm.x86.avx.vtestnzc.pd.256(<4 x double> %a0, <4 x double> %a1) ; <i32> [#uses=1]
ret i32 %res
}
declare i32 @llvm.x86.avx.vtestnzc.pd.256(<4 x double>, <4 x double>) nounwind readnone
define i32 @test_x86_avx_vtestnzc_ps(<4 x float> %a0, <4 x float> %a1) {
; CHECK-LABEL: test_x86_avx_vtestnzc_ps:
; CHECK: # %bb.0:
; CHECK-NEXT: xorl %eax, %eax # encoding: [0x31,0xc0]
; CHECK-NEXT: vtestps %xmm1, %xmm0 # encoding: [0xc4,0xe2,0x79,0x0e,0xc1]
; CHECK-NEXT: seta %al # encoding: [0x0f,0x97,0xc0]
; CHECK-NEXT: ret{{[l|q]}} # encoding: [0xc3]
%res = call i32 @llvm.x86.avx.vtestnzc.ps(<4 x float> %a0, <4 x float> %a1) ; <i32> [#uses=1]
ret i32 %res
}
declare i32 @llvm.x86.avx.vtestnzc.ps(<4 x float>, <4 x float>) nounwind readnone
define i32 @test_x86_avx_vtestnzc_ps_256(<8 x float> %a0, <8 x float> %a1) {
; CHECK-LABEL: test_x86_avx_vtestnzc_ps_256:
; CHECK: # %bb.0:
; CHECK-NEXT: xorl %eax, %eax # encoding: [0x31,0xc0]
; CHECK-NEXT: vtestps %ymm1, %ymm0 # encoding: [0xc4,0xe2,0x7d,0x0e,0xc1]
; CHECK-NEXT: seta %al # encoding: [0x0f,0x97,0xc0]
; CHECK-NEXT: vzeroupper # encoding: [0xc5,0xf8,0x77]
; CHECK-NEXT: ret{{[l|q]}} # encoding: [0xc3]
%res = call i32 @llvm.x86.avx.vtestnzc.ps.256(<8 x float> %a0, <8 x float> %a1) ; <i32> [#uses=1]
ret i32 %res
}
declare i32 @llvm.x86.avx.vtestnzc.ps.256(<8 x float>, <8 x float>) nounwind readnone
define i32 @test_x86_avx_vtestz_pd(<2 x double> %a0, <2 x double> %a1) {
; CHECK-LABEL: test_x86_avx_vtestz_pd:
; CHECK: # %bb.0:
; CHECK-NEXT: xorl %eax, %eax # encoding: [0x31,0xc0]
; CHECK-NEXT: vtestpd %xmm1, %xmm0 # encoding: [0xc4,0xe2,0x79,0x0f,0xc1]
; CHECK-NEXT: sete %al # encoding: [0x0f,0x94,0xc0]
; CHECK-NEXT: ret{{[l|q]}} # encoding: [0xc3]
%res = call i32 @llvm.x86.avx.vtestz.pd(<2 x double> %a0, <2 x double> %a1) ; <i32> [#uses=1]
ret i32 %res
}
declare i32 @llvm.x86.avx.vtestz.pd(<2 x double>, <2 x double>) nounwind readnone
define i32 @test_x86_avx_vtestz_pd_256(<4 x double> %a0, <4 x double> %a1) {
; CHECK-LABEL: test_x86_avx_vtestz_pd_256:
; CHECK: # %bb.0:
; CHECK-NEXT: xorl %eax, %eax # encoding: [0x31,0xc0]
; CHECK-NEXT: vtestpd %ymm1, %ymm0 # encoding: [0xc4,0xe2,0x7d,0x0f,0xc1]
; CHECK-NEXT: sete %al # encoding: [0x0f,0x94,0xc0]
; CHECK-NEXT: vzeroupper # encoding: [0xc5,0xf8,0x77]
; CHECK-NEXT: ret{{[l|q]}} # encoding: [0xc3]
%res = call i32 @llvm.x86.avx.vtestz.pd.256(<4 x double> %a0, <4 x double> %a1) ; <i32> [#uses=1]
ret i32 %res
}
declare i32 @llvm.x86.avx.vtestz.pd.256(<4 x double>, <4 x double>) nounwind readnone
define i32 @test_x86_avx_vtestz_ps(<4 x float> %a0, <4 x float> %a1) {
; CHECK-LABEL: test_x86_avx_vtestz_ps:
