2015-09-23 02:19:46 +08:00
|
|
|
//===- Target.cpp ---------------------------------------------------------===//
|
|
|
|
//
|
|
|
|
// The LLVM Linker
|
|
|
|
//
|
|
|
|
// This file is distributed under the University of Illinois Open Source
|
|
|
|
// License. See LICENSE.TXT for details.
|
|
|
|
//
|
|
|
|
//===----------------------------------------------------------------------===//
|
2015-10-14 03:51:57 +08:00
|
|
|
//
|
2015-10-16 03:52:27 +08:00
|
|
|
// Machine-specific things, such as applying relocations, creation of
|
|
|
|
// GOT or PLT entries, etc., are handled in this file.
|
|
|
|
//
|
|
|
|
// Refer the ELF spec for the single letter varaibles, S, A or P, used
|
|
|
|
// in this file. SA is S+A.
|
2015-10-14 03:51:57 +08:00
|
|
|
//
|
|
|
|
//===----------------------------------------------------------------------===//
|
2015-09-23 02:19:46 +08:00
|
|
|
|
|
|
|
#include "Target.h"
|
2015-09-23 04:54:08 +08:00
|
|
|
#include "Error.h"
|
2015-10-09 04:06:07 +08:00
|
|
|
#include "OutputSections.h"
|
2015-09-30 07:22:16 +08:00
|
|
|
#include "Symbols.h"
|
2015-09-23 02:19:46 +08:00
|
|
|
|
|
|
|
#include "llvm/ADT/ArrayRef.h"
|
2015-09-23 04:54:08 +08:00
|
|
|
#include "llvm/Object/ELF.h"
|
2015-09-23 02:19:46 +08:00
|
|
|
#include "llvm/Support/Endian.h"
|
|
|
|
#include "llvm/Support/ELF.h"
|
|
|
|
|
|
|
|
using namespace llvm;
|
2015-09-23 04:54:08 +08:00
|
|
|
using namespace llvm::object;
|
2015-09-24 22:16:02 +08:00
|
|
|
using namespace llvm::support::endian;
|
2015-09-23 02:19:46 +08:00
|
|
|
using namespace llvm::ELF;
|
|
|
|
|
|
|
|
namespace lld {
|
|
|
|
namespace elf2 {
|
|
|
|
|
|
|
|
std::unique_ptr<TargetInfo> Target;
|
|
|
|
|
2015-10-15 05:30:32 +08:00
|
|
|
static void add32le(uint8_t *L, int32_t V) { write32le(L, read32le(L) + V); }
|
|
|
|
static void add32be(uint8_t *L, int32_t V) { write32be(L, read32be(L) + V); }
|
|
|
|
static void or32le(uint8_t *L, int32_t V) { write32le(L, read32le(L) | V); }
|
|
|
|
|
|
|
|
template <bool IsLE> static void add32(uint8_t *L, int32_t V);
|
|
|
|
template <> void add32<true>(uint8_t *L, int32_t V) { add32le(L, V); }
|
|
|
|
template <> void add32<false>(uint8_t *L, int32_t V) { add32be(L, V); }
|
|
|
|
|
|
|
|
namespace {
|
|
|
|
class X86TargetInfo final : public TargetInfo {
|
|
|
|
public:
|
|
|
|
X86TargetInfo();
|
|
|
|
void writePltEntry(uint8_t *Buf, uint64_t GotEntryAddr,
|
|
|
|
uint64_t PltEntryAddr) const override;
|
|
|
|
bool relocNeedsGot(uint32_t Type, const SymbolBody &S) const override;
|
|
|
|
bool relocPointsToGot(uint32_t Type) const override;
|
|
|
|
bool relocNeedsPlt(uint32_t Type, const SymbolBody &S) const override;
|
|
|
|
void relocateOne(uint8_t *Buf, uint8_t *BufEnd, const void *RelP,
|
|
|
|
uint32_t Type, uint64_t BaseAddr,
|
2015-10-16 03:52:27 +08:00
|
|
|
uint64_t SA) const override;
|
2015-10-15 05:30:32 +08:00
|
|
|
};
|
|
|
|
|
|
|
|
class X86_64TargetInfo final : public TargetInfo {
|
|
|
|
public:
|
|
|
|
X86_64TargetInfo();
|
|
|
|
unsigned getPLTRefReloc(unsigned Type) const override;
|
|
|
|
void writePltEntry(uint8_t *Buf, uint64_t GotEntryAddr,
|
|
|
|
uint64_t PltEntryAddr) const override;
|
|
|
|
bool relocNeedsGot(uint32_t Type, const SymbolBody &S) const override;
|
|
|
|
bool relocNeedsPlt(uint32_t Type, const SymbolBody &S) const override;
|
|
|
|
void relocateOne(uint8_t *Buf, uint8_t *BufEnd, const void *RelP,
|
|
|
|
uint32_t Type, uint64_t BaseAddr,
|
2015-10-16 03:52:27 +08:00
|
|
|
uint64_t SA) const override;
|
2015-10-15 05:30:32 +08:00
|
|
|
bool isRelRelative(uint32_t Type) const override;
|
|
|
|
};
|
|
|
|
|
|
|
|
class PPC64TargetInfo final : public TargetInfo {
|
|
|
|
public:
|
|
|
|
PPC64TargetInfo();
|
|
|
|
void writePltEntry(uint8_t *Buf, uint64_t GotEntryAddr,
|
|
|
|
uint64_t PltEntryAddr) const override;
|
|
|
|
bool relocNeedsGot(uint32_t Type, const SymbolBody &S) const override;
|
|
|
|
bool relocNeedsPlt(uint32_t Type, const SymbolBody &S) const override;
|
|
|
|
void relocateOne(uint8_t *Buf, uint8_t *BufEnd, const void *RelP,
|
|
|
|
uint32_t Type, uint64_t BaseAddr,
|
2015-10-16 03:52:27 +08:00
|
|
|
uint64_t SA) const override;
|
2015-10-15 05:30:32 +08:00
|
|
|
bool isRelRelative(uint32_t Type) const override;
|
|
|
|
};
|
|
|
|
|
|
|
|
class AArch64TargetInfo final : public TargetInfo {
|
|
|
|
public:
|
|
|
|
AArch64TargetInfo();
|
|
|
|
void writePltEntry(uint8_t *Buf, uint64_t GotEntryAddr,
|
|
|
|
uint64_t PltEntryAddr) const override;
|
|
|
|
bool relocNeedsGot(uint32_t Type, const SymbolBody &S) const override;
|
|
|
|
bool relocNeedsPlt(uint32_t Type, const SymbolBody &S) const override;
|
|
|
|
void relocateOne(uint8_t *Buf, uint8_t *BufEnd, const void *RelP,
|
|
|
|
uint32_t Type, uint64_t BaseAddr,
|
2015-10-16 03:52:27 +08:00
|
|
|
uint64_t SA) const override;
|
2015-10-15 05:30:32 +08:00
|
|
|
};
|
|
|
|
|
|
|
|
template <class ELFT> class MipsTargetInfo final : public TargetInfo {
|
|
|
|
public:
|
|
|
|
MipsTargetInfo();
|
|
|
|
void writePltEntry(uint8_t *Buf, uint64_t GotEntryAddr,
