llvm-project/mlir/test/Transforms/memref-bound-check.mlir

223 lines
8.7 KiB
MLIR
Raw Normal View History

Introduce memref bound checking. Introduce analysis to check memref accesses (in MLFunctions) for out of bound ones. It works as follows: $ mlir-opt -memref-bound-check test/Transforms/memref-bound-check.mlir /tmp/single.mlir:10:12: error: 'load' op memref out of upper bound access along dimension tensorflow/mlir#1 %x = load %A[%idxtensorflow/mlir#0, %idxtensorflow/mlir#1] : memref<9 x 9 x i32> ^ /tmp/single.mlir:10:12: error: 'load' op memref out of lower bound access along dimension tensorflow/mlir#1 %x = load %A[%idxtensorflow/mlir#0, %idxtensorflow/mlir#1] : memref<9 x 9 x i32> ^ /tmp/single.mlir:10:12: error: 'load' op memref out of upper bound access along dimension tensorflow/mlir#2 %x = load %A[%idxtensorflow/mlir#0, %idxtensorflow/mlir#1] : memref<9 x 9 x i32> ^ /tmp/single.mlir:10:12: error: 'load' op memref out of lower bound access along dimension tensorflow/mlir#2 %x = load %A[%idxtensorflow/mlir#0, %idxtensorflow/mlir#1] : memref<9 x 9 x i32> ^ /tmp/single.mlir:12:12: error: 'load' op memref out of upper bound access along dimension tensorflow/mlir#1 %y = load %B[%idy] : memref<128 x i32> ^ /tmp/single.mlir:12:12: error: 'load' op memref out of lower bound access along dimension tensorflow/mlir#1 %y = load %B[%idy] : memref<128 x i32> ^ #map0 = (d0, d1) -> (d0, d1) #map1 = (d0, d1) -> (d0 * 128 - d1) mlfunc @test() { %0 = alloc() : memref<9x9xi32> %1 = alloc() : memref<128xi32> for %i0 = -1 to 9 { for %i1 = -1 to 9 { %2 = affine_apply #map0(%i0, %i1) %3 = load %0[%2tensorflow/mlir#0, %2tensorflow/mlir#1] : memref<9x9xi32> %4 = affine_apply #map1(%i0, %i1) %5 = load %1[%4] : memref<128xi32> } } return } - Improves productivity while manually / semi-automatically developing MLIR for testing / prototyping; also provides an indirect way to catch errors in transformations. - This pass is an easy way to test the underlying affine analysis machinery including low level routines. Some code (in getMemoryRegion()) borrowed from @andydavis cl/218263256. While on this: - create mlir/Analysis/Passes.h; move Pass.h up from mlir/Transforms/ to mlir/ - fix a bug in AffineAnalysis.cpp::toAffineExpr TODO: extend to non-constant loop bounds (straightforward). Will transparently work for all accesses once floordiv, mod, ceildiv are supported in the AffineMap -> FlatAffineConstraints conversion. PiperOrigin-RevId: 219397961
2018-10-31 08:43:06 +08:00
// RUN: mlir-opt %s -memref-bound-check -split-input-file -verify | FileCheck %s
// -----
// CHECK-LABEL: func @test() {
func @test() {
Introduce memref bound checking. Introduce analysis to check memref accesses (in MLFunctions) for out of bound ones. It works as follows: $ mlir-opt -memref-bound-check test/Transforms/memref-bound-check.mlir /tmp/single.mlir:10:12: error: 'load' op memref out of upper bound access along dimension tensorflow/mlir#1 %x = load %A[%idxtensorflow/mlir#0, %idxtensorflow/mlir#1] : memref<9 x 9 x i32> ^ /tmp/single.mlir:10:12: error: 'load' op memref out of lower bound access along dimension tensorflow/mlir#1 %x = load %A[%idxtensorflow/mlir#0, %idxtensorflow/mlir#1] : memref<9 x 9 x i32> ^ /tmp/single.mlir:10:12: error: 'load' op memref out of upper bound access along dimension tensorflow/mlir#2 %x = load %A[%idxtensorflow/mlir#0, %idxtensorflow/mlir#1] : memref<9 x 9 x i32> ^ /tmp/single.mlir:10:12: error: 'load' op memref out of lower bound access along dimension tensorflow/mlir#2 %x = load %A[%idxtensorflow/mlir#0, %idxtensorflow/mlir#1] : memref<9 x 9 x i32> ^ /tmp/single.mlir:12:12: error: 'load' op memref out of upper bound access along dimension tensorflow/mlir#1 %y = load %B[%idy] : memref<128 x i32> ^ /tmp/single.mlir:12:12: error: 'load' op memref out of lower bound access along dimension tensorflow/mlir#1 %y = load %B[%idy] : memref<128 x i32> ^ #map0 = (d0, d1) -> (d0, d1) #map1 = (d0, d1) -> (d0 * 128 - d1) mlfunc @test() { %0 = alloc() : memref<9x9xi32> %1 = alloc() : memref<128xi32> for %i0 = -1 to 9 { for %i1 = -1 to 9 { %2 = affine_apply #map0(%i0, %i1) %3 = load %0[%2tensorflow/mlir#0, %2tensorflow/mlir#1] : memref<9x9xi32> %4 = affine_apply #map1(%i0, %i1) %5 = load %1[%4] : memref<128xi32> } } return } - Improves productivity while manually / semi-automatically developing MLIR for testing / prototyping; also provides an indirect way to catch errors in transformations. - This pass is an easy way to test the underlying affine analysis machinery including low level routines. Some code (in getMemoryRegion()) borrowed from @andydavis cl/218263256. While on this: - create mlir/Analysis/Passes.h; move Pass.h up from mlir/Transforms/ to mlir/ - fix a bug in AffineAnalysis.cpp::toAffineExpr TODO: extend to non-constant loop bounds (straightforward). Will transparently work for all accesses once floordiv, mod, ceildiv are supported in the AffineMap -> FlatAffineConstraints conversion. PiperOrigin-RevId: 219397961
2018-10-31 08:43:06 +08:00
%zero = constant 0 : index
%minusone = constant -1 : index
%sym = constant 111 : index
%A = alloc() : memref<9 x 9 x i32>
%B = alloc() : memref<111 x i32>
for %i = -1 to 10 {
for %j = -1 to 10 {
%idx0 = affine.apply (d0, d1) -> (d0)(%i, %j)
%idx1 = affine.apply (d0, d1) -> (d1)(%i, %j)
Introduce memref bound checking. Introduce analysis to check memref accesses (in MLFunctions) for out of bound ones. It works as follows: $ mlir-opt -memref-bound-check test/Transforms/memref-bound-check.mlir /tmp/single.mlir:10:12: error: 'load' op memref out of upper bound access along dimension tensorflow/mlir#1 %x = load %A[%idxtensorflow/mlir#0, %idxtensorflow/mlir#1] : memref<9 x 9 x i32> ^ /tmp/single.mlir:10:12: error: 'load' op memref out of lower bound access along dimension tensorflow/mlir#1 %x = load %A[%idxtensorflow/mlir#0, %idxtensorflow/mlir#1] : memref<9 x 9 x i32> ^ /tmp/single.mlir:10:12: error: 'load' op memref out of upper bound access along dimension tensorflow/mlir#2 %x = load %A[%idxtensorflow/mlir#0, %idxtensorflow/mlir#1] : memref<9 x 9 x i32> ^ /tmp/single.mlir:10:12: error: 'load' op memref out of lower bound access along dimension tensorflow/mlir#2 %x = load %A[%idxtensorflow/mlir#0, %idxtensorflow/mlir#1] : memref<9 x 9 x i32> ^ /tmp/single.mlir:12:12: error: 'load' op memref out of upper bound access along dimension tensorflow/mlir#1 %y = load %B[%idy] : memref<128 x i32> ^ /tmp/single.mlir:12:12: error: 'load' op memref out of lower bound access along dimension tensorflow/mlir#1 %y = load %B[%idy] : memref<128 x i32> ^ #map0 = (d0, d1) -> (d0, d1) #map1 = (d0, d1) -> (d0 * 128 - d1) mlfunc @test() { %0 = alloc() : memref<9x9xi32> %1 = alloc() : memref<128xi32> for %i0 = -1 to 9 { for %i1 = -1 to 9 { %2 = affine_apply #map0(%i0, %i1) %3 = load %0[%2tensorflow/mlir#0, %2tensorflow/mlir#1] : memref<9x9xi32> %4 = affine_apply #map1(%i0, %i1) %5 = load %1[%4] : memref<128xi32> } } return } - Improves productivity while manually / semi-automatically developing MLIR for