; CHECK: # %bb.0:
; CHECK-NEXT: xorl %eax, %eax # encoding: [0x31,0xc0]
; CHECK-NEXT: vtestps %xmm1, %xmm0 # encoding: [0xc4,0xe2,0x79,0x0e,0xc1]
; CHECK-NEXT: sete %al # encoding: [0x0f,0x94,0xc0]
; CHECK-NEXT: ret{{[l|q]}} # encoding: [0xc3]
%res = call i32 @llvm.x86.avx.vtestz.ps(<4 x float> %a0, <4 x float> %a1) ; <i32> [#uses=1]
ret i32 %res
}
declare i32 @llvm.x86.avx.vtestz.ps(<4 x float>, <4 x float>) nounwind readnone
define i32 @test_x86_avx_vtestz_ps_256(<8 x float> %a0, <8 x float> %a1) {
; CHECK-LABEL: test_x86_avx_vtestz_ps_256:
; CHECK: # %bb.0:
; CHECK-NEXT: xorl %eax, %eax # encoding: [0x31,0xc0]
; CHECK-NEXT: vtestps %ymm1, %ymm0 # encoding: [0xc4,0xe2,0x7d,0x0e,0xc1]
; CHECK-NEXT: sete %al # encoding: [0x0f,0x94,0xc0]
; CHECK-NEXT: vzeroupper # encoding: [0xc5,0xf8,0x77]
; CHECK-NEXT: ret{{[l|q]}} # encoding: [0xc3]
%res = call i32 @llvm.x86.avx.vtestz.ps.256(<8 x float> %a0, <8 x float> %a1) ; <i32> [#uses=1]
ret i32 %res
}
declare i32 @llvm.x86.avx.vtestz.ps.256(<8 x float>, <8 x float>) nounwind readnone
define void @test_x86_avx_vzeroall() {
; CHECK-LABEL: test_x86_avx_vzeroall:
; CHECK: # %bb.0:
; CHECK-NEXT: vzeroall # encoding: [0xc5,0xfc,0x77]
; CHECK-NEXT: ret{{[l|q]}} # encoding: [0xc3]
call void @llvm.x86.avx.vzeroall()
ret void
}
declare void @llvm.x86.avx.vzeroall() nounwind
define void @test_x86_avx_vzeroupper() {
; CHECK-LABEL: test_x86_avx_vzeroupper:
; CHECK: # %bb.0:
; CHECK-NEXT: vzeroupper # encoding: [0xc5,0xf8,0x77]
; CHECK-NEXT: ret{{[l|q]}} # encoding: [0xc3]
call void @llvm.x86.avx.vzeroupper()
ret void
}
declare void @llvm.x86.avx.vzeroupper() nounwind
define void @movnt_dq(i8* %p, <2 x i64> %a1) nounwind {
; X86-AVX-LABEL: movnt_dq:
; X86-AVX: # %bb.0:
; X86-AVX-NEXT: movl {{[0-9]+}}(%esp), %eax # encoding: [0x8b,0x44,0x24,0x04]
; X86-AVX-NEXT: vpcmpeqd %xmm1, %xmm1, %xmm1 # encoding: [0xc5,0xf1,0x76,0xc9]
; X86-AVX-NEXT: vpsubq %xmm1, %xmm0, %xmm0 # encoding: [0xc5,0xf9,0xfb,0xc1]
; X86-AVX-NEXT: vmovntdq %ymm0, (%eax) # encoding: [0xc5,0xfd,0xe7,0x00]
; X86-AVX-NEXT: vzeroupper # encoding: [0xc5,0xf8,0x77]
; X86-AVX-NEXT: retl # encoding: [0xc3]
;
; X86-AVX512VL-LABEL: movnt_dq:
; X86-AVX512VL: # %bb.0:
; X86-AVX512VL-NEXT: movl {{[0-9]+}}(%esp), %eax # encoding: [0x8b,0x44,0x24,0x04]
; X86-AVX512VL-NEXT: vpcmpeqd %xmm1, %xmm1, %xmm1 # encoding: [0xc5,0xf1,0x76,0xc9]
; X86-AVX512VL-NEXT: vpsubq %xmm1, %xmm0, %xmm0 # EVEX TO VEX Compression encoding: [0xc5,0xf9,0xfb,0xc1]
; X86-AVX512VL-NEXT: vmovntdq %ymm0, (%eax) # EVEX TO VEX Compression encoding: [0xc5,0xfd,0xe7,0x00]
; X86-AVX512VL-NEXT: vzeroupper # encoding: [0xc5,0xf8,0x77]
