2008-09-04 03:52:17 +08:00
|
|
|
//===- InlineAlways.cpp - Code to inline always_inline functions ----------===//
|
2008-09-04 02:50:53 +08:00
|
|
|
//
|
2019-01-19 16:50:56 +08:00
|
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
2008-09-04 02:50:53 +08:00
|
|
|
//
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
//
|
2008-09-04 03:52:17 +08:00
|
|
|
// This file implements a custom inliner that handles only functions that
|
2008-09-04 04:25:40 +08:00
|
|
|
// are marked as "always inline".
|
2008-09-04 02:50:53 +08:00
|
|
|
//
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
|
[PM] Port the always inliner to the new pass manager in a much more
minimal and boring form than the old pass manager's version.
This pass does the very minimal amount of work necessary to inline
functions declared as always-inline. It doesn't support a wide array of
things that the legacy pass manager did support, but is alse ... about
20 lines of code. So it has that going for it. Notably things this
doesn't support:
- Array alloca merging
- To support the above, bottom-up inlining with careful history
tracking and call graph updates
- DCE of the functions that become dead after this inlining.
- Inlining through call instructions with the always_inline attribute.
Instead, it focuses on inlining functions with that attribute.
The first I've omitted because I'm hoping to just turn it off for the
primary pass manager. If that doesn't pan out, I can add it here but it
will be reasonably expensive to do so.
The second should really be handled by running global-dce after the
inliner. I don't want to re-implement the non-trivial logic necessary to
do comdat-correct DCE of functions. This means the -O0 pipeline will
have to be at least 'always-inline,global-dce', but that seems
reasonable to me. If others are seriously worried about this I'd like to
hear about it and understand why. Again, this is all solveable by
factoring that logic into a utility and calling it here, but I'd like to
wait to do that until there is a clear reason why the existing
pass-based factoring won't work.
The final point is a serious one. I can fairly easily add support for
this, but it seems both costly and a confusing construct for the use
case of the always inliner running at -O0. This attribute can of course
still impact the normal inliner easily (although I find that
a questionable re-use of the same attribute). I've started a discussion
to sort out what semantics we want here and based on that can figure out
if it makes sense ta have this complexity at O0 or not.
One other advantage of this design is that it should be quite a bit
faster due to checking for whether the function is a viable candidate
for inlining exactly once per function instead of doing it for each call
site.
Anyways, hopefully a reasonable starting point for this pass.
Differential Revision: https://reviews.llvm.org/D23299
llvm-svn: 278896
2016-08-17 10:56:20 +08:00
|
|
|
#include "llvm/Transforms/IPO/AlwaysInliner.h"
|
|
|
|
#include "llvm/ADT/SetVector.h"
|
2020-10-17 08:21:12 +08:00
|
|
|
#include "llvm/Analysis/AliasAnalysis.h"
|
2016-12-19 16:22:17 +08:00
|
|
|
#include "llvm/Analysis/AssumptionCache.h"
|
2012-12-04 00:50:05 +08:00
|
|
|
#include "llvm/Analysis/InlineCost.h"
|
2020-09-26 01:59:20 +08:00
|
|
|
#include "llvm/Analysis/ProfileSummaryInfo.h"
|
[PM/AA] Rebuild LLVM's alias analysis infrastructure in a way compatible
with the new pass manager, and no longer relying on analysis groups.
This builds essentially a ground-up new AA infrastructure stack for
LLVM. The core ideas are the same that are used throughout the new pass
manager: type erased polymorphism and direct composition. The design is
as follows:
- FunctionAAResults is a type-erasing alias analysis results aggregation
interface to walk a single query across a range of results from
different alias analyses. Currently this is function-specific as we
always assume that aliasing queries are *within* a function.
- AAResultBase is a CRTP utility providing stub implementations of
various parts of the alias analysis result concept, notably in several
cases in terms of other more general parts of the interface. This can
be used to implement only a narrow part of the interface rather than
the entire interface. This isn't really ideal, this logic should be
hoisted into FunctionAAResults as currently it will cause
a significant amount of redundant work, but it faithfully models the
behavior of the prior infrastructure.
- All the alias analysis passes are ported to be wrapper passes for the
legacy PM and new-style analysis passes for the new PM with a shared
result object. In some cases (most notably CFL), this is an extremely
naive approach that we should revisit when we can specialize for the
new pass manager.
- BasicAA has been restructured to reflect that it is much more
fundamentally a function analysis because it uses dominator trees and
loop info that need to be constructed for each function.
All of the references to getting alias analysis results have been
updated to use the new aggregation interface. All the preservation and
other pass management code has been updated accordingly.
The way the FunctionAAResultsWrapperPass works is to detect the
available alias analyses when run, and add them to the results object.
This means that we should be able to continue to respect when various
passes are added to the pipeline, for example adding CFL or adding TBAA
passes should just cause their results to be available and to get folded
into this. The exception to this rule is BasicAA which really needs to
be a function pass due to using dominator trees and loop info. As
a consequence, the FunctionAAResultsWrapperPass directly depends on
BasicAA and always includes it in the aggregation.
This has significant implications for preserving analyses. Generally,
most passes shouldn't bother preserving FunctionAAResultsWrapperPass
because rebuilding the results just updates the set of known AA passes.
The exception to this rule are LoopPass instances which need to preserve
all the function analyses that the loop pass manager will end up
needing. This means preserving both BasicAAWrapperPass and the
aggregating FunctionAAResultsWrapperPass.
Now, when preserving an alias analysis, you do so by directly preserving
that analysis. This is only necessary for non-immutable-pass-provided
alias analyses though, and there are only three of interest: BasicAA,
GlobalsAA (formerly GlobalsModRef), and SCEVAA. Usually BasicAA is
preserved when needed because it (like DominatorTree and LoopInfo) is
marked as a CFG-only pass. I've expanded GlobalsAA into the preserved
set everywhere we previously were preserving all of AliasAnalysis, and
I've added SCEVAA in the intersection of that with where we preserve
SCEV itself.
One significant challenge to all of this is that the CGSCC passes were
actually using the alias analysis implementations by taking advantage of
a pretty amazing set of loop holes in the old pass manager's analysis
management code which allowed analysis groups to slide through in many
cases. Moving away from analysis groups makes this problem much more
obvious. To fix it, I've leveraged the flexibility the design of the new
PM components provides to just directly construct the relevant alias
analyses for the relevant functions in the IPO passes that need them.
This is a bit hacky, but should go away with the new pass manager, and
is already in many ways cleaner than the prior state.
Another significant challenge is that various facilities of the old
alias analysis infrastructure just don't fit any more. The most
significant of these is the alias analysis 'counter' pass. That pass
relied on the ability to snoop on AA queries at different points in the
analysis group chain. Instead, I'm planning to build printing
functionality directly into the aggregation layer. I've not included
that in this patch merely to keep it smaller.
Note that all of this needs a nearly complete rewrite of the AA
documentation. I'm planning to do that, but I'd like to make sure the
new design settles, and to flesh out a bit more of what it looks like in
the new pass manager first.
Differential Revision: http://reviews.llvm.org/D12080
llvm-svn: 247167
2015-09-10 01:55:00 +08:00
|
|
|
#include "llvm/Analysis/TargetLibraryInfo.h"
|
2013-01-02 19:36:10 +08:00
|
|
|
#include "llvm/IR/CallingConv.h"
|
|
|
|
#include "llvm/IR/DataLayout.h"
|
|
|
|
#include "llvm/IR/Instructions.h"
|
|
|
|
#include "llvm/IR/Module.h"
|
|
|
|
#include "llvm/IR/Type.h"
|
Sink all InitializePasses.h includes
This file lists every pass in LLVM, and is included by Pass.h, which is
very popular. Every time we add, remove, or rename a pass in LLVM, it
caused lots of recompilation.
I found this fact by looking at this table, which is sorted by the
number of times a file was changed over the last 100,000 git commits
multiplied by the number of object files that depend on it in the
current checkout:
recompiles touches affected_files header
342380 95 3604 llvm/include/llvm/ADT/STLExtras.h
314730 234 1345 llvm/include/llvm/InitializePasses.h
307036 118 2602 llvm/include/llvm/ADT/APInt.h
213049 59 3611 llvm/include/llvm/Support/MathExtras.h
170422 47 3626 llvm/include/llvm/Support/Compiler.h
162225 45 3605 llvm/include/llvm/ADT/Optional.h
158319 63 2513 llvm/include/llvm/ADT/Triple.h
140322 39 3598 llvm/include/llvm/ADT/StringRef.h
137647 59 2333 llvm/include/llvm/Support/Error.h
131619 73 1803 llvm/include/llvm/Support/FileSystem.h
Before this change, touching InitializePasses.h would cause 1345 files
to recompile. After this change, touching it only causes 550 compiles in
an incremental rebuild.
