llvm-project/llvm/lib/CodeGen/GlobalISel/LoadStoreOpt.cpp

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

669 lines
25 KiB
C++
Raw Normal View History

[GlobalISel] Add a store-merging optimization pass and enable for AArch64. This is a first attempt at a constant value consecutive store merging pass, a counterpart to the DAGCombiner's store merging optimization. The high level goals of this pass: * Have a simple and efficient algorithm. As close to linear time as we can get. Thus, prioritizing scalability of the algorithm over merging every corner case we can find. The DAGCombiner's store merging code has been the source of compile time and complexity issues in the past and I wanted to avoid that. * Don't introduce any new data structures for ordering memory operations. In MIR, we don't have the concept of chains like we do in the DAG, and the instruction order is stricter than enforcing ordering with graph edges. Although I considered adding something similar, I couldn't justify the overhead. The pass is current split into 3 main parts. The main store merging code focuses on identifying candidate stores and managing the candidate group that's under consideration for merging. Analyzing addressing of stores is a potentially complex part and for now there's just a basic implementation to identify easy cases. Finally, the other main bit of complexity is the alias analysis, which tries to follow the same logic as the DAG's AA. Currently this implementation only supports merging of constant stores. Stores of arbitrary variables are technically possible with a very small change, but the DAG chooses not to do this. Doing so here makes most code worse since there's extra overhead in merging values into wider registers. On AArch64 -Os, this optimization results in very minor savings on CTMark. Differential Revision: https://reviews.llvm.org/D109131
2021-11-16 06:45:30 +08:00
//===- LoadStoreOpt.cpp ----------- Generic memory optimizations -*- C++ -*-==//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
/// \file
/// This file implements the LoadStoreOpt optimization pass.
//===----------------------------------------------------------------------===//
#include "llvm/CodeGen/GlobalISel/LoadStoreOpt.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/MemoryLocation.h"
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
#include "llvm/CodeGen/GlobalISel/GenericMachineInstrs.h"
#include "llvm/CodeGen/GlobalISel/LegalizerInfo.h"
#include "llvm/CodeGen/GlobalISel/MIPatternMatch.h"
#include "llvm/CodeGen/GlobalISel/Utils.h"
#include "llvm/CodeGen/LowLevelType.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/Register.h"
#include "llvm/CodeGen/TargetLowering.h"
#include "llvm/CodeGen/TargetOpcodes.h"
#include "llvm/IR/DebugInfoMetadata.h"
#include "llvm/InitializePasses.h"
#include "llvm/Support/AtomicOrdering.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MathExtras.h"
#include <algorithm>
#define DEBUG_TYPE "loadstore-opt"
using namespace llvm;
using namespace ore;
using namespace MIPatternMatch;
STATISTIC(NumStoresMerged, "Number of stores merged");
const unsigned MaxStoreSizeToForm = 128;
char LoadStoreOpt::ID = 0;
INITIALIZE_PASS_BEGIN(LoadStoreOpt, DEBUG_TYPE, "Generic memory optimizations",
false, false)
INITIALIZE_PASS_END(LoadStoreOpt, DEBUG_TYPE, "Generic memory optimizations",
false, false)
LoadStoreOpt::LoadStoreOpt(std::function<bool(const MachineFunction &)> F)
: MachineFunctionPass(ID), DoNotRunPass(F) {}
LoadStoreOpt::LoadStoreOpt()
: LoadStoreOpt([](const MachineFunction &) { return false; }) {}
void LoadStoreOpt::init(MachineFunction &MF) {
this->MF = &MF;
MRI = &MF.getRegInfo();
AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
TLI = MF.getSubtarget().getTargetLowering();
LI = MF.getSubtarget().getLegalizerInfo();
Builder.setMF(MF);
IsPreLegalizer = !MF.getProperties().hasProperty(
MachineFunctionProperties::Property::Legalized);
InstsToErase.clear();
}
void LoadStoreOpt::getAnalysisUsage(AnalysisUsage &AU) const {
AU.addRequired<AAResultsWrapperPass>();
getSelectionDAGFallbackAnalysisUsage(AU);
MachineFunctionPass::getAnalysisUsage(AU);
}
BaseIndexOffset GISelAddressing::getPointerInfo(Register Ptr,
MachineRegisterInfo &MRI) {
BaseIndexOffset Info;
Register PtrAddRHS;
if (!mi_match(Ptr, MRI, m_GPtrAdd(m_Reg(Info.BaseReg), m_Reg(PtrAddRHS)))) {
Info.BaseReg = Ptr;
Info.IndexReg = Register();
Info.IsIndexSignExt = false;
return Info;
}
auto RHSCst = getIConstantVRegValWithLookThrough(PtrAddRHS, MRI);
if (RHSCst)
Info.Offset = RHSCst->Value.getSExtValue();
// Just recognize a simple case for now. In future we'll need to match
// indexing patterns for base + index + constant.
