llvm-project/llvm/lib/Transforms/IPO/AlwaysInliner.cpp

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

213 lines
7.9 KiB
C++
Raw Normal View History

2008-09-04 03:52:17 +08:00
//===- InlineAlways.cpp - Code to inline always_inline functions ----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
2008-09-04 03:52:17 +08:00
// This file implements a custom inliner that handles only functions that
2008-09-04 04:25:40 +08:00
// are marked as "always inline".
//
//===----------------------------------------------------------------------===//
[PM] Port the always inliner to the new pass manager in a much more minimal and boring form than the old pass manager's version. This pass does the very minimal amount of work necessary to inline functions declared as always-inline. It doesn't support a wide array of things that the legacy pass manager did support, but is alse ... about 20 lines of code. So it has that going for it. Notably things this doesn't support: - Array alloca merging - To support the above, bottom-up inlining with careful history tracking and call graph updates - DCE of the functions that become dead after this inlining. - Inlining through call instructions with the always_inline attribute. Instead, it focuses on inlining functions with that attribute. The first I've omitted because I'm hoping to just turn it off for the primary pass manager. If that doesn't pan out, I can add it here but it will be reasonably expensive to do so. The second should really be handled by running global-dce after the inliner. I don't want to re-implement the non-trivial logic necessary to do comdat-correct DCE of functions. This means the -O0 pipeline will have to be at least 'always-inline,global-dce', but that seems reasonable to me. If others are seriously worried about this I'd like to hear about it and understand why. Again, this is all solveable by factoring that logic into a utility and calling it here, but I'd like to wait to do that until there is a clear reason why the existing pass-based factoring won't work. The final point is a serious one. I can fairly easily add support for this, but it seems both costly and a confusing construct for the use case of the always inliner running at -O0. This attribute can of course still impact the normal inliner easily (although I find that a questionable re-use of the same attribute). I've started a discussion to sort out what semantics we want here and based on that can figure out if it makes sense ta have this complexity at O0 or not. One other advantage of this design is that it should be quite a bit faster due to checking for whether the function is a viable candidate for inlining exactly once per function instead of doing it for each call site. Anyways, hopefully a reasonable starting point for this pass. Differential Revision: https://reviews.llvm.org/D23299 llvm-svn: 278896
2016-08-17 10:56:20 +08:00
#include "llvm/Transforms/IPO/AlwaysInliner.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/AssumptionCache.h"
#include "llvm/Analysis/InlineCost.h"
#include "llvm/Analysis/ProfileSummaryInfo.h"
[PM/AA] Rebuild LLVM's alias analysis infrastructure in a way compatible with the new pass manager, and no longer relying on analysis groups. This builds essentially a ground-up new AA infrastructure stack for LLVM. The core ideas are the same that are used throughout the new pass manager: type erased polymorphism and direct composition. The design is as follows: - FunctionAAResults is a type-erasing alias analysis results aggregation interface to walk a single query across a range of results from different alias analyses. Currently this is function-specific as we always assume that aliasing queries are *within* a function. - AAResultBase is a CRTP utility providing stub implementations of various parts of the alias analysis result concept, notably in several cases in terms of other more general parts of the interface. This can be used to implement only a narrow part of the interface rather than the entire interface. This isn't really ideal, this logic should be hoisted into FunctionAAResults as currently it will cause a significant amount of redundant work, but it faithfully models the behavior of the prior infrastructure. - All the alias analysis passes are ported to be wrapper passes for the legacy PM and new-style analysis passes for the new PM with a shared result object. In some cases (most notably CFL), this is an extremely naive approach that we should revisit when we can specialize for the new pass manager. - BasicAA has been restructured to reflect that it is much more fundamentally a function analysis because it uses dominator trees and loop info that need to be constructed for each function. All of the references to getting alias analysis results have been updated to use the new aggregation interface. All the preservation and other pass management code has been updated accordingly. The way the FunctionAAResultsWrapperPass works is to detect the available alias analyses when run, and add them to the results object. This means that we should be able to continue to respect when various passes are added to the pipeline, for example adding CFL or adding TBAA passes should just cause their results to be available and to get folded into this. The exception to this rule is BasicAA which really needs to be a function pass due to using dominator trees and loop info. As a consequence, the FunctionAAResultsWrapperPass directly depends on BasicAA and always includes it in the aggregation. This has significant implications for preserving analyses. Generally, most passes shouldn't bother preserving FunctionAAResultsWrapperPass because rebuilding the results just updates the set of known AA passes. The exception to this rule are LoopPass instances which need to preserve all the function analyses that the loop pass manager will end up needing. This means preserving both BasicAAWrapperPass and the aggregating FunctionAAResultsWrapperPass. Now, when preserving an alias analysis, you do so by directly preserving that analysis. This is only necessary for non-immutable-pass-provided alias analyses though, and there are only three of interest: BasicAA, GlobalsAA (formerly GlobalsModRef), and SCEVAA. Usually BasicAA is preserved when needed because it (like DominatorTree and LoopInfo) is marked as a CFG-only pass. I've expanded GlobalsAA into the preserved set everywhere we previously were preserving all of AliasAnalysis, and I've added SCEVAA in the intersection of that with where we preserve SCEV itself. One significant challenge to all of this is that the CGSCC passes were actually using the alias analysis implementations by taking advantage of a pretty amazing set of loop holes in the old pass manager's analysis management code which allowed analysis groups to slide through in many cases. Moving away from analysis groups makes this problem much more obvious. To fix it, I've leveraged the flexibility the design of the new PM components provides to just directly construct the relevant alias analyses for the relevant functions in the IPO passes that need them. This is a bit hacky, but should go away with the new pass manager, and is already in many ways cleaner than the prior state. Another significant challenge is that various facilities of the old alias analysis infrastructure just don't fit any more. The most significant of these is the alias analysis 'counter' pass. That pass relied on the ability to snoop on AA queries at different points in the analysis group chain. Instead, I'm planning to build printing functionality directly into the aggregation layer. I've not included that in this patch merely to keep it smaller. Note that all of this needs a nearly complete rewrite of the AA documentation. I'm planning to do that, but I'd like to make sure the new design settles, and to flesh out a bit more of what it looks like in the new pass manager first. Differential Revision: http://reviews.llvm.org/D12080 llvm-svn: 247167
2015-09-10 01:55:00 +08:00
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/IR/CallingConv.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Type.h"
#include "llvm/InitializePasses.h"
