llvm-project/llvm/lib/Target/Hexagon/HexagonTargetTransformInfo.cpp

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

350 lines
13 KiB
C++
Raw Normal View History

//===- HexagonTargetTransformInfo.cpp - Hexagon specific TTI pass ---------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
/// \file
/// This file implements a TargetTransformInfo analysis pass specific to the
/// Hexagon target machine. It uses the target's detailed information to provide
/// more precise answers to certain TTI queries, while letting the target
/// independent and default TTI implementations handle the rest.
///
//===----------------------------------------------------------------------===//
#include "HexagonTargetTransformInfo.h"
#include "HexagonSubtarget.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/CodeGen/ValueTypes.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/User.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Transforms/Utils/LoopPeel.h"
#include "llvm/Transforms/Utils/UnrollLoop.h"
using namespace llvm;
#define DEBUG_TYPE "hexagontti"
static cl::opt<bool> HexagonAutoHVX("hexagon-autohvx", cl::init(false),
cl::Hidden, cl::desc("Enable loop vectorizer for HVX"));
static cl::opt<bool> EmitLookupTables("hexagon-emit-lookup-tables",
cl::init(true), cl::Hidden,
cl::desc("Control lookup table emission on Hexagon target"));
static cl::opt<bool> HexagonMaskedVMem("hexagon-masked-vmem", cl::init(true),
cl::Hidden, cl::desc("Enable loop vectorizer for HVX"));
// Constant "cost factor" to make floating point operations more expensive
// in terms of vectorization cost. This isn't the best way, but it should
// do. Ultimately, the cost should use cycles.
static const unsigned FloatFactor = 4;
bool HexagonTTIImpl::useHVX() const {
return ST.useHVXOps() && HexagonAutoHVX;
}
unsigned HexagonTTIImpl::getTypeNumElements(Type *Ty) const {
if (auto *VTy = dyn_cast<FixedVectorType>(Ty))
return VTy->getNumElements();
assert((Ty->isIntegerTy() || Ty->isFloatingPointTy()) &&
"Expecting scalar type");
return 1;
}
TargetTransformInfo::PopcntSupportKind
HexagonTTIImpl::getPopcntSupport(unsigned IntTyWidthInBit) const {
// Return fast hardware support as every input < 64 bits will be promoted
// to 64 bits.
return TargetTransformInfo::PSK_FastHardware;
}
// The Hexagon target can unroll loops with run-time trip counts.
void HexagonTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
TTI::UnrollingPreferences &UP) {
UP.Runtime = UP.Partial = true;
}
void HexagonTTIImpl::getPeelingPreferences(Loop *L, ScalarEvolution &SE,
TTI::PeelingPreferences &PP) {
BaseT::getPeelingPreferences(L, SE, PP);
// Only try to peel innermost loops with small runtime trip counts.
if (L && L->isInnermost() && canPeel(L) &&
SE.getSmallConstantTripCount(L) == 0 &&
SE.getSmallConstantMaxTripCount(L) > 0 &&
SE.getSmallConstantMaxTripCount(L) <= 5) {
PP.PeelCount = 2;
}
}
bool HexagonTTIImpl::shouldFavorPostInc() const {
return true;
}
/// --- Vector TTI begin ---
unsigned HexagonTTIImpl::getNumberOfRegisters(bool Vector) const {
if (Vector)
return useHVX() ? 32 : 0;
return 32;
}
unsigned HexagonTTIImpl::getMaxInterleaveFactor(unsigned VF) {
return useHVX() ? 2 : 1;
}
unsigned HexagonTTIImpl::getRegisterBitWidth(bool Vector) const {
return Vector ? getMinVectorRegisterBitWidth() : 32;
}
unsigned HexagonTTIImpl::getMinVectorRegisterBitWidth() const {
return useHVX() ? ST.getVectorLength()*8 : 32;
}
unsigned HexagonTTIImpl::getMinimumVF(unsigned ElemWidth) const {
return (8 * ST.getVectorLength()) / ElemWidth;
}
unsigned HexagonTTIImpl::getScalarizationOverhead(VectorType *Ty,
const APInt &DemandedElts,
bool Insert, bool Extract) {
return BaseT::getScalarizationOverhead(Ty, DemandedElts, Insert, Extract);
}
unsigned HexagonTTIImpl::getOperandsScalarizationOverhead(
ArrayRef<const Value*> Args, unsigned VF) {
return BaseT::getOperandsScalarizationOverhead(Args, VF);
}
unsigned HexagonTTIImpl::getCallInstrCost(Function *F, Type *RetTy,
ArrayRef<Type*> Tys, TTI::TargetCostKind CostKind) {
return BaseT::getCallInstrCost(F, RetTy, Tys, CostKind);
}
unsigned
HexagonTTIImpl::getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA,
TTI::TargetCostKind CostKind) {
if (ICA.getID() == Intrinsic::bswap) {
std::pair<int, MVT> LT = TLI.getTypeLegalizationCost(DL, ICA.getReturnType());
return LT.first + 2;
}
return BaseT::getIntrinsicInstrCost(ICA, CostKind);
}
unsigned HexagonTTIImpl::getAddressComputationCost(Type *Tp,
ScalarEvolution *SE, const SCEV *S) {
return 0;
}
unsigned HexagonTTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src,
MaybeAlign Alignment,
unsigned AddressSpace,
TTI::TargetCostKind CostKind,
const Instruction *I) {
assert(Opcode == Instruction::Load || Opcode == Instruction::Store);
// TODO: Handle other cost kinds.
