llvm-project/lldb/source/API/SBModule.cpp

656 lines
16 KiB
C++
Raw Normal View History

//===-- SBModule.cpp --------------------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "lldb/API/SBModule.h"
#include "lldb/API/SBAddress.h"
#include "lldb/API/SBFileSpec.h"
#include "lldb/API/SBModuleSpec.h"
#include "lldb/API/SBProcess.h"
#include "lldb/API/SBStream.h"
#include "lldb/API/SBSymbolContextList.h"
#include "lldb/Core/Module.h"
#include "lldb/Core/Log.h"
<rdar://problem/11757916> Make breakpoint setting by file and line much more efficient by only looking for inlined breakpoint locations if we are setting a breakpoint in anything but a source implementation file. Implementing this complex for a many reasons. Turns out that parsing compile units lazily had some issues with respect to how we need to do things with DWARF in .o files. So the fixes in the checkin for this makes these changes: - Add a new setting called "target.inline-breakpoint-strategy" which can be set to "never", "always", or "headers". "never" will never try and set any inlined breakpoints (fastest). "always" always looks for inlined breakpoint locations (slowest, but most accurate). "headers", which is the default setting, will only look for inlined breakpoint locations if the breakpoint is set in what are consudered to be header files, which is realy defined as "not in an implementation source file". - modify the breakpoint setting by file and line to check the current "target.inline-breakpoint-strategy" setting and act accordingly - Modify compile units to be able to get their language and other info lazily. This allows us to create compile units from the debug map and not have to fill all of the details in, and then lazily discover this information as we go on debuggging. This is needed to avoid parsing all .o files when setting breakpoints in implementation only files (no inlines). Otherwise we would need to parse the .o file, the object file (mach-o in our case) and the symbol file (DWARF in the object file) just to see what the compile unit was. - modify the "SymbolFileDWARFDebugMap" to subclass lldb_private::Module so that the virtual "GetObjectFile()" and "GetSymbolVendor()" functions can be intercepted when the .o file contenst are later lazilly needed. Prior to this fix, when we first instantiated the "SymbolFileDWARFDebugMap" class, we would also make modules, object files and symbol files for every .o file in the debug map because we needed to fix up the sections in the .o files with information that is in the executable debug map. Now we lazily do this in the DebugMapModule::GetObjectFile() Cleaned up header includes a bit as well. llvm-svn: 162860
2012-08-30 05:13:06 +08:00
#include "lldb/Core/Section.h"
#include "lldb/Core/StreamString.h"
#include "lldb/Core/ValueObjectList.h"
#include "lldb/Core/ValueObjectVariable.h"
<rdar://problem/11757916> Make breakpoint setting by file and line much more efficient by only looking for inlined breakpoint locations if we are setting a breakpoint in anything but a source implementation file. Implementing this complex for a many reasons. Turns out that parsing compile units lazily had some issues with respect to how we need to do things with DWARF in .o files. So the fixes in the checkin for this makes these changes: - Add a new setting called "target.inline-breakpoint-strategy" which can be set to "never", "always", or "headers". "never" will never try and set any inlined breakpoints (fastest). "always" always looks for inlined breakpoint locations (slowest, but most accurate). "headers", which is the default setting, will only look for inlined breakpoint locations if the breakpoint is set in what are consudered to be header files, which is realy defined as "not in an implementation source file". - modify the breakpoint setting by file and line to check the current "target.inline-breakpoint-strategy" setting and act accordingly - Modify compile units to be able to get their language and other info lazily. This allows us to create compile units from the debug map and not have to fill all of the details in, and then lazily discover this information as we go on debuggging. This is needed to avoid parsing all .o files when setting breakpoints in implementation only files (no inlines). Otherwise we would need to parse the .o file, the object file (mach-o in our case) and the symbol file (DWARF in the object file) just to see what the compile unit was. - modify the "SymbolFileDWARFDebugMap" to subclass lldb_private::Module so that the virtual "GetObjectFile()" and "GetSymbolVendor()" functions can be intercepted when the .o file contenst are later lazilly needed. Prior to this fix, when we first instantiated the "SymbolFileDWARFDebugMap" class, we would also make modules, object files and symbol files for every .o file in the debug map because we needed to fix up the sections in the .o files with information that is in the executable debug map. Now we lazily do this in the DebugMapModule::GetObjectFile() Cleaned up header includes a bit as well. llvm-svn: 162860