[PM] Provide an initial, minimal port of the inliner to the new pass manager. This doesn't implement *every* feature of the existing inliner, but tries to implement the most important ones for building a functional optimization pipeline and beginning to sort out bugs, regressions, and other problems. Notable, but intentional omissions: - No alloca merging support. Why? Because it isn't clear we want to do this at all. Active discussion and investigation is going on to remove it, so for simplicity I omitted it. - No support for trying to iterate on "internally" devirtualized calls. Why? Because it adds what I suspect is inappropriate coupling for little or no benefit. We will have an outer iteration system that tracks devirtualization including that from function passes and iterates already. We should improve that rather than approximate it here. - Optimization remarks. Why? Purely to make the patch smaller, no other reason at all. The last one I'll probably work on almost immediately. But I wanted to skip it in the initial patch to try to focus the change as much as possible as there is already a lot of code moving around and both of these *could* be skipped without really disrupting the core logic. A summary of the different things happening here: 1) Adding the usual new PM class and rigging. 2) Fixing minor underlying assumptions in the inline cost analysis or inline logic that don't generally hold in the new PM world. 3) Adding the core pass logic which is in essence a loop over the calls in the nodes in the call graph. This is a bit duplicated from the old inliner, but only a handful of lines could realistically be shared. (I tried at first, and it really didn't help anything.) All told, this is only about 100 lines of code, and most of that is the mechanics of wiring up analyses from the new PM world. 4) Updating the LazyCallGraph (in the new PM) based on the *newly inlined* calls and references. This is very minimal because we cannot form cycles. 5) When inlining removes the last use of a function, eagerly nuking the body of the function so that any "one use remaining" inline cost heuristics are immediately refined, and queuing these functions to be completely deleted once inlining is complete and the call graph updated to reflect that they have become dead. 6) After all the inlining for a particular function, updating the LazyCallGraph and the CGSCC pass manager to reflect the function-local simplifications that are done immediately and internally by the inline utilties. These are the exact same fundamental set of CG updates done by arbitrary function passes. 7) Adding a bunch of test cases to specifically target CGSCC and other subtle aspects in the new PM world. Many thanks to the careful review from Easwaran and Sanjoy and others! Differential Revision: https://reviews.llvm.org/D24226 llvm-svn: 290161
2016-12-20 11:15:32 +08:00
#include "llvm/Transforms/IPO.h"
#include "llvm/Transforms/IPO/Inliner.h"
[PM] Port the always inliner to the new pass manager in a much more minimal and boring form than the old pass manager's version. This pass does the very minimal amount of work necessary to inline functions declared as always-inline. It doesn't support a wide array of things that the legacy pass manager did support, but is alse ... about 20 lines of code. So it has that going for it. Notably things this doesn't support: - Array alloca merging - To support the above, bottom-up inlining with careful history tracking and call graph updates - DCE of the functions that become dead after this inlining. - Inlining through call instructions with the always_inline attribute. Instead, it focuses on inlining functions with that attribute. The first I've omitted because I'm hoping to just turn it off for the primary pass manager. If that doesn't pan out, I can add it here but it will be reasonably expensive to do so. The second should really be handled by running global-dce after the inliner. I don't want to re-implement the non-trivial logic necessary to do comdat-correct DCE of functions. This means the -O0 pipeline will have to be at least 'always-inline,global-dce', but that seems reasonable to me. If others are seriously worried about this I'd like to hear about it and understand why. Again, this is all solveable by factoring that logic into a utility and calling it here, but I'd like to wait to do that until there is a clear reason why the existing pass-based factoring won't work. The final point is a serious one. I can fairly easily add support for this, but it seems both costly and a confusing construct for the use case of the always inliner running at -O0. This attribute can of course still impact the normal inliner easily (although I find that a questionable re-use of the same attribute). I've started a discussion to sort out what semantics we want here and based on that can figure out if it makes sense ta have this complexity at O0 or not. One other advantage of this design is that it should be quite a bit faster due to checking for whether the function is a viable candidate for inlining exactly once per function instead of doing it for each call site. Anyways, hopefully a reasonable starting point for this pass. Differential Revision: https://reviews.llvm.org/D23299 llvm-svn: 278896
2016-08-17 10:56:20 +08:00
#include "llvm/Transforms/Utils/Cloning.h"
#include "llvm/Transforms/Utils/ModuleUtils.h"
using namespace llvm;
#define DEBUG_TYPE "inline"
PreservedAnalyses AlwaysInlinerPass::run(Module &M,
ModuleAnalysisManager &MAM) {
// Add inline assumptions during code generation.
FunctionAnalysisManager &FAM =
MAM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
auto GetAssumptionCache = [&](Function &F) -> AssumptionCache & {
return FAM.getResult<AssumptionAnalysis>(F);
};
auto &PSI = MAM.getResult<ProfileSummaryAnalysis>(M);
SmallSetVector<CallBase *, 16> Calls;
[PM] Port the always inliner to the new pass manager in a much more minimal and boring form than the old pass manager's version. This pass does the very minimal amount of work necessary to inline functions declared as always-inline. It doesn't support a wide array of things that the legacy pass manager did support, but is alse ... about 20 lines of code. So it has that going for it. Notably things this doesn't support: - Array alloca merging - To support the above, bottom-up inlining with careful history tracking and call graph updates - DCE of the functions that become dead after this inlining. - Inlining through call instructions with the always_inline attribute. Instead, it focuses on inlining functions with that attribute. The first I've omitted because I'm hoping to just turn it off for the primary pass manager. If that doesn't pan out, I can add it here but it will be reasonably expensive to do so. The second should really be handled by running global-dce after the inliner. I don't want to re-implement the non-trivial logic necessary to do comdat-correct DCE of functions. This means the -O0 pipeline will have to be at least 'always-inline,global-dce', but that seems reasonable to me. If others are seriously worried about this I'd like to hear about it and understand why. Again, this is all solveable by factoring that logic into a utility and calling it here, but I'd like to wait to do that until there is a clear reason why the existing pass-based factoring won't work. The final point is a serious one. I can fairly easily add support for this, but it seems both costly and a confusing construct for the use case of the always inliner running at -O0. This attribute can of course still impact the normal inliner easily (although I find that a questionable re-use of the same attribute). I've started a discussion to sort out what semantics we want here and based on that can figure out if it makes sense ta have this complexity at O0 or not. One other advantage of this design is that it should be quite a bit faster due to checking for whether the function is a viable candidate for inlining exactly once per function instead of doing it for each call site. Anyways, hopefully a reasonable starting point for this pass. Differential Revision: https://reviews.llvm.org/D23299 llvm-svn: 278896
2016-08-17 10:56:20 +08:00
bool Changed = false;
SmallVector<Function *, 16> InlinedFunctions;
for (Function &F : M) {
// When callee coroutine function is inlined into caller coroutine function
// before coro-split pass,
// coro-early pass can not handle this quiet well.
