llvm-project/clang/lib/Analysis/ExplodedGraph.cpp

266 lines
7.2 KiB
C++
Raw Normal View History

//=-- ExplodedGraph.cpp - Local, Path-Sens. "Exploded Graph" -*- C++ -*------=//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the template classes ExplodedNode and ExplodedGraph,
// which represent a path-sensitive, intra-procedural "exploded graph."
//
//===----------------------------------------------------------------------===//
#include "clang/Analysis/PathSensitive/ExplodedGraph.h"
#include "clang/AST/Stmt.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SmallVector.h"
#include <vector>
#include <list>
using namespace clang;
static inline std::vector<ExplodedNodeImpl*>& getVector(void* P) {
return *reinterpret_cast<std::vector<ExplodedNodeImpl*>*>(P);
}
void ExplodedNodeImpl::addPredecessor(ExplodedNodeImpl* V) {
assert (!V->isSink());
Preds.addNode(V);
V->Succs.addNode(this);
}
void ExplodedNodeImpl::NodeGroup::addNode(ExplodedNodeImpl* N) {
assert ((reinterpret_cast<uintptr_t>(N) & Mask) == 0x0);
assert (!getFlag());
if (getKind() == Size1) {
if (ExplodedNodeImpl* NOld = getNode()) {
std::vector<ExplodedNodeImpl*>* V = new std::vector<ExplodedNodeImpl*>();
assert ((reinterpret_cast<uintptr_t>(V) & Mask) == 0x0);
V->push_back(NOld);
V->push_back(N);
P = reinterpret_cast<uintptr_t>(V) | SizeOther;
assert (getPtr() == (void*) V);
assert (getKind() == SizeOther);
}
else {
P = reinterpret_cast<uintptr_t>(N);
assert (getKind() == Size1);
}
}
else {
assert (getKind() == SizeOther);
getVector(getPtr()).push_back(N);
}
}
unsigned ExplodedNodeImpl::NodeGroup::size() const {
if (getFlag())
return 0;
if (getKind() == Size1)
return getNode() ? 1 : 0;
else
return getVector(getPtr()).size();
}
ExplodedNodeImpl** ExplodedNodeImpl::NodeGroup::begin() const {
if (getFlag())
return NULL;
if (getKind() == Size1)
return (ExplodedNodeImpl**) (getPtr() ? &P : NULL);
else
return const_cast<ExplodedNodeImpl**>(&*(getVector(getPtr()).begin()));
}
ExplodedNodeImpl** ExplodedNodeImpl::NodeGroup::end() const {
if (getFlag())
return NULL;
if (getKind() == Size1)
return (ExplodedNodeImpl**) (getPtr() ? &P+1 : NULL);
else {
// Dereferencing end() is undefined behaviour. The vector is not empty, so
// we can dereference the last elem and then add 1 to the result.
return const_cast<ExplodedNodeImpl**>(&getVector(getPtr()).back()) + 1;
}
}
ExplodedNodeImpl::NodeGroup::~NodeGroup() {
if (getKind() == SizeOther) delete &getVector(getPtr());
}
ExplodedGraphImpl* ExplodedGraphImpl::Trim(ExplodedNodeImpl** BeginSources,
ExplodedNodeImpl** EndSources) const{
typedef llvm::DenseMap<ExplodedNodeImpl*, ExplodedNodeImpl*> Pass1Ty;
typedef llvm::DenseMap<ExplodedNodeImpl*, ExplodedNodeImpl*> Pass2Ty;
Pass1Ty Pass1;
Pass2Ty Pass2;
llvm::SmallVector<ExplodedNodeImpl*, 10> WL2;
{ // ===- Pass 1 (reverse BFS) -===
// Enqueue the source nodes to the first worklist.
std::list<std::pair<ExplodedNodeImpl*, ExplodedNodeImpl*> > WL1;
std::list<std::pair<ExplodedNodeImpl*, ExplodedNodeImpl*> > WL1_Loops;
for (ExplodedNodeImpl** I = BeginSources; I != EndSources; ++I)
WL1.push_back(std::make_pair(*I, *I));
// Process the worklist.
while (! (WL1.empty() && WL1_Loops.empty())) {
ExplodedNodeImpl *N, *Src;
// Only dequeue from the "loops" worklist if WL1 has no items.
// Thus we prioritize for paths that don't span loop boundaries.
if (WL1.empty()) {
N = WL1_Loops.back().first;
Src = WL1_Loops.back().second;
WL1_Loops.pop_back();
}
else {
N = WL1.back().first;
Src = WL1.back().second;
WL1.pop_back();
}
if (Pass1.find(N) != Pass1.end())
continue;
bool PredHasSameSource = false;
bool VisitPreds = true;
for (ExplodedNodeImpl** I=N->Preds.begin(), **E=N->Preds.end();
I!=E; ++I) {
Pass1Ty::iterator pi = Pass1.find(*I);
if (pi == Pass1.end())
continue;
VisitPreds = false;
if (pi->second == Src) {
PredHasSameSource = true;
break;
}
}
if (VisitPreds || !PredHasSameSource) {
Pass1[N] = Src;
if (N->Preds.empty()) {
WL2.push_back(N);
continue;
}
}
else
Pass1[N] = NULL;
if (VisitPreds)
for (ExplodedNodeImpl** I=N->Preds.begin(), **E=N->Preds.end();
I!=E; ++I) {
ProgramPoint P = Src->getLocation();
if (const BlockEdge *BE = dyn_cast<BlockEdge>(&P))
if (Stmt* T = BE->getSrc()->getTerminator())
switch (T->getStmtClass()) {
default: break;
case Stmt::ForStmtClass:
case Stmt::WhileStmtClass:
case Stmt::DoStmtClass:
WL1_Loops.push_front(std::make_pair(*I, Src));
continue;
}
WL1.push_front(std::make_pair(*I, Src));
}
}
}
if (WL2.empty())
return NULL;
ExplodedGraphImpl* G = MakeEmptyGraph();
// ===- Pass 2 (forward DFS to construct the new graph) -===
while (!WL2.empty()) {
ExplodedNodeImpl* N = WL2.back();
WL2.pop_back();
// Skip this node if we have already processed it.
if (Pass2.find(N) != Pass2.end())
continue;
// Create the corresponding node in the new graph.
ExplodedNodeImpl* NewN = G->getNodeImpl(N->getLocation(), N->State, NULL);
Pass2[N] = NewN;
if (N->Preds.empty())
G->addRoot(NewN);
// In the case that some of the intended predecessors of NewN have already
// been created, we should hook them up as predecessors.
for (ExplodedNodeImpl **I=N->Preds.begin(), **E=N->Preds.end(); I!=E; ++I) {
Pass2Ty::iterator PI = Pass2.find(*I);
if (PI == Pass2.end())
continue;
NewN->addPredecessor(PI->second);
}
// In the case that some of the intended successors of NewN have already
// been created, we should hook them up as successors. Otherwise, enqueue
// the new nodes from the original graph that should have nodes created
// in the new graph.
for (ExplodedNodeImpl **I=N->Succs.begin(), **E=N->Succs.end(); I!=E; ++I) {
Pass2Ty::iterator PI = Pass2.find(*I);
if (PI != Pass2.end()) {
PI->second->addPredecessor(NewN);
continue;
}
// Enqueue nodes to the worklist that were marked during pass 1.
Pass1Ty::iterator pi = Pass1.find(*I);
if (pi == Pass1.end() || pi->second == NULL)
continue;
WL2.push_back(*I);
}
if (N->isSink())
NewN->markAsSink();
}
return G;
}