2012-08-30 05:13:06 +08:00
#include "lldb/Symbol/ObjectFile.h"
#include "lldb/Symbol/SymbolVendor.h"
<rdar://problem/11757916> Make breakpoint setting by file and line much more efficient by only looking for inlined breakpoint locations if we are setting a breakpoint in anything but a source implementation file. Implementing this complex for a many reasons. Turns out that parsing compile units lazily had some issues with respect to how we need to do things with DWARF in .o files. So the fixes in the checkin for this makes these changes: - Add a new setting called "target.inline-breakpoint-strategy" which can be set to "never", "always", or "headers". "never" will never try and set any inlined breakpoints (fastest). "always" always looks for inlined breakpoint locations (slowest, but most accurate). "headers", which is the default setting, will only look for inlined breakpoint locations if the breakpoint is set in what are consudered to be header files, which is realy defined as "not in an implementation source file". - modify the breakpoint setting by file and line to check the current "target.inline-breakpoint-strategy" setting and act accordingly - Modify compile units to be able to get their language and other info lazily. This allows us to create compile units from the debug map and not have to fill all of the details in, and then lazily discover this information as we go on debuggging. This is needed to avoid parsing all .o files when setting breakpoints in implementation only files (no inlines). Otherwise we would need to parse the .o file, the object file (mach-o in our case) and the symbol file (DWARF in the object file) just to see what the compile unit was. - modify the "SymbolFileDWARFDebugMap" to subclass lldb_private::Module so that the virtual "GetObjectFile()" and "GetSymbolVendor()" functions can be intercepted when the .o file contenst are later lazilly needed. Prior to this fix, when we first instantiated the "SymbolFileDWARFDebugMap" class, we would also make modules, object files and symbol files for every .o file in the debug map because we needed to fix up the sections in the .o files with information that is in the executable debug map. Now we lazily do this in the DebugMapModule::GetObjectFile() Cleaned up header includes a bit as well. llvm-svn: 162860
2012-08-30 05:13:06 +08:00
#include "lldb/Symbol/Symtab.h"
#include "lldb/Symbol/VariableList.h"
#include "lldb/Target/Target.h"
using namespace lldb;
using namespace lldb_private;
SBModule::SBModule () :
m_opaque_sp ()
{
}
SBModule::SBModule (const lldb::ModuleSP& module_sp) :
m_opaque_sp (module_sp)
{
}
SBModule::SBModule(const SBModuleSpec &module_spec) :
m_opaque_sp ()
{
ModuleSP module_sp;
Error error = ModuleList::GetSharedModule (*module_spec.m_opaque_ap,
module_sp,
NULL,
NULL,
NULL);
if (module_sp)
SetSP(module_sp);
}
SBModule::SBModule(const SBModule &rhs) :
m_opaque_sp (rhs.m_opaque_sp)
{
}
SBModule::SBModule (lldb::SBProcess &process, lldb::addr_t header_addr) :
m_opaque_sp ()
{
ProcessSP process_sp (process.GetSP());
if (process_sp)
{
m_opaque_sp = process_sp->ReadModuleFromMemory (FileSpec(), header_addr);
if (m_opaque_sp)
{
Target &target = process_sp->GetTarget();
bool changed = false;
m_opaque_sp->SetLoadAddress(target, 0, changed);
target.GetImages().Append(m_opaque_sp);
}
}
}
const SBModule &
SBModule::operator = (const SBModule &rhs)
{
if (this != &rhs)
m_opaque_sp = rhs.m_opaque_sp;
return *this;
}
SBModule::~SBModule ()
{
}
bool
SBModule::IsValid () const
{
return m_opaque_sp.get() != NULL;
}
void
SBModule::Clear()
{
m_opaque_sp.reset();
}
SBFileSpec
SBModule::GetFileSpec () const
{
Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_API));
SBFileSpec file_spec;
ModuleSP module_sp (GetSP ());
if (module_sp)
file_spec.SetFileSpec(module_sp->GetFileSpec());
if (log)
{
log->Printf ("SBModule(%p)::GetFileSpec () => SBFileSpec(%p)",
module_sp.get(), file_spec.get());
}
return file_spec;
}
lldb::SBFileSpec
SBModule::GetPlatformFileSpec () const
{
Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_API));
SBFileSpec file_spec;
ModuleSP module_sp (GetSP ());
if (module_sp)
file_spec.SetFileSpec(module_sp->GetPlatformFileSpec());
if (log)
{
log->Printf ("SBModule(%p)::GetPlatformFileSpec () => SBFileSpec(%p)",
module_sp.get(), file_spec.get());
}
return file_spec;
}
bool
SBModule::SetPlatformFileSpec (const lldb::SBFileSpec &platform_file)
{
bool result = false;
Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_API));
ModuleSP module_sp (GetSP ());
if (module_sp)
{
module_sp->SetPlatformFileSpec(*platform_file);
result = true;
}
if (log)
{
log->Printf ("SBModule(%p)::SetPlatformFileSpec (SBFileSpec(%p (%s)) => %i",
module_sp.get(),
platform_file.get(),
platform_file->GetPath().c_str(),
result);
}
return result;
}
const uint8_t *
SBModule::GetUUIDBytes () const
{
Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_API));
2010-10-30 12:51:46 +08:00
const uint8_t *uuid_bytes = NULL;