Reviewers: bkramer, asbirlea, bollu, jdoerfert
Differential Revision: https://reviews.llvm.org/D70211
2019-11-14 05:15:01 +08:00
|
|
|
#include "llvm/InitializePasses.h"
|
[PM] Provide an initial, minimal port of the inliner to the new pass manager.
This doesn't implement *every* feature of the existing inliner, but
tries to implement the most important ones for building a functional
optimization pipeline and beginning to sort out bugs, regressions, and
other problems.
Notable, but intentional omissions:
- No alloca merging support. Why? Because it isn't clear we want to do
this at all. Active discussion and investigation is going on to remove
it, so for simplicity I omitted it.
- No support for trying to iterate on "internally" devirtualized calls.
Why? Because it adds what I suspect is inappropriate coupling for
little or no benefit. We will have an outer iteration system that
tracks devirtualization including that from function passes and
iterates already. We should improve that rather than approximate it
here.
- Optimization remarks. Why? Purely to make the patch smaller, no other
reason at all.
The last one I'll probably work on almost immediately. But I wanted to
skip it in the initial patch to try to focus the change as much as
possible as there is already a lot of code moving around and both of
these *could* be skipped without really disrupting the core logic.
A summary of the different things happening here:
1) Adding the usual new PM class and rigging.
2) Fixing minor underlying assumptions in the inline cost analysis or
inline logic that don't generally hold in the new PM world.
3) Adding the core pass logic which is in essence a loop over the calls
in the nodes in the call graph. This is a bit duplicated from the old
inliner, but only a handful of lines could realistically be shared.
(I tried at first, and it really didn't help anything.) All told,
this is only about 100 lines of code, and most of that is the
mechanics of wiring up analyses from the new PM world.
4) Updating the LazyCallGraph (in the new PM) based on the *newly
inlined* calls and references. This is very minimal because we cannot
form cycles.
5) When inlining removes the last use of a function, eagerly nuking the
body of the function so that any "one use remaining" inline cost
heuristics are immediately refined, and queuing these functions to be
completely deleted once inlining is complete and the call graph
updated to reflect that they have become dead.
6) After all the inlining for a particular function, updating the
LazyCallGraph and the CGSCC pass manager to reflect the
function-local simplifications that are done immediately and
internally by the inline utilties. These are the exact same
fundamental set of CG updates done by arbitrary function passes.
7) Adding a bunch of test cases to specifically target CGSCC and other
subtle aspects in the new PM world.
Many thanks to the careful review from Easwaran and Sanjoy and others!
Differential Revision: https://reviews.llvm.org/D24226
llvm-svn: 290161
2016-12-20 11:15:32 +08:00
|
|
|
#include "llvm/Transforms/IPO.h"
|
|
|
|
#include "llvm/Transforms/IPO/Inliner.h"
|
[PM] Port the always inliner to the new pass manager in a much more
minimal and boring form than the old pass manager's version.
This pass does the very minimal amount of work necessary to inline
functions declared as always-inline. It doesn't support a wide array of
things that the legacy pass manager did support, but is alse ... about
20 lines of code. So it has that going for it. Notably things this
doesn't support:
- Array alloca merging
- To support the above, bottom-up inlining with careful history
tracking and call graph updates
- DCE of the functions that become dead after this inlining.
- Inlining through call instructions with the always_inline attribute.
Instead, it focuses on inlining functions with that attribute.
The first I've omitted because I'm hoping to just turn it off for the
primary pass manager. If that doesn't pan out, I can add it here but it
will be reasonably expensive to do so.
The second should really be handled by running global-dce after the
inliner. I don't want to re-implement the non-trivial logic necessary to
do comdat-correct DCE of functions. This means the -O0 pipeline will
have to be at least 'always-inline,global-dce', but that seems
reasonable to me. If others are seriously worried about this I'd like to
hear about it and understand why. Again, this is all solveable by
factoring that logic into a utility and calling it here, but I'd like to
wait to do that until there is a clear reason why the existing
pass-based factoring won't work.
The final point is a serious one. I can fairly easily add support for
this, but it seems both costly and a confusing construct for the use
case of the always inliner running at -O0. This attribute can of course
still impact the normal inliner easily (although I find that
a questionable re-use of the same attribute). I've started a discussion
to sort out what semantics we want here and based on that can figure out
if it makes sense ta have this complexity at O0 or not.
One other advantage of this design is that it should be quite a bit
faster due to checking for whether the function is a viable candidate
for inlining exactly once per function instead of doing it for each call
site.
Anyways, hopefully a reasonable starting point for this pass.
Differential Revision: https://reviews.llvm.org/D23299
llvm-svn: 278896
2016-08-17 10:56:20 +08:00
|
|
|
#include "llvm/Transforms/Utils/Cloning.h"
|
2016-12-27 07:43:27 +08:00
|
|
|
#include "llvm/Transforms/Utils/ModuleUtils.h"
|
2008-09-04 02:50:53 +08:00
|
|
|
|
|
|
|
using namespace llvm;
|
|
|
|
|
2014-04-22 10:55:47 +08:00
|
|
|
#define DEBUG_TYPE "inline"
|
|
|
|
|
2019-06-14 02:18:40 +08:00
|
|
|
PreservedAnalyses AlwaysInlinerPass::run(Module &M,
|
|
|
|
ModuleAnalysisManager &MAM) {
|
|
|
|
// Add inline assumptions during code generation.
|
|
|
|
FunctionAnalysisManager &FAM =
|
|
|
|
MAM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
|
2020-05-15 13:38:41 +08:00
|
|
|
auto GetAssumptionCache = [&](Function &F) -> AssumptionCache & {
|
2019-06-14 02:18:40 +08:00
|
|
|
return FAM.getResult<AssumptionAnalysis>(F);
|
|
|
|
};
|
2020-09-26 01:59:20 +08:00
|
|
|
auto &PSI = MAM.getResult<ProfileSummaryAnalysis>(M);
|
2019-06-14 02:18:40 +08:00
|
|
|
|
2020-04-14 07:39:52 +08:00
|
|
|
SmallSetVector<CallBase *, 16> Calls;
|
[PM] Port the always inliner to the new pass manager in a much more
minimal and boring form than the old pass manager's version.
This pass does the very minimal amount of work necessary to inline
functions declared as always-inline. It doesn't support a wide array of
things that the legacy pass manager did support, but is alse ... about
20 lines of code. So it has that going for it. Notably things this
doesn't support:
- Array alloca merging
- To support the above, bottom-up inlining with careful history
tracking and call graph updates
- DCE of the functions that become dead after this inlining.
- Inlining through call instructions with the always_inline attribute.
Instead, it focuses on inlining functions with that attribute.
The first I've omitted because I'm hoping to just turn it off for the
primary pass manager. If that doesn't pan out, I can add it here but it
will be reasonably expensive to do so.
The second should really be handled by running global-dce after the
inliner. I don't want to re-implement the non-trivial logic necessary to
do comdat-correct DCE of functions. This means the -O0 pipeline will
have to be at least 'always-inline,global-dce', but that seems
reasonable to me. If others are seriously worried about this I'd like to
hear about it and understand why. Again, this is all solveable by
factoring that logic into a utility and calling it here, but I'd like to
wait to do that until there is a clear reason why the existing
pass-based factoring won't work.
The final point is a serious one. I can fairly easily add support for
this, but it seems both costly and a confusing construct for the use
case of the always inliner running at -O0. This attribute can of course
still impact the normal inliner easily (although I find that
a questionable re-use of the same attribute). I've started a discussion
to sort out what semantics we want here and based on that can figure out
if it makes sense ta have this complexity at O0 or not.
One other advantage of this design is that it should be quite a bit
faster due to checking for whether the function is a viable candidate
for inlining exactly once per function instead of doing it for each call
site.
Anyways, hopefully a reasonable starting point for this pass.
