llvm-project/llvm/test/CodeGen/AMDGPU/convergent-inlineasm.ll

51 lines
1.5 KiB
LLVM
Raw Normal View History

; RUN: llc -mtriple=amdgcn--amdhsa -verify-machineinstrs < %s | FileCheck -check-prefix=GCN %s
declare i32 @llvm.amdgcn.workitem.id.x() #0
; GCN-LABEL: {{^}}convergent_inlineasm:
; GCN: BB#0:
; GCN: v_cmp_ne_u32_e64
; GCN: ; mask branch
; GCN: BB{{[0-9]+_[0-9]+}}:
define void @convergent_inlineasm(i64 addrspace(1)* nocapture %arg) {
bb:
%tmp = call i32 @llvm.amdgcn.workitem.id.x()
%tmp1 = tail call i64 asm "v_cmp_ne_u32_e64 $0, 0, $1", "=s,v"(i32 1) #1
%tmp2 = icmp eq i32 %tmp, 8
br i1 %tmp2, label %bb3, label %bb5
bb3: ; preds = %bb
%tmp4 = getelementptr i64, i64 addrspace(1)* %arg, i32 %tmp
store i64 %tmp1, i64 addrspace(1)* %arg, align 8
br label %bb5
bb5: ; preds = %bb3, %bb
ret void
}
; GCN-LABEL: {{^}}nonconvergent_inlineasm:
; GCN: ; mask branch
; GCN: BB{{[0-9]+_[0-9]+}}:
; GCN: v_cmp_ne_u32_e64
; GCN: BB{{[0-9]+_[0-9]+}}:
Codegen: Make chains from trellis-shaped CFGs Lay out trellis-shaped CFGs optimally. A trellis of the shape below: A B |\ /| | \ / | | X | | / \ | |/ \| C D would be laid out A; B->C ; D by the current layout algorithm. Now we identify trellises and lay them out either A->C; B->D or A->D; B->C. This scales with an increasing number of predecessors. A trellis is a a group of 2 or more predecessor blocks that all have the same successors. because of this we can tail duplicate to extend existing trellises. As an example consider the following CFG: B D F H / \ / \ / \ / \ A---C---E---G---Ret Where A,C,E,G are all small (Currently 2 instructions). The CFG preserving layout is then A,B,C,D,E,F,G,H,Ret. The current code will copy C into B, E into D and G into F and yield the layout A,C,B(C),E,D(E),F(G),G,H,ret define void @straight_test(i32 %tag) { entry: br label %test1 test1: ; A %tagbit1 = and i32 %tag, 1 %tagbit1eq0 = icmp eq i32 %tagbit1, 0 br i1 %tagbit1eq0, label %test2, label %optional1 optional1: ; B call void @a() br label %test2 test2: ; C %tagbit2 = and i32 %tag, 2 %tagbit2eq0 = icmp eq i32 %tagbit2, 0 br i1 %tagbit2eq0, label %test3, label %optional2 optional2: ; D call void @b() br label %test3 test3: ; E %tagbit3 = and i32 %tag, 4 %tagbit3eq0 = icmp eq i32 %tagbit3, 0 br i1 %tagbit3eq0, label %test4, label %optional3 optional3: ; F call void @c() br label %test4 test4: ; G %tagbit4 = and i32 %tag, 8 %tagbit4eq0 = icmp eq i32 %tagbit4, 0 br i1 %tagbit4eq0, label %exit, label %optional4 optional4: ; H call void @d() br label %exit exit: ret void } here is the layout after D27742: straight_test: # @straight_test ; ... Prologue elided ; BB#0: # %entry ; A (merged with test1) ; ... More prologue elided mr 30, 3 andi. 3, 30, 1 bc 12, 1, .LBB0_2 ; BB#1: # %test2 ; C rlwinm. 3, 30, 0, 30, 30 beq 0, .LBB0_3 b .LBB0_4 .LBB0_2: # %optional1 ; B (copy of C) bl a nop rlwinm. 3, 30, 0, 30, 30 bne 0, .LBB0_4 .LBB0_3: # %test3 ; E rlwinm. 3, 30, 0, 29, 29 beq 0, .LBB0_5 b .LBB0_6 .LBB0_4: # %optional2 ; D (copy of E) bl b nop rlwinm. 3, 30, 0, 29, 29 bne 0, .LBB0_6 .LBB0_5: # %test4 ; G rlwinm. 3, 30, 0, 28, 28 beq 0, .LBB0_8 b .LBB0_7 .LBB0_6: # %optional3 ; F (copy of G) bl c nop rlwinm. 3, 30, 0, 28, 28 beq 0, .LBB0_8 .LBB0_7: # %optional4 ; H bl d nop .LBB0_8: # %exit ; Ret ld 30, 96(1) # 8-byte Folded Reload addi 1, 1, 112 ld 0, 16(1) mtlr 0 blr The tail-duplication has produced some benefit, but it has also produced a trellis which is not laid out optimally. With this patch, we improve the layouts of such trellises, and decrease the cost calculation for tail-duplication accordingly. This patch produces the layout A,C,E,G,B,D,F,H,Ret. This layout does have back edges, which is a negative, but it has a bigger compensating positive, which is that it handles the case where there are long strings of skipped blocks much better than the original layout. Both layouts handle runs of executed blocks equally well. Branch prediction also improves if there is any correlation between subsequent optional blocks. Here is the resulting concrete layout: straight_test: # @straight_test ; BB#0: # %entry ; A (merged with test1) mr 30, 3 andi. 3, 30, 1 bc 12, 1, .LBB0_4 ; BB#1: # %test2 ; C rlwinm. 3, 30, 0, 30, 30 bne 0, .LBB0_5 .LBB0_2: # %test3 ; E rlwinm. 3, 30, 0, 29, 29 bne 0, .LBB0_6 .LBB0_3: # %test4 ; G rlwinm. 3, 30, 0, 28, 28 bne 0, .LBB0_7 b .LBB0_8 .LBB0_4: # %optional1 ; B (Copy of C) bl a nop rlwinm. 3, 30, 0, 30, 30 beq 0, .LBB0_2 .LBB0_5: # %optional2 ; D (Copy of E) bl b nop rlwinm. 3, 30, 0, 29, 29 beq 0, .LBB0_3 .LBB0_6: # %optional3 ; F (Copy of G) bl c nop rlwinm. 3, 30, 0, 28, 28 beq 0, .LBB0_8 .LBB0_7: # %optional4 ; H bl d nop .LBB0_8: # %exit Differential Revision: https://reviews.llvm.org/D28522 llvm-svn: 295223
2017-02-16 03:49:14 +08:00
define void @nonconvergent_inlineasm(i64 addrspace(1)* nocapture %arg) {
bb:
%tmp = call i32 @llvm.amdgcn.workitem.id.x()
%tmp1 = tail call i64 asm "v_cmp_ne_u32_e64 $0, 0, $1", "=s,v"(i32 1)
%tmp2 = icmp eq i32 %tmp, 8
br i1 %tmp2, label %bb3, label %bb5
bb3: ; preds = %bb
%tmp4 = getelementptr i64, i64 addrspace(1)* %arg, i32 %tmp
store i64 %tmp1, i64 addrspace(1)* %arg, align 8
br label %bb5
bb5: ; preds = %bb3, %bb
ret void
}
attributes #0 = { nounwind readnone }
attributes #1 = { convergent nounwind readnone }