ModuleSP module_sp (GetSP ());
if (module_sp)
uuid_bytes = (const uint8_t *)module_sp->GetUUID().GetBytes();
2010-10-30 12:51:46 +08:00
if (log)
{
2010-10-30 12:51:46 +08:00
if (uuid_bytes)
{
2010-10-30 12:51:46 +08:00
StreamString s;
module_sp->GetUUID().Dump (&s);
log->Printf ("SBModule(%p)::GetUUIDBytes () => %s", module_sp.get(), s.GetData());
}
2010-10-30 12:51:46 +08:00
else
log->Printf ("SBModule(%p)::GetUUIDBytes () => NULL", module_sp.get());
}
2010-10-30 12:51:46 +08:00
return uuid_bytes;
}
const char *
SBModule::GetUUIDString () const
{
Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_API));
static char uuid_string_buffer[80];
const char *uuid_c_string = NULL;
std::string uuid_string;
ModuleSP module_sp (GetSP ());
if (module_sp)
uuid_string = module_sp->GetUUID().GetAsString();
if (!uuid_string.empty())
{
strncpy (uuid_string_buffer, uuid_string.c_str(), sizeof (uuid_string_buffer));
uuid_c_string = uuid_string_buffer;
}
if (log)
{
if (!uuid_string.empty())
{
StreamString s;
module_sp->GetUUID().Dump (&s);
log->Printf ("SBModule(%p)::GetUUIDString () => %s", module_sp.get(), s.GetData());
}
else
log->Printf ("SBModule(%p)::GetUUIDString () => NULL", module_sp.get());
}
return uuid_c_string;
}
bool
SBModule::operator == (const SBModule &rhs) const
{
if (m_opaque_sp)
return m_opaque_sp.get() == rhs.m_opaque_sp.get();
return false;
}
bool
SBModule::operator != (const SBModule &rhs) const
{
if (m_opaque_sp)
return m_opaque_sp.get() != rhs.m_opaque_sp.get();
return false;
}
ModuleSP
SBModule::GetSP () const
{
return m_opaque_sp;
}
void
SBModule::SetSP (const ModuleSP &module_sp)
{
m_opaque_sp = module_sp;
}
SBAddress
SBModule::ResolveFileAddress (lldb::addr_t vm_addr)
{
lldb::SBAddress sb_addr;
ModuleSP module_sp (GetSP ());
if (module_sp)
{
Address addr;
if (module_sp->ResolveFileAddress (vm_addr, addr))
sb_addr.ref() = addr;
}
return sb_addr;
}
SBSymbolContext
SBModule::ResolveSymbolContextForAddress (const SBAddress& addr, uint32_t resolve_scope)
{
SBSymbolContext sb_sc;
ModuleSP module_sp (GetSP ());
if (module_sp && addr.IsValid())
module_sp->ResolveSymbolContextForAddress (addr.ref(), resolve_scope, *sb_sc);
return sb_sc;
}
bool
SBModule::GetDescription (SBStream &description)
{
Stream &strm = description.ref();
ModuleSP module_sp (GetSP ());
if (module_sp)
{
module_sp->GetDescription (&strm);
}
else
strm.PutCString ("No value");
return true;
}
uint32_t
SBModule::GetNumCompileUnits()
{
ModuleSP module_sp (GetSP ());
if (module_sp)
{
return module_sp->GetNumCompileUnits ();
}
return 0;
}
SBCompileUnit
SBModule::GetCompileUnitAtIndex (uint32_t index)
{
SBCompileUnit sb_cu;
ModuleSP module_sp (GetSP ());
if (module_sp)
{
CompUnitSP cu_sp = module_sp->GetCompileUnitAtIndex (index);
sb_cu.reset(cu_sp.get());
}
return sb_cu;
}
static Symtab *
GetUnifiedSymbolTable (const lldb::ModuleSP& module_sp)
{
if (module_sp)
{
SymbolVendor *symbols = module_sp->GetSymbolVendor();
if (symbols)
return symbols->GetSymtab();
}
return NULL;
}
size_t
SBModule::GetNumSymbols ()
{
ModuleSP module_sp (GetSP ());
if (module_sp)
{
Symtab *symtab = GetUnifiedSymbolTable (module_sp);
if (symtab)
return symtab->GetNumSymbols();
}
return 0;
}
SBSymbol
SBModule::GetSymbolAtIndex (size_t idx)
{
SBSymbol sb_symbol;
ModuleSP module_sp (GetSP ());
Symtab *symtab = GetUnifiedSymbolTable (module_sp);
if (symtab)
sb_symbol.SetSymbol(symtab->SymbolAtIndex (idx));
return sb_symbol;
}
lldb::SBSymbol
SBModule::FindSymbol (const char *name,
lldb::SymbolType symbol_type)
{
SBSymbol sb_symbol;
if (name && name[0])
{
ModuleSP module_sp (GetSP ());
Symtab *symtab = GetUnifiedSymbolTable (module_sp);
if (symtab)
sb_symbol.SetSymbol(symtab->FindFirstSymbolWithNameAndType(ConstString(name), symbol_type, Symtab::eDebugAny, Symtab::eVisibilityAny));
}
return sb_symbol;
}
lldb::SBSymbolContextList
SBModule::FindSymbols (const char *name, lldb::SymbolType symbol_type)
{
SBSymbolContextList sb_sc_list;
if (name && name[0])
{
ModuleSP module_sp (GetSP ());
Symtab *symtab = GetUnifiedSymbolTable (module_sp);
if (symtab)
{
std::vector<uint32_t> matching_symbol_indexes;
const size_t num_matches = symtab->FindAllSymbolsWithNameAndType(ConstString(name), symbol_type, matching_symbol_indexes);
if (num_matches)
{
SymbolContext sc;
sc.module_sp = module_sp;
SymbolContextList &sc_list = *sb_sc_list;
for (size_t i=0; i<num_matches; ++i)
{
sc.symbol = symtab->SymbolAtIndex (matching_symbol_indexes[i]);
if (sc.symbol)
sc_list.Append(sc);
}
}
}
}
return sb_sc_list;
}
size_t
SBModule::GetNumSections ()
{
ModuleSP module_sp (GetSP ());
if (module_sp)
{
// Give the symbol vendor a chance to add to the unified section list.
module_sp->GetSymbolVendor();
SectionList *section_list = module_sp->GetSectionList();
if (section_list)
return section_list->GetSize();
}
return 0;
}
SBSection
SBModule::GetSectionAtIndex (size_t idx)
{
SBSection sb_section;
ModuleSP module_sp (GetSP ());
if (module_sp)
{
// Give the symbol vendor a chance to add to the unified section list.