|
|
|
|
uint64_t PltEntryAddr) const override;
|
|
|
|
bool relocNeedsGot(uint32_t Type, const SymbolBody &S) const override;
|
|
|
|
bool relocNeedsPlt(uint32_t Type, const SymbolBody &S) const override;
|
|
|
|
void relocateOne(uint8_t *Buf, uint8_t *BufEnd, const void *RelP,
|
|
|
|
uint32_t Type, uint64_t BaseAddr,
|
2015-10-16 03:52:27 +08:00
|
|
|
uint64_t SA) const override;
|
2015-10-15 05:30:32 +08:00
|
|
|
};
|
|
|
|
} // anonymous namespace
|
|
|
|
|
2015-10-14 00:08:15 +08:00
|
|
|
TargetInfo *createTarget() {
|
|
|
|
switch (Config->EMachine) {
|
|
|
|
case EM_386:
|
|
|
|
return new X86TargetInfo();
|
|
|
|
case EM_AARCH64:
|
|
|
|
return new AArch64TargetInfo();
|
|
|
|
case EM_MIPS:
|
2015-10-14 22:24:46 +08:00
|
|
|
switch (Config->EKind) {
|
|
|
|
case ELF32LEKind:
|
|
|
|
return new MipsTargetInfo<ELF32LE>();
|
|
|
|
case ELF32BEKind:
|
|
|
|
return new MipsTargetInfo<ELF32BE>();
|
|
|
|
default:
|
|
|
|
error("Unsupported MIPS target");
|
|
|
|
}
|
2015-10-14 00:08:15 +08:00
|
|
|
case EM_PPC64:
|
|
|
|
return new PPC64TargetInfo();
|
|
|
|
case EM_X86_64:
|
|
|
|
return new X86_64TargetInfo();
|
|
|
|
}
|
|
|
|
error("Unknown target machine");
|
|
|
|
}
|
|
|
|
|
2015-09-23 02:19:46 +08:00
|
|
|
TargetInfo::~TargetInfo() {}
|
|
|
|
|
2015-10-15 00:15:46 +08:00
|
|
|
unsigned TargetInfo::getPLTRefReloc(unsigned Type) const { return PCRelReloc; }
|
|
|
|
|
2015-09-29 21:36:32 +08:00
|
|
|
bool TargetInfo::relocPointsToGot(uint32_t Type) const { return false; }
|
|
|
|
|
2015-10-06 03:30:12 +08:00
|
|
|
bool TargetInfo::isRelRelative(uint32_t Type) const { return true; }
|
|
|
|
|
2015-09-23 05:35:51 +08:00
|
|
|
X86TargetInfo::X86TargetInfo() {
|
|
|
|
PCRelReloc = R_386_PC32;
|
|
|
|
GotReloc = R_386_GLOB_DAT;
|
2015-09-29 22:42:37 +08:00
|
|
|
GotRefReloc = R_386_GOT32;
|
2015-09-23 05:35:51 +08:00
|
|
|
}
|
2015-09-23 02:19:46 +08:00
|
|
|
|
|
|
|
void X86TargetInfo::writePltEntry(uint8_t *Buf, uint64_t GotEntryAddr,
|
2015-10-14 00:59:30 +08:00
|
|
|
uint64_t PltEntryAddr) const {
|
|
|
|
// jmpl *val; nop; nop
|
|
|
|
const uint8_t Inst[] = {0xff, 0x25, 0, 0, 0, 0, 0x90, 0x90};
|
2015-09-30 07:00:47 +08:00
|
|
|
memcpy(Buf, Inst, sizeof(Inst));
|
2015-10-14 00:59:30 +08:00
|
|
|
assert(isUInt<32>(GotEntryAddr));
|
|
|
|
write32le(Buf + 2, GotEntryAddr);
|
2015-09-23 02:19:46 +08:00
|
|
|
}
|
|
|
|
|
2015-09-30 07:22:16 +08:00
|
|
|
bool X86TargetInfo::relocNeedsGot(uint32_t Type, const SymbolBody &S) const {
|
2015-09-30 09:40:08 +08:00
|
|
|
return Type == R_386_GOT32 || relocNeedsPlt(Type, S);
|
2015-09-23 02:19:46 +08:00
|
|
|
}
|
|
|
|
|
2015-09-29 21:36:32 +08:00
|
|
|
bool X86TargetInfo::relocPointsToGot(uint32_t Type) const {
|
|
|
|
return Type == R_386_GOTPC;
|
|
|
|
}
|
|
|
|
|
2015-09-30 07:22:16 +08:00
|
|
|
bool X86TargetInfo::relocNeedsPlt(uint32_t Type, const SymbolBody &S) const {
|
2015-10-08 02:46:13 +08:00
|
|
|
return Type == R_386_PLT32 || (Type == R_386_PC32 && S.isShared());
|
2015-09-23 02:19:46 +08:00
|
|
|
}
|
|
|
|
|
2015-10-13 05:19:18 +08:00
|
|
|
void X86TargetInfo::relocateOne(uint8_t *Buf, uint8_t *BufEnd, const void *RelP,
|
|
|
|
uint32_t Type, uint64_t BaseAddr,
|
2015-10-16 03:52:27 +08:00
|
|
|
uint64_t SA) const {
|
2015-09-23 04:54:08 +08:00
|
|
|
typedef ELFFile<ELF32LE>::Elf_Rel Elf_Rel;
|
|
|
|
auto &Rel = *reinterpret_cast<const Elf_Rel *>(RelP);
|
|
|
|
|
|
|
|
uint32_t Offset = Rel.r_offset;
|
2015-10-07 02:54:43 +08:00
|
|
|
uint8_t *Loc = Buf + Offset;
|
2015-09-23 04:54:08 +08:00
|
|
|
switch (Type) {
|
2015-09-29 22:42:37 +08:00
|
|
|
case R_386_GOT32:
|
2015-10-16 03:52:27 +08:00
|
|
|
add32le(Loc, SA - Out<ELF32LE>::Got->getVA());
|
2015-09-29 22:42:37 +08:00
|
|
|
break;
|
2015-09-23 04:54:08 +08:00
|
|
|
case R_386_PC32:
|
2015-10-16 03:52:27 +08:00
|
|
|
add32le(Loc, SA - BaseAddr - Offset);
|
2015-09-23 04:54:08 +08:00
|
|
|
break;
|
|
|
|
case R_386_32:
|
2015-10-16 03:52:27 +08:00
|
|
|
add32le(Loc, SA);
|
2015-09-23 04:54:08 +08:00
|
|
|
break;
|
|
|
|
default:
|
2015-10-12 23:49:06 +08:00
|
|
|
error("unrecognized reloc " + Twine(Type));
|
2015-09-23 04:54:08 +08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2015-09-23 05:35:51 +08:00
|
|
|
X86_64TargetInfo::X86_64TargetInfo() {
|
|
|
|
PCRelReloc = R_X86_64_PC32;
|
|
|
|
GotReloc = R_X86_64_GLOB_DAT;
|
2015-09-29 22:42:37 +08:00
|
|
|
GotRefReloc = R_X86_64_PC32;
|
2015-10-06 03:30:12 +08:00
|
|
|
RelativeReloc = R_X86_64_RELATIVE;
|
2015-09-23 05:35:51 +08:00
|
|
|
}
|
2015-09-23 02:19:46 +08:00
|
|
|
|
|
|
|
void X86_64TargetInfo::writePltEntry(uint8_t *Buf, uint64_t GotEntryAddr,
|
2015-10-14 00:59:30 +08:00
|
|
|
uint64_t PltEntryAddr) const {
|
|
|
|
// jmpq *val(%rip); nop; nop
|
|
|
|
const uint8_t Inst[] = {0xff, 0x25, 0, 0, 0, 0, 0x90, 0x90};
|
2015-09-30 07:00:47 +08:00
|
|
|
memcpy(Buf, Inst, sizeof(Inst));
|
2015-09-23 02:19:46 +08:00
|
|
|
|
2015-10-14 00:59:30 +08:00
|
|
|
uint64_t NextPC = PltEntryAddr + 6;
|
|
|
|
int64_t Delta = GotEntryAddr - NextPC;
|
|
|
|
assert(isInt<32>(Delta));