testing / prototyping; also provides an indirect way to catch errors in transformations. - This pass is an easy way to test the underlying affine analysis machinery including low level routines. Some code (in getMemoryRegion()) borrowed from @andydavis cl/218263256. While on this: - create mlir/Analysis/Passes.h; move Pass.h up from mlir/Transforms/ to mlir/ - fix a bug in AffineAnalysis.cpp::toAffineExpr TODO: extend to non-constant loop bounds (straightforward). Will transparently work for all accesses once floordiv, mod, ceildiv are supported in the AffineMap -> FlatAffineConstraints conversion. PiperOrigin-RevId: 219397961
2018-10-31 08:43:06 +08:00
// Out of bound access.
%x = load %A[%idx0, %idx1] : memref<9 x 9 x i32>
Introduce memref bound checking. Introduce analysis to check memref accesses (in MLFunctions) for out of bound ones. It works as follows: $ mlir-opt -memref-bound-check test/Transforms/memref-bound-check.mlir /tmp/single.mlir:10:12: error: 'load' op memref out of upper bound access along dimension tensorflow/mlir#1 %x = load %A[%idxtensorflow/mlir#0, %idxtensorflow/mlir#1] : memref<9 x 9 x i32> ^ /tmp/single.mlir:10:12: error: 'load' op memref out of lower bound access along dimension tensorflow/mlir#1 %x = load %A[%idxtensorflow/mlir#0, %idxtensorflow/mlir#1] : memref<9 x 9 x i32> ^ /tmp/single.mlir:10:12: error: 'load' op memref out of upper bound access along dimension tensorflow/mlir#2 %x = load %A[%idxtensorflow/mlir#0, %idxtensorflow/mlir#1] : memref<9 x 9 x i32> ^ /tmp/single.mlir:10:12: error: 'load' op memref out of lower bound access along dimension tensorflow/mlir#2 %x = load %A[%idxtensorflow/mlir#0, %idxtensorflow/mlir#1] : memref<9 x 9 x i32> ^ /tmp/single.mlir:12:12: error: 'load' op memref out of upper bound access along dimension tensorflow/mlir#1 %y = load %B[%idy] : memref<128 x i32> ^ /tmp/single.mlir:12:12: error: 'load' op memref out of lower bound access along dimension tensorflow/mlir#1 %y = load %B[%idy] : memref<128 x i32> ^ #map0 = (d0, d1) -> (d0, d1) #map1 = (d0, d1) -> (d0 * 128 - d1) mlfunc @test() { %0 = alloc() : memref<9x9xi32> %1 = alloc() : memref<128xi32> for %i0 = -1 to 9 { for %i1 = -1 to 9 { %2 = affine_apply #map0(%i0, %i1) %3 = load %0[%2tensorflow/mlir#0, %2tensorflow/mlir#1] : memref<9x9xi32> %4 = affine_apply #map1(%i0, %i1) %5 = load %1[%4] : memref<128xi32> } } return } - Improves productivity while manually / semi-automatically developing MLIR for testing / prototyping; also provides an indirect way to catch errors in transformations. - This pass is an easy way to test the underlying affine analysis machinery including low level routines. Some code (in getMemoryRegion()) borrowed from @andydavis cl/218263256. While on this: - create mlir/Analysis/Passes.h; move Pass.h up from mlir/Transforms/ to mlir/ - fix a bug in AffineAnalysis.cpp::toAffineExpr TODO: extend to non-constant loop bounds (straightforward). Will transparently work for all accesses once floordiv, mod, ceildiv are supported in the AffineMap -> FlatAffineConstraints conversion. PiperOrigin-RevId: 219397961
2018-10-31 08:43:06 +08:00
// expected-error@-1 {{'load' op memref out of upper bound access along dimension #1}}
// expected-error@-2 {{'load' op memref out of lower bound access along dimension #1}}
// expected-error@-3 {{'load' op memref out of upper bound access along dimension #2}}
// expected-error@-4 {{'load' op memref out of lower bound access along dimension #2}}
// This will access 0 to 110 - hence an overflow.