module_sp->GetSymbolVendor();
SectionList *section_list = module_sp->GetSectionList ();
if (section_list)
sb_section.SetSP(section_list->GetSectionAtIndex (idx));
}
return sb_section;
}
Removed all of the "#ifndef SWIG" from the SB header files since we are using interface (.i) files for each class. Changed the FindFunction class from: uint32_t SBTarget::FindFunctions (const char *name, uint32_t name_type_mask, bool append, lldb::SBSymbolContextList& sc_list) uint32_t SBModule::FindFunctions (const char *name, uint32_t name_type_mask, bool append, lldb::SBSymbolContextList& sc_list) To: lldb::SBSymbolContextList SBTarget::FindFunctions (const char *name, uint32_t name_type_mask = lldb::eFunctionNameTypeAny); lldb::SBSymbolContextList SBModule::FindFunctions (const char *name, uint32_t name_type_mask = lldb::eFunctionNameTypeAny); This makes the API easier to use from python. Also added the ability to append a SBSymbolContext or a SBSymbolContextList to a SBSymbolContextList. Exposed properties for lldb.SBSymbolContextList in python: lldb.SBSymbolContextList.modules => list() or all lldb.SBModule objects in the list lldb.SBSymbolContextList.compile_units => list() or all lldb.SBCompileUnits objects in the list lldb.SBSymbolContextList.functions => list() or all lldb.SBFunction objects in the list lldb.SBSymbolContextList.blocks => list() or all lldb.SBBlock objects in the list lldb.SBSymbolContextList.line_entries => list() or all lldb.SBLineEntry objects in the list lldb.SBSymbolContextList.symbols => list() or all lldb.SBSymbol objects in the list This allows a call to the SBTarget::FindFunctions(...) and SBModule::FindFunctions(...) and then the result can be used to extract the desired information: sc_list = lldb.target.FindFunctions("erase") for function in sc_list.functions: print function for symbol in sc_list.symbols: print symbol Exposed properties for the lldb.SBSymbolContext objects in python: lldb.SBSymbolContext.module => lldb.SBModule lldb.SBSymbolContext.compile_unit => lldb.SBCompileUnit lldb.SBSymbolContext.function => lldb.SBFunction lldb.SBSymbolContext.block => lldb.SBBlock lldb.SBSymbolContext.line_entry => lldb.SBLineEntry lldb.SBSymbolContext.symbol => lldb.SBSymbol Exposed properties for the lldb.SBBlock objects in python: lldb.SBBlock.parent => lldb.SBBlock for the parent block that contains lldb.SBBlock.sibling => lldb.SBBlock for the sibling block to the current block lldb.SBBlock.first_child => lldb.SBBlock for the first child block to the current block lldb.SBBlock.call_site => for inline functions, return a lldb.declaration object that gives the call site file, line and column lldb.SBBlock.name => for inline functions this is the name of the inline function that this block represents lldb.SBBlock.inlined_block => returns the inlined function block that contains this block (might return itself if the current block is an inlined block) lldb.SBBlock.range[int] => access the address ranges for a block by index, a list() with start and end address is returned lldb.SBBlock.ranges => an array or all address ranges for this block lldb.SBBlock.num_ranges => the number of address ranges for this blcok SBFunction objects can now get the SBType and the SBBlock that represents the top scope of the function. SBBlock objects can now get the variable list from the current block. The value list returned allows varaibles to be viewed prior with no process if code wants to check the variables in a function. There are two ways to get a variable list from a SBBlock: lldb::SBValueList SBBlock::GetVariables (lldb::SBFrame& frame, bool arguments, bool locals, bool statics, lldb::DynamicValueType use_dynamic); lldb::SBValueList SBBlock::GetVariables (lldb::SBTarget& target, bool arguments, bool locals, bool statics); When a SBFrame is used, the values returned will be locked down to the frame and the values will be evaluated in the context of that frame. When a SBTarget is used, global an static variables can be viewed without a running process. llvm-svn: 149853
2012-02-06 09:44:54 +08:00
lldb::SBSymbolContextList
SBModule::FindFunctions (const char *name,
Removed all of the "#ifndef SWIG" from the SB header files since we are using interface (.i) files for each class. Changed the FindFunction class from: uint32_t SBTarget::FindFunctions (const char *name, uint32_t name_type_mask, bool append, lldb::SBSymbolContextList& sc_list) uint32_t SBModule::FindFunctions (const char *name, uint32_t name_type_mask, bool append, lldb::SBSymbolContextList& sc_list) To: lldb::SBSymbolContextList SBTarget::FindFunctions (const char *name, uint32_t name_type_mask = lldb::eFunctionNameTypeAny); lldb::SBSymbolContextList SBModule::FindFunctions (const char *name, uint32_t name_type_mask = lldb::eFunctionNameTypeAny); This makes the API easier to use from python. Also added the ability to append a SBSymbolContext or a SBSymbolContextList to a SBSymbolContextList. Exposed properties for lldb.SBSymbolContextList in python: lldb.SBSymbolContextList.modules => list() or all lldb.SBModule objects in the list lldb.SBSymbolContextList.compile_units => list() or all lldb.SBCompileUnits objects in the list lldb.SBSymbolContextList.functions => list() or all lldb.SBFunction objects in the list lldb.SBSymbolContextList.blocks => list() or all lldb.SBBlock objects in the list lldb.SBSymbolContextList.line_entries => list() or all lldb.SBLineEntry objects in the list lldb.SBSymbolContextList.symbols => list() or all lldb.SBSymbol objects in the list This allows a call to the SBTarget::FindFunctions(...) and SBModule::FindFunctions(...) and then the result can be used to extract the desired information: sc_list = lldb.target.FindFunctions("erase") for function in sc_list.functions: print function for symbol in sc_list.symbols: print symbol Exposed properties for the lldb.SBSymbolContext objects in python: lldb.SBSymbolContext.module => lldb.SBModule lldb.SBSymbolContext.compile_unit => lldb.SBCompileUnit lldb.SBSymbolContext.function => lldb.SBFunction lldb.SBSymbolContext.block => lldb.SBBlock lldb.SBSymbolContext.line_entry => lldb.SBLineEntry lldb.SBSymbolContext.symbol => lldb.SBSymbol Exposed properties for the lldb.SBBlock objects in python: lldb.SBBlock.parent => lldb.SBBlock for the parent block that contains lldb.SBBlock.sibling => lldb.SBBlock for the sibling block to the current block lldb.SBBlock.first_child => lldb.SBBlock for the first child block to the current block lldb.SBBlock.call_site => for inline functions, return a lldb.declaration object that gives the call site file, line and column lldb.SBBlock.name => for inline functions this is the name of the inline function that this block represents lldb.SBBlock.inlined_block => returns the inlined function block that contains this block (might return itself if the current block is an inlined block) lldb.SBBlock.range[int] => access the address ranges for a block by index, a list() with start and end address is returned lldb.SBBlock.ranges => an array or all address ranges for this block lldb.SBBlock.num_ranges => the number of address ranges for this blcok SBFunction objects can now get the SBType and the SBBlock that represents the top scope of the function. SBBlock objects can now get the variable list from the current block. The value list returned allows varaibles to be viewed prior with no process if code wants to check the variables in a function. There are two ways to get a variable list from a SBBlock: lldb::SBValueList SBBlock::GetVariables (lldb::SBFrame& frame, bool arguments, bool locals, bool statics, lldb::DynamicValueType use_dynamic); lldb::SBValueList SBBlock::GetVariables (lldb::SBTarget& target, bool arguments, bool locals, bool statics); When a SBFrame is used, the values returned will be locked down to the frame and the values will be evaluated in the context of that frame. When a SBTarget is used, global an static variables can be viewed without a running process. llvm-svn: 149853
2012-02-06 09:44:54 +08:00
uint32_t name_type_mask)
{
Removed all of the "#ifndef SWIG" from the SB header files since we are using interface (.i) files for each class. Changed the FindFunction class from: uint32_t SBTarget::FindFunctions (const char *name, uint32_t name_type_mask, bool append, lldb::SBSymbolContextList& sc_list) uint32_t SBModule::FindFunctions (const char *name, uint32_t name_type_mask, bool append, lldb::SBSymbolContextList& sc_list) To: lldb::SBSymbolContextList SBTarget::FindFunctions (const char *name, uint32_t name_type_mask = lldb::eFunctionNameTypeAny); lldb::SBSymbolContextList SBModule::FindFunctions (const char *name, uint32_t name_type_mask = lldb::eFunctionNameTypeAny); This makes the API easier to use from python. Also added the ability to append a SBSymbolContext or a SBSymbolContextList to a SBSymbolContextList. Exposed properties for lldb.SBSymbolContextList in python: lldb.SBSymbolContextList.modules => list() or all lldb.SBModule objects in the list lldb.SBSymbolContextList.compile_units => list() or all lldb.SBCompileUnits objects in the list lldb.SBSymbolContextList.functions => list() or all lldb.SBFunction objects in the list lldb.SBSymbolContextList.blocks => list() or all lldb.SBBlock objects in the list lldb.SBSymbolContextList.line_entries => list() or all lldb.SBLineEntry objects in the list lldb.SBSymbolContextList.symbols => list() or all lldb.SBSymbol objects in the list This allows a call to the SBTarget::FindFunctions(...) and SBModule::FindFunctions(...) and then the result can be used to extract the desired information: sc_list = lldb.target.FindFunctions("erase") for function in sc_list.functions: print function for symbol in sc_list.symbols: print symbol Exposed properties for the lldb.SBSymbolContext objects in python: lldb.SBSymbolContext.module => lldb.SBModule lldb.SBSymbolContext.compile_unit => lldb.SBCompileUnit lldb.SBSymbolContext.function => lldb.SBFunction lldb.SBSymbolContext.block => lldb.SBBlock lldb.SBSymbolContext.line_entry => lldb.SBLineEntry lldb.SBSymbolContext.symbol => lldb.SBSymbol Exposed properties for the lldb.SBBlock objects in python: lldb.SBBlock.parent => lldb.SBBlock for the parent block that contains lldb.SBBlock.sibling => lldb.SBBlock for the sibling block to the current block lldb.SBBlock.first_child => lldb.SBBlock for the first child block to the current block lldb.SBBlock.call_site => for inline functions, return a lldb.declaration object that gives the call site file, line and column lldb.SBBlock.name => for inline functions this is the name of the inline function that this block represents lldb.SBBlock.inlined_block => returns the inlined function block that contains this block (might return itself if the current block is an inlined block) lldb.SBBlock.range[int] => access the address ranges for a block by index, a list() with start and end address is returned lldb.SBBlock.ranges => an array or all address ranges for this block lldb.SBBlock.num_ranges => the number of address ranges for this blcok SBFunction objects can now get the SBType and the SBBlock that represents the top scope of the function. SBBlock objects can now get the variable list from the current block. The value list returned allows varaibles to be viewed prior with no process if code wants to check the variables in a function. There are two ways to get a variable list from a SBBlock: lldb::SBValueList SBBlock::GetVariables (lldb::SBFrame& frame, bool arguments, bool locals, bool statics, lldb::DynamicValueType use_dynamic); lldb::SBValueList SBBlock::GetVariables (lldb::SBTarget& target, bool arguments, bool locals, bool statics); When a SBFrame is used, the values returned will be locked down to the frame and the values will be evaluated in the context of that frame. When a SBTarget is used, global an static variables can be viewed without a running process. llvm-svn: 149853