|
|
|
|
write32le(Buf + 2, Delta);
|
2015-09-23 02:19:46 +08:00
|
|
|
}
|
|
|
|
|
2015-09-30 07:22:16 +08:00
|
|
|
bool X86_64TargetInfo::relocNeedsGot(uint32_t Type, const SymbolBody &S) const {
|
2015-09-30 09:40:08 +08:00
|
|
|
return Type == R_X86_64_GOTPCREL || relocNeedsPlt(Type, S);
|
2015-09-23 02:19:46 +08:00
|
|
|
}
|
|
|
|
|
2015-10-15 00:15:46 +08:00
|
|
|
unsigned X86_64TargetInfo::getPLTRefReloc(unsigned Type) const {
|
|
|
|
switch (Type) {
|
|
|
|
case R_X86_64_32:
|
|
|
|
return R_X86_64_32;
|
|
|
|
case R_X86_64_PC32:
|
|
|
|
case R_X86_64_PLT32:
|
|
|
|
return R_X86_64_PC32;
|
|
|
|
}
|
|
|
|
llvm_unreachable("Unexpected relocation");
|
|
|
|
}
|
|
|
|
|
2015-09-30 07:22:16 +08:00
|
|
|
bool X86_64TargetInfo::relocNeedsPlt(uint32_t Type, const SymbolBody &S) const {
|
2015-09-23 02:19:46 +08:00
|
|
|
switch (Type) {
|
|
|
|
default:
|
|
|
|
return false;
|
2015-10-15 00:15:46 +08:00
|
|
|
case R_X86_64_32:
|
2015-09-30 07:22:16 +08:00
|
|
|
case R_X86_64_PC32:
|
|
|
|
// This relocation is defined to have a value of (S + A - P).
|
2015-09-30 20:30:58 +08:00
|
|
|
// The problems start when a non PIC program calls a function in a shared
|
2015-09-30 07:22:16 +08:00
|
|
|
// library.
|
2015-09-30 07:23:53 +08:00
|
|
|
// In an ideal world, we could just report an error saying the relocation
|
2015-09-30 07:22:16 +08:00
|
|
|
// can overflow at runtime.
|
2015-09-30 20:30:58 +08:00
|
|
|
// In the real world with glibc, crt1.o has a R_X86_64_PC32 pointing to
|
|
|
|
// libc.so.
|
|
|
|
//
|
|
|
|
// The general idea on how to handle such cases is to create a PLT entry
|
|
|
|
// and use that as the function value.
|
|
|
|
//
|
|
|
|
// For the static linking part, we just return true and everything else
|
|
|
|
// will use the the PLT entry as the address.
|
|
|
|
//
|
2015-09-30 07:22:16 +08:00
|
|
|
// The remaining (unimplemented) problem is making sure pointer equality
|
2015-09-30 20:30:58 +08:00
|
|
|
// still works. We need the help of the dynamic linker for that. We
|
|
|
|
// let it know that we have a direct reference to a so symbol by creating
|
|
|
|
// an undefined symbol with a non zero st_value. Seeing that, the
|
2015-09-30 07:22:16 +08:00
|
|
|
// dynamic linker resolves the symbol to the value of the symbol we created.
|
|
|
|
// This is true even for got entries, so pointer equality is maintained.
|
|
|
|
// To avoid an infinite loop, the only entry that points to the
|
2015-09-30 20:30:58 +08:00
|
|
|
// real function is a dedicated got entry used by the plt. That is
|
|
|
|
// identified by special relocation types (R_X86_64_JUMP_SLOT,
|
|
|
|
// R_386_JMP_SLOT, etc).
|
2015-09-30 07:22:16 +08:00
|
|
|
return S.isShared();
|
2015-09-23 02:19:46 +08:00
|
|
|
case R_X86_64_PLT32:
|
2015-10-17 07:52:24 +08:00
|
|
|
return canBePreempted(&S, true);
|
2015-09-23 02:19:46 +08:00
|
|
|
}
|
|
|
|
}
|
2015-09-23 04:54:08 +08:00
|
|
|
|
2015-10-06 03:30:12 +08:00
|
|
|
bool X86_64TargetInfo::isRelRelative(uint32_t Type) const {
|
|
|
|
switch (Type) {
|
|
|
|
default:
|
|
|
|
return false;
|
|
|
|
case R_X86_64_PC64:
|
|
|
|
case R_X86_64_PC32:
|
|
|
|
case R_X86_64_PC16:
|
|
|
|
case R_X86_64_PC8:
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2015-10-13 05:19:18 +08:00
|
|
|
void X86_64TargetInfo::relocateOne(uint8_t *Buf, uint8_t *BufEnd,
|
|
|
|
const void *RelP, uint32_t Type,
|
2015-10-16 03:52:27 +08:00
|
|
|
uint64_t BaseAddr, uint64_t SA) const {
|
2015-09-23 04:54:08 +08:00
|
|
|
typedef ELFFile<ELF64LE>::Elf_Rela Elf_Rela;
|
|
|
|
auto &Rel = *reinterpret_cast<const Elf_Rela *>(RelP);
|
|
|
|
|
|
|
|
uint64_t Offset = Rel.r_offset;
|
2015-10-07 02:54:43 +08:00
|
|
|
uint8_t *Loc = Buf + Offset;
|
2015-09-23 04:54:08 +08:00
|
|
|
switch (Type) {
|
|
|
|
case R_X86_64_PC32:
|
2015-09-24 04:08:25 +08:00
|
|
|
case R_X86_64_GOTPCREL:
|
2015-10-18 11:13:46 +08:00
|
|
|
case R_X86_64_PLT32:
|
2015-10-16 03:52:27 +08:00
|
|
|
write32le(Loc, SA - BaseAddr - Offset);
|
2015-09-23 04:54:08 +08:00
|
|
|
break;
|
|
|
|
case R_X86_64_64:
|
2015-10-16 03:52:27 +08:00
|
|
|
write64le(Loc, SA);
|
2015-09-23 04:54:08 +08:00
|
|
|
break;
|
|
|
|
case R_X86_64_32: {
|
|
|
|
case R_X86_64_32S:
|
2015-10-16 03:52:27 +08:00
|
|
|
if (Type == R_X86_64_32 && !isUInt<32>(SA))
|
2015-09-23 04:54:08 +08:00
|
|
|
error("R_X86_64_32 out of range");
|
2015-10-16 03:52:27 +08:00
|
|
|
else if (!isInt<32>(SA))
|
2015-09-23 04:54:08 +08:00
|
|
|
error("R_X86_64_32S out of range");
|
2015-10-16 03:52:27 +08:00
|
|
|
write32le(Loc, SA);
|
2015-09-23 04:54:08 +08:00
|
|
|
break;
|
|
|
|
}
|
|
|
|
default:
|
2015-10-12 23:49:06 +08:00
|
|
|
error("unrecognized reloc " + Twine(Type));
|
2015-09-23 04:54:08 +08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2015-10-13 04:56:18 +08:00
|
|
|
// Relocation masks following the #lo(value), #hi(value), #ha(value),
|
|
|
|
// #higher(value), #highera(value), #highest(value), and #highesta(value)
|
|
|
|
// macros defined in section 4.5.1. Relocation Types of the PPC-elf64abi
|
|
|
|
// document.