if (CostKind != TTI::TCK_RecipThroughput)
return 1;
if (Opcode == Instruction::Store)
return BaseT::getMemoryOpCost(Opcode, Src, Alignment, AddressSpace,
CostKind, I);
if (Src->isVectorTy()) {
VectorType *VecTy = cast<VectorType>(Src);
unsigned VecWidth = VecTy->getPrimitiveSizeInBits().getFixedSize();
if (useHVX() && ST.isTypeForHVX(VecTy)) {
unsigned RegWidth = getRegisterBitWidth(true);
assert(RegWidth && "Non-zero vector register width expected");
// Cost of HVX loads.
if (VecWidth % RegWidth == 0)
return VecWidth / RegWidth;
// Cost of constructing HVX vector from scalar loads
const Align RegAlign(RegWidth / 8);
if (!Alignment || *Alignment > RegAlign)
Alignment = RegAlign;
assert(Alignment);
unsigned AlignWidth = 8 * Alignment->value();
unsigned NumLoads = alignTo(VecWidth, AlignWidth) / AlignWidth;
return 3 * NumLoads;
}
// Non-HVX vectors.
// Add extra cost for floating point types.
unsigned Cost =
VecTy->getElementType()->isFloatingPointTy() ? FloatFactor : 1;
// At this point unspecified alignment is considered as Align(1).
const Align BoundAlignment = std::min(Alignment.valueOrOne(), Align(8));
unsigned AlignWidth = 8 * BoundAlignment.value();
unsigned NumLoads = alignTo(VecWidth, AlignWidth) / AlignWidth;
if (Alignment == Align(4) || Alignment == Align(8))
return Cost * NumLoads;
// Loads of less than 32 bits will need extra inserts to compose a vector.
assert(BoundAlignment <= Align(8));
unsigned LogA = Log2(BoundAlignment);
return (3 - LogA) * Cost * NumLoads;
}
return BaseT::getMemoryOpCost(Opcode, Src, Alignment, AddressSpace,
CostKind, I);
}
unsigned HexagonTTIImpl::getMaskedMemoryOpCost(unsigned Opcode, Type *Src,
Align Alignment,
unsigned AddressSpace,
TTI::TargetCostKind CostKind) {
return BaseT::getMaskedMemoryOpCost(Opcode, Src, Alignment, AddressSpace,
CostKind);
}
unsigned HexagonTTIImpl::getShuffleCost(TTI::ShuffleKind Kind, Type *Tp,
int Index, Type *SubTp) {
return 1;
}
unsigned HexagonTTIImpl::getGatherScatterOpCost(
unsigned Opcode, Type *DataTy, const Value *Ptr, bool VariableMask,
Align Alignment, TTI::TargetCostKind CostKind, const Instruction *I) {
return BaseT::getGatherScatterOpCost(Opcode, DataTy, Ptr, VariableMask,
Alignment, CostKind, I);
}
unsigned HexagonTTIImpl::getInterleavedMemoryOpCost(
unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices,
Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind,
bool UseMaskForCond, bool UseMaskForGaps) {
if (Indices.size() != Factor || UseMaskForCond || UseMaskForGaps)
return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
Alignment, AddressSpace,
CostKind,
UseMaskForCond, UseMaskForGaps);
return getMemoryOpCost(Opcode, VecTy, MaybeAlign(Alignment), AddressSpace,
CostKind);
}
unsigned HexagonTTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
Type *CondTy,
CmpInst::Predicate VecPred,
TTI::TargetCostKind CostKind,
const Instruction *I) {
if (ValTy->isVectorTy() && CostKind == TTI::TCK_RecipThroughput) {
std::pair<int, MVT> LT = TLI.getTypeLegalizationCost(DL, ValTy);
if (Opcode == Instruction::FCmp)
return LT.first + FloatFactor * getTypeNumElements(ValTy);
}
return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, VecPred, CostKind, I);
}
unsigned HexagonTTIImpl::getArithmeticInstrCost(
unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind,
TTI::OperandValueKind Opd1Info,
TTI::OperandValueKind Opd2Info, TTI::OperandValueProperties Opd1PropInfo,
TTI::OperandValueProperties Opd2PropInfo, ArrayRef<const Value *> Args,
const Instruction *CxtI) {
// TODO: Handle more cost kinds.