%idy = affine.apply (d0, d1) -> (10*d0 - d1 + 19)(%i, %j)
Introduce memref bound checking. Introduce analysis to check memref accesses (in MLFunctions) for out of bound ones. It works as follows: $ mlir-opt -memref-bound-check test/Transforms/memref-bound-check.mlir /tmp/single.mlir:10:12: error: 'load' op memref out of upper bound access along dimension tensorflow/mlir#1 %x = load %A[%idxtensorflow/mlir#0, %idxtensorflow/mlir#1] : memref<9 x 9 x i32> ^ /tmp/single.mlir:10:12: error: 'load' op memref out of lower bound access along dimension tensorflow/mlir#1 %x = load %A[%idxtensorflow/mlir#0, %idxtensorflow/mlir#1] : memref<9 x 9 x i32> ^ /tmp/single.mlir:10:12: error: 'load' op memref out of upper bound access along dimension tensorflow/mlir#2 %x = load %A[%idxtensorflow/mlir#0, %idxtensorflow/mlir#1] : memref<9 x 9 x i32> ^ /tmp/single.mlir:10:12: error: 'load' op memref out of lower bound access along dimension tensorflow/mlir#2 %x = load %A[%idxtensorflow/mlir#0, %idxtensorflow/mlir#1] : memref<9 x 9 x i32> ^ /tmp/single.mlir:12:12: error: 'load' op memref out of upper bound access along dimension tensorflow/mlir#1 %y = load %B[%idy] : memref<128 x i32> ^ /tmp/single.mlir:12:12: error: 'load' op memref out of lower bound access along dimension tensorflow/mlir#1 %y = load %B[%idy] : memref<128 x i32> ^ #map0 = (d0, d1) -> (d0, d1) #map1 = (d0, d1) -> (d0 * 128 - d1) mlfunc @test() { %0 = alloc() : memref<9x9xi32> %1 = alloc() : memref<128xi32> for %i0 = -1 to 9 { for %i1 = -1 to 9 { %2 = affine_apply #map0(%i0, %i1) %3 = load %0[%2tensorflow/mlir#0, %2tensorflow/mlir#1] : memref<9x9xi32> %4 = affine_apply #map1(%i0, %i1) %5 = load %1[%4] : memref<128xi32> } } return } - Improves productivity while manually / semi-automatically developing MLIR for testing / prototyping; also provides an indirect way to catch errors in transformations. - This pass is an easy way to test the underlying affine analysis machinery including low level routines. Some code (in getMemoryRegion()) borrowed from @andydavis cl/218263256. While on this: - create mlir/Analysis/Passes.h; move Pass.h up from mlir/Transforms/ to mlir/ - fix a bug in AffineAnalysis.cpp::toAffineExpr TODO: extend to non-constant loop bounds (straightforward). Will transparently work for all accesses once floordiv, mod, ceildiv are supported in the AffineMap -> FlatAffineConstraints conversion. PiperOrigin-RevId: 219397961
2018-10-31 08:43:06 +08:00
%y = load %B[%idy] : memref<111 x i32>
}
}
for %k = 0 to 10 {