|
|
|
|
|
|
|
|
static uint16_t applyPPCLo(uint64_t V) { return V & 0xffff; }
|
|
|
|
|
|
|
|
static uint16_t applyPPCHi(uint64_t V) { return (V >> 16) & 0xffff; }
|
|
|
|
|
|
|
|
static uint16_t applyPPCHa(uint64_t V) { return ((V + 0x8000) >> 16) & 0xffff; }
|
|
|
|
|
|
|
|
static uint16_t applyPPCHigher(uint64_t V) { return (V >> 32) & 0xffff; }
|
|
|
|
|
|
|
|
static uint16_t applyPPCHighera(uint64_t V) {
|
|
|
|
return ((V + 0x8000) >> 32) & 0xffff;
|
|
|
|
}
|
|
|
|
|
|
|
|
static uint16_t applyPPCHighest(uint64_t V) { return V >> 48; }
|
|
|
|
|
|
|
|
static uint16_t applyPPCHighesta(uint64_t V) { return (V + 0x8000) >> 48; }
|
|
|
|
|
2015-09-23 04:54:08 +08:00
|
|
|
PPC64TargetInfo::PPC64TargetInfo() {
|
2015-10-13 04:56:18 +08:00
|
|
|
PCRelReloc = R_PPC64_REL24;
|
|
|
|
GotReloc = R_PPC64_GLOB_DAT;
|
|
|
|
GotRefReloc = R_PPC64_REL64;
|
2015-10-13 04:58:52 +08:00
|
|
|
RelativeReloc = R_PPC64_RELATIVE;
|
2015-10-09 05:51:31 +08:00
|
|
|
PltEntrySize = 32;
|
2015-10-13 03:34:29 +08:00
|
|
|
|
|
|
|
// We need 64K pages (at least under glibc/Linux, the loader won't
|
|
|
|
// set different permissions on a finer granularity than that).
|
2015-10-09 06:23:54 +08:00
|
|
|
PageSize = 65536;
|
2015-10-15 15:49:07 +08:00
|
|
|
|
|
|
|
// The PPC64 ELF ABI v1 spec, says:
|
|
|
|
//
|
|
|
|
// It is normally desirable to put segments with different characteristics
|
|
|
|
// in separate 256 Mbyte portions of the address space, to give the
|
|
|
|
// operating system full paging flexibility in the 64-bit address space.
|
|
|
|
//
|
|
|
|
// And because the lowest non-zero 256M boundary is 0x10000000, PPC64 linkers
|
|
|
|
// use 0x10000000 as the starting address.
|
|
|
|
VAStart = 0x10000000;
|
2015-09-23 04:54:08 +08:00
|
|
|
}
|
2015-10-13 04:56:18 +08:00
|
|
|
|
2015-10-17 05:55:40 +08:00
|
|
|
uint64_t getPPC64TocBase() {
|
2015-10-13 04:56:18 +08:00
|
|
|
// The TOC consists of sections .got, .toc, .tocbss, .plt in that
|
|
|
|
// order. The TOC starts where the first of these sections starts.
|
|
|
|
|
|
|
|
// FIXME: This obviously does not do the right thing when there is no .got
|
|
|
|
// section, but there is a .toc or .tocbss section.
|
|
|
|
uint64_t TocVA = Out<ELF64BE>::Got->getVA();
|
|
|
|
if (!TocVA)
|
|
|
|
TocVA = Out<ELF64BE>::Plt->getVA();
|
|
|
|
|
|
|
|
// Per the ppc64-elf-linux ABI, The TOC base is TOC value plus 0x8000
|
|
|
|
// thus permitting a full 64 Kbytes segment. Note that the glibc startup
|
|
|
|
// code (crt1.o) assumes that you can get from the TOC base to the
|
|
|
|
// start of the .toc section with only a single (signed) 16-bit relocation.
|
|
|
|
return TocVA + 0x8000;
|
|
|
|
}
|
|
|
|
|
2015-09-23 04:54:08 +08:00
|
|
|
void PPC64TargetInfo::writePltEntry(uint8_t *Buf, uint64_t GotEntryAddr,
|
2015-10-14 00:59:30 +08:00
|
|
|
uint64_t PltEntryAddr) const {
|
2015-10-13 04:56:18 +08:00
|
|
|
uint64_t Off = GotEntryAddr - getPPC64TocBase();
|
|
|
|
|
|
|
|
// FIXME: What we should do, in theory, is get the offset of the function
|
|
|
|
// descriptor in the .opd section, and use that as the offset from %r2 (the
|
|
|
|
// TOC-base pointer). Instead, we have the GOT-entry offset, and that will
|
|
|
|
// be a pointer to the function descriptor in the .opd section. Using
|
|
|
|
// this scheme is simpler, but requires an extra indirection per PLT dispatch.