2012-02-06 09:44:54 +08:00
lldb::SBSymbolContextList sb_sc_list;
ModuleSP module_sp (GetSP ());
if (name && module_sp)
{
Removed all of the "#ifndef SWIG" from the SB header files since we are using interface (.i) files for each class. Changed the FindFunction class from: uint32_t SBTarget::FindFunctions (const char *name, uint32_t name_type_mask, bool append, lldb::SBSymbolContextList& sc_list) uint32_t SBModule::FindFunctions (const char *name, uint32_t name_type_mask, bool append, lldb::SBSymbolContextList& sc_list) To: lldb::SBSymbolContextList SBTarget::FindFunctions (const char *name, uint32_t name_type_mask = lldb::eFunctionNameTypeAny); lldb::SBSymbolContextList SBModule::FindFunctions (const char *name, uint32_t name_type_mask = lldb::eFunctionNameTypeAny); This makes the API easier to use from python. Also added the ability to append a SBSymbolContext or a SBSymbolContextList to a SBSymbolContextList. Exposed properties for lldb.SBSymbolContextList in python: lldb.SBSymbolContextList.modules => list() or all lldb.SBModule objects in the list lldb.SBSymbolContextList.compile_units => list() or all lldb.SBCompileUnits objects in the list lldb.SBSymbolContextList.functions => list() or all lldb.SBFunction objects in the list lldb.SBSymbolContextList.blocks => list() or all lldb.SBBlock objects in the list lldb.SBSymbolContextList.line_entries => list() or all lldb.SBLineEntry objects in the list lldb.SBSymbolContextList.symbols => list() or all lldb.SBSymbol objects in the list This allows a call to the SBTarget::FindFunctions(...) and SBModule::FindFunctions(...) and then the result can be used to extract the desired information: sc_list = lldb.target.FindFunctions("erase") for function in sc_list.functions: print function for symbol in sc_list.symbols: print symbol Exposed properties for the lldb.SBSymbolContext objects in python: lldb.SBSymbolContext.module => lldb.SBModule lldb.SBSymbolContext.compile_unit => lldb.SBCompileUnit lldb.SBSymbolContext.function => lldb.SBFunction lldb.SBSymbolContext.block => lldb.SBBlock lldb.SBSymbolContext.line_entry => lldb.SBLineEntry lldb.SBSymbolContext.symbol => lldb.SBSymbol Exposed properties for the lldb.SBBlock objects in python: lldb.SBBlock.parent => lldb.SBBlock for the parent block that contains lldb.SBBlock.sibling => lldb.SBBlock for the sibling block to the current block lldb.SBBlock.first_child => lldb.SBBlock for the first child block to the current block lldb.SBBlock.call_site => for inline functions, return a lldb.declaration object that gives the call site file, line and column lldb.SBBlock.name => for inline functions this is the name of the inline function that this block represents lldb.SBBlock.inlined_block => returns the inlined function block that contains this block (might return itself if the current block is an inlined block) lldb.SBBlock.range[int] => access the address ranges for a block by index, a list() with start and end address is returned lldb.SBBlock.ranges => an array or all address ranges for this block lldb.SBBlock.num_ranges => the number of address ranges for this blcok SBFunction objects can now get the SBType and the SBBlock that represents the top scope of the function. SBBlock objects can now get the variable list from the current block. The value list returned allows varaibles to be viewed prior with no process if code wants to check the variables in a function. There are two ways to get a variable list from a SBBlock: lldb::SBValueList SBBlock::GetVariables (lldb::SBFrame& frame, bool arguments, bool locals, bool statics, lldb::DynamicValueType use_dynamic); lldb::SBValueList SBBlock::GetVariables (lldb::SBTarget& target, bool arguments, bool locals, bool statics); When a SBFrame is used, the values returned will be locked down to the frame and the values will be evaluated in the context of that frame. When a SBTarget is used, global an static variables can be viewed without a running process. llvm-svn: 149853
2012-02-06 09:44:54 +08:00
const bool append = true;
const bool symbols_ok = true;
const bool inlines_ok = true;
module_sp->FindFunctions (ConstString(name),
NULL,
name_type_mask,
symbols_ok,
inlines_ok,
append,
*sb_sc_list);
}
Removed all of the "#ifndef SWIG" from the SB header files since we are using interface (.i) files for each class. Changed the FindFunction class from: uint32_t SBTarget::FindFunctions (const char *name, uint32_t name_type_mask, bool append, lldb::SBSymbolContextList& sc_list) uint32_t SBModule::FindFunctions (const char *name, uint32_t name_type_mask, bool append, lldb::SBSymbolContextList& sc_list) To: lldb::SBSymbolContextList SBTarget::FindFunctions (const char *name, uint32_t name_type_mask = lldb::eFunctionNameTypeAny); lldb::SBSymbolContextList SBModule::FindFunctions (const char *name, uint32_t name_type_mask = lldb::eFunctionNameTypeAny); This makes the API easier to use from python. Also added the ability to append a SBSymbolContext or a SBSymbolContextList to a SBSymbolContextList. Exposed properties for lldb.SBSymbolContextList in python: lldb.SBSymbolContextList.modules => list() or all lldb.SBModule objects in the list lldb.SBSymbolContextList.compile_units => list() or all lldb.SBCompileUnits objects in the list lldb.SBSymbolContextList.functions => list() or all lldb.SBFunction objects in the list lldb.SBSymbolContextList.blocks => list() or all lldb.SBBlock objects in the list lldb.SBSymbolContextList.line_entries => list() or all lldb.SBLineEntry objects in the list lldb.SBSymbolContextList.symbols => list() or all lldb.SBSymbol objects in the list This allows a call to the SBTarget::FindFunctions(...) and SBModule::FindFunctions(...) and then the result can be used to extract the desired information: sc_list = lldb.target.FindFunctions("erase") for