Introduce memref bound checking. Introduce analysis to check memref accesses (in MLFunctions) for out of bound ones. It works as follows: $ mlir-opt -memref-bound-check test/Transforms/memref-bound-check.mlir /tmp/single.mlir:10:12: error: 'load' op memref out of upper bound access along dimension tensorflow/mlir#1 %x = load %A[%idxtensorflow/mlir#0, %idxtensorflow/mlir#1] : memref<9 x 9 x i32> ^ /tmp/single.mlir:10:12: error: 'load' op memref out of lower bound access along dimension tensorflow/mlir#1 %x = load %A[%idxtensorflow/mlir#0, %idxtensorflow/mlir#1] : memref<9 x 9 x i32> ^ /tmp/single.mlir:10:12: error: 'load' op memref out of upper bound access along dimension tensorflow/mlir#2 %x = load %A[%idxtensorflow/mlir#0, %idxtensorflow/mlir#1] : memref<9 x 9 x i32> ^ /tmp/single.mlir:10:12: error: 'load' op memref out of lower bound access along dimension tensorflow/mlir#2 %x = load %A[%idxtensorflow/mlir#0, %idxtensorflow/mlir#1] : memref<9 x 9 x i32> ^ /tmp/single.mlir:12:12: error: 'load' op memref out of upper bound access along dimension tensorflow/mlir#1 %y = load %B[%idy] : memref<128 x i32> ^ /tmp/single.mlir:12:12: error: 'load' op memref out of lower bound access along dimension tensorflow/mlir#1 %y = load %B[%idy] : memref<128 x i32> ^ #map0 = (d0, d1) -> (d0, d1) #map1 = (d0, d1) -> (d0 * 128 - d1) mlfunc @test() { %0 = alloc() : memref<9x9xi32> %1 = alloc() : memref<128xi32> for %i0 = -1 to 9 { for %i1 = -1 to 9 { %2 = affine_apply #map0(%i0, %i1) %3 = load %0[%2tensorflow/mlir#0, %2tensorflow/mlir#1] : memref<9x9xi32> %4 = affine_apply #map1(%i0, %i1) %5 = load %1[%4] : memref<128xi32> } } return } - Improves productivity while manually / semi-automatically developing MLIR for testing / prototyping; also provides an indirect way to catch errors in transformations. - This pass is an easy way to test the underlying affine analysis machinery including low level routines. Some code (in getMemoryRegion()) borrowed from @andydavis cl/218263256. While on this: - create mlir/Analysis/Passes.h; move Pass.h up from mlir/Transforms/ to mlir/ - fix a bug in AffineAnalysis.cpp::toAffineExpr TODO: extend to non-constant loop bounds (straightforward). Will transparently work for all accesses once floordiv, mod, ceildiv are supported in the AffineMap -> FlatAffineConstraints conversion. PiperOrigin-RevId: 219397961
2018-10-31 08:43:06 +08:00
// In bound.
%u = load %B[%zero] : memref<111 x i32>
// Out of bounds.
%v = load %B[%sym] : memref<111 x i32> // expected-error {{'load' op memref out of upper bound access along dimension #1}}
// Out of bounds.