|
|
|
|
|
2015-10-14 05:47:34 +08:00
|
|
|
write32be(Buf, 0xf8410028); // std %r2, 40(%r1)
|
2015-10-13 04:56:18 +08:00
|
|
|
write32be(Buf + 4, 0x3d620000 | applyPPCHa(Off)); // addis %r11, %r2, X@ha
|
|
|
|
write32be(Buf + 8, 0xe98b0000 | applyPPCLo(Off)); // ld %r12, X@l(%r11)
|
|
|
|
write32be(Buf + 12, 0xe96c0000); // ld %r11,0(%r12)
|
|
|
|
write32be(Buf + 16, 0x7d6903a6); // mtctr %r11
|
|
|
|
write32be(Buf + 20, 0xe84c0008); // ld %r2,8(%r12)
|
|
|
|
write32be(Buf + 24, 0xe96c0010); // ld %r11,16(%r12)
|
|
|
|
write32be(Buf + 28, 0x4e800420); // bctr
|
|
|
|
}
|
|
|
|
|
2015-09-30 07:22:16 +08:00
|
|
|
bool PPC64TargetInfo::relocNeedsGot(uint32_t Type, const SymbolBody &S) const {
|
2015-10-13 04:56:18 +08:00
|
|
|
if (relocNeedsPlt(Type, S))
|
|
|
|
return true;
|
|
|
|
|
|
|
|
switch (Type) {
|
|
|
|
default: return false;
|
|
|
|
case R_PPC64_GOT16:
|
|
|
|
case R_PPC64_GOT16_LO:
|
|
|
|
case R_PPC64_GOT16_HI:
|
|
|
|
case R_PPC64_GOT16_HA:
|
|
|
|
case R_PPC64_GOT16_DS:
|
|
|
|
case R_PPC64_GOT16_LO_DS:
|
|
|
|
return true;
|
|
|
|
}
|
2015-09-30 07:22:16 +08:00
|
|
|
}
|
2015-10-13 04:56:18 +08:00
|
|
|
|
2015-09-30 07:22:16 +08:00
|
|
|
bool PPC64TargetInfo::relocNeedsPlt(uint32_t Type, const SymbolBody &S) const {
|
2015-10-13 04:56:18 +08:00
|
|
|
// These are function calls that need to be redirected through a PLT stub.
|
2015-10-17 08:48:20 +08:00
|
|
|
return Type == R_PPC64_REL24 && canBePreempted(&S, false);
|
2015-09-30 07:22:16 +08:00
|
|
|
}
|
2015-10-13 04:56:18 +08:00
|
|
|
|
2015-10-13 04:58:52 +08:00
|
|
|
bool PPC64TargetInfo::isRelRelative(uint32_t Type) const {
|
|
|
|
switch (Type) {
|
|
|
|
default:
|
|
|
|
return true;
|
[ELF2/PPC64] Invert PPC64TargetInfo::isRelRelative's default
When I initially implemented PPC64TargetInfo::isRelRelative, I included a fixed
set of relative relocations, and made the default false. In retrospect, this
seems unwise in two respects: First, most PPC64 relocations are relative
(either to the base address, the TOC, etc.). Second, most relocation targets
are not appropriate for R_PPC64_RELATIVE (which writes a 64-bit absolute
address). Thus, back off, and include only those relocations for which we test
(or soon will), and are obviously appropriate for R_PPC64_RELATIVE.
llvm-svn: 250540
2015-10-17 03:01:50 +08:00
|
|
|
case R_PPC64_TOC:
|
|
|
|
case R_PPC64_ADDR64:
|
|
|
|
return false;
|
2015-10-13 04:58:52 +08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2015-10-13 05:19:18 +08:00
|
|
|
void PPC64TargetInfo::relocateOne(uint8_t *Buf, uint8_t *BufEnd,
|
|
|
|
const void *RelP, uint32_t Type,
|
2015-10-16 03:52:27 +08:00
|
|
|
uint64_t BaseAddr, uint64_t SA) const {
|
2015-09-23 05:12:55 +08:00
|
|
|
typedef ELFFile<ELF64BE>::Elf_Rela Elf_Rela;
|
|
|
|
auto &Rel = *reinterpret_cast<const Elf_Rela *>(RelP);
|
|
|
|
|
2015-10-13 04:56:18 +08:00
|
|
|
uint8_t *L = Buf + Rel.r_offset;
|
|
|
|
uint64_t P = BaseAddr + Rel.r_offset;
|
|
|
|
uint64_t TB = getPPC64TocBase();
|
|
|
|
|
|
|
|
// For a TOC-relative relocation, adjust the addend and proceed in terms of
|
|
|
|
// the corresponding ADDR16 relocation type.
|
2015-09-23 05:12:55 +08:00
|
|
|
switch (Type) {
|
2015-10-16 02:19:39 +08:00
|
|
|
case R_PPC64_TOC16: Type = R_PPC64_ADDR16; SA -= TB; break;
|
|
|
|
case R_PPC64_TOC16_DS: Type = R_PPC64_ADDR16_DS; SA -= TB; break;
|
|
|
|
case R_PPC64_TOC16_LO: Type = R_PPC64_ADDR16_LO; SA -= TB; break;
|
|
|
|
case R_PPC64_TOC16_LO_DS: Type = R_PPC64_ADDR16_LO_DS; SA -= TB; break;
|
|
|
|
case R_PPC64_TOC16_HI: Type = R_PPC64_ADDR16_HI; SA -= TB; break;
|
|
|
|
case R_PPC64_TOC16_HA: Type = R_PPC64_ADDR16_HA; SA -= TB; break;
|
2015-10-13 04:56:18 +08:00
|
|
|
default: break;
|
|
|
|
}
|
|
|
|
|
|
|
|
switch (Type) {
|
|
|
|
case R_PPC64_ADDR16:
|
2015-10-16 03:39:36 +08:00
|
|
|
if (!isInt<16>(SA))
|
2015-10-16 00:17:30 +08:00
|
|
|
error("Relocation R_PPC64_ADDR16 overflow");
|
2015-10-16 03:39:36 +08:00
|
|
|
write16be(L, SA);
|
2015-10-13 04:56:18 +08:00
|
|
|
break;
|
|
|
|
case R_PPC64_ADDR16_DS:
|
2015-10-16 03:39:36 +08:00
|
|
|
if (!isInt<16>(SA))
|
2015-10-13 04:56:18 +08:00
|
|
|
error("Relocation R_PPC64_ADDR16_DS overflow");
|
2015-10-16 03:39:36 +08:00
|
|
|
write16be(L, (read16be(L) & 3) | (SA & ~3));
|
2015-10-13 04:56:18 +08:00
|
|
|
break;
|
|
|
|
case R_PPC64_ADDR16_LO:
|
2015-10-16 03:39:36 +08:00
|
|
|
write16be(L, applyPPCLo(SA));
|
2015-10-13 04:56:18 +08:00
|
|
|
break;
|
|
|
|
case R_PPC64_ADDR16_LO_DS:
|
2015-10-16 03:39:36 +08:00
|
|
|
write16be(L, (read16be(L) & 3) | (applyPPCLo(SA) & ~3));
|
2015-10-13 04:56:18 +08:00
|
|
|
break;
|
|
|
|
case R_PPC64_ADDR16_HI:
|
2015-10-16 03:39:36 +08:00
|
|
|
write16be(L, applyPPCHi(SA));
|
2015-10-13 04:56:18 +08:00
|
|
|
break;
|
|
|
|
case R_PPC64_ADDR16_HA:
|
2015-10-16 03:39:36 +08:00
|
|
|
write16be(L, applyPPCHa(SA));
|
2015-10-13 04:56:18 +08:00
|
|
|
break;
|
|
|
|
case R_PPC64_ADDR16_HIGHER:
|
2015-10-16 03:39:36 +08:00
|
|
|
write16be(L, applyPPCHigher(SA));
|
2015-09-23 05:12:55 +08:00
|
|
|
break;
|
2015-10-13 04:56:18 +08:00
|
|
|
case R_PPC64_ADDR16_HIGHERA:
|
2015-10-16 03:39:36 +08:00
|
|
|
write16be(L, applyPPCHighera(SA));
|
2015-10-13 04:56:18 +08:00
|
|
|
break;
|
|
|
|
case R_PPC64_ADDR16_HIGHEST:
|
2015-10-16 03:39:36 +08:00
|
|
|
write16be(L, applyPPCHighest(SA));
|
2015-10-13 04:56:18 +08:00
|
|
|
break;
|
|
|
|
case R_PPC64_ADDR16_HIGHESTA:
|
2015-10-16 03:39:36 +08:00
|
|