Info.IndexReg = PtrAddRHS;
Info.IsIndexSignExt = false;
return Info;
}
bool GISelAddressing::aliasIsKnownForLoadStore(const MachineInstr &MI1,
const MachineInstr &MI2,
bool &IsAlias,
MachineRegisterInfo &MRI) {
auto *LdSt1 = dyn_cast<GLoadStore>(&MI1);
auto *LdSt2 = dyn_cast<GLoadStore>(&MI2);
if (!LdSt1 || !LdSt2)
return false;
BaseIndexOffset BasePtr0 = getPointerInfo(LdSt1->getPointerReg(), MRI);
BaseIndexOffset BasePtr1 = getPointerInfo(LdSt2->getPointerReg(), MRI);
if (!BasePtr0.BaseReg.isValid() || !BasePtr1.BaseReg.isValid())
return false;
int64_t Size1 = LdSt1->getMemSize();
int64_t Size2 = LdSt2->getMemSize();
int64_t PtrDiff;
if (BasePtr0.BaseReg == BasePtr1.BaseReg) {
PtrDiff = BasePtr1.Offset - BasePtr0.Offset;
// If the size of memory access is unknown, do not use it to do analysis.
// One example of unknown size memory access is to load/store scalable
// vector objects on the stack.
// BasePtr1 is PtrDiff away from BasePtr0. They alias if none of the
// following situations arise:
if (PtrDiff >= 0 &&
Size1 != static_cast<int64_t>(MemoryLocation::UnknownSize)) {
// [----BasePtr0----]
// [---BasePtr1--]
// ========PtrDiff========>
IsAlias = !(Size1 <= PtrDiff);
return true;
}
if (PtrDiff < 0 &&
Size2 != static_cast<int64_t>(MemoryLocation::UnknownSize)) {
// [----BasePtr0----]
// [---BasePtr1--]
// =====(-PtrDiff)====>
IsAlias = !((PtrDiff + Size2) <= 0);
return true;
}
return false;
}
// If both BasePtr0 and BasePtr1 are FrameIndexes, we will not be
// able to calculate their relative offset if at least one arises
// from an alloca. However, these allocas cannot overlap and we
// can infer there is no alias.
auto *Base0Def = getDefIgnoringCopies(BasePtr0.BaseReg, MRI);
auto *Base1Def = getDefIgnoringCopies(BasePtr1.BaseReg, MRI);
if (!Base0Def || !Base1Def)
return false; // Couldn't tell anything.
if (Base0Def->getOpcode() != Base1Def->getOpcode())
return false;
if (Base0Def->getOpcode() == TargetOpcode::G_FRAME_INDEX) {
MachineFrameInfo &MFI = Base0Def->getMF()->getFrameInfo();
// If the bases have the same frame index but we couldn't find a
// constant offset, (indices are different) be conservative.
if (Base0Def != Base1Def &&
(!MFI.isFixedObjectIndex(Base0Def->getOperand(1).getIndex()) ||
!MFI.isFixedObjectIndex(Base1Def->getOperand(1).getIndex()))) {
IsAlias = false;
return true;
}
}
// This implementation is a lot more primitive than the SDAG one for now.