Differential Revision: https://reviews.llvm.org/D23299
llvm-svn: 278896
2016-08-17 10:56:20 +08:00
|
|
|
bool Changed = false;
|
2016-12-24 07:33:35 +08:00
|
|
|
SmallVector<Function *, 16> InlinedFunctions;
|
[coroutine] should disable inline before calling coro split
This is a rework of D85812, which didn't land.
When callee coroutine function is inlined into caller coroutine function before coro-split pass, llvm will emits "coroutine should have exactly one defining @llvm.coro.begin". It seems that coro-early pass can not handle this quiet well.
So we believe that unsplited coroutine function should not be inlined.
This patch fix such issue by not inlining function if it has attribute "coroutine.presplit" (it means the function has not been splited) to fix this issue
test plan: check-llvm, check-clang
In D85812, there was suggestions on moving the macros to Attributes.td to avoid circular header dependency issue.
I believe it's not worth doing just to be able to use one constant string in one place.
Today, there are already 3 possible attribute values for "coroutine.presplit": https://github.com/llvm/llvm-project/blob/c6543cc6b8f107b58e7205d8fc64865a508bacba/llvm/lib/Transforms/Coroutines/CoroInternal.h#L40-L42
If we move them into Attributes.td, we would be adding 3 new attributes to EnumAttr, just to support this, which I think is an overkill.
Instead, I think the best way to do this is to add an API in Function class that checks whether this function is a coroutine, by checking the attribute by name directly.
Differential Revision: https://reviews.llvm.org/D92706
2020-12-09 00:50:30 +08:00
|
|
|
for (Function &F : M) {
|
|
|
|
// When callee coroutine function is inlined into caller coroutine function
|
|
|
|
// before coro-split pass,
|
|
|
|
// coro-early pass can not handle this quiet well.
|
|
|
|
// So we won't inline the coroutine function if it have not been unsplited
|
|
|
|
if (F.isPresplitCoroutine())
|
|
|
|
continue;
|
|
|
|
|
[PM] Port the always inliner to the new pass manager in a much more
minimal and boring form than the old pass manager's version.
This pass does the very minimal amount of work necessary to inline
functions declared as always-inline. It doesn't support a wide array of
things that the legacy pass manager did support, but is alse ... about
20 lines of code. So it has that going for it. Notably things this
doesn't support:
- Array alloca merging
- To support the above, bottom-up inlining with careful history
tracking and call graph updates
- DCE of the functions that become dead after this inlining.
- Inlining through call instructions with the always_inline attribute.
Instead, it focuses on inlining functions with that attribute.
The first I've omitted because I'm hoping to just turn it off for the
primary pass manager. If that doesn't pan out, I can add it here but it
will be reasonably expensive to do so.
The second should really be handled by running global-dce after the
inliner. I don't want to re-implement the non-trivial logic necessary to
do comdat-correct DCE of functions. This means the -O0 pipeline will
have to be at least 'always-inline,global-dce', but that seems
reasonable to me. If others are seriously worried about this I'd like to
hear about it and understand why. Again, this is all solveable by
factoring that logic into a utility and calling it here, but I'd like to
wait to do that until there is a clear reason why the existing
pass-based factoring won't work.
The final point is a serious one. I can fairly easily add support for
this, but it seems both costly and a confusing construct for the use
case of the always inliner running at -O0. This attribute can of course
still impact the normal inliner easily (although I find that
a questionable re-use of the same attribute). I've started a discussion
to sort out what semantics we want here and based on that can figure out
if it makes sense ta have this complexity at O0 or not.
One other advantage of this design is that it should be quite a bit
faster due to checking for whether the function is a viable candidate
for inlining exactly once per function instead of doing it for each call
site.
Anyways, hopefully a reasonable starting point for this pass.
Differential Revision: https://reviews.llvm.org/D23299
llvm-svn: 278896
2016-08-17 10:56:20 +08:00
|
|
|
if (!F.isDeclaration() && F.hasFnAttribute(Attribute::AlwaysInline) &&
|
[NFC] Refactor InlineResult for readability
Summary:
InlineResult is used both in APIs assessing whether a call site is
inlinable (e.g. llvm::isInlineViable) as well as in the function
inlining utility (llvm::InlineFunction). It means slightly different
things (can/should inlining happen, vs did it happen), and the
implicit casting may introduce ambiguity (casting from 'false' in
InlineFunction will default a message about hight costs,
which is incorrect here).
The change renames the type to a more generic name, and disables
implicit constructors.
Reviewers: eraman, davidxl
Reviewed By: davidxl
Subscribers: kerbowa, arsenm, jvesely, nhaehnle, eraman, hiraditya, haicheng, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D72744
2020-01-16 05:33:58 +08:00
|
|
|
isInlineViable(F).isSuccess()) {
|
[PM] Port the always inliner to the new pass manager in a much more
minimal and boring form than the old pass manager's version.
This pass does the very minimal amount of work necessary to inline
functions declared as always-inline. It doesn't support a wide array of
things that the legacy pass manager did support, but is alse ... about
20 lines of code. So it has that going for it. Notably things this
doesn't support:
- Array alloca merging
- To support the above, bottom-up inlining with careful history
tracking and call graph updates
- DCE of the functions that become dead after this inlining.
- Inlining through call instructions with the always_inline attribute.
Instead, it focuses on inlining functions with that attribute.
The first I've omitted because I'm hoping to just turn it off for the
primary pass manager. If that doesn't pan out, I can add it here but it
will be reasonably expensive to do so.
The second should really be handled by running global-dce after the
inliner. I don't want to re-implement the non-trivial logic necessary to
do comdat-correct DCE of functions. This means the -O0 pipeline will
have to be at least 'always-inline,global-dce', but that seems
reasonable to me. If others are seriously worried about this I'd like to
hear about it and understand why. Again, this is all solveable by
factoring that logic into a utility and calling it here, but I'd like to
wait to do that until there is a clear reason why the existing
pass-based factoring won't work.
The final point is a serious one. I can fairly easily add support for
this, but it seems both costly and a confusing construct for the use
case of the always inliner running at -O0. This attribute can of course
still impact the normal inliner easily (although I find that
a questionable re-use of the same attribute). I've started a discussion
to sort out what semantics we want here and based on that can figure out
if it makes sense ta have this complexity at O0 or not.
One other advantage of this design is that it should be quite a bit
faster due to checking for whether the function is a viable candidate
for inlining exactly once per function instead of doing it for each call
site.
Anyways, hopefully a reasonable starting point for this pass.
Differential Revision: https://reviews.llvm.org/D23299
llvm-svn: 278896
2016-08-17 10:56:20 +08:00
|
|
|
Calls.clear();
|
|
|
|
|
|
|
|
for (User *U : F.users())
|
2020-04-14 07:39:52 +08:00
|
|
|
if (auto *CB = dyn_cast<CallBase>(U))
|
|
|
|
if (CB->getCalledFunction() == &F)
|
|
|
|
Calls.insert(CB);
|
[PM] Port the always inliner to the new pass manager in a much more
minimal and boring form than the old pass manager's version.
This pass does the very minimal amount of work necessary to inline
functions declared as always-inline. It doesn't support a wide array of
things that the legacy pass manager did support, but is alse ... about
20 lines of code. So it has that going for it. Notably things this
doesn't support:
- Array alloca merging
- To support the above, bottom-up inlining with careful history
tracking and call graph updates
- DCE of the functions that become dead after this inlining.
- Inlining through call instructions with the always_inline attribute.
Instead, it focuses on inlining functions with that attribute.
The first I've omitted because I'm hoping to just turn it off for the
primary pass manager. If that doesn't pan out, I can add it here but it
will be reasonably expensive to do so.
The second should really be handled by running global-dce after the
inliner. I don't want to re-implement the non-trivial logic necessary to
do comdat-correct DCE of functions. This means the -O0 pipeline will
have to be at least 'always-inline,global-dce', but that seems
reasonable to me. If others are seriously worried about this I'd like to
hear about it and understand why. Again, this is all solveable by
factoring that logic into a utility and calling it here, but I'd like to
wait to do that until there is a clear reason why the existing
pass-based factoring won't work.
The final point is a serious one. I can fairly easily add support for
this, but it seems both costly and a confusing construct for the use
case of the always inliner running at -O0. This attribute can of course
still impact the normal inliner easily (although I find that
a questionable re-use of the same attribute). I've started a discussion
to sort out what semantics we want here and based on that can figure out
if it makes sense ta have this complexity at O0 or not.