|
write16be(L, applyPPCHighesta(SA));
|
2015-10-13 04:56:18 +08:00
|
|
|
break;
|
|
|
|
case R_PPC64_ADDR14: {
|
2015-10-16 03:39:36 +08:00
|
|
|
if ((SA & 3) != 0)
|
2015-10-13 04:56:18 +08:00
|
|
|
error("Improper alignment for relocation R_PPC64_ADDR14");
|
|
|
|
|
|
|
|
// Preserve the AA/LK bits in the branch instruction
|
|
|
|
uint8_t AALK = L[3];
|
2015-10-16 03:39:36 +08:00
|
|
|
write16be(L + 2, (AALK & 3) | (SA & 0xfffc));
|
2015-10-13 04:56:18 +08:00
|
|
|
break;
|
|
|
|
}
|
|
|
|
case R_PPC64_REL16_LO:
|
2015-10-16 03:39:36 +08:00
|
|
|
write16be(L, applyPPCLo(SA - P));
|
2015-10-13 04:56:18 +08:00
|
|
|
break;
|
|
|
|
case R_PPC64_REL16_HI:
|
2015-10-16 03:39:36 +08:00
|
|
|
write16be(L, applyPPCHi(SA - P));
|
2015-10-13 04:56:18 +08:00
|
|
|
break;
|
|
|
|
case R_PPC64_REL16_HA:
|
2015-10-16 03:39:36 +08:00
|
|
|
write16be(L, applyPPCHa(SA - P));
|
2015-10-13 04:56:18 +08:00
|
|
|
break;
|
|
|
|
case R_PPC64_ADDR32:
|
2015-10-16 03:39:36 +08:00
|
|
|
if (!isInt<32>(SA))
|
2015-10-13 04:56:18 +08:00
|
|
|
error("Relocation R_PPC64_ADDR32 overflow");
|
2015-10-16 03:39:36 +08:00
|
|
|
write32be(L, SA);
|
2015-10-13 04:56:18 +08:00
|
|
|
break;
|
|
|
|
case R_PPC64_REL24: {
|
2015-10-17 08:48:20 +08:00
|
|
|
// If we have an undefined weak symbol, we might get here with a symbol
|
|
|
|
// address of zero. That could overflow, but the code must be unreachable,
|
|
|
|
// so don't bother doing anything at all.
|
|
|
|
if (!SA)
|
|
|
|
break;
|
|
|
|
|
[ELF2/PPC64] Resolve local-call relocations using the correct function-descriptor values
Under PPC64 ELF v1 ABI, the symbols associated with each function name don't
point directly to the code in the .text section (or similar), but rather to a
function descriptor structure in a special data section named .opd. The
elements in the .opd structure include a pointer to the actual code, and a the
relevant TOC base value. Both of these are themselves set by relocations.
When we have a local call, we need the relevant relocation to refer directly to
the target code, not to the function-descriptor in the .opd section. Only when
we have a .plt stub do we care about the address of the .opd function
descriptor itself.
So we make a few changes here:
1. Always write .opd first, so that its relocated data values are available
for later use when writing the text sections. Record a pointer to the .opd
structure, and its corresponding buffer.
2. When processing a relative branch relocation under ppc64, if the
destination points into the .opd section, read the code pointer out of the
function descriptor structure and use that instead.
This this, I can link, and run, a dynamically-compiled "hello world"
application on big-Endian PPC64/Linux (ELF v1 ABI) using lld.
llvm-svn: 250122
2015-10-13 07:16:53 +08:00
|
|
|
uint64_t PltStart = Out<ELF64BE>::Plt->getVA();
|
|
|
|
uint64_t PltEnd = PltStart + Out<ELF64BE>::Plt->getSize();
|
2015-10-16 03:39:36 +08:00
|
|
|
bool InPlt = PltStart <= SA && SA < PltEnd;
|
[ELF2/PPC64] Resolve local-call relocations using the correct function-descriptor values
Under PPC64 ELF v1 ABI, the symbols associated with each function name don't
point directly to the code in the .text section (or similar), but rather to a
function descriptor structure in a special data section named .opd. The
elements in the .opd structure include a pointer to the actual code, and a the
relevant TOC base value. Both of these are themselves set by relocations.
When we have a local call, we need the relevant relocation to refer directly to
the target code, not to the function-descriptor in the .opd section. Only when
we have a .plt stub do we care about the address of the .opd function
descriptor itself.
So we make a few changes here:
1. Always write .opd first, so that its relocated data values are available
for later use when writing the text sections. Record a pointer to the .opd
structure, and its corresponding buffer.
2. When processing a relative branch relocation under ppc64, if the
destination points into the .opd section, read the code pointer out of the
function descriptor structure and use that instead.
This this, I can link, and run, a dynamically-compiled "hello world"
application on big-Endian PPC64/Linux (ELF v1 ABI) using lld.
llvm-svn: 250122
2015-10-13 07:16:53 +08:00
|
|
|
|
|
|
|
if (!InPlt && Out<ELF64BE>::Opd) {
|
|
|
|
// If this is a local call, and we currently have the address of a
|
|
|
|
// function-descriptor, get the underlying code address instead.
|
|
|
|
uint64_t OpdStart = Out<ELF64BE>::Opd->getVA();
|
|
|
|
uint64_t OpdEnd = OpdStart + Out<ELF64BE>::Opd->getSize();
|
2015-10-16 03:39:36 +08:00
|
|
|
bool InOpd = OpdStart <= SA && SA < OpdEnd;
|
[ELF2/PPC64] Resolve local-call relocations using the correct function-descriptor values
Under PPC64 ELF v1 ABI, the symbols associated with each function name don't
point directly to the code in the .text section (or similar), but rather to a
function descriptor structure in a special data section named .opd. The
elements in the .opd structure include a pointer to the actual code, and a the
relevant TOC base value. Both of these are themselves set by relocations.
When we have a local call, we need the relevant relocation to refer directly to
the target code, not to the function-descriptor in the .opd section. Only when
we have a .plt stub do we care about the address of the .opd function
descriptor itself.