// FIXME: what about constant pools?
if (Base0Def->getOpcode() == TargetOpcode::G_GLOBAL_VALUE) {
auto GV0 = Base0Def->getOperand(1).getGlobal();
auto GV1 = Base1Def->getOperand(1).getGlobal();
if (GV0 != GV1) {
IsAlias = false;
return true;
}
}
// Can't tell anything about aliasing.
return false;
}
bool GISelAddressing::instMayAlias(const MachineInstr &MI,
const MachineInstr &Other,
MachineRegisterInfo &MRI,
AliasAnalysis *AA) {
struct MemUseCharacteristics {
bool IsVolatile;
bool IsAtomic;
Register BasePtr;
int64_t Offset;
uint64_t NumBytes;
MachineMemOperand *MMO;
};
auto getCharacteristics =
[&](const MachineInstr *MI) -> MemUseCharacteristics {
if (const auto *LS = dyn_cast<GLoadStore>(MI)) {
Register BaseReg;
int64_t Offset = 0;
// No pre/post-inc addressing modes are considered here, unlike in SDAG.
if (!mi_match(LS->getPointerReg(), MRI,
m_GPtrAdd(m_Reg(BaseReg), m_ICst(Offset)))) {
BaseReg = LS->getPointerReg();
Offset = 0;
}
uint64_t Size = MemoryLocation::getSizeOrUnknown(
LS->getMMO().getMemoryType().getSizeInBytes());
return {LS->isVolatile(), LS->isAtomic(), BaseReg,
Offset /*base offset*/, Size, &LS->getMMO()};
}
// FIXME: support recognizing lifetime instructions.
// Default.
return {false /*isvolatile*/,
/*isAtomic*/ false, Register(),
(int64_t)0 /*offset*/, 0 /*size*/,
(MachineMemOperand *)nullptr};
};
MemUseCharacteristics MUC0 = getCharacteristics(&MI),
MUC1 = getCharacteristics(&Other);
// If they are to the same address, then they must be aliases.
if (MUC0.BasePtr.isValid() && MUC0.BasePtr == MUC1.BasePtr &&
MUC0.Offset == MUC1.Offset)
return true;
// If they are both volatile then they cannot be reordered.
if (MUC0.IsVolatile && MUC1.IsVolatile)
return true;
// Be conservative about atomics for the moment
// TODO: This is way overconservative for unordered atomics (see D66309)
if (MUC0.IsAtomic && MUC1.IsAtomic)
return true;
// If one operation reads from invariant memory, and the other may store, they
// cannot alias.
if (MUC0.MMO && MUC1.MMO) {
if ((MUC0.MMO->isInvariant() && MUC1.MMO->isStore()) ||
(MUC1.MMO->isInvariant() && MUC0.MMO->isStore()))
return false;
}
// Try to prove that there is aliasing, or that there is no aliasing. Either
// way, we can return now. If nothing can be proved, proceed with more tests.
bool IsAlias;
if (GISelAddressing::aliasIsKnownForLoadStore(MI, Other, IsAlias, MRI))
return IsAlias;
// The following all rely on MMO0 and MMO1 being valid.
if (!MUC0.MMO || !MUC1.MMO)
return true;
// FIXME: port the alignment based alias analysis from SDAG's isAlias().
int64_t SrcValOffset0 = MUC0.MMO->getOffset();
int64_t SrcValOffset1 = MUC1.MMO->getOffset();
uint64_t Size0 = MUC0.NumBytes;
uint64_t Size1 = MUC1.NumBytes;
if (AA && MUC0.MMO->getValue() && MUC1.MMO->getValue() &&
Size0 != MemoryLocation::UnknownSize &&
Size1 != MemoryLocation::UnknownSize) {
// Use alias analysis information.
int64_t MinOffset = std::min(SrcValOffset0, SrcValOffset1);
int64_t Overlap0 = Size0 + SrcValOffset0 - MinOffset;
int64_t Overlap1 = Size1 + SrcValOffset1 - MinOffset;
if (AA->isNoAlias(MemoryLocation(MUC0.MMO->getValue(), Overlap0,
MUC0.MMO->getAAInfo()),
MemoryLocation(MUC1.MMO->getValue(), Overlap1,
MUC1.MMO->getAAInfo())))
return false;
}
// Otherwise we have to assume they alias.
return true;
}
/// Returns true if the instruction creates an unavoidable hazard that
/// forces a boundary between store merge candidates.
static bool isInstHardMergeHazard(MachineInstr &MI) {
return MI.hasUnmodeledSideEffects() || MI.hasOrderedMemoryRef();
}
bool LoadStoreOpt::mergeStores(SmallVectorImpl<GStore *> &StoresToMerge) {
// Try to merge all the stores in the vector, splitting into separate segments
// as necessary.