// So we won't inline the coroutine function if it have not been unsplited
if (F.isPresplitCoroutine())
continue;
[PM] Port the always inliner to the new pass manager in a much more minimal and boring form than the old pass manager's version. This pass does the very minimal amount of work necessary to inline functions declared as always-inline. It doesn't support a wide array of things that the legacy pass manager did support, but is alse ... about 20 lines of code. So it has that going for it. Notably things this doesn't support: - Array alloca merging - To support the above, bottom-up inlining with careful history tracking and call graph updates - DCE of the functions that become dead after this inlining. - Inlining through call instructions with the always_inline attribute. Instead, it focuses on inlining functions with that attribute. The first I've omitted because I'm hoping to just turn it off for the primary pass manager. If that doesn't pan out, I can add it here but it will be reasonably expensive to do so. The second should really be handled by running global-dce after the inliner. I don't want to re-implement the non-trivial logic necessary to do comdat-correct DCE of functions. This means the -O0 pipeline will have to be at least 'always-inline,global-dce', but that seems reasonable to me. If others are seriously worried about this I'd like to hear about it and understand why. Again, this is all solveable by factoring that logic into a utility and calling it here, but I'd like to wait to do that until there is a clear reason why the existing pass-based factoring won't work. The final point is a serious one. I can fairly easily add support for this, but it seems both costly and a confusing construct for the use case of the always inliner running at -O0. This attribute can of course still impact the normal inliner easily (although I find that a questionable re-use of the same attribute). I've started a discussion to sort out what semantics we want here and based on that can figure out if it makes sense ta have this complexity at O0 or not. One other advantage of this design is that it should be quite a bit faster due to checking for whether the function is a viable candidate for inlining exactly once per function instead of doing it for each call site. Anyways, hopefully a reasonable starting point for this pass. Differential Revision: https://reviews.llvm.org/D23299 llvm-svn: 278896
2016-08-17 10:56:20 +08:00
if (!F.isDeclaration() && F.hasFnAttribute(Attribute::AlwaysInline) &&
isInlineViable(F).isSuccess()) {
[PM] Port the always inliner to the new pass manager in a much more minimal and boring form than the old pass manager's version. This pass does the very minimal amount of work necessary to inline functions declared as always-inline. It doesn't support a wide array of things that the legacy pass manager did support, but is alse ... about 20 lines of code. So it has that going for it. Notably things this doesn't support: - Array alloca merging - To support the above, bottom-up inlining with careful history tracking and call graph updates - DCE of the functions that become dead after this inlining. - Inlining through call instructions with the always_inline attribute. Instead, it focuses on inlining functions with that attribute. The first I've omitted because I'm hoping to just turn it off for the primary pass manager. If that doesn't pan out, I can add it here but it will be reasonably expensive to do so. The second should really be handled by running global-dce after the inliner. I don't want to re-implement the non-trivial logic necessary to do comdat-correct DCE of functions. This means the -O0 pipeline will have to be at least 'always-inline,global-dce', but that seems reasonable to me. If others are seriously worried about this I'd like to hear about it and understand why. Again, this is all solveable by factoring that logic into a utility and calling it here, but I'd like to wait to do that until there is a clear reason why the existing pass-based factoring won't work. The final point is a serious one. I can fairly easily add support for this, but it seems both costly and a confusing construct for the use case of the always inliner running at -O0. This attribute can of course still impact the normal inliner easily (although I find that a questionable re-use of the same attribute). I've started a discussion to sort out what semantics we want here and based on that can figure out if it makes sense ta have this complexity at O0 or not. One other advantage of this design is that it should be quite a bit faster due to checking for whether the function is a viable candidate for inlining exactly once per function instead of doing it for each call site. Anyways, hopefully a reasonable starting point for this pass. Differential Revision: https://reviews.llvm.org/D23299 llvm-svn: 278896
2016-08-17 10:56:20 +08:00
Calls.clear();
for (User *U : F.users())
if (auto *CB = dyn_cast<CallBase>(U))
if (CB->getCalledFunction() == &F)
Calls.insert(CB);
[PM] Port the always inliner to the new pass manager in a much more minimal and boring form than the old pass manager's version. This pass does the very minimal amount of work necessary to inline functions declared as always-inline. It doesn't support a wide array of things that the legacy pass manager did support, but is alse ... about 20 lines of code. So it has that going for it. Notably things this doesn't support: - Array alloca merging - To support the above, bottom-up inlining with careful history tracking and call graph updates - DCE of the functions that become dead after this inlining. - Inlining through call instructions with the always_inline attribute. Instead, it focuses on inlining functions with that attribute. The first I've omitted because I'm hoping to just turn it off for the primary pass manager. If that doesn't pan out, I can add it here but it will be reasonably expensive to do so. The second should really be handled by running global-dce after the inliner. I don't want to re-implement the non-trivial logic necessary to do comdat-correct DCE of functions. This means the -O0 pipeline will have to be at least 'always-inline,global-dce', but that seems reasonable to me. If others are seriously worried about this I'd like to hear about it and understand why. Again, this is all solveable by factoring that logic into a utility and calling it here, but I'd like to wait to do that until there is a clear reason why the existing pass-based factoring won't work. The final point is a serious one. I can fairly easily add support for this, but it seems both costly and a confusing construct for the use case of the always inliner running at -O0. This attribute can of course still impact the normal inliner easily (although I find that a questionable re-use of the same attribute). I've started a discussion to sort out what semantics we want here and based on that can figure out if it makes sense ta have this complexity at O0 or not. One other advantage of this design is that it should be quite a bit faster due to checking for whether the function is a viable candidate for inlining exactly once per function instead of doing it for each call site. Anyways, hopefully a reasonable starting point for this pass. Differential Revision: https://reviews.llvm.org/D23299 llvm-svn: 278896
2016-08-17 10:56:20 +08:00
for (CallBase *CB : Calls) {
Function *Caller = CB->getCaller();
OptimizationRemarkEmitter ORE(Caller);
auto OIC = shouldInline(
*CB,
[&](CallBase &CB) {
return InlineCost::getAlways("always inline attribute");
},
ORE);
assert(OIC);
emitInlinedInto(ORE, CB->getDebugLoc(), CB->getParent(), F, *Caller,
*OIC, false, DEBUG_TYPE);
InlineFunctionInfo IFI(
/*cg=*/nullptr, GetAssumptionCache, &PSI,
&FAM.getResult<BlockFrequencyAnalysis>(*(CB->getCaller())),
&FAM.getResult<BlockFrequencyAnalysis>(F));
InlineResult Res = InlineFunction(
*CB, IFI, &FAM.getResult<AAManager>(F), InsertLifetime);
assert(Res.isSuccess() && "unexpected failure to inline");
(void)Res;
// Merge the attributes based on the inlining.