So we make a few changes here:
1. Always write .opd first, so that its relocated data values are available
for later use when writing the text sections. Record a pointer to the .opd
structure, and its corresponding buffer.
2. When processing a relative branch relocation under ppc64, if the
destination points into the .opd section, read the code pointer out of the
function descriptor structure and use that instead.
This this, I can link, and run, a dynamically-compiled "hello world"
application on big-Endian PPC64/Linux (ELF v1 ABI) using lld.
llvm-svn: 250122
2015-10-13 07:16:53 +08:00
|
|
|
|
|
|
|
if (InOpd)
|
2015-10-16 03:39:36 +08:00
|
|
|
SA = read64be(&Out<ELF64BE>::OpdBuf[SA - OpdStart]);
|
[ELF2/PPC64] Resolve local-call relocations using the correct function-descriptor values
Under PPC64 ELF v1 ABI, the symbols associated with each function name don't
point directly to the code in the .text section (or similar), but rather to a
function descriptor structure in a special data section named .opd. The
elements in the .opd structure include a pointer to the actual code, and a the
relevant TOC base value. Both of these are themselves set by relocations.
When we have a local call, we need the relevant relocation to refer directly to
the target code, not to the function-descriptor in the .opd section. Only when
we have a .plt stub do we care about the address of the .opd function
descriptor itself.
So we make a few changes here:
1. Always write .opd first, so that its relocated data values are available
for later use when writing the text sections. Record a pointer to the .opd
structure, and its corresponding buffer.
2. When processing a relative branch relocation under ppc64, if the
destination points into the .opd section, read the code pointer out of the
function descriptor structure and use that instead.
This this, I can link, and run, a dynamically-compiled "hello world"
application on big-Endian PPC64/Linux (ELF v1 ABI) using lld.
llvm-svn: 250122
2015-10-13 07:16:53 +08:00
|
|
|
}
|
|
|
|
|
2015-10-13 04:56:18 +08:00
|
|
|
uint32_t Mask = 0x03FFFFFC;
|
2015-10-16 03:39:36 +08:00
|
|
|
if (!isInt<24>(SA - P))
|
2015-10-13 04:56:18 +08:00
|
|
|
error("Relocation R_PPC64_REL24 overflow");
|
2015-10-16 03:39:36 +08:00
|
|
|
write32be(L, (read32be(L) & ~Mask) | ((SA - P) & Mask));
|
2015-10-13 05:19:18 +08:00
|
|
|
|
2015-10-14 04:31:33 +08:00
|
|
|
if (InPlt && L + 8 <= BufEnd &&
|
2015-10-13 05:19:18 +08:00
|
|
|
read32be(L + 4) == 0x60000000 /* nop */)
|
|
|
|
write32be(L + 4, 0xe8410028); // ld %r2, 40(%r1)
|
2015-10-13 04:56:18 +08:00
|
|
|
break;
|
|
|
|
}
|
|
|
|
case R_PPC64_REL32:
|
2015-10-16 03:39:36 +08:00
|
|
|
if (!isInt<32>(SA - P))
|
2015-10-13 04:56:18 +08:00
|
|
|
error("Relocation R_PPC64_REL32 overflow");
|
2015-10-16 03:39:36 +08:00
|
|
|
write32be(L, SA - P);
|
2015-10-13 04:56:18 +08:00
|
|
|
break;
|
|
|
|
case R_PPC64_REL64:
|
2015-10-16 03:39:36 +08:00
|
|
|
write64be(L, SA - P);
|
2015-10-13 04:56:18 +08:00
|
|
|
break;
|
|
|
|
case R_PPC64_ADDR64:
|
2015-10-17 05:55:40 +08:00
|
|
|
case R_PPC64_TOC:
|
2015-10-16 03:39:36 +08:00
|
|
|
write64be(L, SA);
|
2015-09-23 05:12:55 +08:00
|
|
|
break;
|
|
|
|
default:
|
2015-10-12 23:49:06 +08:00
|
|
|
error("unrecognized reloc " + Twine(Type));
|
2015-09-23 05:12:55 +08:00
|
|
|
}
|
|
|
|
}
|
2015-09-23 05:24:52 +08:00
|
|
|
|
2015-09-26 08:32:04 +08:00
|
|
|
AArch64TargetInfo::AArch64TargetInfo() {
|
|
|
|
// PCRelReloc = FIXME
|
|
|
|
// GotReloc = FIXME
|
|
|
|
}
|
|
|
|
void AArch64TargetInfo::writePltEntry(uint8_t *Buf, uint64_t GotEntryAddr,
|
2015-10-14 00:59:30 +08:00
|
|
|
uint64_t PltEntryAddr) const {}
|
2015-09-30 07:22:16 +08:00
|
|
|
bool AArch64TargetInfo::relocNeedsGot(uint32_t Type,
|
|
|
|
const SymbolBody &S) const {
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
bool AArch64TargetInfo::relocNeedsPlt(uint32_t Type,
|
|
|
|
const SymbolBody &S) const {
|
|
|
|
return false;
|
|
|
|
}
|
2015-09-27 16:45:38 +08:00
|
|
|
|
2015-10-07 03:01:32 +08:00
|
|
|
static void updateAArch64Adr(uint8_t *L, uint64_t Imm) {
|
2015-10-03 06:00:42 +08:00
|
|
|
uint32_t ImmLo = (Imm & 0x3) << 29;
|
|
|
|
uint32_t ImmHi = ((Imm & 0x1FFFFC) >> 2) << 5;
|
|
|
|
uint64_t Mask = (0x3 << 29) | (0x7FFFF << 5);
|
2015-10-07 02:54:43 +08:00
|
|
|
write32le(L, (read32le(L) & ~Mask) | ImmLo | ImmHi);
|
2015-10-03 06:00:42 +08:00
|
|
|
}
|
|
|
|
|
2015-10-03 06:13:51 +08:00
|
|
|
// Page(Expr) is the page address of the expression Expr, defined
|
|
|
|
// as (Expr & ~0xFFF). (This applies even if the machine page size
|
2015-10-03 06:17:09 +08:00
|
|
|
// supported by the platform has a different value.)