; X86-AVX512VL-NEXT: retl # encoding: [0xc3]
;
; X64-AVX-LABEL: movnt_dq:
; X64-AVX: # %bb.0:
; X64-AVX-NEXT: vpcmpeqd %xmm1, %xmm1, %xmm1 # encoding: [0xc5,0xf1,0x76,0xc9]
; X64-AVX-NEXT: vpsubq %xmm1, %xmm0, %xmm0 # encoding: [0xc5,0xf9,0xfb,0xc1]
; X64-AVX-NEXT: vmovntdq %ymm0, (%rdi) # encoding: [0xc5,0xfd,0xe7,0x07]
; X64-AVX-NEXT: vzeroupper # encoding: [0xc5,0xf8,0x77]
; X64-AVX-NEXT: retq # encoding: [0xc3]
;
; X64-AVX512VL-LABEL: movnt_dq:
; X64-AVX512VL: # %bb.0:
; X64-AVX512VL-NEXT: vpcmpeqd %xmm1, %xmm1, %xmm1 # encoding: [0xc5,0xf1,0x76,0xc9]
; X64-AVX512VL-NEXT: vpsubq %xmm1, %xmm0, %xmm0 # EVEX TO VEX Compression encoding: [0xc5,0xf9,0xfb,0xc1]
; X64-AVX512VL-NEXT: vmovntdq %ymm0, (%rdi) # EVEX TO VEX Compression encoding: [0xc5,0xfd,0xe7,0x07]
; X64-AVX512VL-NEXT: vzeroupper # encoding: [0xc5,0xf8,0x77]
; X64-AVX512VL-NEXT: retq # encoding: [0xc3]
%a2 = add <2 x i64> %a1, <i64 1, i64 1>
%a3 = shufflevector <2 x i64> %a2, <2 x i64> undef, <4 x i32> <i32 0, i32 1, i32 undef, i32 undef>
tail call void @llvm.x86.avx.movnt.dq.256(i8* %p, <4 x i64> %a3) nounwind
ret void
}
declare void @llvm.x86.avx.movnt.dq.256(i8*, <4 x i64>) nounwind
define void @movnt_ps(i8* %p, <8 x float> %a) nounwind {
; X86-AVX-LABEL: movnt_ps:
; X86-AVX: # %bb.0:
; X86-AVX-NEXT: movl {{[0-9]+}}(%esp), %eax # encoding: [0x8b,0x44,0x24,0x04]
; X86-AVX-NEXT: vmovntps %ymm0, (%eax) # encoding: [0xc5,0xfc,0x2b,0x00]
; X86-AVX-NEXT: vzeroupper # encoding: [0xc5,0xf8,0x77]
; X86-AVX-NEXT: retl # encoding: [0xc3]
;
; X86-AVX512VL-LABEL: movnt_ps:
; X86-AVX512VL: # %bb.0:
; X86-AVX512VL-NEXT: movl {{[0-9]+}}(%esp), %eax # encoding: [0x8b,0x44,0x24,0x04]
; X86-AVX512VL-NEXT: vmovntps %ymm0, (%eax) # EVEX TO VEX Compression encoding: [0xc5,0xfc,0x2b,0x00]
; X86-AVX512VL-NEXT: vzeroupper # encoding: [0xc5,0xf8,0x77]
; X86-AVX512VL-NEXT: retl # encoding: [0xc3]
;
; X64-AVX-LABEL: movnt_ps:
; X64-AVX: # %bb.0:
; X64-AVX-NEXT: vmovntps %ymm0, (%rdi) # encoding: [0xc5,0xfc,0x2b,0x07]
; X64-AVX-NEXT: vzeroupper # encoding: [0xc5,0xf8,0x77]
; X64-AVX-NEXT: retq # encoding: [0xc3]
;
; X64-AVX512VL-LABEL: movnt_ps:
; X64-AVX512VL: # %bb.0:
; X64-AVX512VL-NEXT: vmovntps %ymm0, (%rdi) # EVEX TO VEX Compression encoding: [0xc5,0xfc,0x2b,0x07]
; X64-AVX512VL-NEXT: vzeroupper # encoding: [0xc5,0xf8,0x77]
; X64-AVX512VL-NEXT: retq # encoding: [0xc3]
tail call void @llvm.x86.avx.movnt.ps.256(i8* %p, <8 x float> %a) nounwind
ret void
}
declare void @llvm.x86.avx.movnt.ps.256(i8*, <8 x float>) nounwind
define void @movnt_pd(i8* %p, <4 x double> %a1) nounwind {
; add operation forces the execution domain.