function in sc_list.functions: print function for symbol in sc_list.symbols: print symbol Exposed properties for the lldb.SBSymbolContext objects in python: lldb.SBSymbolContext.module => lldb.SBModule lldb.SBSymbolContext.compile_unit => lldb.SBCompileUnit lldb.SBSymbolContext.function => lldb.SBFunction lldb.SBSymbolContext.block => lldb.SBBlock lldb.SBSymbolContext.line_entry => lldb.SBLineEntry lldb.SBSymbolContext.symbol => lldb.SBSymbol Exposed properties for the lldb.SBBlock objects in python: lldb.SBBlock.parent => lldb.SBBlock for the parent block that contains lldb.SBBlock.sibling => lldb.SBBlock for the sibling block to the current block lldb.SBBlock.first_child => lldb.SBBlock for the first child block to the current block lldb.SBBlock.call_site => for inline functions, return a lldb.declaration object that gives the call site file, line and column lldb.SBBlock.name => for inline functions this is the name of the inline function that this block represents lldb.SBBlock.inlined_block => returns the inlined function block that contains this block (might return itself if the current block is an inlined block) lldb.SBBlock.range[int] => access the address ranges for a block by index, a list() with start and end address is returned lldb.SBBlock.ranges => an array or all address ranges for this block lldb.SBBlock.num_ranges => the number of address ranges for this blcok SBFunction objects can now get the SBType and the SBBlock that represents the top scope of the function. SBBlock objects can now get the variable list from the current block. The value list returned allows varaibles to be viewed prior with no process if code wants to check the variables in a function. There are two ways to get a variable list from a SBBlock: lldb::SBValueList SBBlock::GetVariables (lldb::SBFrame& frame, bool arguments, bool locals, bool statics, lldb::DynamicValueType use_dynamic); lldb::SBValueList SBBlock::GetVariables (lldb::SBTarget& target, bool arguments, bool locals, bool statics); When a SBFrame is used, the values returned will be locked down to the frame and the values will be evaluated in the context of that frame. When a SBTarget is used, global an static variables can be viewed without a running process. llvm-svn: 149853
2012-02-06 09:44:54 +08:00
return sb_sc_list;
}
SBValueList
SBModule::FindGlobalVariables (SBTarget &target, const char *name, uint32_t max_matches)
{
SBValueList sb_value_list;
ModuleSP module_sp (GetSP ());
if (name && module_sp)
{
VariableList variable_list;
const uint32_t match_count = module_sp->FindGlobalVariables (ConstString (name),
NULL,
false,
max_matches,
variable_list);
if (match_count > 0)
{
for (uint32_t i=0; i<match_count; ++i)
{
lldb::ValueObjectSP valobj_sp;
SBFrame is now threadsafe using some extra tricks. One issue is that stack frames might go away (the object itself, not the actual logical frame) when we are single stepping due to the way we currently sometimes end up flushing frames when stepping in/out/over. They later will come back to life represented by another object yet they have the same StackID. Now when you get a lldb::SBFrame object, it will track the frame it is initialized with until the thread goes away or the StackID no longer exists in the stack for the thread it was created on. It uses a weak_ptr to both the frame and thread and also stores the StackID. These three items allow us to determine when the stack frame object has gone away (the weak_ptr will be NULL) and allows us to find the correct frame again. In our test suite we had such cases where we were just getting lucky when something like this happened: 1 - stop at breakpoint 2 - get first frame in thread where we stopped 3 - run an expression that causes the program to JIT and run code 4 - run more expressions on the frame from step 2 which was very very luckily still around inside a shared pointer, yet, not part of the current thread (a new stack frame object had appeared with the same stack ID and depth). We now avoid all such issues and properly keep up to date, or we start returning errors when the frame doesn't exist and always responds with invalid answers. Also fixed the UserSettingsController (not going to rewrite this just yet) so that it doesn't crash on shutdown. Using weak_ptr's came in real handy to track when the master controller has already gone away and this allowed me to pull out the previous NotifyOwnerIsShuttingDown() patch as it is no longer needed. llvm-svn: 149231
2012-01-30 15:41:31 +08:00
TargetSP target_sp (target.GetSP());
valobj_sp = ValueObjectVariable::Create (target_sp.get(), variable_list.GetVariableAtIndex(i));
if (valobj_sp)
sb_value_list.Append(SBValue(valobj_sp));
}
}
}
return sb_value_list;
}
lldb::SBValue
SBModule::FindFirstGlobalVariable (lldb::SBTarget &target, const char *name)
{
SBValueList sb_value_list(FindGlobalVariables(target, name, 1));
if (sb_value_list.IsValid() && sb_value_list.GetSize() > 0)
return sb_value_list.GetValueAtIndex(0);
return SBValue();
}
lldb::SBType
SBModule::FindFirstType (const char *name_cstr)
{
SBType sb_type;
ModuleSP module_sp (GetSP ());
if (name_cstr && module_sp)
{
SymbolContext sc;
const bool exact_match = false;
ConstString name(name_cstr);
sb_type = SBType (module_sp->FindFirstType(sc, name, exact_match));
if (!sb_type.IsValid())
sb_type = SBType (ClangASTContext::GetBasicType (module_sp->GetClangASTContext().getASTContext(), name));
}
return sb_type;
}
lldb::SBType
SBModule::GetBasicType(lldb::BasicType type)
{
ModuleSP module_sp (GetSP ());
if (module_sp)
return SBType (ClangASTContext::GetBasicType (module_sp->GetClangASTContext().getASTContext(), type));
return SBType();
}
lldb::SBTypeList
SBModule::FindTypes (const char *type)
{
SBTypeList retval;
ModuleSP module_sp (GetSP ());
if (type && module_sp)
{
SymbolContext sc;
TypeList type_list;
const bool exact_match = false;
ConstString name(type);