if (CostKind != TTI::TCK_RecipThroughput)
return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Opd1Info,
Opd2Info, Opd1PropInfo,
Opd2PropInfo, Args, CxtI);
if (Ty->isVectorTy()) {
std::pair<int, MVT> LT = TLI.getTypeLegalizationCost(DL, Ty);
if (LT.second.isFloatingPoint())
return LT.first + FloatFactor * getTypeNumElements(Ty);
}
return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Opd1Info, Opd2Info,
Opd1PropInfo, Opd2PropInfo, Args, CxtI);
}
unsigned HexagonTTIImpl::getCastInstrCost(unsigned Opcode, Type *DstTy,
Type *SrcTy, TTI::CastContextHint CCH,
TTI::TargetCostKind CostKind,
const Instruction *I) {
if (SrcTy->isFPOrFPVectorTy() || DstTy->isFPOrFPVectorTy()) {
unsigned SrcN = SrcTy->isFPOrFPVectorTy() ? getTypeNumElements(SrcTy) : 0;
unsigned DstN = DstTy->isFPOrFPVectorTy() ? getTypeNumElements(DstTy) : 0;
std::pair<int, MVT> SrcLT = TLI.getTypeLegalizationCost(DL, SrcTy);
std::pair<int, MVT> DstLT = TLI.getTypeLegalizationCost(DL, DstTy);
unsigned Cost = std::max(SrcLT.first, DstLT.first) + FloatFactor * (SrcN + DstN);
// TODO: Allow non-throughput costs that aren't binary.
if (CostKind != TTI::TCK_RecipThroughput)
return Cost == 0 ? 0 : 1;
return Cost;
}
return 1;
}
unsigned HexagonTTIImpl::getVectorInstrCost(unsigned Opcode, Type *Val,
unsigned Index) {
Type *ElemTy = Val->isVectorTy() ? cast<VectorType>(Val)->getElementType()
: Val;
if (Opcode == Instruction::InsertElement) {
// Need two rotations for non-zero index.
unsigned Cost = (Index != 0) ? 2 : 0;
if (ElemTy->isIntegerTy(32))
return Cost;
// If it's not a 32-bit value, there will need to be an extract.
return Cost + getVectorInstrCost(Instruction::ExtractElement, Val, Index);
}
if (Opcode == Instruction::ExtractElement)
return 2;
return 1;
}
bool HexagonTTIImpl::isLegalMaskedStore(Type *DataType, Align /*Alignment*/) {
return HexagonMaskedVMem && ST.isTypeForHVX(DataType);
}
bool HexagonTTIImpl::isLegalMaskedLoad(Type *DataType, Align /*Alignment*/) {
return HexagonMaskedVMem && ST.isTypeForHVX(DataType);
}
/// --- Vector TTI end ---
unsigned HexagonTTIImpl::getPrefetchDistance() const {
return ST.getL1PrefetchDistance();
}
unsigned HexagonTTIImpl::getCacheLineSize() const {
return ST.getL1CacheLineSize();
}
int
HexagonTTIImpl::getUserCost(const User *U,
ArrayRef<const Value *> Operands,
TTI::TargetCostKind CostKind) {
auto isCastFoldedIntoLoad = [this](const CastInst *CI) -> bool {
if (!CI->isIntegerCast())
return false;
// Only extensions from an integer type shorter than 32-bit to i32
// can be folded into the load.
const DataLayout &DL = getDataLayout();
unsigned SBW = DL.getTypeSizeInBits(CI->getSrcTy());
unsigned DBW = DL.getTypeSizeInBits(CI->getDestTy());
if (DBW != 32 || SBW >= DBW)
return false;
const LoadInst *LI = dyn_cast<const LoadInst>(CI->getOperand(0));
// Technically, this code could allow multiple uses of the load, and
// check if all the uses are the same extension operation, but this
// should be sufficient for most cases.
return LI && LI->hasOneUse();
};
if (const CastInst *CI = dyn_cast<const CastInst>(U))
if (isCastFoldedIntoLoad(CI))
return TargetTransformInfo::TCC_Free;
return BaseT::getUserCost(U, Operands, CostKind);
}
bool HexagonTTIImpl::shouldBuildLookupTables() const {
return EmitLookupTables;
}