store %v, %B[%minusone] : memref<111 x i32> // expected-error {{'store' op memref out of lower bound access along dimension #1}}
Introduce memref bound checking. Introduce analysis to check memref accesses (in MLFunctions) for out of bound ones. It works as follows: $ mlir-opt -memref-bound-check test/Transforms/memref-bound-check.mlir /tmp/single.mlir:10:12: error: 'load' op memref out of upper bound access along dimension tensorflow/mlir#1 %x = load %A[%idxtensorflow/mlir#0, %idxtensorflow/mlir#1] : memref<9 x 9 x i32> ^ /tmp/single.mlir:10:12: error: 'load' op memref out of lower bound access along dimension tensorflow/mlir#1 %x = load %A[%idxtensorflow/mlir#0, %idxtensorflow/mlir#1] : memref<9 x 9 x i32> ^ /tmp/single.mlir:10:12: error: 'load' op memref out of upper bound access along dimension tensorflow/mlir#2 %x = load %A[%idxtensorflow/mlir#0, %idxtensorflow/mlir#1] : memref<9 x 9 x i32> ^ /tmp/single.mlir:10:12: error: 'load' op memref out of lower bound access along dimension tensorflow/mlir#2 %x = load %A[%idxtensorflow/mlir#0, %idxtensorflow/mlir#1] : memref<9 x 9 x i32> ^ /tmp/single.mlir:12:12: error: 'load' op memref out of upper bound access along dimension tensorflow/mlir#1 %y = load %B[%idy] : memref<128 x i32> ^ /tmp/single.mlir:12:12: error: 'load' op memref out of lower bound access along dimension tensorflow/mlir#1 %y = load %B[%idy] : memref<128 x i32> ^ #map0 = (d0, d1) -> (d0, d1) #map1 = (d0, d1) -> (d0 * 128 - d1) mlfunc @test() { %0 = alloc() : memref<9x9xi32> %1 = alloc() : memref<128xi32> for %i0 = -1 to 9 { for %i1 = -1 to 9 { %2 = affine_apply #map0(%i0, %i1) %3 = load %0[%2tensorflow/mlir#0, %2tensorflow/mlir#1] : memref<9x9xi32> %4 = affine_apply #map1(%i0, %i1) %5 = load %1[%4] : memref<128xi32> } } return } - Improves productivity while manually / semi-automatically developing MLIR for testing / prototyping; also provides an indirect way to catch errors in transformations. - This pass is an easy way to test the underlying affine analysis machinery including low level routines. Some code (in getMemoryRegion()) borrowed from @andydavis cl/218263256. While on this: - create mlir/Analysis/Passes.h; move Pass.h up from mlir/Transforms/ to mlir/ - fix a bug in AffineAnalysis.cpp::toAffineExpr TODO: extend to non-constant loop bounds (straightforward). Will transparently work for all accesses once floordiv, mod, ceildiv are supported in the AffineMap -> FlatAffineConstraints conversion. PiperOrigin-RevId: 219397961
2018-10-31 08:43:06 +08:00
}
return
}
// CHECK-LABEL: func @test_mod_floordiv_ceildiv
func @test_mod_floordiv_ceildiv() {
%zero = constant 0 : index
%A = alloc() : memref<128 x 64 x 64 x i32>
for %i = 0 to 256 {
for %j = 0 to 256 {
%idx0 = affine.apply (d0, d1, d2) -> (d0 mod 128 + 1)(%i, %j, %j)
%idx1 = affine.apply (d0, d1, d2) -> (d1 floordiv 4 + 1)(%i, %j, %j)
%idx2 = affine.apply (d0, d1, d2) -> (d2 ceildiv 4)(%i, %j, %j)
%x = load %A[%idx0, %idx1, %idx2] : memref<128 x 64 x 64 x i32>
// expected-error@-1 {{'load' op memref out of upper bound access along dimension #1}}
// expected-error@-2 {{'load' op memref out of upper bound access along dimension #2}}
// expected-error@-3 {{'load' op memref out of upper bound access along dimension #3}}
%idy0 = affine.apply (d0, d1, d2) -> (d0 mod 128)(%i, %j, %j)
%idy1 = affine.apply (d0, d1, d2) -> (d1 floordiv 4)(%i, %j, %j)
%idy2 = affine.apply (d0, d1, d2) -> (d2 ceildiv 4 - 1)(%i, %j, %j)
store %x, %A[%idy0, %idy1, %idy2] : memref<128 x 64 x 64 x i32> // expected-error {{'store' op memref out of lower bound access along dimension #3}}
// CHECK-EMPTY
} // CHECK }
} // CHECK }
return
}
// CHECK-LABEL: func @test_no_out_of_bounds()
func @test_no_out_of_bounds() {
%zero = constant 0 : index
%A = alloc() : memref<257 x 256 x i32>
%C = alloc() : memref<257 x i32>
%B = alloc() : memref<1 x i32>
for %i = 0 to 256 {
for %j = 0 to 256 {
// All of these accesses are in bound; check that no errors are emitted.