const uint32_t num_matches = module_sp->FindTypes (sc,
name,
exact_match,
UINT32_MAX,
type_list);
if (num_matches > 0)
{
for (size_t idx = 0; idx < num_matches; idx++)
{
TypeSP type_sp (type_list.GetTypeAtIndex(idx));
if (type_sp)
retval.Append(SBType(type_sp));
}
}
else
{
SBType sb_type(ClangASTContext::GetBasicType (module_sp->GetClangASTContext().getASTContext(), name));
if (sb_type.IsValid())
retval.Append(sb_type);
}
}
return retval;
While tracking down memory consumption issue a few things were needed: the ability to dump more information about modules in "target modules list". We can now dump the shared pointer reference count for modules, the pointer to the module itself (in case performance tools can help track down who has references to said pointer), and the modification time. Added "target delete [target-idx ...]" to be able to delete targets when they are no longer needed. This will help track down memory usage issues and help to resolve when module ref counts keep getting incremented. If the command gets no arguments, the currently selected target will be deleted. If any arguments are given, they must all be valid target indexes (use the "target list" command to get the current target indexes). Took care of a bunch of "no newline at end of file" warnings. TimeValue objects can now dump their time to a lldb_private::Stream object. Modified the "target modules list --global" command to not error out if there are no targets since it doesn't require a target. Fixed an issue in the MacOSX DYLD dynamic loader plug-in where if a shared library was updated on disk, we would keep using the older one, even if it was updated. Don't allow the ModuleList::GetSharedModule(...) to return an empty module. Previously we could specify a valid path on disc to a module, and specify an architecture that wasn't contained in that module and get a shared pointer to a module that wouldn't be able to return an object file or a symbol file. We now make sure an object file can be extracted prior to adding the shared pointer to the module to get added to the shared list. llvm-svn: 137196
2011-08-10 10:10:13 +08:00
}
Added the ability to get a list of types from a SBModule or SBCompileUnit. Sebastien Metrot wanted this, and sent a hollowed out patch. I filled in the blanks and did the low level implementation. The new functions are: //------------------------------------------------------------------ /// Get all types matching \a type_mask from debug info in this /// module. /// /// @param[in] type_mask /// A bitfield that consists of one or more bits logically OR'ed /// together from the lldb::TypeClass enumeration. This allows /// you to request only structure types, or only class, struct /// and union types. Passing in lldb::eTypeClassAny will return /// all types found in the debug information for this module. /// /// @return /// A list of types in this module that match \a type_mask //------------------------------------------------------------------ lldb::SBTypeList SBModule::GetTypes (uint32_t type_mask) //------------------------------------------------------------------ /// Get all types matching \a type_mask from debug info in this /// compile unit. /// /// @param[in] type_mask /// A bitfield that consists of one or more bits logically OR'ed /// together from the lldb::TypeClass enumeration. This allows /// you to request only structure types, or only class, struct /// and union types. Passing in lldb::eTypeClassAny will return /// all types found in the debug information for this compile /// unit. /// /// @return /// A list of types in this compile unit that match \a type_mask //------------------------------------------------------------------ lldb::SBTypeList SBCompileUnit::GetTypes (uint32_t type_mask = lldb::eTypeClassAny); This lets you request types by filling out a mask that contains one or more bits from the lldb::TypeClass enumerations, so you can only get the types you really want. llvm-svn: 184251
2013-06-19 06:51:05 +08:00
lldb::SBTypeList
SBModule::GetTypes (uint32_t type_mask)
{
SBTypeList sb_type_list;
ModuleSP module_sp (GetSP ());
if (module_sp)
{
SymbolVendor* vendor = module_sp->GetSymbolVendor();
if (vendor)
{
TypeList type_list;
vendor->GetTypes (NULL, type_mask, type_list);
sb_type_list.m_opaque_ap->Append(type_list);
}
}
return sb_type_list;
}
SBSection
SBModule::FindSection (const char *sect_name)
{
SBSection sb_section;
ModuleSP module_sp (GetSP ());
if (sect_name && module_sp)
{
// Give the symbol vendor a chance to add to the unified section list.
module_sp->GetSymbolVendor();
SectionList *section_list = module_sp->GetSectionList();
if (section_list)
{
ConstString const_sect_name(sect_name);
SectionSP section_sp (section_list->FindSectionByName(const_sect_name));
if (section_sp)
{
sb_section.SetSP (section_sp);
}
}
}
return sb_section;
}
lldb::ByteOrder
SBModule::GetByteOrder ()
{
ModuleSP module_sp (GetSP ());
if (module_sp)
return module_sp->GetArchitecture().GetByteOrder();
return eByteOrderInvalid;
}
const char *
SBModule::GetTriple ()
{
ModuleSP module_sp (GetSP ());
if (module_sp)
{
std::string triple (module_sp->GetArchitecture().GetTriple().str());
// Unique the string so we don't run into ownership issues since
// the const strings put the string into the string pool once and
// the strings never comes out
ConstString const_triple (triple.c_str());
return const_triple.GetCString();
}
return NULL;
}
uint32_t
SBModule::GetAddressByteSize()
{
ModuleSP module_sp (GetSP ());
if (module_sp)
return module_sp->GetArchitecture().GetAddressByteSize();
return sizeof(void*);
}
uint32_t
SBModule::GetVersion (uint32_t *versions, uint32_t num_versions)
{
ModuleSP module_sp (GetSP ());
if (module_sp)
return module_sp->GetVersion(versions, num_versions);
else
{
if (versions && num_versions)
{
for (uint32_t i=0; i<num_versions; ++i)
versions[i] = UINT32_MAX;
}
return 0;
}
}