|
2015-10-07 03:01:32 +08:00
|
|
|
static uint64_t getAArch64Page(uint64_t Expr) {
|
2015-10-03 06:13:51 +08:00
|
|
|
return Expr & (~static_cast<uint64_t>(0xFFF));
|
2015-10-03 06:00:42 +08:00
|
|
|
}
|
|
|
|
|
2015-10-13 05:19:18 +08:00
|
|
|
void AArch64TargetInfo::relocateOne(uint8_t *Buf, uint8_t *BufEnd,
|
|
|
|
const void *RelP, uint32_t Type,
|
2015-10-16 03:52:27 +08:00
|
|
|
uint64_t BaseAddr, uint64_t SA) const {
|
2015-09-27 16:45:38 +08:00
|
|
|
typedef ELFFile<ELF64LE>::Elf_Rela Elf_Rela;
|
|
|
|
auto &Rel = *reinterpret_cast<const Elf_Rela *>(RelP);
|
|
|
|
|
2015-10-07 03:57:01 +08:00
|
|
|
uint8_t *L = Buf + Rel.r_offset;
|
2015-09-27 16:45:38 +08:00
|
|
|
uint64_t P = BaseAddr + Rel.r_offset;
|
|
|
|
switch (Type) {
|
2015-10-04 08:59:16 +08:00
|
|
|
case R_AARCH64_ABS16:
|
2015-10-16 02:19:39 +08:00
|
|
|
if (!isInt<16>(SA))
|
2015-10-07 03:57:01 +08:00
|
|
|
error("Relocation R_AARCH64_ABS16 out of range");
|
2015-10-16 02:19:39 +08:00
|
|
|
write16le(L, SA);
|
2015-10-04 08:59:16 +08:00
|
|
|
break;
|
|
|
|
case R_AARCH64_ABS32:
|
2015-10-16 02:19:39 +08:00
|
|
|
if (!isInt<32>(SA))
|
2015-10-07 03:57:01 +08:00
|
|
|
error("Relocation R_AARCH64_ABS32 out of range");
|
2015-10-16 02:19:39 +08:00
|
|
|
write32le(L, SA);
|
2015-10-04 08:59:16 +08:00
|
|
|
break;
|
|
|
|
case R_AARCH64_ABS64:
|
2015-10-07 03:57:01 +08:00
|
|
|
// No overflow check needed.
|
2015-10-16 02:19:39 +08:00
|
|
|
write64le(L, SA);
|
2015-10-04 08:59:16 +08:00
|
|
|
break;
|
2015-10-04 03:56:07 +08:00
|
|
|
case R_AARCH64_ADD_ABS_LO12_NC:
|
2015-10-07 03:57:01 +08:00
|
|
|
// No overflow check needed.
|
2015-10-17 05:06:55 +08:00
|
|
|
// This relocation stores 12 bits and there's no instruction
|
|
|
|
// to do it. Instead, we do a 32 bits store of the value
|
|
|
|
// of r_addend bitwise-or'ed L. This assumes that the addend
|
|
|
|
// bits in L are zero.
|
2015-10-16 02:19:39 +08:00
|
|
|
or32le(L, (SA & 0xFFF) << 10);
|
2015-10-04 03:56:07 +08:00
|
|
|
break;
|
2015-10-07 03:57:01 +08:00
|
|
|
case R_AARCH64_ADR_PREL_LO21: {
|
2015-10-16 02:19:39 +08:00
|
|
|
uint64_t X = SA - P;
|
2015-10-07 03:57:01 +08:00
|
|
|
if (!isInt<21>(X))
|
|
|
|
error("Relocation R_AARCH64_ADR_PREL_LO21 out of range");
|
|
|
|
updateAArch64Adr(L, X & 0x1FFFFF);
|
2015-09-27 16:45:38 +08:00
|
|
|
break;
|
2015-10-07 03:57:01 +08:00
|
|
|
}
|
|
|
|
case R_AARCH64_ADR_PREL_PG_HI21: {
|
2015-10-16 02:19:39 +08:00
|
|
|
uint64_t X = getAArch64Page(SA) - getAArch64Page(P);
|
2015-10-07 03:57:01 +08:00
|
|
|
if (!isInt<33>(X))
|
|
|
|
error("Relocation R_AARCH64_ADR_PREL_PG_HI21 out of range");
|
|
|
|
updateAArch64Adr(L, (X >> 12) & 0x1FFFFF); // X[32:12]
|
2015-10-03 06:00:42 +08:00
|
|
|
break;
|
2015-10-07 03:57:01 +08:00
|
|
|
}
|
2015-09-27 16:45:38 +08:00
|
|
|
default:
|
2015-10-12 23:49:06 +08:00
|
|
|
error("unrecognized reloc " + Twine(Type));
|
2015-09-27 16:45:38 +08:00
|
|
|
}
|
|
|
|
}
|
2015-09-29 13:34:03 +08:00
|
|
|
|
2015-10-14 22:24:46 +08:00
|
|
|
template <class ELFT> MipsTargetInfo<ELFT>::MipsTargetInfo() {
|
2015-09-29 13:34:03 +08:00
|
|
|
// PCRelReloc = FIXME
|
|
|
|
// GotReloc = FIXME
|
2015-10-09 06:23:54 +08:00
|
|
|
PageSize = 65536;
|
2015-09-29 13:34:03 +08:00
|
|
|
}
|
|
|
|
|
2015-10-14 22:24:46 +08:00
|
|
|
template <class ELFT>
|
|
|
|
void MipsTargetInfo<ELFT>::writePltEntry(uint8_t *Buf, uint64_t GotEntryAddr,
|
|
|
|
uint64_t PltEntryAddr) const {}
|
2015-09-29 13:34:03 +08:00
|
|
|
|
2015-10-14 22:24:46 +08:00
|
|
|
template <class ELFT>
|
|
|
|
bool MipsTargetInfo<ELFT>::relocNeedsGot(uint32_t Type,
|
|
|
|
const SymbolBody &S) const {
|
2015-09-30 07:22:16 +08:00
|
|
|
return false;
|
|
|
|
}
|
2015-09-29 13:34:03 +08:00
|
|
|
|
2015-10-14 22:24:46 +08:00
|
|
|
template <class ELFT>
|
|
|
|
bool MipsTargetInfo<ELFT>::relocNeedsPlt(uint32_t Type,
|
|
|
|
const SymbolBody &S) const {
|
2015-09-30 07:22:16 +08:00
|
|
|
return false;
|
|
|
|
}
|
2015-09-29 13:34:03 +08:00
|
|
|
|
2015-10-14 22:24:46 +08:00
|
|
|
template <class ELFT>
|
|
|
|
void MipsTargetInfo<ELFT>::relocateOne(uint8_t *Buf, uint8_t *BufEnd,
|
|
|
|
const void *RelP, uint32_t Type,
|
2015-10-16 03:52:27 +08:00
|
|
|
uint64_t BaseAddr, uint64_t SA) const {
|
2015-10-14 22:24:46 +08:00
|
|
|
const bool IsLE = ELFT::TargetEndianness == support::little;
|
|
|
|
typedef typename ELFFile<ELFT>::Elf_Rel Elf_Rel;
|
2015-10-12 23:10:02 +08:00
|
|
|
auto &Rel = *reinterpret_cast<const Elf_Rel *>(RelP);
|
|
|
|
|
|
|
|
switch (Type) {
|
|
|
|
case R_MIPS_32:
|
2015-10-16 03:52:27 +08:00
|
|
|
add32<IsLE>(Buf + Rel.r_offset, SA);
|
2015-10-12 23:10:02 +08:00
|
|
|
break;
|
|
|
|
default:
|
2015-10-12 23:49:06 +08:00
|
|
|
error("unrecognized reloc " + Twine(Type));
|
2015-10-12 23:10:02 +08:00
|
|
|
}
|
|
|
|
}
|
2015-09-23 02:19:46 +08:00
|
|
|
}
|
|
|
|
}
|