assert(StoresToMerge.size() > 1 && "Expected multiple stores to merge");
LLT OrigTy = MRI->getType(StoresToMerge[0]->getValueReg());
LLT PtrTy = MRI->getType(StoresToMerge[0]->getPointerReg());
unsigned AS = PtrTy.getAddressSpace();
// Ensure the legal store info is computed for this address space.
initializeStoreMergeTargetInfo(AS);
const auto &LegalSizes = LegalStoreSizes[AS];
#ifndef NDEBUG
for (auto StoreMI : StoresToMerge)
assert(MRI->getType(StoreMI->getValueReg()) == OrigTy);
#endif
const auto &DL = MF->getFunction().getParent()->getDataLayout();
bool AnyMerged = false;
do {
unsigned NumPow2 = PowerOf2Floor(StoresToMerge.size());
unsigned MaxSizeBits = NumPow2 * OrigTy.getSizeInBits().getFixedSize();
// Compute the biggest store we can generate to handle the number of stores.
unsigned MergeSizeBits;
for (MergeSizeBits = MaxSizeBits; MergeSizeBits > 1; MergeSizeBits /= 2) {
LLT StoreTy = LLT::scalar(MergeSizeBits);
EVT StoreEVT =
getApproximateEVTForLLT(StoreTy, DL, MF->getFunction().getContext());
if (LegalSizes.size() > MergeSizeBits && LegalSizes[MergeSizeBits] &&
TLI->canMergeStoresTo(AS, StoreEVT, *MF) &&
(TLI->isTypeLegal(StoreEVT)))
break; // We can generate a MergeSize bits store.
}
if (MergeSizeBits <= OrigTy.getSizeInBits())
return AnyMerged; // No greater merge.
unsigned NumStoresToMerge = MergeSizeBits / OrigTy.getSizeInBits();
// Perform the actual merging.
SmallVector<GStore *, 8> SingleMergeStores(
StoresToMerge.begin(), StoresToMerge.begin() + NumStoresToMerge);
AnyMerged |= doSingleStoreMerge(SingleMergeStores);
StoresToMerge.erase(StoresToMerge.begin(),
StoresToMerge.begin() + NumStoresToMerge);
} while (StoresToMerge.size() > 1);
return AnyMerged;
}
bool LoadStoreOpt::isLegalOrBeforeLegalizer(const LegalityQuery &Query,
MachineFunction &MF) const {
auto Action = LI->getAction(Query).Action;
// If the instruction is unsupported, it can't be legalized at all.
if (Action == LegalizeActions::Unsupported)
return false;
return IsPreLegalizer || Action == LegalizeAction::Legal;
}
bool LoadStoreOpt::doSingleStoreMerge(SmallVectorImpl<GStore *> &Stores) {
assert(Stores.size() > 1);
// We know that all the stores are consecutive and there are no aliasing
// operations in the range. However, the values that are being stored may be
// generated anywhere before each store. To ensure we have the values
// available, we materialize the wide value and new store at the place of the
// final store in the merge sequence.
GStore *FirstStore = Stores[0];
const unsigned NumStores = Stores.size();
LLT SmallTy = MRI->getType(FirstStore->getValueReg());
LLT WideValueTy =
LLT::scalar(NumStores * SmallTy.getSizeInBits().getFixedSize());
// For each store, compute pairwise merged debug locs.
DebugLoc MergedLoc;
for (unsigned AIdx = 0, BIdx = 1; BIdx < NumStores; ++AIdx, ++BIdx)
MergedLoc = DILocation::getMergedLocation(Stores[AIdx]->getDebugLoc(),
Stores[BIdx]->getDebugLoc());
Builder.setInstr(*Stores.back());
Builder.setDebugLoc(MergedLoc);
// If all of the store values are constants, then create a wide constant
// directly. Otherwise, we need to generate some instructions to merge the
// existing values together into a wider type.