One other advantage of this design is that it should be quite a bit
faster due to checking for whether the function is a viable candidate
for inlining exactly once per function instead of doing it for each call
site.
Anyways, hopefully a reasonable starting point for this pass.
Differential Revision: https://reviews.llvm.org/D23299
llvm-svn: 278896
2016-08-17 10:56:20 +08:00
|
|
|
|
2020-09-02 06:55:05 +08:00
|
|
|
for (CallBase *CB : Calls) {
|
|
|
|
Function *Caller = CB->getCaller();
|
|
|
|
OptimizationRemarkEmitter ORE(Caller);
|
|
|
|
auto OIC = shouldInline(
|
|
|
|
*CB,
|
|
|
|
[&](CallBase &CB) {
|
|
|
|
return InlineCost::getAlways("always inline attribute");
|
|
|
|
},
|
|
|
|
ORE);
|
|
|
|
assert(OIC);
|
|
|
|
emitInlinedInto(ORE, CB->getDebugLoc(), CB->getParent(), F, *Caller,
|
|
|
|
*OIC, false, DEBUG_TYPE);
|
|
|
|
|
2020-09-26 01:59:20 +08:00
|
|
|
InlineFunctionInfo IFI(
|
|
|
|
/*cg=*/nullptr, GetAssumptionCache, &PSI,
|
|
|
|
&FAM.getResult<BlockFrequencyAnalysis>(*(CB->getCaller())),
|
|
|
|
&FAM.getResult<BlockFrequencyAnalysis>(F));
|
|
|
|
|
2020-10-17 08:21:12 +08:00
|
|
|
InlineResult Res = InlineFunction(
|
|
|
|
*CB, IFI, &FAM.getResult<AAManager>(F), InsertLifetime);
|
2020-09-02 06:55:05 +08:00
|
|
|
assert(Res.isSuccess() && "unexpected failure to inline");
|
|
|
|
(void)Res;
|
2020-11-14 03:57:29 +08:00
|
|
|
|
|
|
|
// Merge the attributes based on the inlining.
|
|
|
|
AttributeFuncs::mergeAttributesForInlining(*Caller, F);
|
|
|
|
|
2020-09-02 06:55:05 +08:00
|
|
|
Changed = true;
|
|
|
|
}
|
2016-12-24 07:33:35 +08:00
|
|
|
|
|
|
|
// Remember to try and delete this function afterward. This both avoids
|
|
|
|
// re-walking the rest of the module and avoids dealing with any iterator
|
|
|
|
// invalidation issues while deleting functions.
|
|
|
|
InlinedFunctions.push_back(&F);
|
[PM] Port the always inliner to the new pass manager in a much more
minimal and boring form than the old pass manager's version.
This pass does the very minimal amount of work necessary to inline
functions declared as always-inline. It doesn't support a wide array of
things that the legacy pass manager did support, but is alse ... about
20 lines of code. So it has that going for it. Notably things this
doesn't support:
- Array alloca merging
- To support the above, bottom-up inlining with careful history
tracking and call graph updates
- DCE of the functions that become dead after this inlining.
- Inlining through call instructions with the always_inline attribute.
Instead, it focuses on inlining functions with that attribute.
The first I've omitted because I'm hoping to just turn it off for the
primary pass manager. If that doesn't pan out, I can add it here but it
will be reasonably expensive to do so.
The second should really be handled by running global-dce after the
inliner. I don't want to re-implement the non-trivial logic necessary to
do comdat-correct DCE of functions. This means the -O0 pipeline will
have to be at least 'always-inline,global-dce', but that seems
reasonable to me. If others are seriously worried about this I'd like to
hear about it and understand why. Again, this is all solveable by
factoring that logic into a utility and calling it here, but I'd like to
wait to do that until there is a clear reason why the existing
pass-based factoring won't work.
The final point is a serious one. I can fairly easily add support for
this, but it seems both costly and a confusing construct for the use
case of the always inliner running at -O0. This attribute can of course
still impact the normal inliner easily (although I find that
a questionable re-use of the same attribute). I've started a discussion
to sort out what semantics we want here and based on that can figure out
if it makes sense ta have this complexity at O0 or not.
One other advantage of this design is that it should be quite a bit
faster due to checking for whether the function is a viable candidate
for inlining exactly once per function instead of doing it for each call
site.
Anyways, hopefully a reasonable starting point for this pass.
Differential Revision: https://reviews.llvm.org/D23299
llvm-svn: 278896
2016-08-17 10:56:20 +08:00
|
|
|
}
|
[coroutine] should disable inline before calling coro split
This is a rework of D85812, which didn't land.
When callee coroutine function is inlined into caller coroutine function before coro-split pass, llvm will emits "coroutine should have exactly one defining @llvm.coro.begin". It seems that coro-early pass can not handle this quiet well.
So we believe that unsplited coroutine function should not be inlined.
This patch fix such issue by not inlining function if it has attribute "coroutine.presplit" (it means the function has not been splited) to fix this issue
test plan: check-llvm, check-clang
In D85812, there was suggestions on moving the macros to Attributes.td to avoid circular header dependency issue.
I believe it's not worth doing just to be able to use one constant string in one place.
Today, there are already 3 possible attribute values for "coroutine.presplit": https://github.com/llvm/llvm-project/blob/c6543cc6b8f107b58e7205d8fc64865a508bacba/llvm/lib/Transforms/Coroutines/CoroInternal.h#L40-L42
If we move them into Attributes.td, we would be adding 3 new attributes to EnumAttr, just to support this, which I think is an overkill.
Instead, I think the best way to do this is to add an API in Function class that checks whether this function is a coroutine, by checking the attribute by name directly.
Differential Revision: https://reviews.llvm.org/D92706
2020-12-09 00:50:30 +08:00
|
|
|
}
|
[PM] Port the always inliner to the new pass manager in a much more
minimal and boring form than the old pass manager's version.
This pass does the very minimal amount of work necessary to inline
functions declared as always-inline. It doesn't support a wide array of
things that the legacy pass manager did support, but is alse ... about
20 lines of code. So it has that going for it. Notably things this
doesn't support:
- Array alloca merging
- To support the above, bottom-up inlining with careful history
tracking and call graph updates
- DCE of the functions that become dead after this inlining.
- Inlining through call instructions with the always_inline attribute.
Instead, it focuses on inlining functions with that attribute.
The first I've omitted because I'm hoping to just turn it off for the
primary pass manager. If that doesn't pan out, I can add it here but it
will be reasonably expensive to do so.
The second should really be handled by running global-dce after the
inliner. I don't want to re-implement the non-trivial logic necessary to
do comdat-correct DCE of functions. This means the -O0 pipeline will
have to be at least 'always-inline,global-dce', but that seems
reasonable to me. If others are seriously worried about this I'd like to
hear about it and understand why. Again, this is all solveable by
factoring that logic into a utility and calling it here, but I'd like to
wait to do that until there is a clear reason why the existing
pass-based factoring won't work.
The final point is a serious one. I can fairly easily add support for
this, but it seems both costly and a confusing construct for the use
case of the always inliner running at -O0. This attribute can of course
still impact the normal inliner easily (although I find that
a questionable re-use of the same attribute). I've started a discussion
to sort out what semantics we want here and based on that can figure out
if it makes sense ta have this complexity at O0 or not.
One other advantage of this design is that it should be quite a bit
faster due to checking for whether the function is a viable candidate
for inlining exactly once per function instead of doing it for each call
site.
Anyways, hopefully a reasonable starting point for this pass.
Differential Revision: https://reviews.llvm.org/D23299
llvm-svn: 278896
2016-08-17 10:56:20 +08:00
|
|
|
|
2016-12-27 07:43:27 +08:00
|
|
|
// Remove any live functions.
|
|
|
|
erase_if(InlinedFunctions, [&](Function *F) {
|
|
|
|
F->removeDeadConstantUsers();
|
|
|
|
return !F->isDefTriviallyDead();
|
|
|
|
});
|
|
|
|
|
|
|
|
// Delete the non-comdat ones from the module and also from our vector.
|
|
|
|
auto NonComdatBegin = partition(
|
|
|
|
InlinedFunctions, [&](Function *F) { return F->hasComdat(); });
|
|
|
|
for (Function *F : make_range(NonComdatBegin, InlinedFunctions.end()))
|
|
|
|
M.getFunctionList().erase(F);
|
|
|
|
InlinedFunctions.erase(NonComdatBegin, InlinedFunctions.end());
|
|
|
|
|
|
|
|
if (!InlinedFunctions.empty()) {
|
|
|
|
// Now we just have the comdat functions. Filter out the ones whose comdats
|
|
|
|
// are not actually dead.
|
|
|
|
filterDeadComdatFunctions(M, InlinedFunctions);
|
|
|
|
// The remaining functions are actually dead.
|
|
|
|
for (Function *F : InlinedFunctions)
|
|
|
|
M.getFunctionList().erase(F);
|
2016-12-24 07:33:35 +08:00
|
|
|
}
|
|
|
|
|
[PM] Port the always inliner to the new pass manager in a much more
minimal and boring form than the old pass manager's version.