AttributeFuncs::mergeAttributesForInlining(*Caller, F);
Changed = true;
}
// Remember to try and delete this function afterward. This both avoids
// re-walking the rest of the module and avoids dealing with any iterator
// invalidation issues while deleting functions.
InlinedFunctions.push_back(&F);
[PM] Port the always inliner to the new pass manager in a much more minimal and boring form than the old pass manager's version. This pass does the very minimal amount of work necessary to inline functions declared as always-inline. It doesn't support a wide array of things that the legacy pass manager did support, but is alse ... about 20 lines of code. So it has that going for it. Notably things this doesn't support: - Array alloca merging - To support the above, bottom-up inlining with careful history tracking and call graph updates - DCE of the functions that become dead after this inlining. - Inlining through call instructions with the always_inline attribute. Instead, it focuses on inlining functions with that attribute. The first I've omitted because I'm hoping to just turn it off for the primary pass manager. If that doesn't pan out, I can add it here but it will be reasonably expensive to do so. The second should really be handled by running global-dce after the inliner. I don't want to re-implement the non-trivial logic necessary to do comdat-correct DCE of functions. This means the -O0 pipeline will have to be at least 'always-inline,global-dce', but that seems reasonable to me. If others are seriously worried about this I'd like to hear about it and understand why. Again, this is all solveable by factoring that logic into a utility and calling it here, but I'd like to wait to do that until there is a clear reason why the existing pass-based factoring won't work. The final point is a serious one. I can fairly easily add support for this, but it seems both costly and a confusing construct for the use case of the always inliner running at -O0. This attribute can of course still impact the normal inliner easily (although I find that a questionable re-use of the same attribute). I've started a discussion to sort out what semantics we want here and based on that can figure out if it makes sense ta have this complexity at O0 or not. One other advantage of this design is that it should be quite a bit faster due to checking for whether the function is a viable candidate for inlining exactly once per function instead of doing it for each call site. Anyways, hopefully a reasonable starting point for this pass. Differential Revision: https://reviews.llvm.org/D23299 llvm-svn: 278896
2016-08-17 10:56:20 +08:00
}
}
[PM] Port the always inliner to the new pass manager in a much more minimal and boring form than the old pass manager's version. This pass does the very minimal amount of work necessary to inline functions declared as always-inline. It doesn't support a wide array of things that the legacy pass manager did support, but is alse ... about 20 lines of code. So it has that going for it. Notably things this doesn't support: - Array alloca merging - To support the above, bottom-up inlining with careful history tracking and call graph updates - DCE of the functions that become dead after this inlining. - Inlining through call instructions with the always_inline attribute. Instead, it focuses on inlining functions with that attribute. The first I've omitted because I'm hoping to just turn it off for the primary pass manager. If that doesn't pan out, I can add it here but it will be reasonably expensive to do so. The second should really be handled by running global-dce after the inliner. I don't want to re-implement the non-trivial logic necessary to do comdat-correct DCE of functions. This means the -O0 pipeline will have to be at least 'always-inline,global-dce', but that seems reasonable to me. If others are seriously worried about this I'd like to hear about it and understand why. Again, this is all solveable by factoring that logic into a utility and calling it here, but I'd like to wait to do that until there is a clear reason why the existing pass-based factoring won't work. The final point is a serious one. I can fairly easily add support for this, but it seems both costly and a confusing construct for the use case of the always inliner running at -O0. This attribute can of course still impact the normal inliner easily (although I find that a questionable re-use of the same attribute). I've started a discussion to sort out what semantics we want here and based on that can figure out if it makes sense ta have this complexity at O0 or not. One other advantage of this design is that it should be quite a bit faster due to checking for whether the function is a viable candidate for inlining exactly once per function instead of doing it for each call site. Anyways, hopefully a reasonable starting point for this pass. Differential Revision: https://reviews.llvm.org/D23299 llvm-svn: 278896
2016-08-17 10:56:20 +08:00
// Remove any live functions.
erase_if(InlinedFunctions, [&](Function *F) {
F->removeDeadConstantUsers();
return !F->isDefTriviallyDead();
});
// Delete the non-comdat ones from the module and also from our vector.
auto NonComdatBegin = partition(
InlinedFunctions, [&](Function *F) { return F->hasComdat(); });
for (Function *F : make_range(NonComdatBegin, InlinedFunctions.end()))
M.getFunctionList().erase(F);
InlinedFunctions.erase(NonComdatBegin, InlinedFunctions.end());
if (!InlinedFunctions.empty()) {
// Now we just have the comdat functions. Filter out the ones whose comdats
// are not actually dead.
filterDeadComdatFunctions(M, InlinedFunctions);
// The remaining functions are actually dead.