SmallVector<APInt, 8> ConstantVals;
for (auto Store : Stores) {
auto MaybeCst =
getIConstantVRegValWithLookThrough(Store->getValueReg(), *MRI);
if (!MaybeCst) {
ConstantVals.clear();
break;
}
ConstantVals.emplace_back(MaybeCst->Value);
}
Register WideReg;
auto *WideMMO =
MF->getMachineMemOperand(&FirstStore->getMMO(), 0, WideValueTy);
[GlobalISel] Add a store-merging optimization pass and enable for AArch64. This is a first attempt at a constant value consecutive store merging pass, a counterpart to the DAGCombiner's store merging optimization. The high level goals of this pass: * Have a simple and efficient algorithm. As close to linear time as we can get. Thus, prioritizing scalability of the algorithm over merging every corner case we can find. The DAGCombiner's store merging code has been the source of compile time and complexity issues in the past and I wanted to avoid that. * Don't introduce any new data structures for ordering memory operations. In MIR, we don't have the concept of chains like we do in the DAG, and the instruction order is stricter than enforcing ordering with graph edges. Although I considered adding something similar, I couldn't justify the overhead. The pass is current split into 3 main parts. The main store merging code focuses on identifying candidate stores and managing the candidate group that's under consideration for merging. Analyzing addressing of stores is a potentially complex part and for now there's just a basic implementation to identify easy cases. Finally, the other main bit of complexity is the alias analysis, which tries to follow the same logic as the DAG's AA. Currently this implementation only supports merging of constant stores. Stores of arbitrary variables are technically possible with a very small change, but the DAG chooses not to do this. Doing so here makes most code worse since there's extra overhead in merging values into wider registers. On AArch64 -Os, this optimization results in very minor savings on CTMark. Differential Revision: https://reviews.llvm.org/D109131
2021-11-16 06:45:30 +08:00
if (ConstantVals.empty()) {
// Mimic the SDAG behaviour here and don't try to do anything for unknown
// values. In future, we should also support the cases of loads and
// extracted vector elements.
return false;
}
assert(ConstantVals.size() == NumStores);
// Check if our wide constant is legal.
if (!isLegalOrBeforeLegalizer({TargetOpcode::G_CONSTANT, {WideValueTy}}, *MF))
return false;
APInt WideConst(WideValueTy.getSizeInBits(), 0);
for (unsigned Idx = 0; Idx < ConstantVals.size(); ++Idx) {
// Insert the smaller constant into the corresponding position in the
// wider one.
WideConst.insertBits(ConstantVals[Idx], Idx * SmallTy.getSizeInBits());
}
WideReg = Builder.buildConstant(WideValueTy, WideConst).getReg(0);
auto NewStore =
Builder.buildStore(WideReg, FirstStore->getPointerReg(), *WideMMO);
(void) NewStore;
LLVM_DEBUG(dbgs() << "Created merged store: " << *NewStore);
[GlobalISel] Add a store-merging optimization pass and enable for AArch64. This is a first attempt at a constant value consecutive store merging pass, a counterpart to the DAGCombiner's store merging optimization. The high level goals of this pass: * Have a simple and efficient algorithm. As close to linear time as we can get. Thus, prioritizing scalability of the algorithm over merging every corner case we can find. The DAGCombiner's store merging code has been the source of compile time and complexity issues in the past and I wanted to avoid that. * Don't introduce any new data structures for ordering memory operations. In MIR, we don't have the concept of chains like we do in the DAG, and the instruction order is stricter than enforcing ordering with graph edges. Although I considered adding something similar, I couldn't justify the overhead. The pass is current split into 3 main parts. The main store merging code focuses on identifying candidate stores and managing the candidate group that's under consideration for merging. Analyzing addressing of stores is a potentially complex part and for now there's just a basic implementation to identify easy cases. Finally, the other main bit of complexity is the alias analysis, which tries to follow the same logic as the DAG's AA. Currently this implementation only supports merging of constant stores. Stores of arbitrary variables are technically possible with a very small change, but the DAG chooses not to do this. Doing so here makes most code worse since there's extra overhead in merging values into wider registers. On AArch64 -Os, this optimization results in very minor savings on CTMark. Differential Revision: https://reviews.llvm.org/D109131
2021-11-16 06:45:30 +08:00
NumStoresMerged += Stores.size();
MachineOptimizationRemarkEmitter MORE(*MF, nullptr);
MORE.emit([&]() {
MachineOptimizationRemark R(DEBUG_TYPE, "MergedStore",
FirstStore->getDebugLoc(),
FirstStore->getParent());
R << "Merged " << NV("NumMerged", Stores.size()) << " stores of "
<< NV("OrigWidth", SmallTy.getSizeInBytes())
<< " bytes into a single store of "
<< NV("NewWidth", WideValueTy.getSizeInBytes()) << " bytes";
return R;
});
for (auto MI : Stores)
InstsToErase.insert(MI);
return true;
}
bool LoadStoreOpt::processMergeCandidate(StoreMergeCandidate &C) {
if (C.Stores.size() < 2) {
C.reset();
return false;
}
LLVM_DEBUG(dbgs() << "Checking store merge candidate with " << C.Stores.size()
<< " stores, starting with " << *C.Stores[0]);
// We know that the stores in the candidate are adjacent.