// CHECK: %3 = affine.apply {{#map.*}}(%i0, %i1)
// CHECK-NEXT: %4 = load %0[%3, %c0] : memref<257x256xi32>
// CHECK-NEXT: %5 = affine.apply {{#map.*}}(%i0, %i0)
// CHECK-NEXT: %6 = load %2[%5] : memref<1xi32>
%idx0 = affine.apply (d0, d1) -> ( 64 * (d0 ceildiv 64))(%i, %j)
// Without GCDTightenInequalities(), the upper bound on the region
// accessed along first memref dimension would have come out as d0 <= 318
// (instead of d0 <= 256), and led to a false positive out of bounds.
%x = load %A[%idx0, %zero] : memref<257 x 256 x i32>
%idy = affine.apply (d0, d1) -> (d0 floordiv 256)(%i, %i)
%y = load %B[%idy] : memref<1 x i32>
} // CHECK-NEXT }
}
return
}
// CHECK-LABEL: func @mod_div
func @mod_div() {
%zero = constant 0 : index
%A = alloc() : memref<128 x 64 x 64 x i32>
for %i = 0 to 256 {
for %j = 0 to 256 {
%idx0 = affine.apply (d0, d1, d2) -> (d0 mod 128 + 1)(%i, %j, %j)
%idx1 = affine.apply (d0, d1, d2) -> (d1 floordiv 4 + 1)(%i, %j, %j)
%idx2 = affine.apply (d0, d1, d2) -> (d2 ceildiv 4)(%i, %j, %j)
%x = load %A[%idx0, %idx1, %idx2] : memref<128 x 64 x 64 x i32>
// expected-error@-1 {{'load' op memref out of upper bound access along dimension #1}}
// expected-error@-2 {{'load' op memref out of upper bound access along dimension #2}}
// expected-error@-3 {{'load' op memref out of upper bound access along dimension #3}}
%idy0 = affine.apply (d0, d1, d2) -> (d0 mod 128)(%i, %j, %j)
%idy1 = affine.apply (d0, d1, d2) -> (d1 floordiv 4)(%i, %j, %j)
%idy2 = affine.apply (d0, d1, d2) -> (d2 ceildiv 4 - 1)(%i, %j, %j)
store %x, %A[%idy0, %idy1, %idy2] : memref<128 x 64 x 64 x i32> // expected-error {{'store' op memref out of lower bound access along dimension #3}}
}
}
return
}
// Tests with nested mod's and floordiv's.
// CHECK-LABEL: func @mod_floordiv_nested() {
func @mod_floordiv_nested() {
%A = alloc() : memref<256 x 256 x i32>
for %i = 0 to 256 {
for %j = 0 to 256 {
%idx0 = affine.apply (d0, d1) -> ((d0 mod 1024) floordiv 4)(%i, %j)
%idx1 = affine.apply (d0, d1) -> ((((d1 mod 128) mod 32) ceildiv 4) * 32)(%i, %j)
load %A[%idx0, %idx1] : memref<256 x 256 x i32> // expected-error {{'load' op memref out of upper bound access along dimension #2}}
}
}
return
}
// CHECK-LABEL: func @test_semi_affine_bailout
func @test_semi_affine_bailout(%N : index) {
%B = alloc() : memref<10 x i32>
for %i = 0 to 10 {
%idx = affine.apply (d0)[s0] -> (d0 * s0)(%i)[%N]
%y = load %B[%idx] : memref<10 x i32>
// expected-error@-1 {{getMemRefRegion: compose affine map failed}}
}
return
}
// CHECK-LABEL: func @multi_mod_floordiv
func @multi_mod_floordiv() {
%A = alloc() : memref<2x2xi32>
for %ii = 0 to 64 {
%idx0 = affine.apply (d0) -> ((d0 mod 147456) floordiv 1152) (%ii)
%idx1 = affine.apply (d0) -> (((d0 mod 147456) mod 1152) floordiv 384) (%ii)
%v = load %A[%idx0, %idx1] : memref<2x2xi32>
}
return
}
// CHECK-LABEL: func @delinearize_mod_floordiv
func @delinearize_mod_floordiv() {
%c0 = constant 0 : index
%in = alloc() : memref<2x2x3x3x16x1xi32>
%out = alloc() : memref<64x9xi32>
// Reshape '%in' into '%out'.