for (Function *F : InlinedFunctions)
M.getFunctionList().erase(F);
}
[PM] Port the always inliner to the new pass manager in a much more minimal and boring form than the old pass manager's version. This pass does the very minimal amount of work necessary to inline functions declared as always-inline. It doesn't support a wide array of things that the legacy pass manager did support, but is alse ... about 20 lines of code. So it has that going for it. Notably things this doesn't support: - Array alloca merging - To support the above, bottom-up inlining with careful history tracking and call graph updates - DCE of the functions that become dead after this inlining. - Inlining through call instructions with the always_inline attribute. Instead, it focuses on inlining functions with that attribute. The first I've omitted because I'm hoping to just turn it off for the primary pass manager. If that doesn't pan out, I can add it here but it will be reasonably expensive to do so. The second should really be handled by running global-dce after the inliner. I don't want to re-implement the non-trivial logic necessary to do comdat-correct DCE of functions. This means the -O0 pipeline will have to be at least 'always-inline,global-dce', but that seems reasonable to me. If others are seriously worried about this I'd like to hear about it and understand why. Again, this is all solveable by factoring that logic into a utility and calling it here, but I'd like to wait to do that until there is a clear reason why the existing pass-based factoring won't work. The final point is a serious one. I can fairly easily add support for this, but it seems both costly and a confusing construct for the use case of the always inliner running at -O0. This attribute can of course still impact the normal inliner easily (although I find that a questionable re-use of the same attribute). I've started a discussion to sort out what semantics we want here and based on that can figure out if it makes sense ta have this complexity at O0 or not. One other advantage of this design is that it should be quite a bit faster due to checking for whether the function is a viable candidate for inlining exactly once per function instead of doing it for each call site. Anyways, hopefully a reasonable starting point for this pass. Differential Revision: https://reviews.llvm.org/D23299 llvm-svn: 278896
2016-08-17 10:56:20 +08:00
return Changed ? PreservedAnalyses::none() : PreservedAnalyses::all();
}
namespace {
[PM] Port the always inliner to the new pass manager in a much more minimal and boring form than the old pass manager's version. This pass does the very minimal amount of work necessary to inline functions declared as always-inline. It doesn't support a wide array of things that the legacy pass manager did support, but is alse ... about 20 lines of code. So it has that going for it. Notably things this doesn't support: - Array alloca merging - To support the above, bottom-up inlining with careful history tracking and call graph updates - DCE of the functions that become dead after this inlining. - Inlining through call instructions with the always_inline attribute. Instead, it focuses on inlining functions with that attribute. The first I've omitted because I'm hoping to just turn it off for the primary pass manager. If that doesn't pan out, I can add it here but it will be reasonably expensive to do so. The second should really be handled by running global-dce after the inliner. I don't want to re-implement the non-trivial logic necessary to do comdat-correct DCE of functions. This means the -O0 pipeline will have to be at least 'always-inline,global-dce', but that seems reasonable to me. If others are seriously worried about this I'd like to hear about it and understand why. Again, this is all solveable by factoring that logic into a utility and calling it here, but I'd like to wait to do that until there is a clear reason why the existing pass-based factoring won't work. The final point is a serious one. I can fairly easily add support for this, but it seems both costly and a confusing construct for the use case of the always inliner running at -O0. This attribute can of course still impact the normal inliner easily (although I find that a questionable re-use of the same attribute). I've started a discussion to sort out what semantics we want here and based on that can figure out if it makes sense ta have this complexity at O0 or not. One other advantage of this design is that it should be quite a bit faster due to checking for whether the function is a viable candidate for inlining exactly once per function instead of doing it for each call site. Anyways, hopefully a reasonable starting point for this pass. Differential Revision: https://reviews.llvm.org/D23299 llvm-svn: 278896
2016-08-17 10:56:20 +08:00
/// Inliner pass which only handles "always inline" functions.
///
/// Unlike the \c AlwaysInlinerPass, this uses the more heavyweight \c Inliner
/// base class to provide several facilities such as array alloca merging.
[PM] Provide an initial, minimal port of the inliner to the new pass manager. This doesn't implement *every* feature of the existing inliner, but tries to implement the most important ones for building a functional optimization pipeline and beginning to sort out bugs, regressions, and other problems. Notable, but intentional omissions: - No alloca merging support. Why? Because it isn't clear we want to do this at all. Active discussion and investigation is going on to remove it, so for simplicity I omitted it. - No support for trying to iterate on "internally" devirtualized calls. Why? Because it adds what I suspect is inappropriate coupling for little or no benefit. We will have an outer iteration system that tracks devirtualization including that from function passes and iterates already. We should improve that rather than approximate it here. - Optimization remarks. Why? Purely to make the patch smaller, no other reason at all. The last one I'll probably work on almost immediately. But I wanted to skip it in the initial patch to try to focus the change as much as possible as there is already a lot of code moving around and both of these *could* be skipped without really disrupting the core logic. A summary of the different things happening here: 1) Adding the usual new PM class and rigging. 2) Fixing minor underlying assumptions in the inline cost analysis or inline logic that don't generally hold in the new PM world. 3) Adding the core pass logic which is in essence a loop over the calls in the nodes in the call graph. This is a bit duplicated from the old inliner, but only a handful of lines could realistically be shared. (I tried at first, and it really didn't help anything.) All told, this is only about 100 lines of code, and most of that is the mechanics of wiring up analyses from the new PM world. 4) Updating the LazyCallGraph (in the new PM) based on the *newly inlined* calls and references. This is very minimal because we cannot form cycles. 5) When inlining removes the last use of a function, eagerly nuking the body of the function so that any "one use remaining" inline cost heuristics are immediately refined, and queuing these functions to be completely deleted once inlining is complete and the call graph updated to reflect that they have become dead. 6) After all the inlining for a particular function, updating the LazyCallGraph and the CGSCC pass manager to reflect the function-local simplifications that are done immediately and internally by the inline utilties. These are the exact same fundamental set of CG updates done by arbitrary function passes. 7) Adding a bunch of test cases to specifically target CGSCC and other subtle aspects in the new PM world. Many thanks to the careful review from Easwaran and Sanjoy and others! Differential Revision: https://reviews.llvm.org/D24226 llvm-svn: 290161
2016-12-20 11:15:32 +08:00
class AlwaysInlinerLegacyPass : public LegacyInlinerBase {
public:
[PM] Provide an initial, minimal port of the inliner to the new pass manager. This doesn't implement *every* feature of the existing inliner, but tries to implement the most important ones for building a functional optimization pipeline and beginning to sort out bugs, regressions, and other problems. Notable, but intentional omissions: - No alloca merging support. Why? Because it isn't clear we want to do this at all. Active discussion and investigation is going on to remove it, so for simplicity I omitted it. - No support for trying to iterate on "internally" devirtualized calls. Why? Because it adds what I suspect is inappropriate coupling for little or no benefit. We will have an outer iteration system that tracks devirtualization including that from function passes and iterates already. We should improve that rather than approximate it here. - Optimization remarks. Why? Purely to make the patch smaller, no other reason at all. The last one I'll probably work on almost immediately. But I wanted to skip it in the initial patch to try to focus the change as much as possible as there is already a lot of code moving around and both of these *could* be skipped without really disrupting the core logic. A summary of the different things happening here: 1) Adding the usual new PM class and rigging. 2) Fixing minor underlying assumptions in the inline cost analysis or inline logic that don't generally hold in the new PM world. 