// Now we need to check if any potential aliasing instructions recorded
// during the search alias with load/stores added to the candidate after.
// For example, if we have the candidate:
// C.Stores = [ST1, ST2, ST3, ST4]
// and after seeing ST2 we saw a load LD1, which did not alias with ST1 or
// ST2, then we would have recorded it into the PotentialAliases structure
// with the associated index value of "1". Then we see ST3 and ST4 and add
// them to the candidate group. We know that LD1 does not alias with ST1 or
// ST2, since we already did that check. However we don't yet know if it
// may alias ST3 and ST4, so we perform those checks now.
SmallVector<GStore *> StoresToMerge;
auto DoesStoreAliasWithPotential = [&](unsigned Idx, GStore &CheckStore) {
for (auto AliasInfo : reverse(C.PotentialAliases)) {
MachineInstr *PotentialAliasOp = AliasInfo.first;
unsigned PreCheckedIdx = AliasInfo.second;
if (static_cast<unsigned>(Idx) > PreCheckedIdx) {
// Need to check this alias.
if (GISelAddressing::instMayAlias(CheckStore, *PotentialAliasOp, *MRI,
AA)) {
LLVM_DEBUG(dbgs() << "Potential alias " << *PotentialAliasOp
<< " detected\n");
return true;
}
} else {
// Once our store index is lower than the index associated with the
// potential alias, we know that we've already checked for this alias
// and all of the earlier potential aliases too.
return false;
}
}
return false;
};
// Start from the last store in the group, and check if it aliases with any
// of the potential aliasing operations in the list.
for (int StoreIdx = C.Stores.size() - 1; StoreIdx >= 0; --StoreIdx) {
auto *CheckStore = C.Stores[StoreIdx];
if (DoesStoreAliasWithPotential(StoreIdx, *CheckStore))
continue;
StoresToMerge.emplace_back(CheckStore);
}
LLVM_DEBUG(dbgs() << StoresToMerge.size()
<< " stores remaining after alias checks. Merging...\n");
// Now we've checked for aliasing hazards, merge any stores left.
C.reset();
if (StoresToMerge.size() < 2)
return false;
return mergeStores(StoresToMerge);
}
bool LoadStoreOpt::operationAliasesWithCandidate(MachineInstr &MI,
StoreMergeCandidate &C) {
if (C.Stores.empty())
return false;
return llvm::any_of(C.Stores, [&](MachineInstr *OtherMI) {
return instMayAlias(MI, *OtherMI, *MRI, AA);
});
}
void LoadStoreOpt::StoreMergeCandidate::addPotentialAlias(MachineInstr &MI) {
PotentialAliases.emplace_back(std::make_pair(&MI, Stores.size() - 1));
}
bool LoadStoreOpt::addStoreToCandidate(GStore &StoreMI,
StoreMergeCandidate &C) {
// Check if the given store writes to an adjacent address, and other
// requirements.
LLT ValueTy = MRI->getType(StoreMI.getValueReg());
LLT PtrTy = MRI->getType(StoreMI.getPointerReg());
// Only handle scalars.
if (!ValueTy.isScalar())
return false;
// Don't allow truncating stores for now.
if (StoreMI.getMemSizeInBits() != ValueTy.getSizeInBits())
return false;
Register StoreAddr = StoreMI.getPointerReg();
auto BIO = getPointerInfo(StoreAddr, *MRI);
Register StoreBase = BIO.BaseReg;
uint64_t StoreOffCst = BIO.Offset;
if (C.Stores.empty()) {
// This is the first store of the candidate.