This pass does the very minimal amount of work necessary to inline
functions declared as always-inline. It doesn't support a wide array of
things that the legacy pass manager did support, but is alse ... about
20 lines of code. So it has that going for it. Notably things this
doesn't support:
- Array alloca merging
- To support the above, bottom-up inlining with careful history
tracking and call graph updates
- DCE of the functions that become dead after this inlining.
- Inlining through call instructions with the always_inline attribute.
Instead, it focuses on inlining functions with that attribute.
The first I've omitted because I'm hoping to just turn it off for the
primary pass manager. If that doesn't pan out, I can add it here but it
will be reasonably expensive to do so.
The second should really be handled by running global-dce after the
inliner. I don't want to re-implement the non-trivial logic necessary to
do comdat-correct DCE of functions. This means the -O0 pipeline will
have to be at least 'always-inline,global-dce', but that seems
reasonable to me. If others are seriously worried about this I'd like to
hear about it and understand why. Again, this is all solveable by
factoring that logic into a utility and calling it here, but I'd like to
wait to do that until there is a clear reason why the existing
pass-based factoring won't work.
The final point is a serious one. I can fairly easily add support for
this, but it seems both costly and a confusing construct for the use
case of the always inliner running at -O0. This attribute can of course
still impact the normal inliner easily (although I find that
a questionable re-use of the same attribute). I've started a discussion
to sort out what semantics we want here and based on that can figure out
if it makes sense ta have this complexity at O0 or not.
One other advantage of this design is that it should be quite a bit
faster due to checking for whether the function is a viable candidate
for inlining exactly once per function instead of doing it for each call
site.
Anyways, hopefully a reasonable starting point for this pass.
Differential Revision: https://reviews.llvm.org/D23299
llvm-svn: 278896
2016-08-17 10:56:20 +08:00
|
|
|
return Changed ? PreservedAnalyses::none() : PreservedAnalyses::all();
|
|
|
|
}
|
|
|
|
|
2008-09-04 02:50:53 +08:00
|
|
|
namespace {
|
|
|
|
|
[PM] Port the always inliner to the new pass manager in a much more
minimal and boring form than the old pass manager's version.
This pass does the very minimal amount of work necessary to inline
functions declared as always-inline. It doesn't support a wide array of
things that the legacy pass manager did support, but is alse ... about
20 lines of code. So it has that going for it. Notably things this
doesn't support:
- Array alloca merging
- To support the above, bottom-up inlining with careful history
tracking and call graph updates
- DCE of the functions that become dead after this inlining.
- Inlining through call instructions with the always_inline attribute.
Instead, it focuses on inlining functions with that attribute.
The first I've omitted because I'm hoping to just turn it off for the
primary pass manager. If that doesn't pan out, I can add it here but it
will be reasonably expensive to do so.
The second should really be handled by running global-dce after the
inliner. I don't want to re-implement the non-trivial logic necessary to
do comdat-correct DCE of functions. This means the -O0 pipeline will
have to be at least 'always-inline,global-dce', but that seems
reasonable to me. If others are seriously worried about this I'd like to
hear about it and understand why. Again, this is all solveable by
factoring that logic into a utility and calling it here, but I'd like to
wait to do that until there is a clear reason why the existing
pass-based factoring won't work.
The final point is a serious one. I can fairly easily add support for
this, but it seems both costly and a confusing construct for the use
case of the always inliner running at -O0. This attribute can of course
still impact the normal inliner easily (although I find that
a questionable re-use of the same attribute). I've started a discussion
to sort out what semantics we want here and based on that can figure out
if it makes sense ta have this complexity at O0 or not.
One other advantage of this design is that it should be quite a bit
faster due to checking for whether the function is a viable candidate
for inlining exactly once per function instead of doing it for each call
site.
Anyways, hopefully a reasonable starting point for this pass.
Differential Revision: https://reviews.llvm.org/D23299
llvm-svn: 278896
2016-08-17 10:56:20 +08:00
|
|
|
/// Inliner pass which only handles "always inline" functions.
|
|
|
|
///
|
|
|
|
/// Unlike the \c AlwaysInlinerPass, this uses the more heavyweight \c Inliner
|
|
|
|
/// base class to provide several facilities such as array alloca merging.
|
[PM] Provide an initial, minimal port of the inliner to the new pass manager.
This doesn't implement *every* feature of the existing inliner, but
tries to implement the most important ones for building a functional
optimization pipeline and beginning to sort out bugs, regressions, and
other problems.
Notable, but intentional omissions:
- No alloca merging support. Why? Because it isn't clear we want to do
this at all. Active discussion and investigation is going on to remove
it, so for simplicity I omitted it.
- No support for trying to iterate on "internally" devirtualized calls.
Why? Because it adds what I suspect is inappropriate coupling for
little or no benefit. We will have an outer iteration system that
tracks devirtualization including that from function passes and
iterates already. We should improve that rather than approximate it
here.
- Optimization remarks. Why? Purely to make the patch smaller, no other
reason at all.
The last one I'll probably work on almost immediately. But I wanted to
skip it in the initial patch to try to focus the change as much as
possible as there is already a lot of code moving around and both of
these *could* be skipped without really disrupting the core logic.
A summary of the different things happening here:
1) Adding the usual new PM class and rigging.
2) Fixing minor underlying assumptions in the inline cost analysis or
inline logic that don't generally hold in the new PM world.
3) Adding the core pass logic which is in essence a loop over the calls
in the nodes in the call graph. This is a bit duplicated from the old
inliner, but only a handful of lines could realistically be shared.
(I tried at first, and it really didn't help anything.) All told,
this is only about 100 lines of code, and most of that is the
mechanics of wiring up analyses from the new PM world.
4) Updating the LazyCallGraph (in the new PM) based on the *newly
inlined* calls and references. This is very minimal because we cannot
form cycles.
5) When inlining removes the last use of a function, eagerly nuking the
body of the function so that any "one use remaining" inline cost
heuristics are immediately refined, and queuing these functions to be
completely deleted once inlining is complete and the call graph
updated to reflect that they have become dead.
6) After all the inlining for a particular function, updating the
LazyCallGraph and the CGSCC pass manager to reflect the
function-local simplifications that are done immediately and
internally by the inline utilties. These are the exact same
fundamental set of CG updates done by arbitrary function passes.
7) Adding a bunch of test cases to specifically target CGSCC and other
subtle aspects in the new PM world.
Many thanks to the careful review from Easwaran and Sanjoy and others!
Differential Revision: https://reviews.llvm.org/D24226
llvm-svn: 290161
2016-12-20 11:15:32 +08:00
|
|
|
class AlwaysInlinerLegacyPass : public LegacyInlinerBase {
|
2013-01-21 19:39:16 +08:00
|
|
|
|
|
|
|
public:
|
[PM] Provide an initial, minimal port of the inliner to the new pass manager.
This doesn't implement *every* feature of the existing inliner, but
tries to implement the most important ones for building a functional
optimization pipeline and beginning to sort out bugs, regressions, and
other problems.
Notable, but intentional omissions:
- No alloca merging support. Why? Because it isn't clear we want to do
this at all. Active discussion and investigation is going on to remove
it, so for simplicity I omitted it.
- No support for trying to iterate on "internally" devirtualized calls.
Why? Because it adds what I suspect is inappropriate coupling for
little or no benefit. We will have an outer iteration system that
tracks devirtualization including that from function passes and
iterates already. We should improve that rather than approximate it
here.
- Optimization remarks. Why? Purely to make the patch smaller, no other
reason at all.