3) Adding the core pass logic which is in essence a loop over the calls in the nodes in the call graph. This is a bit duplicated from the old inliner, but only a handful of lines could realistically be shared. (I tried at first, and it really didn't help anything.) All told, this is only about 100 lines of code, and most of that is the mechanics of wiring up analyses from the new PM world. 4) Updating the LazyCallGraph (in the new PM) based on the *newly inlined* calls and references. This is very minimal because we cannot form cycles. 5) When inlining removes the last use of a function, eagerly nuking the body of the function so that any "one use remaining" inline cost heuristics are immediately refined, and queuing these functions to be completely deleted once inlining is complete and the call graph updated to reflect that they have become dead. 6) After all the inlining for a particular function, updating the LazyCallGraph and the CGSCC pass manager to reflect the function-local simplifications that are done immediately and internally by the inline utilties. These are the exact same fundamental set of CG updates done by arbitrary function passes. 7) Adding a bunch of test cases to specifically target CGSCC and other subtle aspects in the new PM world. Many thanks to the careful review from Easwaran and Sanjoy and others! Differential Revision: https://reviews.llvm.org/D24226 llvm-svn: 290161
2016-12-20 11:15:32 +08:00
AlwaysInlinerLegacyPass() : LegacyInlinerBase(ID, /*InsertLifetime*/ true) {
[PM] Port the always inliner to the new pass manager in a much more minimal and boring form than the old pass manager's version. This pass does the very minimal amount of work necessary to inline functions declared as always-inline. It doesn't support a wide array of things that the legacy pass manager did support, but is alse ... about 20 lines of code. So it has that going for it. Notably things this doesn't support: - Array alloca merging - To support the above, bottom-up inlining with careful history tracking and call graph updates - DCE of the functions that become dead after this inlining. - Inlining through call instructions with the always_inline attribute. Instead, it focuses on inlining functions with that attribute. The first I've omitted because I'm hoping to just turn it off for the primary pass manager. If that doesn't pan out, I can add it here but it will be reasonably expensive to do so. The second should really be handled by running global-dce after the inliner. I don't want to re-implement the non-trivial logic necessary to do comdat-correct DCE of functions. This means the -O0 pipeline will have to be at least 'always-inline,global-dce', but that seems reasonable to me. If others are seriously worried about this I'd like to hear about it and understand why. Again, this is all solveable by factoring that logic into a utility and calling it here, but I'd like to wait to do that until there is a clear reason why the existing pass-based factoring won't work. The final point is a serious one. I can fairly easily add support for this, but it seems both costly and a confusing construct for the use case of the always inliner running at -O0. This attribute can of course still impact the normal inliner easily (although I find that a questionable re-use of the same attribute). I've started a discussion to sort out what semantics we want here and based on that can figure out if it makes sense ta have this complexity at O0 or not. One other advantage of this design is that it should be quite a bit faster due to checking for whether the function is a viable candidate for inlining exactly once per function instead of doing it for each call site. Anyways, hopefully a reasonable starting point for this pass. Differential Revision: https://reviews.llvm.org/D23299 llvm-svn: 278896
2016-08-17 10:56:20 +08:00
initializeAlwaysInlinerLegacyPassPass(*PassRegistry::getPassRegistry());
}
[PM] Provide an initial, minimal port of the inliner to the new pass manager. This doesn't implement *every* feature of the existing inliner, but tries to implement the most important ones for building a functional optimization pipeline and beginning to sort out bugs, regressions, and other problems. Notable, but intentional omissions: - No alloca merging support. Why? Because it isn't clear we want to do this at all. Active discussion and investigation is going on to remove it, so for simplicity I omitted it. - No support for trying to iterate on "internally" devirtualized calls. Why? Because it adds what I suspect is inappropriate coupling for little or no benefit. We will have an outer iteration system that tracks devirtualization including that from function passes and iterates already. We should improve that rather than approximate it here. - Optimization remarks. Why? Purely to make the patch smaller, no other reason at all. The last one I'll probably work on almost immediately. But I wanted to skip it in the initial patch to try to focus the change as much as possible as there is already a lot of code moving around and both of these *could* be skipped without really disrupting the core logic. A summary of the different things happening here: 1) Adding the usual new PM class and rigging. 2) Fixing minor underlying assumptions in the inline cost analysis or inline logic that don't generally hold in the new PM world. 3) Adding the core pass logic which is in essence a loop over the calls in the nodes in the call graph. This is a bit duplicated from the old inliner, but only a handful of lines could realistically be shared. (I tried at first, and it really didn't help anything.) All told, this is only about 100 lines of code, and most of that is the mechanics of wiring up analyses from the new PM world. 4) Updating the LazyCallGraph (in the new PM) based on the *newly inlined* calls and references. This is very minimal because we cannot form cycles. 5) When inlining removes the last use of a function, eagerly nuking the body of the function so that any "one use remaining" inline cost heuristics are immediately refined, and queuing these functions to be completely deleted once inlining is complete and the call graph updated to reflect that they have become dead. 6) After all the inlining for a particular function, updating the LazyCallGraph and the CGSCC pass manager to reflect the function-local simplifications that are done immediately and internally by the inline utilties. These are the exact same fundamental set of CG updates done by arbitrary function passes. 7) Adding a bunch of test cases to specifically target CGSCC and other subtle aspects in the new PM world. Many thanks to the careful review from Easwaran and Sanjoy and others! Differential Revision: https://reviews.llvm.org/D24226 llvm-svn: 290161
2016-12-20 11:15:32 +08:00
AlwaysInlinerLegacyPass(bool InsertLifetime)
: LegacyInlinerBase(ID, InsertLifetime) {
[PM] Port the always inliner to the new pass manager in a much more minimal and boring form than the old pass manager's version. This pass does the very minimal amount of work necessary to inline functions declared as always-inline. It doesn't support a wide array of things that the legacy pass manager did support, but is alse ... about 20 lines of code. So it has that going for it. Notably things this doesn't support: - Array alloca merging - To support the above, bottom-up inlining with careful history tracking and call graph updates - DCE of the functions that become dead after this inlining. - Inlining through call instructions with the always_inline attribute. Instead, it focuses on inlining functions with that attribute. The first I've omitted because I'm hoping to just turn it off for the primary pass manager. If that doesn't pan out, I can add it here but it will be reasonably expensive to do so. The second should really be handled by running global-dce after the inliner. I don't want to re-implement the non-trivial logic necessary to do comdat-correct DCE of functions. This means the -O0 pipeline will have to be at least 'always-inline,global-dce', but that seems reasonable to me. If others are seriously worried about this I'd like to hear about it and understand why. Again, this is all solveable by factoring that logic into a utility and calling it here, but I'd like to wait to do that until there is a clear reason why the existing pass-based factoring won't work. The final point is a serious one. I can fairly easily add support for this, but it seems both costly and a confusing construct for the use case of the always inliner running at -O0. This attribute can of course still impact the normal inliner easily (although I find that a questionable re-use of the same attribute). I've started a discussion to sort out what semantics we want here and based on that can figure out if it makes sense ta have this complexity at O0 or not. One other advantage of this design is that it should be quite a bit faster due to checking for whether the function is a viable candidate for inlining exactly once per function instead of doing it for each call site. Anyways, hopefully a reasonable starting point for this pass. Differential Revision: https://reviews.llvm.org/D23299 llvm-svn: 278896
2016-08-17 10:56:20 +08:00
initializeAlwaysInlinerLegacyPassPass(*PassRegistry::getPassRegistry());
}
/// Main run interface method. We override here to avoid calling skipSCC().