// If the offset can't possibly allow for a lower addressed store with the
// same base, don't bother adding it.
if (StoreOffCst < ValueTy.getSizeInBytes())
return false;
C.BasePtr = StoreBase;
C.CurrentLowestOffset = StoreOffCst;
C.Stores.emplace_back(&StoreMI);
LLVM_DEBUG(dbgs() << "Starting a new merge candidate group with: "
<< StoreMI);
return true;
}
// Check the store is the same size as the existing ones in the candidate.
if (MRI->getType(C.Stores[0]->getValueReg()).getSizeInBits() !=
ValueTy.getSizeInBits())
return false;
if (MRI->getType(C.Stores[0]->getPointerReg()).getAddressSpace() !=
PtrTy.getAddressSpace())
return false;
// There are other stores in the candidate. Check that the store address
// writes to the next lowest adjacent address.
if (C.BasePtr != StoreBase)
return false;
if ((C.CurrentLowestOffset - ValueTy.getSizeInBytes()) !=
static_cast<uint64_t>(StoreOffCst))
return false;
// This writes to an adjacent address. Allow it.
C.Stores.emplace_back(&StoreMI);
C.CurrentLowestOffset = C.CurrentLowestOffset - ValueTy.getSizeInBytes();
LLVM_DEBUG(dbgs() << "Candidate added store: " << StoreMI);
return true;
}
bool LoadStoreOpt::mergeBlockStores(MachineBasicBlock &MBB) {
bool Changed = false;
// Walk through the block bottom-up, looking for merging candidates.
StoreMergeCandidate Candidate;
for (MachineInstr &MI : llvm::reverse(MBB)) {
[GlobalISel] Add a store-merging optimization pass and enable for AArch64. This is a first attempt at a constant value consecutive store merging pass, a counterpart to the DAGCombiner's store merging optimization. The high level goals of this pass: * Have a simple and efficient algorithm. As close to linear time as we can get. Thus, prioritizing scalability of the algorithm over merging every corner case we can find. The DAGCombiner's store merging code has been the source of compile time and complexity issues in the past and I wanted to avoid that. * Don't introduce any new data structures for ordering memory operations. In MIR, we don't have the concept of chains like we do in the DAG, and the instruction order is stricter than enforcing ordering with graph edges. Although I considered adding something similar, I couldn't justify the overhead. The pass is current split into 3 main parts. The main store merging code focuses on identifying candidate stores and managing the candidate group that's under consideration for merging. Analyzing addressing of stores is a potentially complex part and for now there's just a basic implementation to identify easy cases. Finally, the other main bit of complexity is the alias analysis, which tries to follow the same logic as the DAG's AA. Currently this implementation only supports merging of constant stores. Stores of arbitrary variables are technically possible with a very small change, but the DAG chooses not to do this. Doing so here makes most code worse since there's extra overhead in merging values into wider registers. On AArch64 -Os, this optimization results in very minor savings on CTMark. Differential Revision: https://reviews.llvm.org/D109131
2021-11-16 06:45:30 +08:00
if (InstsToErase.contains(&MI))
continue;
if (auto *StoreMI = dyn_cast<GStore>(&MI)) {
[GlobalISel] Add a store-merging optimization pass and enable for AArch64. This is a first attempt at a constant value consecutive store merging pass, a counterpart to the DAGCombiner's store merging optimization. The high level goals of this pass: * Have a simple and efficient algorithm. As close to linear time as we can get. Thus, prioritizing scalability of the algorithm over merging every corner case we can find. The DAGCombiner's store merging code has been the source of compile time and complexity issues in the past and I wanted to avoid that. * Don't introduce any new data structures for ordering memory operations. In MIR, we don't have the concept of chains like we do in the DAG, and the instruction order is stricter than enforcing ordering with graph edges. Although I considered adding something similar, I couldn't justify the overhead. The pass is current split into 3 main parts. The main store merging code focuses on identifying candidate stores and managing the candidate group that's under consideration for merging. Analyzing addressing of stores is a potentially complex part and for now there's just a basic implementation to identify easy cases. Finally, the other main bit of complexity is the alias analysis, which tries to follow the same logic as the DAG's AA. Currently this implementation only supports merging of constant stores. Stores of arbitrary variables are technically possible with a very small change, but the DAG chooses not to do this. Doing so here makes most code worse since there's extra overhead in merging values into wider registers. On AArch64 -Os, this optimization results in very minor savings on CTMark. Differential Revision: https://reviews.llvm.org/D109131
2021-11-16 06:45:30 +08:00
// We have a G_STORE. Add it to the candidate if it writes to an adjacent
// address.