The last one I'll probably work on almost immediately. But I wanted to
skip it in the initial patch to try to focus the change as much as
possible as there is already a lot of code moving around and both of
these *could* be skipped without really disrupting the core logic.
A summary of the different things happening here:
1) Adding the usual new PM class and rigging.
2) Fixing minor underlying assumptions in the inline cost analysis or
inline logic that don't generally hold in the new PM world.
3) Adding the core pass logic which is in essence a loop over the calls
in the nodes in the call graph. This is a bit duplicated from the old
inliner, but only a handful of lines could realistically be shared.
(I tried at first, and it really didn't help anything.) All told,
this is only about 100 lines of code, and most of that is the
mechanics of wiring up analyses from the new PM world.
4) Updating the LazyCallGraph (in the new PM) based on the *newly
inlined* calls and references. This is very minimal because we cannot
form cycles.
5) When inlining removes the last use of a function, eagerly nuking the
body of the function so that any "one use remaining" inline cost
heuristics are immediately refined, and queuing these functions to be
completely deleted once inlining is complete and the call graph
updated to reflect that they have become dead.
6) After all the inlining for a particular function, updating the
LazyCallGraph and the CGSCC pass manager to reflect the
function-local simplifications that are done immediately and
internally by the inline utilties. These are the exact same
fundamental set of CG updates done by arbitrary function passes.
7) Adding a bunch of test cases to specifically target CGSCC and other
subtle aspects in the new PM world.
Many thanks to the careful review from Easwaran and Sanjoy and others!
Differential Revision: https://reviews.llvm.org/D24226
llvm-svn: 290161
2016-12-20 11:15:32 +08:00
|
|
|
AlwaysInlinerLegacyPass() : LegacyInlinerBase(ID, /*InsertLifetime*/ true) {
|
[PM] Port the always inliner to the new pass manager in a much more
minimal and boring form than the old pass manager's version.
This pass does the very minimal amount of work necessary to inline
functions declared as always-inline. It doesn't support a wide array of
things that the legacy pass manager did support, but is alse ... about
20 lines of code. So it has that going for it. Notably things this
doesn't support:
- Array alloca merging
- To support the above, bottom-up inlining with careful history
tracking and call graph updates
- DCE of the functions that become dead after this inlining.
- Inlining through call instructions with the always_inline attribute.
Instead, it focuses on inlining functions with that attribute.
The first I've omitted because I'm hoping to just turn it off for the
primary pass manager. If that doesn't pan out, I can add it here but it
will be reasonably expensive to do so.
The second should really be handled by running global-dce after the
inliner. I don't want to re-implement the non-trivial logic necessary to
do comdat-correct DCE of functions. This means the -O0 pipeline will
have to be at least 'always-inline,global-dce', but that seems
reasonable to me. If others are seriously worried about this I'd like to
hear about it and understand why. Again, this is all solveable by
factoring that logic into a utility and calling it here, but I'd like to
wait to do that until there is a clear reason why the existing
pass-based factoring won't work.
The final point is a serious one. I can fairly easily add support for
this, but it seems both costly and a confusing construct for the use
case of the always inliner running at -O0. This attribute can of course
still impact the normal inliner easily (although I find that
a questionable re-use of the same attribute). I've started a discussion
to sort out what semantics we want here and based on that can figure out
if it makes sense ta have this complexity at O0 or not.
One other advantage of this design is that it should be quite a bit
faster due to checking for whether the function is a viable candidate
for inlining exactly once per function instead of doing it for each call
site.
Anyways, hopefully a reasonable starting point for this pass.
Differential Revision: https://reviews.llvm.org/D23299
llvm-svn: 278896
2016-08-17 10:56:20 +08:00
|
|
|
initializeAlwaysInlinerLegacyPassPass(*PassRegistry::getPassRegistry());
|
2013-01-21 19:39:16 +08:00
|
|
|
}
|
|
|
|
|
[PM] Provide an initial, minimal port of the inliner to the new pass manager.
This doesn't implement *every* feature of the existing inliner, but
tries to implement the most important ones for building a functional
optimization pipeline and beginning to sort out bugs, regressions, and
other problems.
Notable, but intentional omissions:
- No alloca merging support. Why? Because it isn't clear we want to do
this at all. Active discussion and investigation is going on to remove
it, so for simplicity I omitted it.
- No support for trying to iterate on "internally" devirtualized calls.
Why? Because it adds what I suspect is inappropriate coupling for
little or no benefit. We will have an outer iteration system that
tracks devirtualization including that from function passes and
iterates already. We should improve that rather than approximate it
here.
- Optimization remarks. Why? Purely to make the patch smaller, no other
reason at all.
The last one I'll probably work on almost immediately. But I wanted to
skip it in the initial patch to try to focus the change as much as
possible as there is already a lot of code moving around and both of
these *could* be skipped without really disrupting the core logic.
A summary of the different things happening here:
1) Adding the usual new PM class and rigging.
2) Fixing minor underlying assumptions in the inline cost analysis or
inline logic that don't generally hold in the new PM world.
3) Adding the core pass logic which is in essence a loop over the calls
in the nodes in the call graph. This is a bit duplicated from the old
inliner, but only a handful of lines could realistically be shared.
(I tried at first, and it really didn't help anything.) All told,
this is only about 100 lines of code, and most of that is the
mechanics of wiring up analyses from the new PM world.
4) Updating the LazyCallGraph (in the new PM) based on the *newly
inlined* calls and references. This is very minimal because we cannot
form cycles.
5) When inlining removes the last use of a function, eagerly nuking the
body of the function so that any "one use remaining" inline cost
heuristics are immediately refined, and queuing these functions to be
completely deleted once inlining is complete and the call graph
updated to reflect that they have become dead.
6) After all the inlining for a particular function, updating the
LazyCallGraph and the CGSCC pass manager to reflect the
function-local simplifications that are done immediately and
internally by the inline utilties. These are the exact same
fundamental set of CG updates done by arbitrary function passes.
7) Adding a bunch of test cases to specifically target CGSCC and other
subtle aspects in the new PM world.
Many thanks to the careful review from Easwaran and Sanjoy and others!
Differential Revision: https://reviews.llvm.org/D24226
llvm-svn: 290161
2016-12-20 11:15:32 +08:00
|
|
|
AlwaysInlinerLegacyPass(bool InsertLifetime)
|
|
|
|
: LegacyInlinerBase(ID, InsertLifetime) {
|
[PM] Port the always inliner to the new pass manager in a much more
minimal and boring form than the old pass manager's version.
This pass does the very minimal amount of work necessary to inline
functions declared as always-inline. It doesn't support a wide array of
things that the legacy pass manager did support, but is alse ... about
20 lines of code. So it has that going for it. Notably things this
doesn't support:
- Array alloca merging
- To support the above, bottom-up inlining with careful history
tracking and call graph updates
- DCE of the functions that become dead after this inlining.
- Inlining through call instructions with the always_inline attribute.
Instead, it focuses on inlining functions with that attribute.
The first I've omitted because I'm hoping to just turn it off for the
primary pass manager. If that doesn't pan out, I can add it here but it
will be reasonably expensive to do so.
The second should really be handled by running global-dce after the
inliner. I don't want to re-implement the non-trivial logic necessary to
do comdat-correct DCE of functions. This means the -O0 pipeline will
have to be at least 'always-inline,global-dce', but that seems
reasonable to me. If others are seriously worried about this I'd like to
hear about it and understand why. Again, this is all solveable by
factoring that logic into a utility and calling it here, but I'd like to
wait to do that until there is a clear reason why the existing
pass-based factoring won't work.
The final point is a serious one. I can fairly easily add support for
this, but it seems both costly and a confusing construct for the use
case of the always inliner running at -O0. This attribute can of course
still impact the normal inliner easily (although I find that
a questionable re-use of the same attribute). I've started a discussion
to sort out what semantics we want here and based on that can figure out
if it makes sense ta have this complexity at O0 or not.
One other advantage of this design is that it should be quite a bit
faster due to checking for whether the function is a viable candidate
for inlining exactly once per function instead of doing it for each call
site.
Anyways, hopefully a reasonable starting point for this pass.