bool runOnSCC(CallGraphSCC &SCC) override { return inlineCalls(SCC); }
static char ID; // Pass identification, replacement for typeid
InlineCost getInlineCost(CallBase &CB) override;
using llvm::Pass::doFinalization;
bool doFinalization(CallGraph &CG) override {
return removeDeadFunctions(CG, /*AlwaysInlineOnly=*/true);
}
};
}
[PM] Port the always inliner to the new pass manager in a much more minimal and boring form than the old pass manager's version. This pass does the very minimal amount of work necessary to inline functions declared as always-inline. It doesn't support a wide array of things that the legacy pass manager did support, but is alse ... about 20 lines of code. So it has that going for it. Notably things this doesn't support: - Array alloca merging - To support the above, bottom-up inlining with careful history tracking and call graph updates - DCE of the functions that become dead after this inlining. - Inlining through call instructions with the always_inline attribute. Instead, it focuses on inlining functions with that attribute. The first I've omitted because I'm hoping to just turn it off for the primary pass manager. If that doesn't pan out, I can add it here but it will be reasonably expensive to do so. The second should really be handled by running global-dce after the inliner. I don't want to re-implement the non-trivial logic necessary to do comdat-correct DCE of functions. This means the -O0 pipeline will have to be at least 'always-inline,global-dce', but that seems reasonable to me. If others are seriously worried about this I'd like to hear about it and understand why. Again, this is all solveable by factoring that logic into a utility and calling it here, but I'd like to wait to do that until there is a clear reason why the existing pass-based factoring won't work. The final point is a serious one. I can fairly easily add support for this, but it seems both costly and a confusing construct for the use case of the always inliner running at -O0. This attribute can of course still impact the normal inliner easily (although I find that a questionable re-use of the same attribute). I've started a discussion to sort out what semantics we want here and based on that can figure out if it makes sense ta have this complexity at O0 or not. One other advantage of this design is that it should be quite a bit faster due to checking for whether the function is a viable candidate for inlining exactly once per function instead of doing it for each call site. Anyways, hopefully a reasonable starting point for this pass. Differential Revision: https://reviews.llvm.org/D23299 llvm-svn: 278896
2016-08-17 10:56:20 +08:00
char AlwaysInlinerLegacyPass::ID = 0;
INITIALIZE_PASS_BEGIN(AlwaysInlinerLegacyPass, "always-inline",
"Inliner for always_inline functions", false, false)
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass)
INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
[PM/AA] Rebuild LLVM's alias analysis infrastructure in a way compatible with the new pass manager, and no longer relying on analysis groups. This builds essentially a ground-up new AA infrastructure stack for LLVM. The core ideas are the same that are used throughout the new pass manager: type erased polymorphism and direct composition. The design is as follows: - FunctionAAResults is a type-erasing alias analysis results aggregation interface to walk a single query across a range of results from different alias analyses. Currently this is function-specific as we always assume that aliasing queries are *within* a function. - AAResultBase is a CRTP utility providing stub implementations of various parts of the alias analysis result concept, notably in several cases in terms of other more general parts of the interface. This can be used to implement only a narrow part of the interface rather than the entire interface. This isn't really ideal, this logic should be hoisted into FunctionAAResults as currently it will cause a significant amount of redundant work, but it faithfully models the behavior of the prior infrastructure. - All the alias analysis passes are ported to be wrapper passes for the legacy PM and new-style analysis passes for the new PM with a shared result object. In some cases (most notably CFL), this is an extremely naive approach that we should revisit when we can specialize for the new pass manager. - BasicAA has been restructured to reflect that it is much more fundamentally a function analysis because it uses dominator trees and loop info that need to be constructed for each function. All of the references to getting alias analysis results have been updated to use the new aggregation interface. All the preservation and other pass management code has been updated accordingly. The way the FunctionAAResultsWrapperPass works is to detect the available alias analyses when run, and add them to the results object. This means that we should be able to continue to respect when various passes are added to the pipeline, for example adding CFL or adding TBAA passes should just cause their results to be available and to get folded into this. The exception to this rule is BasicAA which really needs to be a function pass due to using dominator trees and loop info. As a consequence, the FunctionAAResultsWrapperPass directly depends on BasicAA and always includes it in the aggregation. This has significant implications for preserving analyses. Generally, most passes shouldn't bother preserving FunctionAAResultsWrapperPass because rebuilding the results just updates the set of known AA passes. The exception to this rule are LoopPass instances which need to preserve all the function analyses that the loop pass manager will end up needing. This means preserving both BasicAAWrapperPass and the aggregating FunctionAAResultsWrapperPass. Now, when preserving an alias analysis, you do so by directly preserving that analysis. This is only necessary for non-immutable-pass-provided alias analyses though, and there are only three of interest: BasicAA, GlobalsAA (formerly GlobalsModRef), and SCEVAA. Usually BasicAA is preserved when needed because it (like DominatorTree and LoopInfo) is marked as a CFG-only pass. I've expanded GlobalsAA into the preserved set everywhere we previously were preserving all of AliasAnalysis, and I've added SCEVAA in the intersection of that with where we preserve SCEV itself. One significant challenge to all of this is that the CGSCC passes were actually using the alias analysis implementations by taking advantage of a pretty amazing set of loop holes in the old pass manager's analysis management code which allowed analysis groups to slide through in many cases. Moving away from analysis groups makes this problem much more obvious. To fix it, I've leveraged the flexibility the design of the new PM components provides to just directly construct the relevant alias analyses for the relevant functions in the IPO passes that need them. This is a bit hacky, but should go away with the new pass manager, and is already in many ways cleaner than the prior state. Another significant challenge is that various facilities of the old alias analysis infrastructure just don't fit any more. The most significant of these is the alias analysis 'counter' pass. That pass relied on the ability to snoop on AA queries at different points in the analysis group chain. Instead, I'm planning to build printing functionality directly into the aggregation layer. I've not included that in this patch merely to keep it smaller. Note that all of this needs a nearly complete rewrite of the AA documentation. I'm planning to do that, but I'd like to make sure the new design settles, and to flesh out a bit more of what it looks like in the new pass manager first. Differential Revision: http://reviews.llvm.org/D12080 llvm-svn: 247167
