llvm-project/llvm/lib/DebugInfo/CodeView/CodeViewRecordIO.cpp

258 lines
7.7 KiB
C++
Raw Normal View History

//===- CodeViewRecordIO.cpp -------------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "llvm/DebugInfo/CodeView/CodeViewRecordIO.h"
#include "llvm/DebugInfo/CodeView/CodeView.h"
#include "llvm/DebugInfo/CodeView/RecordSerialization.h"
#include "llvm/Support/BinaryStreamReader.h"
#include "llvm/Support/BinaryStreamWriter.h"
using namespace llvm;
using namespace llvm::codeview;
Error CodeViewRecordIO::beginRecord(Optional<uint32_t> MaxLength) {
RecordLimit Limit;
Limit.MaxLength = MaxLength;
Limit.BeginOffset = getCurrentOffset();
Limits.push_back(Limit);
return Error::success();
}
Error CodeViewRecordIO::endRecord() {
assert(!Limits.empty() && "Not in a record!");
Limits.pop_back();
// We would like to assert that we actually read / wrote all the bytes that we
// expected to for this record, but unfortunately we can't do this. Some
// producers such as MASM over-allocate for certain types of records and
// commit the extraneous data, so when reading we can't be sure every byte
// will have been read. And when writing we over-allocate temporarily since
// we don't know how big the record is until we're finished writing it, so
// even though we don't commit the extraneous data, we still can't guarantee
// we're at the end of the allocated data.
return Error::success();
}
uint32_t CodeViewRecordIO::maxFieldLength() const {
assert(!Limits.empty() && "Not in a record!");
// The max length of the next field is the minimum of all lengths that would
// be allowed by any of the sub-records we're in. In practice, we can only
// ever be at most 1 sub-record deep (in a FieldList), but this works for
// the general case.
uint32_t Offset = getCurrentOffset();
Optional<uint32_t> Min = Limits.front().bytesRemaining(Offset);
for (auto X : makeArrayRef(Limits).drop_front()) {
Optional<uint32_t> ThisMin = X.bytesRemaining(Offset);
if (ThisMin.hasValue())
Min = (Min.hasValue()) ? std::min(*Min, *ThisMin) : *ThisMin;
}
assert(Min.hasValue() && "Every field must have a maximum length!");
return *Min;
}
Error CodeViewRecordIO::padToAlignment(uint32_t Align) {
if (isReading())
return Reader->padToAlignment(Align);
return Writer->padToAlignment(Align);
}
Error CodeViewRecordIO::skipPadding() {
assert(!isWriting() && "Cannot skip padding while writing!");
if (Reader->bytesRemaining() == 0)
return Error::success();
uint8_t Leaf = Reader->peek();
if (Leaf < LF_PAD0)
return Error::success();
// Leaf is greater than 0xf0. We should advance by the number of bytes in
// the low 4 bits.
unsigned BytesToAdvance = Leaf & 0x0F;
return Reader->skip(BytesToAdvance);
}
Error CodeViewRecordIO::mapByteVectorTail(ArrayRef<uint8_t> &Bytes) {
if (isWriting()) {
if (auto EC = Writer->writeBytes(Bytes))
return EC;
} else {
if (auto EC = Reader->readBytes(Bytes, Reader->bytesRemaining()))
return EC;
}
return Error::success();
}
Error CodeViewRecordIO::mapByteVectorTail(std::vector<uint8_t> &Bytes) {
ArrayRef<uint8_t> BytesRef(Bytes);
if (auto EC = mapByteVectorTail(BytesRef))
return EC;
if (!isWriting())
Bytes.assign(BytesRef.begin(), BytesRef.end());
return Error::success();
}
Error CodeViewRecordIO::mapInteger(TypeIndex &TypeInd) {
if (isWriting()) {
if (auto EC = Writer->writeInteger(TypeInd.getIndex()))
return EC;
return Error::success();
}
uint32_t I;
if (auto EC = Reader->readInteger(I))
return EC;
TypeInd.setIndex(I);
return Error::success();
}
Error CodeViewRecordIO::mapEncodedInteger(int64_t &Value) {
if (isWriting()) {
if (Value >= 0) {
if (auto EC = writeEncodedUnsignedInteger(static_cast<uint64_t>(Value)))
return EC;
} else {
if (auto EC = writeEncodedSignedInteger(Value))
return EC;
}
} else {
APSInt N;
if (auto EC = consume(*Reader, N))
return EC;
Value = N.getExtValue();
}
return Error::success();
}
Error CodeViewRecordIO::mapEncodedInteger(uint64_t &Value) {
if (isWriting()) {
if (auto EC = writeEncodedUnsignedInteger(Value))
return EC;
} else {
APSInt N;
if (auto EC = consume(*Reader, N))
return EC;
Value = N.getZExtValue();
}
return Error::success();
}
Error CodeViewRecordIO::mapEncodedInteger(APSInt &Value) {
if (isWriting()) {
if (Value.isSigned())
return writeEncodedSignedInteger(Value.getSExtValue());
return writeEncodedUnsignedInteger(Value.getZExtValue());
}
return consume(*Reader, Value);
}
Error CodeViewRecordIO::mapStringZ(StringRef &Value) {
if (isWriting()) {
// Truncate if we attempt to write too much.