if (!addStoreToCandidate(*StoreMI, Candidate)) {
// Store wasn't eligible to be added. May need to record it as a
// potential alias.
if (operationAliasesWithCandidate(*StoreMI, Candidate)) {
Changed |= processMergeCandidate(Candidate);
continue;
}
Candidate.addPotentialAlias(*StoreMI);
}
continue;
}
// If we don't have any stores yet, this instruction can't pose a problem.
if (Candidate.Stores.empty())
continue;
// We're dealing with some other kind of instruction.
if (isInstHardMergeHazard(MI)) {
Changed |= processMergeCandidate(Candidate);
Candidate.Stores.clear();
continue;
}
if (!MI.mayLoadOrStore())
continue;
if (operationAliasesWithCandidate(MI, Candidate)) {
// We have a potential alias, so process the current candidate if we can
// and then continue looking for a new candidate.
Changed |= processMergeCandidate(Candidate);
continue;
}
// Record this instruction as a potential alias for future stores that are
// added to the candidate.
Candidate.addPotentialAlias(MI);
}
// Process any candidate left after finishing searching the entire block.
Changed |= processMergeCandidate(Candidate);
// Erase instructions now that we're no longer iterating over the block.
for (auto *MI : InstsToErase)
MI->eraseFromParent();
InstsToErase.clear();
return Changed;
}
bool LoadStoreOpt::mergeFunctionStores(MachineFunction &MF) {
bool Changed = false;
for (auto &BB : MF) {
Changed |= mergeBlockStores(BB);
}
return Changed;
}
void LoadStoreOpt::initializeStoreMergeTargetInfo(unsigned AddrSpace) {
// Query the legalizer info to record what store types are legal.
// We record this because we don't want to bother trying to merge stores into
// illegal ones, which would just result in being split again.
if (LegalStoreSizes.count(AddrSpace)) {
assert(LegalStoreSizes[AddrSpace].any());
return; // Already cached sizes for this address space.
}
// Need to reserve at least MaxStoreSizeToForm + 1 bits.
BitVector LegalSizes(MaxStoreSizeToForm * 2);
const auto &LI = *MF->getSubtarget().getLegalizerInfo();
const auto &DL = MF->getFunction().getParent()->getDataLayout();
Type *IntPtrIRTy =
DL.getIntPtrType(MF->getFunction().getContext(), AddrSpace);
LLT PtrTy = getLLTForType(*IntPtrIRTy->getPointerTo(AddrSpace), DL);
// We assume that we're not going to be generating any stores wider than
// MaxStoreSizeToForm bits for now.
for (unsigned Size = 2; Size <= MaxStoreSizeToForm; Size *= 2) {
LLT Ty = LLT::scalar(Size);
SmallVector<LegalityQuery::MemDesc, 2> MemDescrs(
{{Ty, Ty.getSizeInBits(), AtomicOrdering::NotAtomic}});
SmallVector<LLT> StoreTys({Ty, PtrTy});
LegalityQuery Q(TargetOpcode::G_STORE, StoreTys, MemDescrs);
LegalizeActionStep ActionStep = LI.getAction(Q);
if (ActionStep.Action == LegalizeActions::Legal)
LegalSizes.set(Size);
}
assert(LegalSizes.any() && "Expected some store sizes to be legal!");
LegalStoreSizes[AddrSpace] = LegalSizes;
}
bool LoadStoreOpt::runOnMachineFunction(MachineFunction &MF) {
// If the ISel pipeline failed, do not bother running that pass.
if (MF.getProperties().hasProperty(
MachineFunctionProperties::Property::FailedISel))
return false;
LLVM_DEBUG(dbgs() << "Begin memory optimizations for: " << MF.getName()
<< '\n');
init(MF);
bool Changed = false;
Changed |= mergeFunctionStores(MF);
LegalStoreSizes.clear();
return Changed;
}