2015-09-10 01:55:00 +08:00
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
[PM] Port the always inliner to the new pass manager in a much more minimal and boring form than the old pass manager's version. This pass does the very minimal amount of work necessary to inline functions declared as always-inline. It doesn't support a wide array of things that the legacy pass manager did support, but is alse ... about 20 lines of code. So it has that going for it. Notably things this doesn't support: - Array alloca merging - To support the above, bottom-up inlining with careful history tracking and call graph updates - DCE of the functions that become dead after this inlining. - Inlining through call instructions with the always_inline attribute. Instead, it focuses on inlining functions with that attribute. The first I've omitted because I'm hoping to just turn it off for the primary pass manager. If that doesn't pan out, I can add it here but it will be reasonably expensive to do so. The second should really be handled by running global-dce after the inliner. I don't want to re-implement the non-trivial logic necessary to do comdat-correct DCE of functions. This means the -O0 pipeline will have to be at least 'always-inline,global-dce', but that seems reasonable to me. If others are seriously worried about this I'd like to hear about it and understand why. Again, this is all solveable by factoring that logic into a utility and calling it here, but I'd like to wait to do that until there is a clear reason why the existing pass-based factoring won't work. The final point is a serious one. I can fairly easily add support for this, but it seems both costly and a confusing construct for the use case of the always inliner running at -O0. This attribute can of course still impact the normal inliner easily (although I find that a questionable re-use of the same attribute). I've started a discussion to sort out what semantics we want here and based on that can figure out if it makes sense ta have this complexity at O0 or not. One other advantage of this design is that it should be quite a bit faster due to checking for whether the function is a viable candidate for inlining exactly once per function instead of doing it for each call site. Anyways, hopefully a reasonable starting point for this pass. Differential Revision: https://reviews.llvm.org/D23299 llvm-svn: 278896
2016-08-17 10:56:20 +08:00
INITIALIZE_PASS_END(AlwaysInlinerLegacyPass, "always-inline",
"Inliner for always_inline functions", false, false)
[PM] Port the always inliner to the new pass manager in a much more minimal and boring form than the old pass manager's version. This pass does the very minimal amount of work necessary to inline functions declared as always-inline. It doesn't support a wide array of things that the legacy pass manager did support, but is alse ... about 20 lines of code. So it has that going for it. Notably things this doesn't support: - Array alloca merging - To support the above, bottom-up inlining with careful history tracking and call graph updates - DCE of the functions that become dead after this inlining. - Inlining through call instructions with the always_inline attribute. Instead, it focuses on inlining functions with that attribute. The first I've omitted because I'm hoping to just turn it off for the primary pass manager. If that doesn't pan out, I can add it here but it will be reasonably expensive to do so. The second should really be handled by running global-dce after the inliner. I don't want to re-implement the non-trivial logic necessary to do comdat-correct DCE of functions. This means the -O0 pipeline will have to be at least 'always-inline,global-dce', but that seems reasonable to me. If others are seriously worried about this I'd like to hear about it and understand why. Again, this is all solveable by factoring that logic into a utility and calling it here, but I'd like to wait to do that until there is a clear reason why the existing pass-based factoring won't work. The final point is a serious one. I can fairly easily add support for this, but it seems both costly and a confusing construct for the use case of the always inliner running at -O0. This attribute can of course still impact the normal inliner easily (although I find that a questionable re-use of the same attribute). I've started a discussion to sort out what semantics we want here and based on that can figure out if it makes sense ta have this complexity at O0 or not. One other advantage of this design is that it should be quite a bit faster due to checking for whether the function is a viable candidate for inlining exactly once per function instead of doing it for each call site. Anyways, hopefully a reasonable starting point for this pass. Differential Revision: https://reviews.llvm.org/D23299 llvm-svn: 278896
2016-08-17 10:56:20 +08:00
Pass *llvm::createAlwaysInlinerLegacyPass(bool InsertLifetime) {
return new AlwaysInlinerLegacyPass(InsertLifetime);
}
/// Get the inline cost for the always-inliner.
///
/// The always inliner *only* handles functions which are marked with the
/// attribute to force inlining. As such, it is dramatically simpler and avoids
/// using the powerful (but expensive) inline cost analysis. Instead it uses
/// a very simple and boring direct walk of the instructions looking for
/// impossible-to-inline constructs.
///
/// Note, it would be possible to go to some lengths to cache the information
/// computed here, but as we only expect to do this for relatively few and
/// small functions which have the explicit attribute to force inlining, it is
/// likely not worth it in practice.
InlineCost AlwaysInlinerLegacyPass::getInlineCost(CallBase &CB) {
Function *Callee = CB.getCalledFunction();
// Only inline direct calls to functions with always-inline attributes
// that are viable for inlining.
if (!Callee)
return InlineCost::getNever("indirect call");
// When callee coroutine function is inlined into caller coroutine function
// before coro-split pass,
// coro-early pass can not handle this quiet well.
// So we won't inline the coroutine function if it have not been unsplited
if (Callee->isPresplitCoroutine())
return InlineCost::getNever("unsplited coroutine call");
// FIXME: We shouldn't even get here for declarations.
if (Callee->isDeclaration())
return InlineCost::getNever("no definition");
if (!CB.hasFnAttr(Attribute::AlwaysInline))
return InlineCost::getNever("no alwaysinline attribute");
auto IsViable = isInlineViable(*Callee);
if (!IsViable.isSuccess())
return InlineCost::getNever(IsViable.getFailureReason());
return InlineCost::getAlways("always inliner");
}