StringRef S = Value.take_front(maxFieldLength() - 1);
if (auto EC = Writer->writeCString(S))
return EC;
} else {
if (auto EC = Reader->readCString(Value))
return EC;
}
return Error::success();
}
Error CodeViewRecordIO::mapGuid(GUID &Guid) {
constexpr uint32_t GuidSize = 16;
if (maxFieldLength() < GuidSize)
return make_error<CodeViewError>(cv_error_code::insufficient_buffer);
if (isWriting()) {
if (auto EC = Writer->writeBytes(Guid.Guid))
return EC;
} else {
ArrayRef<uint8_t> GuidBytes;
if (auto EC = Reader->readBytes(GuidBytes, GuidSize))
return EC;
memcpy(Guid.Guid, GuidBytes.data(), GuidSize);
}
return Error::success();
}
Error CodeViewRecordIO::mapStringZVectorZ(std::vector<StringRef> &Value) {
if (isWriting()) {
for (auto V : Value) {
if (auto EC = mapStringZ(V))
return EC;
}
if (auto EC = Writer->writeInteger<uint8_t>(0))
return EC;
} else {
StringRef S;
if (auto EC = mapStringZ(S))
return EC;
while (!S.empty()) {
Value.push_back(S);
if (auto EC = mapStringZ(S))
return EC;
};
}
return Error::success();
}
Error CodeViewRecordIO::writeEncodedSignedInteger(const int64_t &Value) {
assert(Value < 0 && "Encoded integer is not signed!");
if (Value >= std::numeric_limits<int8_t>::min()) {
if (auto EC = Writer->writeInteger<uint16_t>(LF_CHAR))
return EC;
if (auto EC = Writer->writeInteger<int8_t>(Value))
return EC;
} else if (Value >= std::numeric_limits<int16_t>::min()) {
if (auto EC = Writer->writeInteger<uint16_t>(LF_SHORT))
return EC;
if (auto EC = Writer->writeInteger<int16_t>(Value))
return EC;
} else if (Value >= std::numeric_limits<int32_t>::min()) {
if (auto EC = Writer->writeInteger<uint16_t>(LF_LONG))
return EC;
if (auto EC = Writer->writeInteger<int32_t>(Value))
return EC;
} else {
if (auto EC = Writer->writeInteger<uint16_t>(LF_QUADWORD))
return EC;
if (auto EC = Writer->writeInteger(Value))
return EC;
}
return Error::success();
}
Error CodeViewRecordIO::writeEncodedUnsignedInteger(const uint64_t &Value) {
if (Value < LF_NUMERIC) {
if (auto EC = Writer->writeInteger<uint16_t>(Value))
return EC;
} else if (Value <= std::numeric_limits<uint16_t>::max()) {
if (auto EC = Writer->writeInteger<uint16_t>(LF_USHORT))
return EC;
if (auto EC = Writer->writeInteger<uint16_t>(Value))
return EC;
} else if (Value <= std::numeric_limits<uint32_t>::max()) {
if (auto EC = Writer->writeInteger<uint16_t>(LF_ULONG))
return EC;
if (auto EC = Writer->writeInteger<uint32_t>(Value))
return EC;
} else {
if (auto EC = Writer->writeInteger<uint16_t>(LF_UQUADWORD))
return EC;
if (auto EC = Writer->writeInteger(Value))
return EC;
}
return Error::success();
}