Differential Revision: https://reviews.llvm.org/D23299
llvm-svn: 278896
2016-08-17 10:56:20 +08:00
|
|
|
initializeAlwaysInlinerLegacyPassPass(*PassRegistry::getPassRegistry());
|
2013-01-21 19:39:16 +08:00
|
|
|
}
|
|
|
|
|
2016-05-24 05:57:54 +08:00
|
|
|
/// Main run interface method. We override here to avoid calling skipSCC().
|
|
|
|
bool runOnSCC(CallGraphSCC &SCC) override { return inlineCalls(SCC); }
|
|
|
|
|
2013-01-21 19:39:16 +08:00
|
|
|
static char ID; // Pass identification, replacement for typeid
|
|
|
|
|
2020-04-14 07:39:52 +08:00
|
|
|
InlineCost getInlineCost(CallBase &CB) override;
|
2013-01-21 19:39:16 +08:00
|
|
|
|
|
|
|
using llvm::Pass::doFinalization;
|
2014-03-05 17:10:37 +08:00
|
|
|
bool doFinalization(CallGraph &CG) override {
|
2016-08-03 09:02:31 +08:00
|
|
|
return removeDeadFunctions(CG, /*AlwaysInlineOnly=*/true);
|
2013-01-21 19:39:16 +08:00
|
|
|
}
|
|
|
|
};
|
2015-06-23 17:49:53 +08:00
|
|
|
}
|
2008-09-04 02:50:53 +08:00
|
|
|
|
[PM] Port the always inliner to the new pass manager in a much more
minimal and boring form than the old pass manager's version.
This pass does the very minimal amount of work necessary to inline
functions declared as always-inline. It doesn't support a wide array of
things that the legacy pass manager did support, but is alse ... about
20 lines of code. So it has that going for it. Notably things this
doesn't support:
- Array alloca merging
- To support the above, bottom-up inlining with careful history
tracking and call graph updates
- DCE of the functions that become dead after this inlining.
- Inlining through call instructions with the always_inline attribute.
Instead, it focuses on inlining functions with that attribute.
The first I've omitted because I'm hoping to just turn it off for the
primary pass manager. If that doesn't pan out, I can add it here but it
will be reasonably expensive to do so.
The second should really be handled by running global-dce after the
inliner. I don't want to re-implement the non-trivial logic necessary to
do comdat-correct DCE of functions. This means the -O0 pipeline will
have to be at least 'always-inline,global-dce', but that seems
reasonable to me. If others are seriously worried about this I'd like to
hear about it and understand why. Again, this is all solveable by
factoring that logic into a utility and calling it here, but I'd like to
wait to do that until there is a clear reason why the existing
pass-based factoring won't work.
The final point is a serious one. I can fairly easily add support for
this, but it seems both costly and a confusing construct for the use
case of the always inliner running at -O0. This attribute can of course
still impact the normal inliner easily (although I find that
a questionable re-use of the same attribute). I've started a discussion
to sort out what semantics we want here and based on that can figure out
if it makes sense ta have this complexity at O0 or not.
One other advantage of this design is that it should be quite a bit
faster due to checking for whether the function is a viable candidate
for inlining exactly once per function instead of doing it for each call
site.
Anyways, hopefully a reasonable starting point for this pass.
Differential Revision: https://reviews.llvm.org/D23299
llvm-svn: 278896
2016-08-17 10:56:20 +08:00
|
|
|
char AlwaysInlinerLegacyPass::ID = 0;
|
|
|
|
INITIALIZE_PASS_BEGIN(AlwaysInlinerLegacyPass, "always-inline",
|
2016-08-03 09:02:31 +08:00
|
|
|
"Inliner for always_inline functions", false, false)
|
2016-12-19 16:22:17 +08:00
|
|
|
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
|
2013-11-26 12:19:30 +08:00
|
|
|
INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass)
|
2016-06-10 06:23:21 +08:00
|
|
|
INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
|
[PM/AA] Rebuild LLVM's alias analysis infrastructure in a way compatible
with the new pass manager, and no longer relying on analysis groups.
This builds essentially a ground-up new AA infrastructure stack for
LLVM. The core ideas are the same that are used throughout the new pass
manager: type erased polymorphism and direct composition. The design is
as follows:
- FunctionAAResults is a type-erasing alias analysis results aggregation
interface to walk a single query across a range of results from
different alias analyses. Currently this is function-specific as we
always assume that aliasing queries are *within* a function.
- AAResultBase is a CRTP utility providing stub implementations of
various parts of the alias analysis result concept, notably in several
cases in terms of other more general parts of the interface. This can
be used to implement only a narrow part of the interface rather than
the entire interface. This isn't really ideal, this logic should be
hoisted into FunctionAAResults as currently it will cause
a significant amount of redundant work, but it faithfully models the
behavior of the prior infrastructure.
- All the alias analysis passes are ported to be wrapper passes for the
legacy PM and new-style analysis passes for the new PM with a shared
result object. In some cases (most notably CFL), this is an extremely
naive approach that we should revisit when we can specialize for the
new pass manager.
- BasicAA has been restructured to reflect that it is much more
fundamentally a function analysis because it uses dominator trees and
loop info that need to be constructed for each function.
All of the references to getting alias analysis results have been
updated to use the new aggregation interface. All the preservation and
other pass management code has been updated accordingly.
The way the FunctionAAResultsWrapperPass works is to detect the
available alias analyses when run, and add them to the results object.
This means that we should be able to continue to respect when various
passes are added to the pipeline, for example adding CFL or adding TBAA
passes should just cause their results to be available and to get folded
into this. The exception to this rule is BasicAA which really needs to
be a function pass due to using dominator trees and loop info. As
a consequence, the FunctionAAResultsWrapperPass directly depends on
BasicAA and always includes it in the aggregation.
This has significant implications for preserving analyses. Generally,
most passes shouldn't bother preserving FunctionAAResultsWrapperPass
because rebuilding the results just updates the set of known AA passes.
The exception to this rule are LoopPass instances which need to preserve
all the function analyses that the loop pass manager will end up
needing. This means preserving both BasicAAWrapperPass and the
aggregating FunctionAAResultsWrapperPass.
Now, when preserving an alias analysis, you do so by directly preserving
that analysis. This is only necessary for non-immutable-pass-provided
alias analyses though, and there are only three of interest: BasicAA,
GlobalsAA (formerly GlobalsModRef), and SCEVAA. Usually BasicAA is
preserved when needed because it (like DominatorTree and LoopInfo) is
marked as a CFG-only pass. I've expanded GlobalsAA into the preserved
set everywhere we previously were preserving all of AliasAnalysis, and
I've added SCEVAA in the intersection of that with where we preserve
SCEV itself.
One significant challenge to all of this is that the CGSCC passes were
actually using the alias analysis implementations by taking advantage of
a pretty amazing set of loop holes in the old pass manager's analysis
management code which allowed analysis groups to slide through in many
cases. Moving away from analysis groups makes this problem much more
obvious. To fix it, I've leveraged the flexibility the design of the new
PM components provides to just directly construct the relevant alias
analyses for the relevant functions in the IPO passes that need them.
This is a bit hacky, but should go away with the new pass manager, and
is already in many ways cleaner than the prior state.
Another significant challenge is that various facilities of the old
alias analysis infrastructure just don't fit any more. The most
significant of these is the alias analysis 'counter' pass. That pass
relied on the ability to snoop on AA queries at different points in the
analysis group chain. Instead, I'm planning to build printing
functionality directly into the aggregation layer. I've not included
that in this patch merely to keep it smaller.
Note that all of this needs a nearly complete rewrite of the AA
documentation. I'm planning to do that, but I'd like to make sure the
new design settles, and to flesh out a bit more of what it looks like in
the new pass manager first.
Differential Revision: http://reviews.llvm.org/D12080
llvm-svn: 247167
2015-09-10 01:55:00 +08:00
|
|
|
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
|
[PM] Port the always inliner to the new pass manager in a much more
minimal and boring form than the old pass manager's version.
This pass does the very minimal amount of work necessary to inline
functions declared as always-inline. It doesn't support a wide array of
things that the legacy pass manager did support, but is alse ... about
20 lines of code. So it has that going for it. Notably things this
doesn't support:
- Array alloca merging
- To support the above, bottom-up inlining with careful history
tracking and call graph updates
- DCE of the functions that become dead after this inlining.
- Inlining through call instructions with the always_inline attribute.
Instead, it focuses on inlining functions with that attribute.
The first I've omitted because I'm hoping to just turn it off for the
primary pass manager. If that doesn't pan out, I can add it here but it
will be reasonably expensive to do so.