for %ii = 0 to 64 {
for %jj = 0 to 9 {
%a0 = affine.apply (d0, d1) -> (d0 * (9 * 1024) + d1 * 128) (%ii, %jj)
%a10 = affine.apply (d0) ->
(d0 floordiv (2 * 3 * 3 * 128 * 128)) (%a0)
%a11 = affine.apply (d0) ->
((d0 mod 294912) floordiv (3 * 3 * 128 * 128)) (%a0)
%a12 = affine.apply (d0) ->
((((d0 mod 294912) mod 147456) floordiv 1152) floordiv 8) (%a0)
%a13 = affine.apply (d0) ->
((((d0 mod 294912) mod 147456) mod 1152) floordiv 384) (%a0)
%a14 = affine.apply (d0) ->
(((((d0 mod 294912) mod 147456) mod 1152) mod 384) floordiv 128) (%a0)
%a15 = affine.apply (d0) ->
((((((d0 mod 294912) mod 147456) mod 1152) mod 384) mod 128)
floordiv 128) (%a0)
%v0 = load %in[%a10, %a11, %a13, %a14, %a12, %a15]
: memref<2x2x3x3x16x1xi32>
}
}
return
}
// CHECK-LABEL: func @zero_d_memref
func @zero_d_memref(%arg0: memref<i32>) {
%c0 = constant 0 : i32
// A 0-d memref always has in-bound accesses!
store %c0, %arg0[] : memref<i32>
return
}
// CHECK-LABEL: func @out_of_bounds
func @out_of_bounds() {
%in = alloc() : memref<1xi32>
%c9 = constant 9 : i32
for %i0 = 10 to 11 {
%idy = affine.apply (d0) -> (100 * d0 floordiv 1000) (%i0)
store %c9, %in[%idy] : memref<1xi32> // expected-error {{'store' op memref out of upper bound access along dimension #1}}
}
return
}
// -----
// This test case accesses within bounds. Without removal of a certain type of
// trivially redundant constraints (those differing only in their constant
// term), the number of constraints here explodes, and this would return out of
// bounds errors conservatively due to FlatAffineConstraints::kExplosionFactor.
#map3 = (d0, d1) -> ((d0 * 72 + d1) floordiv 2304 + ((((d0 * 72 + d1) mod 2304) mod 1152) mod 9) floordiv 3)
#map4 = (d0, d1) -> ((d0 * 72 + d1) mod 2304 - (((d0 * 72 + d1) mod 2304) floordiv 1152) * 1151 - ((((d0 * 72 + d1) mod 2304) mod 1152) floordiv 9) * 9 - (((((d0 * 72 + d1) mod 2304) mod 1152) mod 9) floordiv 3) * 3)
#map5 = (d0, d1) -> (((((d0 * 72 + d1) mod 2304) mod 1152) floordiv 9) floordiv 8)
// CHECK-LABEL: func @test_complex_mod_floordiv
func @test_complex_mod_floordiv(%arg0: memref<4x4x16x1xf32>) {
%c0 = constant 0 : index
%0 = alloc() : memref<1x2x3x3x16x1xf32>
for %i0 = 0 to 64 {
for %i1 = 0 to 9 {
%2 = affine.apply #map3(%i0, %i1)
%3 = affine.apply #map4(%i0, %i1)
%4 = affine.apply #map5(%i0, %i1)
%5 = load %arg0[%2, %c0, %4, %c0] : memref<4x4x16x1xf32>
}
}
return
}