; X86-AVX-LABEL: movnt_pd:
; X86-AVX: # %bb.0:
; X86-AVX-NEXT: movl {{[0-9]+}}(%esp), %eax # encoding: [0x8b,0x44,0x24,0x04]
; X86-AVX-NEXT: vxorpd %xmm1, %xmm1, %xmm1 # encoding: [0xc5,0xf1,0x57,0xc9]
; X86-AVX-NEXT: vaddpd %ymm1, %ymm0, %ymm0 # encoding: [0xc5,0xfd,0x58,0xc1]
; X86-AVX-NEXT: vmovntpd %ymm0, (%eax) # encoding: [0xc5,0xfd,0x2b,0x00]
; X86-AVX-NEXT: vzeroupper # encoding: [0xc5,0xf8,0x77]
; X86-AVX-NEXT: retl # encoding: [0xc3]
;
; X86-AVX512VL-LABEL: movnt_pd:
; X86-AVX512VL: # %bb.0:
; X86-AVX512VL-NEXT: movl {{[0-9]+}}(%esp), %eax # encoding: [0x8b,0x44,0x24,0x04]
; X86-AVX512VL-NEXT: vxorpd %xmm1, %xmm1, %xmm1 # EVEX TO VEX Compression encoding: [0xc5,0xf1,0x57,0xc9]
; X86-AVX512VL-NEXT: vaddpd %ymm1, %ymm0, %ymm0 # EVEX TO VEX Compression encoding: [0xc5,0xfd,0x58,0xc1]
; X86-AVX512VL-NEXT: vmovntpd %ymm0, (%eax) # EVEX TO VEX Compression encoding: [0xc5,0xfd,0x2b,0x00]
; X86-AVX512VL-NEXT: vzeroupper # encoding: [0xc5,0xf8,0x77]
; X86-AVX512VL-NEXT: retl # encoding: [0xc3]
;
; X64-AVX-LABEL: movnt_pd:
; X64-AVX: # %bb.0:
; X64-AVX-NEXT: vxorpd %xmm1, %xmm1, %xmm1 # encoding: [0xc5,0xf1,0x57,0xc9]
; X64-AVX-NEXT: vaddpd %ymm1, %ymm0, %ymm0 # encoding: [0xc5,0xfd,0x58,0xc1]
; X64-AVX-NEXT: vmovntpd %ymm0, (%rdi) # encoding: [0xc5,0xfd,0x2b,0x07]
; X64-AVX-NEXT: vzeroupper # encoding: [0xc5,0xf8,0x77]
; X64-AVX-NEXT: retq # encoding: [0xc3]
;
; X64-AVX512VL-LABEL: movnt_pd:
; X64-AVX512VL: # %bb.0:
; X64-AVX512VL-NEXT: vxorpd %xmm1, %xmm1, %xmm1 # EVEX TO VEX Compression encoding: [0xc5,0xf1,0x57,0xc9]
; X64-AVX512VL-NEXT: vaddpd %ymm1, %ymm0, %ymm0 # EVEX TO VEX Compression encoding: [0xc5,0xfd,0x58,0xc1]
; X64-AVX512VL-NEXT: vmovntpd %ymm0, (%rdi) # EVEX TO VEX Compression encoding: [0xc5,0xfd,0x2b,0x07]
; X64-AVX512VL-NEXT: vzeroupper # encoding: [0xc5,0xf8,0x77]
; X64-AVX512VL-NEXT: retq # encoding: [0xc3]
%a2 = fadd <4 x double> %a1, <double 0x0, double 0x0, double 0x0, double 0x0>
tail call void @llvm.x86.avx.movnt.pd.256(i8* %p, <4 x double> %a2) nounwind
ret void
}
declare void @llvm.x86.avx.movnt.pd.256(i8*, <4 x double>) nounwind
; Check for pclmulqdq
define <2 x i64> @test_x86_pclmulqdq(<2 x i64> %a0, <2 x i64> %a1) {
; CHECK-LABEL: test_x86_pclmulqdq:
; CHECK: # %bb.0:
; CHECK-NEXT: vpclmulqdq $0, %xmm1, %xmm0, %xmm0 # encoding: [0xc4,0xe3,0x79,0x44,0xc1,0x00]
; CHECK-NEXT: ret{{[l|q]}} # encoding: [0xc3]
%res = call <2 x i64> @llvm.x86.pclmulqdq(<2 x i64> %a0, <2 x i64> %a1, i8 0) ; <<2 x i64>> [#uses=1]
ret <2 x i64> %res
}
declare <2 x i64> @llvm.x86.pclmulqdq(<2 x i64>, <2 x i64>, i8) nounwind readnone