The second should really be handled by running global-dce after the
inliner. I don't want to re-implement the non-trivial logic necessary to
do comdat-correct DCE of functions. This means the -O0 pipeline will
have to be at least 'always-inline,global-dce', but that seems
reasonable to me. If others are seriously worried about this I'd like to
hear about it and understand why. Again, this is all solveable by
factoring that logic into a utility and calling it here, but I'd like to
wait to do that until there is a clear reason why the existing
pass-based factoring won't work.
The final point is a serious one. I can fairly easily add support for
this, but it seems both costly and a confusing construct for the use
case of the always inliner running at -O0. This attribute can of course
still impact the normal inliner easily (although I find that
a questionable re-use of the same attribute). I've started a discussion
to sort out what semantics we want here and based on that can figure out
if it makes sense ta have this complexity at O0 or not.
One other advantage of this design is that it should be quite a bit
faster due to checking for whether the function is a viable candidate
for inlining exactly once per function instead of doing it for each call
site.
Anyways, hopefully a reasonable starting point for this pass.
Differential Revision: https://reviews.llvm.org/D23299
llvm-svn: 278896
2016-08-17 10:56:20 +08:00
|
|
|
INITIALIZE_PASS_END(AlwaysInlinerLegacyPass, "always-inline",
|
2016-08-03 09:02:31 +08:00
|
|
|
"Inliner for always_inline functions", false, false)
|
2008-09-04 02:50:53 +08:00
|
|
|
|
[PM] Port the always inliner to the new pass manager in a much more
minimal and boring form than the old pass manager's version.
This pass does the very minimal amount of work necessary to inline
functions declared as always-inline. It doesn't support a wide array of
things that the legacy pass manager did support, but is alse ... about
20 lines of code. So it has that going for it. Notably things this
doesn't support:
- Array alloca merging
- To support the above, bottom-up inlining with careful history
tracking and call graph updates
- DCE of the functions that become dead after this inlining.
- Inlining through call instructions with the always_inline attribute.
Instead, it focuses on inlining functions with that attribute.
The first I've omitted because I'm hoping to just turn it off for the
primary pass manager. If that doesn't pan out, I can add it here but it
will be reasonably expensive to do so.
The second should really be handled by running global-dce after the
inliner. I don't want to re-implement the non-trivial logic necessary to
do comdat-correct DCE of functions. This means the -O0 pipeline will
have to be at least 'always-inline,global-dce', but that seems
reasonable to me. If others are seriously worried about this I'd like to
hear about it and understand why. Again, this is all solveable by
factoring that logic into a utility and calling it here, but I'd like to
wait to do that until there is a clear reason why the existing
pass-based factoring won't work.
The final point is a serious one. I can fairly easily add support for
this, but it seems both costly and a confusing construct for the use
case of the always inliner running at -O0. This attribute can of course
still impact the normal inliner easily (although I find that
a questionable re-use of the same attribute). I've started a discussion
to sort out what semantics we want here and based on that can figure out
if it makes sense ta have this complexity at O0 or not.
One other advantage of this design is that it should be quite a bit
faster due to checking for whether the function is a viable candidate
for inlining exactly once per function instead of doing it for each call
site.
Anyways, hopefully a reasonable starting point for this pass.
Differential Revision: https://reviews.llvm.org/D23299
llvm-svn: 278896
2016-08-17 10:56:20 +08:00
|
|
|
Pass *llvm::createAlwaysInlinerLegacyPass(bool InsertLifetime) {
|
|
|
|
return new AlwaysInlinerLegacyPass(InsertLifetime);
|
2012-02-25 10:56:01 +08:00
|
|
|
}
|
|
|
|
|
2018-05-01 23:54:18 +08:00
|
|
|
/// Get the inline cost for the always-inliner.
|
2012-03-31 21:17:18 +08:00
|
|
|
///
|
|
|
|
/// The always inliner *only* handles functions which are marked with the
|
|
|
|
/// attribute to force inlining. As such, it is dramatically simpler and avoids
|
|
|
|
/// using the powerful (but expensive) inline cost analysis. Instead it uses
|
|
|
|
/// a very simple and boring direct walk of the instructions looking for
|
|
|
|
/// impossible-to-inline constructs.
|
|
|
|
///
|
|
|
|
/// Note, it would be possible to go to some lengths to cache the information
|
|
|
|
/// computed here, but as we only expect to do this for relatively few and
|
|
|
|
/// small functions which have the explicit attribute to force inlining, it is
|
|
|
|
/// likely not worth it in practice.
|
2020-04-14 07:39:52 +08:00
|
|
|
InlineCost AlwaysInlinerLegacyPass::getInlineCost(CallBase &CB) {
|
|
|
|
Function *Callee = CB.getCalledFunction();
|
2012-03-31 21:17:18 +08:00
|
|
|
|
2012-11-19 15:04:35 +08:00
|
|
|
// Only inline direct calls to functions with always-inline attributes
|
2019-02-01 18:44:43 +08:00
|
|
|
// that are viable for inlining.
|
|
|
|
if (!Callee)
|
|
|
|
return InlineCost::getNever("indirect call");
|
2012-03-31 21:17:18 +08:00
|
|
|
|
[coroutine] should disable inline before calling coro split
This is a rework of D85812, which didn't land.
When callee coroutine function is inlined into caller coroutine function before coro-split pass, llvm will emits "coroutine should have exactly one defining @llvm.coro.begin". It seems that coro-early pass can not handle this quiet well.
So we believe that unsplited coroutine function should not be inlined.
This patch fix such issue by not inlining function if it has attribute "coroutine.presplit" (it means the function has not been splited) to fix this issue
test plan: check-llvm, check-clang
In D85812, there was suggestions on moving the macros to Attributes.td to avoid circular header dependency issue.
I believe it's not worth doing just to be able to use one constant string in one place.
Today, there are already 3 possible attribute values for "coroutine.presplit": https://github.com/llvm/llvm-project/blob/c6543cc6b8f107b58e7205d8fc64865a508bacba/llvm/lib/Transforms/Coroutines/CoroInternal.h#L40-L42
If we move them into Attributes.td, we would be adding 3 new attributes to EnumAttr, just to support this, which I think is an overkill.
Instead, I think the best way to do this is to add an API in Function class that checks whether this function is a coroutine, by checking the attribute by name directly.
Differential Revision: https://reviews.llvm.org/D92706
2020-12-09 00:50:30 +08:00
|
|
|
// When callee coroutine function is inlined into caller coroutine function
|
|
|
|
// before coro-split pass,
|
|
|
|
// coro-early pass can not handle this quiet well.
|
|
|
|
// So we won't inline the coroutine function if it have not been unsplited
|
|
|
|
if (Callee->isPresplitCoroutine())
|
|
|
|
return InlineCost::getNever("unsplited coroutine call");
|
|
|
|
|
2019-02-01 18:44:43 +08:00
|
|
|
// FIXME: We shouldn't even get here for declarations.
|
|
|
|
if (Callee->isDeclaration())
|
|
|
|
return InlineCost::getNever("no definition");
|
|
|
|
|
2020-04-14 07:39:52 +08:00
|
|
|
if (!CB.hasFnAttr(Attribute::AlwaysInline))
|
2019-02-01 18:44:43 +08:00
|
|
|
return InlineCost::getNever("no alwaysinline attribute");
|
|
|
|
|
|
|
|
auto IsViable = isInlineViable(*Callee);
|
[NFC] Refactor InlineResult for readability
Summary:
InlineResult is used both in APIs assessing whether a call site is
inlinable (e.g. llvm::isInlineViable) as well as in the function
inlining utility (llvm::InlineFunction). It means slightly different
things (can/should inlining happen, vs did it happen), and the
implicit casting may introduce ambiguity (casting from 'false' in
InlineFunction will default a message about hight costs,
which is incorrect here).
The change renames the type to a more generic name, and disables
implicit constructors.
Reviewers: eraman, davidxl
Reviewed By: davidxl
Subscribers: kerbowa, arsenm, jvesely, nhaehnle, eraman, hiraditya, haicheng, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D72744
2020-01-16 05:33:58 +08:00
|
|
|
if (!IsViable.isSuccess())
|
|
|
|
return InlineCost::getNever(IsViable.getFailureReason());
|
2019-02-01 18:44:43 +08:00
|
|
|
|
|
|
|
return InlineCost::getAlways("always inliner");
|
2012-03-31 21:17:18 +08:00
|
|
|
}
|